JP2713517B2 - Differential amplifier circuit - Google Patents

Differential amplifier circuit

Info

Publication number
JP2713517B2
JP2713517B2 JP3259465A JP25946591A JP2713517B2 JP 2713517 B2 JP2713517 B2 JP 2713517B2 JP 3259465 A JP3259465 A JP 3259465A JP 25946591 A JP25946591 A JP 25946591A JP 2713517 B2 JP2713517 B2 JP 2713517B2
Authority
JP
Japan
Prior art keywords
source
constant current
power supply
fet
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3259465A
Other languages
Japanese (ja)
Other versions
JPH05102838A (en
Inventor
俊彦 市岡
哲夫 片柳
康 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3259465A priority Critical patent/JP2713517B2/en
Publication of JPH05102838A publication Critical patent/JPH05102838A/en
Application granted granted Critical
Publication of JP2713517B2 publication Critical patent/JP2713517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、GaAsFET等のF
ET(電界効果トランジスタ)を用いたソース・カップ
ルドFETロジック回路(以下、SCFL回路という)
等で構成される差動増幅回路、特に電流の導通/遮断機
能を持つ定電流源を備えた差動増幅回路に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention
Source-coupled FET logic circuit using ET (field effect transistor) (hereinafter referred to as SCFL circuit)
More particularly, the present invention relates to a differential amplifier circuit having a constant current source having a current conduction / cutoff function.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば次のような文献に記載されるものがあった。 文献;昭和61年度電子通信学会総合全国大会予稿集4
19、首藤 他「GaAs LSCFL 縦積みゲート
の基本特性」P.2−177 図2は、前記文献に記載された従来のSCFL回路で構
成される差動増幅回路の一構成例を示す回路図である。
この差動増幅回路は、入力信号I1を入力する入力端子
1、その逆相入力信号I2を入力する入力端子2、出力
信号O1を出力する出力端子3、及びその逆相出力信号
O2を出力する出力端子4、高電位側の電源電圧Vd1
が印加される電源端子5、及び低電位側の電源電圧Vs
s1が印加される電源端子6を有している。そして、入
力信号I1,I2によりゲート制御される一対の駆動用
FET11,12が設けられ、その各ドレインが出力端
子3,4にそれぞれ接続されると共に、一対の負荷抵抗
13,14を介して電源端子5に接続されている。各駆
動用FET11,12のソースが共通接続され、その共
通ソースが定電流源20に接続されている。定電流源2
0は、電流の導通/遮断機能を有し、ドレインが前記共
通ソースに、ソースが電源端子6にそれぞれ接続され、
制御電圧Vc1によりゲート制御される定電流源用FE
T21で構成されている。
2. Description of the Related Art Conventionally, techniques in such a field include:
For example, there is one described in the following literature. References: Proceedings of IEEJ General Conference, 1986 4
19, Shuto et al., "Basic Characteristics of GaAs LSCFL Vertically Stacked Gates" 2-177 FIG. 2 is a circuit diagram showing a configuration example of a differential amplifier circuit constituted by a conventional SCFL circuit described in the above document.
This differential amplifier circuit outputs an input terminal 1 for inputting an input signal I1, an input terminal 2 for receiving an inverted-phase input signal I2, an output terminal 3 for outputting an output signal O1, and an inverted-phase output signal O2. Output terminal 4, power supply voltage Vd1 on high potential side
Is applied to the power supply terminal 5 and the power supply voltage Vs on the low potential side.
It has a power supply terminal 6 to which s1 is applied. A pair of driving FETs 11 and 12 whose gates are controlled by the input signals I1 and I2 are provided, the drains of which are connected to the output terminals 3 and 4, respectively, and a power supply is connected via a pair of load resistors 13 and 14. Connected to terminal 5. The sources of the driving FETs 11 and 12 are commonly connected, and the common source is connected to the constant current source 20. Constant current source 2
0 has a current conduction / interruption function, a drain is connected to the common source, and a source is connected to the power supply terminal 6, respectively.
FE for constant current source gate-controlled by control voltage Vc1
It is composed of T21.

