JP2705447B2 - Cylindrical graphite fiber and manufacturing method - Google Patents

Cylindrical graphite fiber and manufacturing method

Info

Publication number
JP2705447B2
JP2705447B2 JP4108070A JP10807092A JP2705447B2 JP 2705447 B2 JP2705447 B2 JP 2705447B2 JP 4108070 A JP4108070 A JP 4108070A JP 10807092 A JP10807092 A JP 10807092A JP 2705447 B2 JP2705447 B2 JP 2705447B2
Authority
JP
Japan
Prior art keywords
graphite
fiber
cylindrical structure
graphite fiber
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4108070A
Other languages
Japanese (ja)
Other versions
JPH0711520A (en
Inventor
澄男 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4108070A priority Critical patent/JP2705447B2/en
Publication of JPH0711520A publication Critical patent/JPH0711520A/en
Application granted granted Critical
Publication of JP2705447B2 publication Critical patent/JP2705447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、黒鉛を基本構造とし
た炭素元素からなる円筒状をもつ繊維の先端構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tip structure of a cylindrical fiber made of carbon element having graphite as a basic structure.

【0002】[0002]

【従来の技術】先端の尖った針を用いる道具としては、
生物関係では医療用注射針、光学顕微鏡下で行う人工受
精に用いる針、細胞内にDNAを挿入する毛細管針など
色々な種類とサイズの針がある。それらの針の先端の
率半径は数百ミクロンからサブミクロンの大きさであ
る。針の材料としては金属やガラスが使われる。一方、
非生物関係で使われる針には、電子顕微鏡や電界イオン
顕微鏡の電子源あるいはイオン源に使われるポイントフ
ィラメント、最近開発された走査型トンネル顕微鏡(S
TM)に使われる探針などがある。これらのフィラメン
トの先端は数十nmからサブnmの領域にある曲率半径
の針が使われ、これらの材料は高融点の金属が使われ
る。先端を尖らせるためには電界研磨法が一般的に用い
られる。
2. Description of the Related Art Tools using a sharpened needle include:
In the biological field, there are needles of various types and sizes, such as medical injection needles, needles used for artificial insemination performed under an optical microscope, and capillary needles for inserting DNA into cells. Song at the tip of those needles
The radius of curvature ranges from a few hundred microns to a submicron . Metal or glass is used as the material for the needle. on the other hand,
Needles used in non-living matter include point filaments used in electron and ion sources for electron microscopes and field ion microscopes, and recently developed scanning tunneling microscopes (S
There is a probe used for TM). Needles having a radius of curvature in the range of several tens of nm to sub-nm are used for the tips of these filaments, and high melting point metals are used for these materials. In order to sharpen the tip, an electric field polishing method is generally used.

【0003】[0003]

【発明が解決しようとする課題】生物体の細胞レベルに
おける細胞内組織の操作、マイクロマシン技術における
ナノメーターレベルの加工操作技術等において、ナノメ
ータサイズの針を使用する技術分野の開発が望まれてい
る。人工的に加工可能な針の先端曲率は電界研磨法が最
も優れているが、針の先端曲率をサブnmにすることは
極めて難しい。たとえば、操作トンネル顕微鏡の針の作
成においては、電界研磨で得た曲率数十ナノメータの針
の先端を故意に機械的に損傷し、より小さい曲率を偶然
に得ているが、再現性は極めて低く、また作られた針全
体の形状を知ることが難しい。 最近本発明者は、黒鉛
を基本構造とした炭素元素からなるナノメータサイズの
極微細円筒構造(ナノチューブ)が存在することを発見
した(ネイチャー(Nature)、354、56(1
991)など)。これは炭素をその構成単位として六員
環を主構造としたらせん構造で形成された円筒形状を持
ち、外径が通常30nm以下という極めて小さな多重構
造の黒鉛繊維である。このナノチューブで前述の針に限
らず種々の形状を作ることができれば様々な応用が考え
られる。また従来は円筒形のまま長いナノチューブを作
製することが難しかった。
In the manipulation of intracellular tissue at the cell level of an organism, the processing operation technique at the nanometer level in micromachine technology, etc., the development of a technical field using a nanometer-sized needle is desired. . The tip polishing of the needle which can be processed artificially is most excellent by the electric field polishing method, but it is extremely difficult to make the tip curvature of the needle sub-nm. For example, in making a needle for an operation tunnel microscope, the tip of a needle with a curvature of several tens of nanometers obtained by electropolishing is intentionally mechanically damaged, and a smaller curvature is accidentally obtained, but the reproducibility is extremely low It is also difficult to know the shape of the entire needle. Recently, the present inventors have discovered that there is a nanometer-sized ultrafine cylindrical structure (nanotube) composed of a carbon element having graphite as a basic structure (Nature, 354, 56 (1)).
991). This is a graphite fiber having a cylindrical structure formed of a spiral structure having carbon as a structural unit and a six-membered ring having a main structure as a main structure, and having an extremely small outer diameter of usually 30 nm or less. Various applications can be considered as long as various shapes can be made with the nanotubes, not limited to the needles described above. Conventionally, it has been difficult to produce a long nanotube while maintaining a cylindrical shape.

【0004】本発明の目的は、様々な形状のナノチュー
ブおよびその製造方法を提供すること、また長いナノチ
ューブを製造する方法を提供することである。
An object of the present invention is to provide various shapes of nano-tubes.
And a method for producing long nanotubes.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明による円筒状構造で、かつその先端が円錐形
状の針においては、円筒構造でかつ円錐形状の先端をも
つ黒鉛繊維であり、円筒でかつ円錐形状の先端をもつ
造は、炭素元素をその構成単位として六員環を主構造と
するらせん構造で形成されるものである。
In order to achieve the above object, a needle having a cylindrical structure according to the present invention and having a conical tip is a graphite fiber having a cylindrical structure and a conical tip. cylinder a and structure <br/> granulated with the tip of the conical shape is to be formed in a helical structure whose main structural six-membered ring as a constituent unit a carbon element.

【0006】円筒と円錐の境界部分には一個または二個
の五員環が存在し、円錐の先端には五個の五員環が存在
し、その間の円錐には五員環はなくすべて六員環であ
る。円錐の頂点の角度は10〜50度の間であるが、2
0度前後のものが多い。また、円錐の曲率半径はサブナ
ノメータである。この黒鉛繊維の構造は、製造途中で原
料の供給を減らすか、または温度を下げることにより実
現できる。この構造の断面の電子顕微鏡写真図を図4に
示す。
[0006] One or two five-membered rings exist at the boundary between the cylinder and the cone, and five five-membered rings exist at the tip of the cone. It is a member ring. The apex angle of the cone is between 10 and 50 degrees, but 2
Many are around 0 degrees. The radius of curvature of the cone is sub-nanometer. The structure of this graphite fiber was
By reducing the supply of feed or lowering the temperature.
Can appear. Fig. 4 shows an electron micrograph of the cross section of this structure.
Show.

【0007】繊維の先端がろうと形状で開いている円筒
構造は、円筒の端に七員環が発生しそのため円筒がろう
と状に開くものである。この構造の黒鉛繊維の製造は、
製造途中で原料の供給を増やすか、または温度を上げる
ことにより実現できる。
[0007] A cylindrical structure in which the ends of the fibers are open in a funnel shape is one in which a seven-membered ring is generated at the end of the cylinder, so that the cylinder opens in a funnel shape. The production of graphite fibers of this structure
Increase raw material supply or increase temperature during production
This can be achieved by:

【0008】[0008]

【作用】本発明者の観測によれば、成長中のナノチュー
ブの先端は閉じておらず開いた状態であると考えられ、
開いた円筒の円周上には、完全に結合されない炭素原子
と、らせん構造によるキンク(ステップ)ができ、そこ
が炭素原子を捕獲し成長していくものと思われる。五員
環の発生はナノチューブが成長するプラズマ中の炭素原
子密度に依存するようであり、アーク放電の終了寸前ま
たは温度を下げた場合など炭素原子密度が減少するとき
に発生すると思われる。逆にいえば五員環は原料の供給
を減らすかあるいは温度を下げると発生することができ
る。一方七員環は原料ガスの供給量を増やすかあるいは
温度を上げると発生させることができる。
According to the observations made by the present inventors, it is considered that the tip of the growing nanotube is not closed but open.
On the circumference of the open cylinder, carbon atoms that are not completely bonded and kink (step) due to the helical structure are formed, which are thought to capture and grow the carbon atoms. The generation of the five-membered ring appears to depend on the carbon atom density in the plasma in which the nanotubes grow, and appears to occur when the carbon atom density decreases, such as shortly before the end of the arc discharge or when the temperature is reduced. Conversely, a five-membered ring can be generated by reducing the supply of raw materials or reducing the temperature. On the other hand, the seven-membered ring can be generated by increasing the supply amount of the source gas or increasing the temperature.