【0003】次に、動作を説明する。まず、制御電圧V
c1がFET21の閾値電圧Vthより十分高いとき、
該FET21が導通状態となり、定電流源として動作す
る。2つの入力信号I1とI2の論理レベルがそれぞれ
“H”,“L”のときは、駆動用FET11,12がそ
れぞれオン,オフとなり、電源電圧Vd1からの電源電
流Id1が負荷抵抗13を流れる。すると、出力信号O
1及び逆相出力信号O2の論理レベルがそれぞれ
“L”,“H”となる。また、2つの入力信号I1,I
2がそれぞれ“L”,“H”のときは、前記と同様にし
て出力信号O1及び逆相出力信号O2の論理レベルがそ
れぞれ“H”,“L”となる。制御電圧Vc1が定電流
源用FET21の閾値電圧Vthより十分低いとき、F
ET21が遮断状態となり、電源電流Id1がほとんど
流れなくなって該差動増幅回路の消費電力が抑制され
る。
Next, the operation will be described. First, the control voltage V
When c1 is sufficiently higher than the threshold voltage Vth of the FET 21,
The FET 21 becomes conductive and operates as a constant current source. When the logic levels of the two input signals I1 and I2 are "H" and "L", respectively, the driving FETs 11 and 12 are turned on and off, respectively, and the power supply current Id1 from the power supply voltage Vd1 flows through the load resistor 13. Then, the output signal O
The logic levels of 1 and the inverted output signal O2 become "L" and "H", respectively. Also, two input signals I1, I
When 2 is "L" and "H", respectively, the logic levels of the output signal O1 and the inverted-phase output signal O2 become "H" and "L", respectively, as described above. When the control voltage Vc1 is sufficiently lower than the threshold voltage Vth of the constant current source FET 21, F
ET21 is cut off, power supply current Id1 hardly flows, and power consumption of the differential amplifier circuit is suppressed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記構
成の回路では、電源電流Id1の導通/遮断は制御電圧
Vc1によって定電流源用FET21のゲート・ソース
間電圧を制御することにより行われる。そのため、制御
電圧Vc1がノイズによって不安定となったり、あるい
は該制御電圧Vc1を出力する制御回路における出力イ
ンピーダンスの変化等で該制御電圧Vc1が不安定とな
った場合、電源電流Id1の電流値が大きく変化し、そ
れによって出力信号O1及び逆相出力信号O2の論理レ
ベルも大きく変化するという問題があり、それを比較的
簡単な回路構成で解決することが困難であった。本発明
は、前記従来技術が持っていた課題として、定電流源用
FETのゲート・ソース間電圧で電流の導通/遮断を制
御する構成では、ノイズ等による制御電圧の変動に対し
て電流が変動し、出力信号の論理レベルが大きく変動す
るという点について解決した差動増幅回路を提供するも
のである。
However, in the circuit having the above configuration, the conduction / cut-off of the power supply current Id1 is performed by controlling the gate-source voltage of the constant current source FET 21 by the control voltage Vc1. Therefore, when the control voltage Vc1 becomes unstable due to noise, or when the control voltage Vc1 becomes unstable due to a change in output impedance in a control circuit that outputs the control voltage Vc1, the current value of the power supply current Id1 becomes There is a problem that the logic level greatly changes, and accordingly, the logic levels of the output signal O1 and the negative-phase output signal O2 also greatly change, and it has been difficult to solve this with a relatively simple circuit configuration. The present invention has a problem that the conventional technology has a problem in that in the configuration in which the conduction / interruption of the current is controlled by the gate-source voltage of the constant current source FET, the current fluctuates with respect to the fluctuation of the control voltage due to noise or the like. It is another object of the present invention to provide a differential amplifier circuit that solves the problem that the logic level of an output signal fluctuates greatly.

【0005】[0005]