【0009】円錐の場合得られた黒鉛繊維の電顕像に
は、軸方向に平行にグラファイトのC面に相当する格子
像が見られ、先端の円錐部分にも格子像が見られるが、
その方向は円錐の辺に平行である。すなわち円筒部と円
錐部の六員環は完全に連続したグラファイト層構造をも
つ。
In the case of a cone, the obtained electron microscope image of the graphite fiber shows a lattice image corresponding to the graphite C plane parallel to the axial direction, and a lattice image is also seen at the tip cone.
Its direction is parallel to the side of the cone. That is, the six-membered ring of the cylindrical portion and the conical portion has a completely continuous graphite layer structure.

【0010】また、円錐部分の先端はアイスクリームコ
ーンの皮を数枚重ね合わしたような数枚のグラファイト
層の多重構造である。
[0010] The tip of the conical portion has a multi-layered structure of several graphite layers as if several ice cream cone skins were superposed.

【0011】[0011]

【実施例】以下に本発明の実施例を図によって説明す
る。図1は、アルゴンガス雰囲気で繊維状黒鉛を形成す
る装置の例を示したものである。図において、繊維状黒
鉛が成長する一対の炭素棒電極7、10を真空容器1の
中央に配置し、容器1内を真空排気系2で排気する。所
定圧力、例えば真空計3で計測して10- 6 Torr程
度になった段階で真空バルブ4を閉じ、ガス供給系5よ
りアルゴンガスを供給する。アルゴンに限らず炭化水素
ガスまたはそれらの混合ガスでもよい。圧力計6により
圧力を測定し、真空容器1内が所定圧力になるように設
定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of an apparatus for forming fibrous graphite in an argon gas atmosphere. In the figure, a pair of carbon rod electrodes 7 and 10 on which fibrous graphite grows are arranged at the center of a vacuum vessel 1, and the inside of the vessel 1 is evacuated by a vacuum exhaust system 2. Predetermined pressure, for example measured by the vacuum gauge 3 10 - close the vacuum valve 4 at the stage became about 6 Torr, supplying argon gas from the gas supply system 5. Not only argon but also a hydrocarbon gas or a mixed gas thereof may be used. The pressure is measured by the pressure gauge 6, and the inside of the vacuum vessel 1 is set to a predetermined pressure.