【課題を解決するための手段】第1の発明は、前記課題
を解決するために、ソースが共通接続され、2つの入力
信号によりそれぞれオン,オフ動作する一対の駆動用F
ETと、前記一対の駆動用FETの各ドレインと高電位
側の電源電圧との間にそれぞれ接続された一対の負荷抵
抗と、前記一対の駆動用FETの共通ソースと低電位側
の電源電圧との間に接続され、定電流の導通/遮断機能
を持つ定電流源とを、備えた差動増幅回路において、前
記定電流源を次のように構成している。即ち、前記定電
流源は、ドレインが前記共通ソースに接続され、制御電
圧によってゲート制御される制御用FETと、ドレイン
が前記制御用FETのソースに、ソースが前記低電位側
の電源電圧に、ゲートが固定電圧または該低電位側の電
源電圧にそれぞれ接続された定電流源用FETとで、構
成している。第2の発明は、第1の発明において、ドレ
インが前記高電位側の電源電圧にそれぞれ接続され、前
記一対の駆動用FETの各ドレイン電圧によってそれぞ
れゲート制御される一対の出力バッファ用ソースホロワ
FETと、一方の電極が前記各ソースホロワFETのソ
ースに直接またはレベルシフタを介してそれぞれ接続さ
れ、他方の電極が前記低電位側の電源電圧にそれぞれ接
続され、前記定電流源と同一構成の2つの出力バッファ
用定電流源とを、設けている。
According to a first aspect of the present invention, in order to solve the above-mentioned problems, a pair of driving Fs whose sources are commonly connected and which are turned on and off by two input signals respectively are provided.
ET, a pair of load resistors respectively connected between the drains of the pair of driving FETs and the power supply voltage on the high potential side, and a common source of the pair of driving FETs and the power supply voltage on the low potential side. And a constant current source having a function of conducting / cutting off a constant current in the differential amplifier circuit, wherein the constant current source is configured as follows. That is, the constant current source has a drain connected to the common source, a control FET whose gate is controlled by a control voltage, a drain connected to the source of the control FET, and a source connected to the power supply voltage on the low potential side. A constant current source FET whose gate is connected to the fixed voltage or the power supply voltage on the low potential side, respectively. According to a second aspect, in the first aspect, a pair of output buffer source follower FETs, each having a drain connected to the power supply voltage on the high potential side and having a gate controlled by each drain voltage of the pair of driving FETs, , One of the electrodes is connected to the source of each of the source follower FETs directly or via a level shifter, and the other electrode is connected to the low-potential-side power supply voltage, respectively. And a constant current source.

【0006】[0006]

【作用】第1の発明によれば、以上のように差動増幅回
路を構成したので、定電流源用FETに直列接続した制
御用FETのゲート・ソース間を制御電圧で制御すれ
ば、定電流源の電流の導通/遮断が行え、その電流の導
通時に定電流特性の安定性が向上する。第2の発明によ
れば、出力バッファ用定電流源は、駆動用FET側の定
電流源と同一回路で構成されているので、該出力バッフ
ァ用定電流源を構成する制御用FETにより、該出力バ
ッファ用定電流源の電流の導通/遮断を行い、導通時に
おける定電流特性の安定性の向上が図れる。従って、前
記課題を解決できるのである。
According to the first aspect of the present invention, since the differential amplifier circuit is constructed as described above, if the gate-source of the control FET connected in series with the constant current source FET is controlled by the control voltage, the constant Conduction / interruption of the current of the current source can be performed, and stability of the constant current characteristic is improved when the current is conducted. According to the second invention, the constant current source for the output buffer is constituted by the same circuit as the constant current source on the driving FET side. Therefore, the constant current source for the output buffer is controlled by the control FET constituting the constant current source for the output buffer. Conduction / interruption of the current of the output buffer constant current source is performed, and the stability of the constant current characteristic during conduction is improved. Therefore, the above problem can be solved.

【0007】[0007]

【実施例】第1の実施例 図1は、本発明の第1の実施例を示すSCFL回路で構
成される差動増幅回路の回路図である。この差動増幅回
路は、入力信号I11を入力する入力端子31、その逆
相入力信号I12を入力する入力端子32、出力信号O
11を出力する出力端子33、その逆相出力信号O12
を出力する出力端子34、高電位側の電源電圧Vd11
を印加する電源端子35、及び低電位側の電源電圧Vs
s11を印加す電源端子36を有している。そして、入
力信号I11及び逆相入力信号I12によりオン,オフ
動作する一対の駆動用FET41,42が設けられてい
る。
EXAMPLES First Embodiment FIG. 1 is a circuit diagram of a differential amplifier circuit constituted by SCFL circuit showing a first embodiment of the present invention. This differential amplifier circuit has an input terminal 31 for inputting an input signal I11, an input terminal 32 for inputting its inverted-phase input signal I12, and an output signal O.
11, an output terminal 33 for outputting an output signal O12
Output terminal 34 for outputting the power supply voltage Vd11 on the high potential side
And a power supply voltage Vs on the low potential side.
It has a power supply terminal 36 for applying s11. Further, a pair of driving FETs 41 and 42 that are turned on and off by the input signal I11 and the negative-phase input signal I12 are provided.

【0008】各FET41,42のドレインは、出力端
子33,34に接続されると共に、一対の負荷抵抗4
3,44を介して電源端子35に接続されている。各駆
動用FET41,42のソースは共通接続され、その共
通ソースが定電流源50を介して電源端子36に接続さ
れている。定電流源50は、電源端子35から流れる電
源電流Id11を導通/遮断する機能を有し、ノーマリ
オフ型の制御用FET51、及びノーマリオン型の定電
流源用FET52より構成されている。制御用FET5
1は、制御電圧Vc11によってゲート制御されるトラ
ンジスタであり、そのドレインがFET41,42の共
通ソースに接続され、そのソースが定電流源用FET5
2のドレインに接続されている。FET52のゲートは
ソースに接続され、そのソースが電源端子36に接続さ
れている。
The drains of the FETs 41 and 42 are connected to output terminals 33 and 34, and a pair of load resistors 4
It is connected to the power supply terminal 35 via 3 and 44. The sources of the driving FETs 41 and 42 are commonly connected, and the common source is connected to the power supply terminal 36 via the constant current source 50. The constant current source 50 has a function of conducting / cutting off a power supply current Id11 flowing from the power supply terminal 35, and includes a normally-off type control FET 51 and a normally-on type constant current source FET 52. Control FET5
Reference numeral 1 denotes a transistor whose gate is controlled by a control voltage Vc11, the drain of which is connected to a common source of the FETs 41 and 42, and the source of which is a constant current source FET5.
2 drain. The gate of the FET 52 is connected to the source, and the source is connected to the power supply terminal 36.

【0009】次に、動作を説明する。まず、制御電圧V
c11が十分高いときには、制御用FET51がオン
し、電源端子35から電源電流Id11が流れる。この
とき、2つの入力信号I11,I12がそれぞれ
“H”,“L”ならば、一対の駆動用FET41,42
がそれぞれオン,オフとなり、電源端子35から電源電
流Id11が負荷抵抗43に流れる。そのため、出力信
号O11及び逆相出力信号O12の論理レベルは、それ
ぞれ“L”,“H”となる。また、2つの入力信号I1
1,I12の論理レベルが“L”,“H”であれば、出
力信号O11及び逆相出力信号O12が“H”,“L”
となる。制御電圧Vc11を電位Vss(=0V)まで
低くすると、FET52のドレインとFET51のゲー
トとの間の電圧が0Vに近くなり、電源電流Id11が
流れなくなる。
Next, the operation will be described. First, the control voltage V
When c11 is sufficiently high, the control FET 51 is turned on, and the power supply current Id11 flows from the power supply terminal 35. At this time, if the two input signals I11 and I12 are "H" and "L", respectively, a pair of driving FETs 41 and 42 are provided.
Are turned on and off, respectively, and the power supply current Id11 flows from the power supply terminal 35 to the load resistor 43. Therefore, the logic levels of the output signal O11 and the inverted-phase output signal O12 are “L” and “H”, respectively. Also, two input signals I1
1 and I12 are “L” and “H”, the output signal O11 and the negative-phase output signal O12 are “H” and “L”.
Becomes When the control voltage Vc11 is lowered to the potential Vss (= 0V), the voltage between the drain of the FET 52 and the gate of the FET 51 approaches 0V, and the power supply current Id11 stops flowing.

【0010】この第1の実施例の利点を、図3を参照し
つつ説明する。図3は、本実施例の図1の回路と従来の
図2の回路との電源電流Id1,Id11の制御電圧V
c1,Vc11依存特性を、コンピュータを用いてシミ
ュレーションした結果を示す図である。本実施例の回路
と従来の回路とは共に制御電圧Vc1,Vc11をVs
s(=0V)レベルまで低くすると、電源電流Id1,
Id11が25〜40μAまで小さくなる。そのため、
本実施例の回路が、電源電流Id11の導通/遮断機能
を持つことがわかる。
The advantages of the first embodiment will be described with reference to FIG. FIG. 3 shows the control voltage V of the power supply currents Id1 and Id11 of the circuit of FIG. 1 of this embodiment and the conventional circuit of FIG.
FIG. 14 is a diagram illustrating a result of simulating the c1 and Vc11 dependence characteristics using a computer. In both the circuit of the present embodiment and the conventional circuit, the control voltages Vc1 and Vc11 are set to Vs
s (= 0V) level, the power supply current Id1,
Id11 decreases to 25-40 μA. for that reason,
It can be seen that the circuit of this embodiment has a function of conducting / cutting off the power supply current Id11.