【0012】一方の炭素棒電極7は、アーク放電8の正
導電端子9に、他方の炭素棒電極10を負導電端子11
に接続する。正の炭素棒電極7は、可動装置12により
電極間のギャップを適当に調整する。放電による発熱に
よる装置の温度上昇を防ぐために、真空容器1と放電電
流端子9、11には水冷管(図では省略)が付けられて
いる。炭素棒電極7、10に、直径1cmの2本の炭素
棒電極7、10を用い、アルゴン(100Torr)雰
囲気中で電極7、10間に直流アーク放電を起こさせ
る。放電電圧を30Vとし、放電電流は200Aに設定
して放電を5分間持続させた。その結果、負電極である
炭素棒電極10の先端には、直径2cmの炭素の堆積物
の塊が成長した。この堆積物は、部分的に黒鉛化したガ
ラス状部分と繊維状黒鉛の部分からなっている。繊維状
黒鉛の部分は、外径端数nm、繊維の長さは、長いもの
で1ミクロンに達する繊維状黒鉛の集合体である。この
製法によれば、円筒は、図2に示したような先端が円錐
形の繊維状黒鉛になる。
One carbon rod electrode 7 is connected to the positive conductive terminal 9 of the arc discharge 8 and the other carbon rod electrode 10 is connected to the negative conductive terminal 11.
Connect to The gap between the positive carbon rod electrodes 7 is appropriately adjusted by the movable device 12. In order to prevent the temperature of the apparatus from rising due to heat generated by the discharge, the vacuum vessel 1 and the discharge current terminals 9 and 11 are provided with water cooling tubes (omitted in the drawing). Using two carbon rod electrodes 7 and 10 having a diameter of 1 cm as the carbon rod electrodes 7 and 10, a DC arc discharge is caused between the electrodes 7 and 10 in an argon (100 Torr) atmosphere. The discharge voltage was set to 30 V, the discharge current was set to 200 A, and the discharge was continued for 5 minutes. As a result, a lump of carbon deposit having a diameter of 2 cm grew at the tip of the carbon rod electrode 10 as the negative electrode. This deposit consists of a partially graphitized glassy part and a fibrous graphite part. The portion of the fibrous graphite is an aggregate of fibrous graphite whose outer diameter is several nm and whose fiber length is as long as 1 micron. According to this manufacturing method, the cylinder becomes a fibrous graphite having a conical tip as shown in FIG.

【0013】図は三重の円錐格子の模式図であるが、一
重のものもあり、また二重、五重、七重などの多重構造
も得られる。
Although the figure is a schematic view of a triple conical lattice, there is also a single conical lattice, and multiple structures such as double, quintuple and sevenfold can also be obtained.

【0014】多重構造の円錐の曲率半径Rは最外側が大
きく内側では小さくなる。三重構造では外側の円錐の曲
率半径Rは1.4nmのものが得られた。最内側の円
錐の曲率半径は小さく0.75nmであった。
The radius of curvature R of the multi-layered cone is large on the outermost side and smaller on the inner side. Mie structure radius of curvature R 3 of the outer cone were obtained those 1.4 nm. The radius of curvature R 1 of the innermost cone was reduced 0.75 nm.

【0015】七員環を発生させるには図1で示した成長
法で温度を上げるか炭素水素ガスの供給量を増やす。七
員環が発生すると円筒がろうと状に開くので、そこを物
質を吸着させるサイトとして用いることができる。
In order to generate a seven-membered ring, the temperature is increased by the growth method shown in FIG. When the seven-membered ring occurs, the cylinder opens in a funnel shape, which can be used as a site for adsorbing substances.

【0016】また円筒の端に円錐ができてもそのまま終
端するとは限らず、円錐の端部に七員環を発生させると
そこが開き、径の小さな円筒を成長させることができ
る。この小さな円筒の先端は六個の五員環を含む多面体
で囲まれている。この構造の模式図を図3に、この構造
の断面の電子顕微鏡写真図を図5に示す。
Further, even if a cone is formed at the end of the cylinder, the end does not always end as it is. If a seven-membered ring is generated at the end of the cone, it opens and a small-diameter cylinder can be grown. The tip of this small cylinder is surrounded by a polyhedron containing six five-membered rings. A schematic diagram of this structure is shown in FIG.
5 shows an electron micrograph of the cross section of FIG.

【0017】以上の実施例では五員環、七員環を発生さ
せたが、逆に五員環、七員環を発生させず六員環だけを
ナノチューブの先端に供給すれば円筒形を保ちながら成
長が持続し長いチューブができる。この場合らせん構造
が開いた円周上に絶えずキンクを供給し成長を続ける。
In the above embodiment, a five-membered ring and a seven-membered ring are generated. Conversely, if only a six-membered ring is supplied to the tip of the nanotube without generating a five-membered ring or a seven-membered ring, the cylindrical shape is maintained. While growing, a long tube is formed. In this case, the spiral structure continuously supplies kink on the open circle and continues to grow.