【0011】例えば、電流導通時の消費電流設計値が2
00μAとする。すると、図3より、従来の図2の回路
では制御電圧Vc1を0.27Vに、本実施例の図1の
回路では制御電圧Vc11を0.8Vにすれば良いこと
がわかる。ここで、前記の動作点電圧における電流の電
圧に対する変化率ΔId/ΔVcを求めると、次のよう
になる。 従来の回路: ΔId1/ΔVc1〜0.9(mA/V) 本実施例の回路: ΔId11/ΔVc11〜0.05(mA/V) 本実施例の回路では、従来の回路と比較して、制御電圧
Vc11のレベル変動に対する電流変動が1/18であ
る。また、電流変動と負荷抵抗43,44の積で表わさ
れる出力信号O11及び逆相出力信号O12の論理レベ
ルの変動も、1/18に抑えられることがわかる。従っ
て、制御電圧Vc11がノイズや、該制御電圧生成用の
制御回路の出力インピーダンスの変化等で、不安定とな
っても、電流導通時の電流変動を小さくできる。さら
に、定電流源用FET52のドレイン側に制御用FET
51を直列に接続しているので、該FET52のドレイ
ン電圧をFET51の制御電圧Vc11で制御できる。
そのため、定電流源用FET52のドレイン電圧上昇に
よるドレイン電流の増加や降伏を防ぐことができる
For example, the design value of the current consumption when the current is conducted is 2
00 μA. Then, it is understood from FIG. 3 that the control voltage Vc1 should be set to 0.27 V in the conventional circuit of FIG. 2, and the control voltage Vc11 should be set to 0.8 V in the circuit of FIG. Here, the rate of change ΔId / ΔVc of the current at the operating point voltage with respect to the voltage is obtained as follows. Conventional circuit: ΔId1 / ΔVc1 to 0.9 (mA / V) Circuit of the present embodiment: ΔId11 / ΔVc11 to 0.05 (mA / V) In the circuit of the present embodiment, compared with the conventional circuit, The current fluctuation with respect to the level fluctuation of the voltage Vc11 is 1/18. It can also be seen that the fluctuations in the logic levels of the output signal O11 and the negative-phase output signal O12, which are expressed by the product of the current fluctuation and the load resistances 43 and 44, can be suppressed to 1/18. Therefore, even if the control voltage Vc11 becomes unstable due to noise, a change in the output impedance of the control circuit for generating the control voltage, or the like, the current fluctuation at the time of current conduction can be reduced. Further, a control FET is connected to the drain of the constant current source FET 52.
Since the FETs 51 are connected in series, the drain voltage of the FET 52 can be controlled by the control voltage Vc11 of the FET 51.
Therefore, it is possible to prevent an increase and a breakdown of the drain current due to an increase in the drain voltage of the constant current source FET 52 .

【0012】第2の実施例は、本発明の第の実施例を示すSCFL回路で構
成される差動増幅回路の回路図であり、図1中の要素と
共通の要素には共通の符号が付されている。この差動増
幅回路では、図1の差動増幅回路に、ソースホロワバッ
ファを接続している。ソースホロワバッファは、一対の
ソースホロワ用FET61,62、ダイオード等で構成
される一対のレベルシフタ63,64、及び一対の定電
流源50−1,50−2を備えている。各ソースホロワ
用FET61,62は、各駆動用FET41,42のド
レイン電圧によってオン,オフ動作するトランジスタで
あり、その各ドレインが電源端子35にそれぞれ接続さ
れ、そのソースが出力端子33,34にそれぞれ接続さ
れている。各出力端子33,34には、レベルシフタ6
3,64がそれぞれ接続され、その各レベルシフタ6
3,64が定電流源50−1,50−2をそれぞれ介し
て電源端子36に接続されている、定電流源50−1,
50−2は、図1の定電流源50と同様に、制御電圧V
c11によってゲート制御されるノーマリオフ型の制御
用FET51−1,51−2と、ノーマリオン型の定電
流源用FET52−1,52−2とで、それぞれ構成さ
れている。
Second Embodiment FIG. 4 is a circuit diagram of a differential amplifier circuit composed of an SCFL circuit according to a second embodiment of the present invention. The elements common to those in FIG. Are given. In this differential amplifier circuit, a source follower buffer is connected to the differential amplifier circuit of FIG. The source-follower buffer includes a pair of source-follower FETs 61 and 62, a pair of level shifters 63 and 64 including diodes and the like, and a pair of constant current sources 50-1 and 50-2. Each of the source follower FETs 61 and 62 is a transistor that is turned on and off by the drain voltage of each of the driving FETs 41 and 42, and has its drain connected to the power supply terminal 35 and its source connected to the output terminals 33 and 34, respectively. Have been. Each output terminal 33, 34 has a level shifter 6
3 and 64 are connected to each other and each level shifter 6
3 and 64 are connected to the power terminal 36 via the constant current sources 50-1 and 50-2, respectively.
50-2 is a control voltage V, similar to the constant current source 50 of FIG.
It comprises normally-off type control FETs 51-1 and 51-2 gate-controlled by c11 and normally-on type constant current source FETs 52-1 and 52-2.

【0013】この差動増幅回路では、駆動用FET4
1,42のドレイン電圧によってソースホロワ用FET
61,62がオン,オフ動作し、それに応じた出力信号
O11及び逆相出力信号O12が出力端子33,34か
らそれぞれ出力される。この出力信号O11及び逆相出
力信号O12は、レベルシフタ63,64によって所定
の電圧レベルにレベルシフトされる。この差動増幅回路
においても、ソースホロワ用FET61,62に定電流
源50−1,50−2をそれぞれ設けたので、制御電圧
Vc11によって制御用FET51−1,51−2がオ
ン,オフ動作し、電源電流の導通/遮断が行え、電流導
通時にはソースホロワバッファ側で安定な定電流特性が
得られる。
In this differential amplifier circuit, the driving FET 4
FET for source follower by drain voltage of 1,42
61 and 62 are turned on and off, and an output signal O11 and a negative-phase output signal O12 are output from the output terminals 33 and 34, respectively. The output signal O11 and the negative-phase output signal O12 are level-shifted to predetermined voltage levels by the level shifters 63 and 64. Also in this differential amplifier circuit, since the constant current sources 50-1 and 50-2 are provided in the source follower FETs 61 and 62, the control FETs 51-1 and 51-2 are turned on and off by the control voltage Vc11. Power supply current can be turned on / off, and a stable constant current characteristic can be obtained on the source follower buffer side when the current is turned on.

【0014】なお、本発明は上記実施例に限定されず、
種々の変形が可能である。その変形例としては、例えば
次のようなものがある。 (a) 図1及び図4において、制御用FET51,5
1−1,51−2をノーマリオン型FETで構成した
り、あるいは定電流源用FET52,52−1,52−
2をノーマリオフ型FETで構成しても良い。この際、
制御電圧Vc11の極性をそれに応じて変えれば良い (b ) 図の差動増幅回路において、駆動用FET4
1,42及び入力端子31,32を複数個設けることに
より、複数入力のノア回路等といった他の論理回路を構
成することも可能である。 () 図1及び図4の定電流源用FET52,52−
1,52−2のゲートを固定電圧端子に接続しても、上
記実施例と同様の作用、効果が得られる。
The present invention is not limited to the above embodiment,
Various modifications are possible. For example, there are the following modifications. (A) In FIGS. 1 and 4 , the control FETs 51, 5
1-1 and 51-2 may be composed of normally-on type FETs, or constant current source FETs 52, 52-1, and 52-.
2 may be constituted by a normally-off type FET. On this occasion,
What is necessary is just to change the polarity of the control voltage Vc11 accordingly . (B) in the differential amplifier circuit of FIG. 4, the driving FET4
By providing a plurality of input terminals 1 and 42 and a plurality of input terminals 31 and 32, it is possible to configure another logic circuit such as a multiple-input NOR circuit. ( C ) The constant current source FETs 52, 52- shown in FIGS.
Even when the gates of the terminals 1 and 52-2 are connected to the fixed voltage terminals, the same operation and effect as those of the above embodiment can be obtained.