【0018】前述の実施例で述べたアーク放電法で形成
したナノチューブを種結晶にして、CVD法で温度を一
定に制御して原料ガスを流して成長すると五員環、七員
環が発生しにくくなり長い円筒形にナノチューブを作る
ことができる。得られた長い円筒状黒鉛繊維の断面の電
子顕微鏡写真図を図6(a)、(b)に示す。太い円筒
状黒鉛繊維が種結晶で、本発明により種結晶の先端から
細い円筒状黒鉛繊維が成長し、長い円筒状黒鉛繊維が得
られる。ナノチューブを終端させたい場合には原料ガス
の供給を減らすか止めればよい。CVD成長時の温度は
例えば1500゜C以上、原料ガスはメタンを使い、成
長時の真空度が10〜200Torr程度になるように
流す。原料ガスはメタンに限らず他の炭化水素ガスも使
うことができる。またキャリアガスとして水素やアルゴ
ンなどをメタンと混合して流してもよい。熱CVDだけ
でなくプラズマCVDや光CVD法も使うことができ
る。もちろん熱とプラズマ、光を合わせて使ってもよ
い。種結晶は図1の直流放電の成長装置から取り出し
て、別のCVD装置に入れて成長させてもよい。しかし
図1の装置をCVD装置として兼ねると汚染などがなく
簡便である。つまり真空容器1内の炭素棒電極10付近
に加熱用の抵抗またはRF加熱用のコイルを巻くか、炭
素棒電極10の近くにプラズマ発生用の電極を設ける
か、容器1に紫外光照射用の窓を設置する。
When a nanotube formed by the arc discharge method described in the above embodiment is used as a seed crystal and grown by flowing a source gas at a constant temperature by the CVD method, a five-membered ring and a seven-membered ring are generated. It becomes difficult and the nanotube can be made in a long cylindrical shape. The cross section of the obtained long cylindrical graphite fiber
FIGS. 6 (a) and 6 (b) show micrographs of the microscopic images. Thick cylinder
Graphite fiber is a seed crystal, and from the tip of the seed crystal according to the present invention.
Thin cylindrical graphite fibers grow and long cylindrical graphite fibers are obtained.
Can be To terminate the nanotubes, the supply of the source gas may be reduced or stopped. The temperature during CVD growth is, for example, 1500 ° C. or higher, methane is used as a source gas, and the gas is flowed so that the degree of vacuum during growth is about 10 to 200 Torr. The raw material gas is not limited to methane, and other hydrocarbon gases can be used. Alternatively, hydrogen, argon, or the like may be mixed with methane and flown as a carrier gas. Not only thermal CVD, but also plasma CVD and optical CVD can be used. Of course, heat, plasma, and light may be used together. The seed crystal may be taken out from the DC discharge growth apparatus shown in FIG. 1 and grown in another CVD apparatus. However, when the apparatus of FIG. 1 is also used as a CVD apparatus, there is no contamination or the like and the apparatus is simple. That is, a heating resistor or an RF heating coil is wound around the carbon rod electrode 10 in the vacuum vessel 1, a plasma generation electrode is provided near the carbon rod electrode 10, or the vessel 1 is irradiated with ultraviolet light. Set up windows.

【0019】[0019]

【発明の効果】以上のように本発明によれば、従来の繊
維状黒鉛とは結晶構造の異なる円筒状で、繊維の先端が
円錐形で、その曲率半径が数nm以下の繊維状黒鉛が得
られ、その鋭利な先端を針として利用することが期待さ
れる。この針は繊維状黒鉛であることから、熱的、機械
的、化学的に極めて安定なこと、また、電導体であるこ
とを考慮すると、新しい原子レベル加工技術分野におい
て、新しい針の材料として提供できる効果をもつ。
As described above, according to the present invention, a fibrous graphite having a cylindrical structure having a different crystal structure from the conventional fibrous graphite, a conical tip of the fiber, and a radius of curvature of several nm or less is obtained. The resulting sharp tip is expected to be used as a needle. Since this needle is fibrous graphite, it is extremely stable thermally, mechanically and chemically, and in consideration of being an electric conductor, it is offered as a new needle material in a new atomic level processing technology field. Has an effect that can be.

【0020】さらに、この円錐形先端をもつ繊維表面
に、金属、無機物質、有機物質等を、真空蒸着法やCV
D法などによりコートすることによりグラファイト以外
の物質の針も製造することができる。
Further, a metal, an inorganic substance, an organic substance, or the like is applied to the fiber surface having the conical tip by a vacuum evaporation method or a CV method.
Needles of a substance other than graphite can also be manufactured by coating by the method D or the like.

【0021】また円筒の端がろうと状に開いたものはそ
こを物質を吸着させる極微細なサイトとして用いること
ができる。
A cylinder whose end is opened like a funnel can be used as an extremely fine site for adsorbing a substance.

【0022】また長い円筒が得られると、ある箇所から
発生した光を円筒の中を通して他の場所に導くこともで
きる。逆に円筒の中に光を通してある場所に光を導くこ
ともできる。
When a long cylinder is obtained, light generated from one place can be guided to another place through the inside of the cylinder. Conversely, light can be guided through a cylinder to a certain location.

【図面の簡単な説明】[Brief description of the drawings]

【図1】円錐形の先端をもつ黒鉛繊維形成装置の概略図
である。
FIG. 1 is a schematic view of a graphite fiber forming apparatus having a conical tip.

【図2】円錐形の先端をもつ黒鉛繊維の模式図である。FIG. 2 is a schematic view of a graphite fiber having a conical tip.

【図3】FIG. 3 大きな円筒と小さな円筒が円錐で接続された構Large cylinder and small cylinder connected by a cone
造を持つ黒鉛繊維の模式図である。It is a schematic diagram of the graphite fiber which has a structure.

【図4】FIG. 4 (a)、(b)ともに、円錐形の先端をもつ黒(A) and (b) are black with a conical tip
鉛繊維の電子顕微鏡写真図である。It is an electron microscope photograph figure of a lead fiber.

【図5】FIG. 5 大きな円筒と小さな円筒が円錐で接続された構Large cylinder and small cylinder connected by a cone
造を持つ黒鉛繊維の電子顕微鏡写真図である。FIG. 3 is an electron micrograph of a graphite fiber having a structure.

【図6】FIG. 6 一旦成長したナノチューブを種結晶として、COnce grown nanotubes are used as seed crystals, C
VD法により成長させ形成した長い円筒形黒鉛繊維の電Electricity of long cylindrical graphite fiber grown and formed by VD method
子顕微鏡写真図である。FIG.

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円筒状構造をもつ黒鉛繊維であって、円
筒構造は、炭素をその構成単位として六員環を主構造と
したらせん構造で形成されたものであり、繊維の外径
は、30nm以下の大きさであり、繊維の先端が円錐形
状で終わる円筒構造を持つ黒鉛繊維。
1. A graphite fiber having a cylindrical structure, wherein the cylindrical structure is formed in a spiral structure with carbon as its constituent unit and a six-membered ring as a main structure. Graphite fiber having a cylindrical structure with a size of 30 nm or less and a fiber end ending in a conical shape.
【請求項2】 円錐形部分と円筒形部分は連続した黒鉛
層からなり、多重の構造であり、内外に隣接する円錐と
円錐の間隔は、グラファイト構造のC面の間隔におおよ
そ相当するものであることを特徴とする請求項1に記載
の円錐形状先端構造を持つ黒鉛繊維。
2. The conical portion and the cylindrical portion are formed of a continuous graphite layer and have a multi-layered structure, and the distance between adjacent cones inside and outside is approximately equivalent to the distance between C-planes of the graphite structure. The graphite fiber having a conical tip structure according to claim 1, wherein the graphite fiber has a conical tip structure.
【請求項3】 円筒黒鉛先端の円錐形の曲率半径が数n
m以下であることを特徴とする請求項1に記載の円錐形
状先端構造を持つ黒鉛繊維。
3. The radius of curvature of the conical shape at the tip of the cylindrical graphite is several n.
The graphite fiber having a conical tip structure according to claim 1, wherein the diameter is not more than m.
【請求項4】 円筒状構造を持つ黒鉛繊維であって、円
筒構造は炭素をその構成単位として六員環を主構造とし
たらせん構造で形成されたものであり、繊維の外径は3
0nm以下の大きさであり、繊維の先端がろうと状に開
いている円筒構造を持つ黒鉛繊維。
4. A graphite fiber having a cylindrical structure, wherein the cylindrical structure is formed in a spiral structure with carbon as a constituent unit and a six-membered ring as a main structure, and the outer diameter of the fiber is 3%.
Graphite fiber having a cylindrical structure with a size of 0 nm or less and a fiber end opening in a funnel shape.
【請求項5】 円筒状構造を持つ黒鉛繊維であって、円
筒構造は炭素をその構成単位として六員環を主構造とし
たらせん構造で形成されたものであり、繊維の外径は3
0nm以下の大きさであり、大きな円筒と小さな円筒が
円錐で接続された構造を持つ黒鉛繊維。
5. A graphite fiber having a cylindrical structure, wherein the cylindrical structure is formed in a spiral structure with carbon as its constituent unit and a six-membered ring as a main structure, and the outer diameter of the fiber is 3%.
Graphite fiber having a size of 0 nm or less and having a structure in which a large cylinder and a small cylinder are connected by a cone.
【請求項6】 炭素電極間に生じるアーク放電で生成さ
れた黒鉛繊維を種とし、気相成長法により温度を一定に
制御し原料ガスを前記黒鉛繊維に供給することにより黒
鉛繊維を成長させることを特徴とする円筒状構造を持つ
黒鉛繊維の製造方法。
6. An arc discharge generated between carbon electrodes.
The obtained graphite fiber is used as a seed, and the temperature is controlled to be constant by a vapor phase growth method, and a raw material gas is supplied to the graphite fiber to form a graphite.
A method for producing graphite fiber having a cylindrical structure, comprising growing lead fiber .
【請求項7】 長い黒鉛繊維を成長させる方法として、
炭化水素ガスを原料ガスとした気相成長法を用いる請求
項6に記載の製造方法。
7. A method for growing long graphite fibers,
The method according to claim 6, wherein a vapor phase growth method using a hydrocarbon gas as a source gas is used.
【請求項8】 気相成長法として、熱、プラズマ、また
は光気相成長法を用いる請求項7に記載の製造方法。
8. The manufacturing method according to claim 7, wherein heat, plasma, or photo-vapor deposition is used as the vapor deposition.
【請求項9】 炭素電極間に生じるアーク放電または前
記アーク放電に引き続く気相成長法による円筒状構造を
持つ黒鉛繊維の製造工程途中で、原料の供給を減らす
か、または温度を下げることにより繊維の先端を円錐状
で終わらせることを特徴とする円筒状構造を持つ黒鉛繊
維の製造方法。
9. An arc discharge or a discharge between carbon electrodes.
After the arc discharge, the cylindrical structure was formed by the vapor phase growth method.
During the manufacturing process of graphite fibers, reduce the supply of raw materials or lower the temperature to make the fiber tips conical.
And producing the graphite fiber having a cylindrical structure .
【請求項10】 炭素電極間に生じるアーク放電または
前記アーク放電に引き続く気相成長法による円筒状構造
を持つ黒鉛繊維の製造工程途中で、原料の供給を増やす
か、または温度を上げることにより繊維の先端をろうと
状に開かせることを特徴とする円筒状構造を持つ黒鉛繊
維の製造方法。
10. An arc discharge generated between carbon electrodes or
Cylindrical structure by vapor deposition following the arc discharge
During the manufacturing process of graphite fiber with, try to increase the supply of raw material or raise the temperature to increase the fiber tip.
A method for producing graphite fibers having a cylindrical structure , characterized in that they are opened in a shape .
【請求項11】 炭素電極間に生じるアーク放電または
前記アーク放電に引き続く気相成長法による円筒状構造
を持つ黒鉛繊維の製造工程途中で、原料の供給を減らす
か、または温度を下げ、繊維の成長方向先端に円錐を形
成し、その後、原料の供給を増やすか、または温度を上
げ、径の小さな円筒を形成することにより大きな円筒と
小さな円筒が円錐で接続された構造とすることを特徴と
する円筒状構造を持つ黒鉛繊維の製造方法。
11. An arc discharge generated between carbon electrodes or
Cylindrical structure by vapor deposition following the arc discharge
During the production process of graphite fiber with , reduce the supply of raw material or lower the temperature, form a cone at the tip of the fiber growth direction, then increase the supply of raw material or raise the temperature, small diameter By forming a cylinder,
Characterized by a structure in which small cylinders are connected by cones
Of producing graphite fibers having a cylindrical structure .
JP4108070A 1992-04-27 1992-04-27 Cylindrical graphite fiber and manufacturing method Expired - Lifetime JP2705447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4108070A JP2705447B2 (en) 1992-04-27 1992-04-27 Cylindrical graphite fiber and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4108070A JP2705447B2 (en) 1992-04-27 1992-04-27 Cylindrical graphite fiber and manufacturing method

Publications (2)

Publication Number Publication Date
JPH0711520A JPH0711520A (en) 1995-01-13
JP2705447B2 true JP2705447B2 (en) 1998-01-28

Family

ID=14475124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4108070A Expired - Lifetime JP2705447B2 (en) 1992-04-27 1992-04-27 Cylindrical graphite fiber and manufacturing method

Country Status (1)

Country Link
JP (1) JP2705447B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449858B2 (en) 2009-06-10 2013-05-28 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials
US8454923B2 (en) 2009-06-10 2013-06-04 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189040A (en) * 1993-12-27 1995-07-25 Nec Corp Production of cylindrical graphite fiber
US6221489B1 (en) 1998-11-19 2001-04-24 Showa Denko Kabushiki Kaisha Carbonaceous fiber acute-angled at both ends and production process therefor
AT407754B (en) * 1999-09-29 2001-06-25 Electrovac METHOD AND DEVICE FOR PRODUCING A NANOTUBE LAYER ON A SUBSTRATE
JP2006008425A (en) * 2004-06-22 2006-01-12 Osaka Gas Co Ltd Nano scale carbon tube including iron component with dome edge, carbonaceous material containing it, its producing method and electron emitting material containing the carbonaceous material
JP2007242253A (en) * 2006-03-06 2007-09-20 Hitachi High-Technologies Corp Sharpened carbon nanotube and electron source using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282426A (en) * 1985-06-06 1986-12-12 Asahi Chem Ind Co Ltd Production of carbonaceous filament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449858B2 (en) 2009-06-10 2013-05-28 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials
US8454923B2 (en) 2009-06-10 2013-06-04 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials

Also Published As

Publication number Publication date
JPH0711520A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
US5591312A (en) Process for making fullerene fibers
US7531156B2 (en) Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid
US5916642A (en) Method of encapsulating a material in a carbon nanotube
TWI277376B (en) Methods for assembly and sorting of nanostructure-containing materials and related articles
US6361861B2 (en) Carbon nanotubes on a substrate
Smalley From dopyballs to nanowires
JP3363759B2 (en) Carbon nanotube device and method of manufacturing the same
JP5436528B2 (en) Carbon nanotubes on carbon nanofiber substrate
Chattopadhyay et al. Nanotips: growth, model, and applications
WO1998042620A1 (en) Process for producing carbon nanotubes, process for producing carbon nanotube film, and structure provided with carbon nanotube film
WO2006060476A2 (en) Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip
JP2007232668A (en) Carbon filament probe
JP2705447B2 (en) Cylindrical graphite fiber and manufacturing method
GB2385864A (en) Production of nanocarbons
US20040062708A1 (en) Process for the synthesis of nanotubes of transition metal dichalcogenides
US20070183964A1 (en) Nano-fiber or nano-tube comprising v group transition metal dichalcogenide crystals, and method for preparation thereof
Miki-Yoshida et al. High resolution electron microscopy studies in carbon soots
KR100741762B1 (en) Method of synthesizing carbon nanotubes on graphite thin plate
US9970130B2 (en) Carbon nanofibers with sharp tip ends and a carbon nanofibers growth method using a palladium catalyst
TWI362684B (en) Method of making field emission electron source
JP2005035841A (en) Metallic wire or capillary equipped with carbon nanotube and method of depositing carbon nanotube
Kaleeva et al. Micro-arc method for the synthesis of silicon nanostructures
Fan et al. Spheres on pillars: Nanobubbling based on attogram mass delivery from metal-filled nanotubes
Le Normand et al. Generation of carbon tripods on copper by chemical vapor deposition
Li et al. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 15