【0015】[0015]

【発明の効果】以上詳細に説明したように、第1の発明
によれば、電流の導通/遮断機能を持つ定電流源を、制
御用FETと定電流源用FETとの直列回路で構成し、
該制御用FETを制御電圧で制御するようにしたので、
制御電圧が、ノイズや、該制御電圧生成用の制御回路に
おける出力インピーダンスの変化等で不安定となって
も、電流導通時の電流変動を小さくできる。そのため、
比較的簡単な回路構成で、出力の論理レベルの変動を抑
制することができる。しかも、定電流源用FETのドレ
イン側に制御用FETを接続しているので、該定電流源
用FETのドレイン電圧を、制御用FETのゲートに印
加する制御電圧で制御できる。そのため、定電流源用F
ETのドレイン電圧上昇によるドレイン電流の増加や降
伏を防止できる。
As described above in detail, according to the first aspect, the constant current source having the current conducting / cutting function is constituted by a series circuit of the control FET and the constant current source FET. ,
Since the control FET is controlled by the control voltage,
Even if the control voltage becomes unstable due to noise, a change in the output impedance of the control voltage generation control circuit, or the like, the current fluctuation during current conduction can be reduced. for that reason,
With a relatively simple circuit configuration, it is possible to suppress a change in the logic level of the output. In addition, since the control FET is connected to the drain of the constant current source FET, the drain voltage of the constant current source FET can be controlled by the control voltage applied to the gate of the control FET. Therefore, the constant current source F
It is possible to prevent an increase in the drain current and a breakdown due to an increase in the drain voltage of the ET.

【0016】第2の発明によれば、第1の発明の回路に
出力バッファ用ソースホロワFETと出力バッファ用定
電流源とを接続し、該出力バッファ用定電流源を駆動用
FET側の定電流源と同一の回路で構成している。その
ため、出力バッファ側についても、電流の導通/遮断機
能と安定な定電流特性が得られる。また、出力バッファ
用ソースホロワFETと出力バッファ用定電流源との間
にレベルシフタを設けた場合、該レベルシフタによって
出力レベルを任意の値にシフトすることが可能となる。
According to the second invention, a source follower FET for an output buffer and a constant current source for an output buffer are connected to the circuit of the first invention, and the constant current source for the output buffer is connected to the constant current on the driving FET side. It consists of the same circuit as the source. Therefore, also on the output buffer side, a current conduction / cutoff function and stable constant current characteristics can be obtained. When a level shifter is provided between the output buffer source follower FET and the output buffer constant current source, the output level can be shifted to an arbitrary value by the level shifter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す差動増幅回路の回
路図である。
FIG. 1 is a circuit diagram of a differential amplifier circuit according to a first embodiment of the present invention.

【図2】従来の差動増幅回路の回路図である。FIG. 2 is a circuit diagram of a conventional differential amplifier circuit.

【図3】本実施例と従来とを比較するための電源電流の
制御電圧依存特性図である。
FIG. 3 is a control voltage dependence characteristic diagram of a power supply current for comparing the present embodiment with a conventional example.

【図4】本発明の第2の実施例を示す差動増幅回路の回
路図である
FIG. 4 is a circuit diagram of a differential amplifier circuit according to a second embodiment of the present invention .

【符号の説明】[Explanation of symbols]

41,42 駆動用FET 43,44 負荷抵抗 50,51−1,50−2 定電流源 51,51−1,51−2 制御用FET 52,52−1,52−2 定電流源用FET 63,64 レベルシフタ41, 42 Driving FET 43, 44 Load resistance 50 , 5 1-1 , 50-2 Constant current source 51, 51-1, 51-2 Control FET 52, 52-1, 52-2 FET for constant current source 63, 64 level shifter

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ソースが共通接続され、2つの入力信号
によりそれぞれオン,オフ動作する一対の駆動用FET
と、 前記一対の駆動用FETの各ドレインと高電位側の電源
電圧との間にそれぞれ接続された一対の負荷抵抗と、 前記一対の駆動用FETの共通ソースと低電位側の電源
電圧との間に接続され、定電流の導通/遮断機能を持つ
定電流源とを、備えた差動増幅回路において、 前記定電流源は、 ドレインが前記共通ソースに接続され、制御電圧によっ
てゲート制御される制御用FETと、 ドレインが前記制御用FETのソースに、ソースが前記
低電位側の電源電圧に、ゲートが固定電圧または該低電
位側の電源電圧にそれぞれ接続された定電流源用FET
とで、構成したことを特徴とする差動増幅回路。
A pair of driving FETs whose sources are commonly connected and which are turned on and off by two input signals, respectively.
A pair of load resistors respectively connected between each drain of the pair of driving FETs and a power supply voltage on a high potential side; and a common source of the pair of driving FETs and a power supply voltage on a low potential side. A constant current source having a conduction / shutoff function of a constant current, the constant current source having a drain connected to the common source and being gate-controlled by a control voltage. A control FET, a constant current source FET having a drain connected to the source of the control FET, a source connected to the low potential side power supply voltage, and a gate connected to the fixed voltage or the low potential side power supply voltage, respectively.
A differential amplifier circuit comprising:
【請求項2】 請求項1記載の差動増幅回路において、 ドレインが前記高電位側の電源電圧にそれぞれ接続さ
れ、前記一対の駆動用FETの各ドレイン電圧によって
それぞれゲート制御される一対の出力バッファ用ソース
ホロワFETと、 一方の電極が前記各ソースホロワFETのソースに直接
またはレベルシフタを介してそれぞれ接続され、他方の
電極が前記低電位側の電源電圧にそれぞれ接続され、前
記定電流源と同一構成の2つの出力バッファ用定電流源
とを、設けたことを特徴とする差動増幅回路。
2. A pair of output buffers according to claim 1, wherein drains are respectively connected to the power supply voltage on the high potential side, and a gate is controlled by each drain voltage of the pair of driving FETs. Source follower FET, one electrode is connected to the source of each of the source follower FETs directly or via a level shifter, and the other electrode is connected to the low potential side power supply voltage, respectively, and has the same configuration as the constant current source. A differential amplifier circuit comprising: two output buffer constant current sources.
JP3259465A 1991-10-07 1991-10-07 Differential amplifier circuit Expired - Fee Related JP2713517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3259465A JP2713517B2 (en) 1991-10-07 1991-10-07 Differential amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3259465A JP2713517B2 (en) 1991-10-07 1991-10-07 Differential amplifier circuit

Publications (2)

Publication Number Publication Date
JPH05102838A JPH05102838A (en) 1993-04-23
JP2713517B2 true JP2713517B2 (en) 1998-02-16

Family

ID=17334454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3259465A Expired - Fee Related JP2713517B2 (en) 1991-10-07 1991-10-07 Differential amplifier circuit

Country Status (1)

Country Link
JP (1) JP2713517B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276921A (en) * 1988-04-28 1989-11-07 Fujitsu Ltd Logic circuit
JPH03213016A (en) * 1990-01-18 1991-09-18 Sumitomo Electric Ind Ltd Inverter circuit

Also Published As

Publication number Publication date
JPH05102838A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
US4695744A (en) Level shift circuit including source follower output
US4217502A (en) Converter producing three output states
US6404230B1 (en) Level-shifting pass gate
RU2693298C1 (en) Triggering logic element nor on field transistors
US5886556A (en) Low power schmitt trigger
JPS59212009A (en) Current amplifying device
RU2710950C1 (en) Trigger logic element or on field-effect transistors
JP4828343B2 (en) Analog switch circuit
JP3492765B2 (en) Level conversion circuit
US4717845A (en) TTL compatible CMOS input circuit
US4482868A (en) Output stage for a driver circuit having low quiescent output current
JP2534346B2 (en) High-speed logic circuit
US4818897A (en) Fast one way amplifier stage
US4633192A (en) Integrated circuit operating as a current-mirror type CMOS amplifier
JP2713517B2 (en) Differential amplifier circuit
US6198330B1 (en) Adaptive-load inverters and methods
JPH0685659A (en) Bi-fet logic circuit
JP2886008B2 (en) Semiconductor logic circuit
JP2735835B2 (en) Power-on reset circuit device for logic integrated circuit
JPS594890B2 (en) digital circuit
JP2944337B2 (en) Level conversion circuit
KR930005384Y1 (en) Voltage control resistor circuit
JPH10276076A (en) Semiconductor circuit
JPH0269006A (en) Differential amplifier
CN117353668A (en) Slew rate enhancement circuit, chip and electronic equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees