JP2689606B2 - Method for manufacturing insulated gate field effect transistor - Google Patents

Method for manufacturing insulated gate field effect transistor

Info

Publication number
JP2689606B2
JP2689606B2 JP1131085A JP13108589A JP2689606B2 JP 2689606 B2 JP2689606 B2 JP 2689606B2 JP 1131085 A JP1131085 A JP 1131085A JP 13108589 A JP13108589 A JP 13108589A JP 2689606 B2 JP2689606 B2 JP 2689606B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
gate
layer
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1131085A
Other languages
Japanese (ja)
Other versions
JPH02309678A (en
Inventor
勝典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1131085A priority Critical patent/JP2689606B2/en
Priority to DE4011276A priority patent/DE4011276C2/en
Priority to US07/521,230 priority patent/US5086007A/en
Priority to FR9006240A priority patent/FR2647596B1/en
Publication of JPH02309678A publication Critical patent/JPH02309678A/en
Application granted granted Critical
Publication of JP2689606B2 publication Critical patent/JP2689606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/126Power FETs

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パワーMOSFETや伝導度変調型MOSFET(以下
IGBTと略す)等の絶縁ゲート電界効果型トランジスタに
関し、特にドレイン領域,ゲート及びソース領域が縦方
向に配された半導体構造の絶縁ゲート電界効果型トラン
ジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a power MOSFET and a conductivity modulation type MOSFET (hereinafter
The present invention relates to an insulated gate field effect transistor such as an IGBT (abbreviated as IGBT), and more particularly to a method for manufacturing an insulated gate field effect transistor having a semiconductor structure in which a drain region, a gate and a source region are vertically arranged.

〔従来の技術〕[Conventional technology]

例えば、従来のNチャネルパワーMOSFETの構造は、第
3図に示すように、高濃度N型のドレイン層1上に形成
されたN型ベース層(ドレイン・ドリフト領域)2と、
この上にゲート酸化膜3を介して形成されたポリシリコ
ンゲート4と、ポリシリコンゲート4をマスクとして2
重拡散により形成されたP型ベース領域(チャネル拡散
領域)5及び高濃度N型のソース領域6と、このソース
領域6に導電接触するソース電極7と、ソース電極7と
ポリシリコンゲート4とを絶縁する層間絶縁膜8と、基
板の裏面側に被着されたドレイン電極9とを有する。こ
れは、ポリシリコンゲート4直下のP型ベース5表面に
形成されるチャネル反転層を介してソース領域6からN
型ベース層へ電子が横方向に流れた後、ドレイン電極に
向け縦方向に流れるものである。
For example, as shown in FIG. 3, the structure of a conventional N-channel power MOSFET has an N-type base layer (drain / drift region) 2 formed on a high-concentration N-type drain layer 1,
A polysilicon gate 4 formed on top of this via a gate oxide film 3 and a polysilicon gate 4 as a mask
A P-type base region (channel diffusion region) 5 and a high-concentration N-type source region 6 formed by heavy diffusion, a source electrode 7 in conductive contact with the source region 6, a source electrode 7 and a polysilicon gate 4 are provided. It has an interlayer insulating film 8 for insulation and a drain electrode 9 attached to the back surface side of the substrate. This is because the source region 6 to the N region are formed through the channel inversion layer formed on the surface of the P-type base 5 just below the polysilicon gate 4.
The electrons flow horizontally to the mold base layer and then vertically to the drain electrode.

またIGBTの構造は、第3図に示す構造においてドレイ
ン層1の下に高濃度P型の少数キャリア(正孔)注入層
を備えたものであり、MOS部の構造は上記パワーMOSFET
と変わりがない。
The structure of the IGBT is the structure shown in FIG. 3 with a high-concentration P-type minority carrier (hole) injection layer provided under the drain layer 1, and the structure of the MOS part is the above power MOSFET.
There is no change.

ところで、上記縦型構造のパワーMOSFETのオン抵抗R
は、次式で表すことができる。
By the way, the on-resistance R of the vertical structure power MOSFET is
Can be expressed by the following equation.

R=Rch+RACC+Rj+Rb (1) ここで、RchはMOS部のチャネル反転層のチャネル抵
抗、RACCはP型ベース領域5以外のポリシリコンゲート
4直下に生成された電荷蓄積層の抵抗、Rjはセル間に電
子が通るときの抵抗、RbはN型ベース層2の抵抗であ
る。N型ベース層2の抵抗Rbは主にその厚さによって決
定され、その厚さは耐圧によってほぼ一義的に決まって
しまうので、同耐圧を維持しながら、N型ベース層2の
抵抗を下げることはできない。オン抵抗Rに対してはチ
ャネル抵抗Rchが支配的であるため、チャネル抵抗Rch
小さくするには、短チャネル化などを実現するパターニ
ングの微細化が必要である。
R = R ch + R ACC + R j + R b (1) where R ch is the channel resistance of the channel inversion layer of the MOS part, and R ACC is the charge accumulation generated directly under the polysilicon gate 4 other than the P-type base region 5. The resistance of the layer, R j is the resistance when electrons pass between the cells, and R b is the resistance of the N-type base layer 2. The resistance R b of the N-type base layer 2 is mainly determined by its thickness, and the thickness thereof is almost uniquely determined by the breakdown voltage. Therefore, the resistance of the N-type base layer 2 is lowered while maintaining the same breakdown voltage. It is not possible. Since the channel resistance R ch is dominant with respect to the on-resistance R, in order to reduce the channel resistance R ch , it is necessary to miniaturize the patterning for realizing a short channel or the like.

上記縦型のパワーMOSFETの製造方法を説明するに、ま
ず第4図(A)に示すように、N型ベース層2を備えた
基板上を表面酸化してゲート酸化膜3を形成し、この上
に第4図(B)に示す如くのポリシリコン層4′をCVD
等で積層する。次に第4図(C)に示す如く、パターニ
ングしてポリシリコンゲート4を形成した後、第4図
(D)に示すように、P型ベース領域を形成すべき不純
物10をイオン注入等で導入し、熱拡散により第4図
(E)に示すP型ベース領域5を形成する。次に第4図
(F)に示すように、開口部の中央に不純物選択導入用
のフォトレジスト11を被着してイオン注入で不純物12を
導入した後、フォトレジスト11を除去し、第4図(G)
に示す如く、絶縁膜13を積層する。次に、形成されたソ
ース領域6,6にまたがる開口部8aをパターニングし、ア
ルミニウム等をスパッタ等で被着して第4図(I)に示
すソース電極7を形成する。
To explain the method of manufacturing the vertical power MOSFET, first, as shown in FIG. 4 (A), the surface of the substrate having the N-type base layer 2 is surface-oxidized to form the gate oxide film 3. CVD of polysilicon layer 4'as shown in FIG.
Etc. Next, as shown in FIG. 4 (C), after patterning to form a polysilicon gate 4, as shown in FIG. 4 (D), an impurity 10 for forming a P-type base region is ion-implanted or the like. Then, the P-type base region 5 shown in FIG. 4 (E) is formed by introducing and thermally diffusing. Next, as shown in FIG. 4 (F), a photoresist 11 for selectively introducing impurities is applied to the center of the opening, and the impurities 12 are introduced by ion implantation. Then, the photoresist 11 is removed, and Figure (G)
As shown in, an insulating film 13 is laminated. Next, the opening 8a extending over the formed source regions 6, 6 is patterned, and aluminum or the like is deposited by sputtering or the like to form the source electrode 7 shown in FIG. 4 (I).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記MOS部構造を有する絶縁ゲート電
界効果型トランジスタにあっては次の問題点がある。
However, the insulated gate field effect transistor having the above MOS structure has the following problems.

即ち、相隣るポリシリコンゲート4,4間の距離aは10
μm前後が限界で、それ以下の微細化は技術的困難さと
歩留りの低下を招く。その理由は、セルの大きさでもあ
る平面距離aの内には、前述の製造方法から明らかな如
く、層間絶縁膜8のパターニング(第4図(H))及び
ソース領域6とソース電極7とのコンタクト形成(第4
図(I))が含まれており、層間絶縁膜8のパターニン
グ寸法はソース電極6と半導体のコンタクト寸法である
ので、これを余り小さくすると、その接触抵抗が大きく
なり、かつソース領域との接触がもてなくなるからであ
る。また距離aを小さくしてパターニング寸法との差を
小さくすると、パターニングずれや絶縁膜8のサイドエ
ッチ等によりソース電極6とポリシリコンゲート4との
接触が起こり、素子不良となる可能性が大きい。つま
り、相隣るポリシリコンゲート間には複数のフォトリソ
グラフィー工程により各領域を作り込んだ構造を有して
いるため、MOS部の微細化には限度があり、チャネル抵
抗の大幅低減が困難であった。
That is, the distance a between the adjacent polysilicon gates 4, 4 is 10
The limit is around μm, and further miniaturization leads to technical difficulties and a decrease in yield. The reason is that patterning of the interlayer insulating film 8 (FIG. 4 (H)) and the source region 6 and the source electrode 7 within the plane distance a, which is also the size of the cell, are apparent from the above-described manufacturing method. Contact formation (4th
Since the patterning dimension of the interlayer insulating film 8 is the contact dimension between the source electrode 6 and the semiconductor, the contact resistance is increased and the contact with the source region is included. This is because there will be no fun. Further, if the distance a is reduced to reduce the difference from the patterning dimension, the source electrode 6 and the polysilicon gate 4 may come into contact with each other due to patterning deviation, side etching of the insulating film 8, or the like, which may result in device failure. In other words, because the structure is such that each region is created by multiple photolithography processes between adjacent polysilicon gates, there is a limit to the miniaturization of the MOS part, and it is difficult to significantly reduce the channel resistance. there were.

そこで、本発明の課題は、相隣るゲート間にソース領
域及びソース電極のコンタクト部を設けずに、ゲート上
部に絶縁膜を介してソース領域を設けてMOS部自体を縦
配向で形成することにより、パターニングの微細化を容
易にし、チャネル抵抗の大幅低減を実現する絶縁ゲート
電界効果型トランジスタの製造方法を提供することにあ
る。
Therefore, an object of the present invention is to form a MOS region itself in a vertical orientation by providing a source region above the gate via an insulating film without providing a source region and a contact portion of the source electrode between adjacent gates. Accordingly, it is an object of the present invention to provide a method for manufacturing an insulated gate field effect transistor that facilitates fine patterning and realizes a significant reduction in channel resistance.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するために、本発明の講じた手段は、
第1導電型半導体層(例えばドレイン領域)上に絶縁膜
に包囲されたゲートを設け、このゲートの周囲に上記絶
縁膜を挟んで第2導電型領域(例えばチャネル拡散領
域)を隣接し、上記絶縁膜のうち少なくとも上記ゲート
の上部膜における側面に沿って第1導電型領域(例えば
ソース領域)を添設したものである。
Means taken by the present invention to solve the above problems are:
A gate surrounded by an insulating film is provided on the first conductive type semiconductor layer (for example, a drain region), and a second conductive type region (for example, a channel diffusion region) is adjacent to the gate with the insulating film interposed therebetween. A first conductivity type region (for example, a source region) is additionally provided along at least a side surface of the upper film of the gate in the insulating film.

かかる構造の絶縁ゲート電界効果型トランジスタは、
第1導電型半導体基板上に溝を掘り込んで表面酸化した
後、その溝内にゲート材料を埋め込み、次にその溝周囲
に第2導電型領域形成用不純物を拡散し、次に同溝内に
第1導電型領域形成用不純物を含有する絶縁材料を埋め
込み、しかる後、その第1導電型領域形成用不純物を拡
散することにより製造される。
The insulated gate field effect transistor having such a structure is
After digging a groove on the first conductivity type semiconductor substrate to oxidize the surface, a gate material is buried in the groove, then a second conductivity type region forming impurity is diffused around the groove, and then in the groove. It is manufactured by burying an insulating material containing an impurity for forming the first conductivity type region, and then diffusing the impurity for forming the first conductivity type region.

また別の製造方法としては、第1導電型半導体基板上
に第2導電型領域を形成した後、第2導電型領域を周囲
に備えるべき溝を掘り込んで表面酸化し、その溝内にゲ
ート材料及び第1導電型形成用不純物を含有する絶縁材
料を順次埋め込み、しかる後、その第1導電型形成用不
純物を拡散するものである。
As another manufacturing method, after the second conductivity type region is formed on the first conductivity type semiconductor substrate, a groove which should be provided with the second conductivity type region in the periphery is dug and surface oxidation is performed, and the gate is formed in the groove. An insulating material containing a material and impurities for forming the first conductivity type is sequentially buried, and then the impurities for forming the first conductivity type are diffused.

〔作用〕[Action]

かかる絶縁ゲート電界効果型トランジスタにおいて
は、相隣るゲート間に絶縁膜の側面に沿って第1導電型
領域(例えばソース領域)が添設しており、その第1導
電型領域はゲート上部に縦方向に配向している。したが
って、チャネル反転層はゲートの厚み方向の絶縁膜に沿
って縦方向に形成される。ゲート間にソース領域を基板
深さ方向に拡散形成する必要がなく、チャネル拡散領域
としての第2導電型領域が実質的に存在する構造である
から、パターニングの微細化が容易であり、またソース
領域とソース電極とのコンタクト部がゲート間に介在せ
ず、単にソース領域の上部にそのコンタクト部を形成す
ることができるので、従来に比してパターニングの微細
化が実現される。
In such an insulated gate field effect transistor, a first conductivity type region (for example, a source region) is additionally provided between adjacent gates along the side surface of the insulating film, and the first conductivity type region is provided above the gate. Oriented vertically. Therefore, the channel inversion layer is formed in the vertical direction along the insulating film in the thickness direction of the gate. Since the source region does not need to be diffused and formed between the gates in the substrate depth direction, and the second conductivity type region as the channel diffusion region is substantially present, the patterning can be easily miniaturized. Since the contact portion between the region and the source electrode does not intervene between the gates and the contact portion can be simply formed above the source region, finer patterning can be realized as compared with the conventional case.

第1の製造方法においては、ドレイン領域とすべき第
1導電型半導体基板上に溝を掘り込んで表面酸化する
と、溝内を含めて一部ゲート絶縁膜となるべきシリコン
酸化膜が形成される。次にその溝内にゲート材料を埋め
込み、その溝周囲に第2導電型領域形成用不純物を拡散
してチャネル拡散領域としての第2導電型領域を形成し
た後、同溝内に第1導電型領域形成用不純物を含有する
絶縁材料を埋め込み、しかる後、その第1導電型領域形
成用不純物を拡散させると、上部絶縁膜としての絶縁材
料の側面から先に形成された第2導電型領域内へ拡散進
行してその側面に沿って延びるソース領域としての第1
導電型領域が添設される。
In the first manufacturing method, when a groove is dug in the first conductivity type semiconductor substrate to be the drain region and surface oxidation is performed, a silicon oxide film that partially serves as a gate insulating film is formed including the inside of the groove. . Next, a gate material is buried in the groove, and a second conductivity type region forming impurity is diffused around the groove to form a second conductivity type region as a channel diffusion region. Then, the first conductivity type region is formed in the groove. When an insulating material containing an impurity for forming a region is buried and then the impurity for forming a region of the first conductivity type is diffused, a side surface of the insulating material as an upper insulating film is formed in a region of the second conductivity type formed first. As a source region that diffuses to and extends along the side surface
A conductivity type region is additionally provided.

第2の製造方法は、第2導電型領域の形成を溝掘り込
み工程以前に行うもので、第1の製造方法と同じく上記
構造の絶縁ゲート電界効果型トランジスタが得られる。
In the second manufacturing method, the second conductivity type region is formed before the trench digging step, and the insulated gate field effect transistor having the above structure can be obtained as in the first manufacturing method.

〔実施例〕〔Example〕

次に、本発明の実施例を添付図面に基づいて説明す
る。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明に係る絶縁ゲート電界効果型トランジ
スタの構造を示す縦断面図である。なお、第1図におい
て第3図に示す部分と同一部分には同一参照符号を付
し、その説明は省略する。
FIG. 1 is a vertical sectional view showing the structure of an insulated gate field effect transistor according to the present invention. In FIG. 1, the same parts as those shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.

第1図において、24は埋め込みポリシリコンゲート
で、この底面及び側面はゲート絶縁膜としてシリコン酸
化膜24a,24bで囲まれ、また上面にはリンガラス(PSG)
の埋め込み絶縁層24cが積層されている。相隣るポリシ
リコンゲート24,24間にはチャネル拡散領域としてのP
型ベース領域25が形成されている。このP型ベース領域
25とN型ベース領域2のPN接合面はポリシリコンゲート
24の底面のシリコン酸化膜24aより若干ドレイン層1側
に位置している。埋め込み絶縁層24cの側面にはそれに
沿って高濃度N型のソース領域26が形成されている。こ
のソース領域26は埋め込み絶縁層24cの側面から若干P
型ベース領域25にはみ出す程度の縦長領域として形成さ
れている。ソース領域26とP型ベース領域25の上面はほ
ぼ平坦で、その上にはソース電極27が被着されている。
In FIG. 1, reference numeral 24 denotes a buried polysilicon gate, the bottom and side surfaces of which are surrounded by silicon oxide films 24a and 24b as gate insulating films, and the top surface is made of phosphorus glass (PSG).
Embedded insulating layer 24c is laminated. Between the adjacent polysilicon gates 24, 24, there is P as a channel diffusion region.
A mold base region 25 is formed. This P-type base area
The PN junction surface between 25 and the N-type base region 2 is a polysilicon gate
It is located slightly on the drain layer 1 side from the silicon oxide film 24a on the bottom surface of 24. A high concentration N-type source region 26 is formed along the side surface of the buried insulating layer 24c. The source region 26 is slightly P from the side surface of the buried insulating layer 24c.
The mold base region 25 is formed as a vertically long region that extends beyond the mold base region 25. The upper surfaces of the source region 26 and the P-type base region 25 are substantially flat, and the source electrode 27 is deposited thereon.

この実施例におけるセルの大きさa′は従来の10〜20
μm程度から一挙に2〜3μm程度となり、従来の集積
度より約1桁密度の向上が達成された。その理由は、ポ
リシリコンゲート24,24間には実質的にP型ベース領域2
5が介在するだけであり、このP型ベース領域25はチャ
ネル反転層28を形成すべきチャネル拡散領域であるか
ら、従来のソースコンタクト部を確保するほどに大なる
幅寸法を設定する必要がないからである。即ち、P型ベ
ース領域25内にはフォトリソグラフィー工程を施さずに
済むからである。ドレイン領域1とゲート24とソース領
域26とは実質上縦方向に配置されており、チャネル反転
層28は側面のシリコン酸化膜24bに沿って縦方向に細長
く配向している。チャネル反転層28の長さはポリシリコ
ンゲート24の厚み程度で、上述の如くポリシリコンゲー
ト24の微細化によりその厚みは相対的に縮小されている
から、チャネル抵抗の大幅低減が達成されている。
The cell size a'in this embodiment is 10 to 20 in the conventional case.
From about μm to about 2 to 3 μm at once, the density is improved by about one digit compared with the conventional integration degree. The reason is that the P-type base region 2 is substantially provided between the polysilicon gates 24, 24.
5, the P-type base region 25 is a channel diffusion region in which the channel inversion layer 28 is to be formed, so that it is not necessary to set the width dimension large enough to secure the conventional source contact portion. Because. That is, it is not necessary to perform the photolithography process in the P-type base region 25. The drain region 1, the gate 24, and the source region 26 are arranged substantially vertically, and the channel inversion layer 28 is vertically elongated along the side surface of the silicon oxide film 24b. The length of the channel inversion layer 28 is about the thickness of the polysilicon gate 24, and the thickness thereof is relatively reduced due to the miniaturization of the polysilicon gate 24 as described above, so that the channel resistance is significantly reduced. .

かかる構造をIGBTに適用した場合、ソース電極26とP
型ベース領域25のコンタクト部を原理的にはソース領域
26よりN型ベース層2側に寄せることが可能で、寄生ト
ランジスタのベース領域としても機能するP型ベース領
域の電位上昇を抑制することができ、ラッチアップ防止
に寄与する利益がある。
When such a structure is applied to the IGBT, the source electrode 26 and the P
In principle, the contact portion of the mold base region 25 is the source region.
It is possible to bring it closer to the N-type base layer 2 side than 26, and it is possible to suppress an increase in the potential of the P-type base region that also functions as the base region of the parasitic transistor, and there is an advantage that contributes to the prevention of latch-up.

なお、第1図の実施例では、P型ベース領域25を埋め
込み溝よりも深く形成しているが、これはむしろ浅くて
もかまわない。特に、パワーMOSFETの場合、浅い方が接
合型FETの効果を小さくできるため、縦型MOSFETの特徴
が大きくなる。
In the embodiment of FIG. 1, the P-type base region 25 is formed deeper than the buried groove, but it may be rather shallow. In particular, in the case of a power MOSFET, the shallower the effect of the junction FET can be reduced, the characteristics of the vertical MOSFET become larger.

次に上記構造を備えたパワーMOSFETの製造方法を第2
図に基づいて説明する。
Next, a second method for manufacturing a power MOSFET having the above structure will be described.
Description will be made based on the drawings.

まず第2図(A)に示すように、N型ベース層2を備
えた基板上に略U字溝31をエッチングにより掘り込んだ
後、第2図(B)に示す如く、熱酸化により表面酸化を
施し、溝31の内も含めてシリコン酸化膜32を形成する。
このシリコン酸化膜32のうち溝内のものはゲート絶縁膜
としてのシリコン酸化膜24a,24b(第1図参照)となる
べきものである。次に第2図(C)に示す如く、基板表
面にゲート材料としてのポリシリコン層33をCVD法によ
り積層した後、全面エッチングによりポリシリコン層33
の上層部を除去して溝31内にポリシリコンを第2図
(D)に示す如くポリシリコンゲート24として残す。こ
れによりポリシリコンゲート24の埋め込みが完了する。
次に第2図(E)に示すように、溝31間の凸部を不純物
拡散によりP型ベース領域25とする。しかる後、第2図
(F)に示す如く、基板上面にリンガラス(PSG)層35
を積層して溝31内に埋め込み、第2図(G)に示すよう
に、全面エッチングによりリンガラス層35の上層部を除
去して溝31内にリンガラスを埋め込み絶縁層24cとして
残す。この段階ではポリシリコンゲート24はシリコン酸
化膜24a,24b及び埋め込み絶縁層24cに包囲されている。
次に熱処理を加えて、埋め込み絶縁層24cのリンガラス
からリンを拡散させる。埋め込み絶縁層24の側面から拡
散するリンはP型ベース領域へ侵入してその側面に沿っ
て添設した縦長のソース領域26が第2図(H)に示すよ
うに形成される。最後に第2図(I)に示すように、ス
パッタ等によりソース電極27を形成する。
First, as shown in FIG. 2 (A), a substantially U-shaped groove 31 is formed by etching on a substrate having an N-type base layer 2, and then the surface is thermally oxidized as shown in FIG. 2 (B). Oxidation is performed to form the silicon oxide film 32 including the inside of the groove 31.
The portion of the silicon oxide film 32 in the groove should be the silicon oxide films 24a and 24b (see FIG. 1) as gate insulating films. Next, as shown in FIG. 2C, a polysilicon layer 33 as a gate material is deposited on the surface of the substrate by the CVD method, and then the entire surface is etched to form the polysilicon layer 33.
The upper layer is removed to leave polysilicon in the groove 31 as a polysilicon gate 24 as shown in FIG. This completes the filling of the polysilicon gate 24.
Next, as shown in FIG. 2 (E), the convex portions between the grooves 31 are made into P-type base regions 25 by impurity diffusion. Then, as shown in FIG. 2 (F), a phosphorus glass (PSG) layer 35 is formed on the upper surface of the substrate.
Are laminated and embedded in the groove 31, and the upper portion of the phosphorus glass layer 35 is removed by overall etching to leave phosphorus glass in the groove 31 as an embedded insulating layer 24c, as shown in FIG. At this stage, the polysilicon gate 24 is surrounded by the silicon oxide films 24a and 24b and the buried insulating layer 24c.
Next, heat treatment is applied to diffuse phosphorus from the phosphorus glass of the buried insulating layer 24c. Phosphorus diffusing from the side surface of the buried insulating layer 24 penetrates into the P-type base region, and a vertically long source region 26 is formed along the side surface thereof, as shown in FIG. 2 (H). Finally, as shown in FIG. 2 (I), the source electrode 27 is formed by sputtering or the like.

この製造方法は、溝31を形成することにより、ソース
領域26をセルフアラインで形成することができ、微細化
及び高精度化に適している。勿論、セルの大きさa′を
前述のように2〜3μm程度までに縮小化できるが、溝
形成以外にフォトリソグラフィー工程が含まれず、マス
クずれ等の問題がなく、製造コストの低廉化に寄与す
る。
In this manufacturing method, the source region 26 can be formed by self-alignment by forming the groove 31, which is suitable for miniaturization and high precision. Of course, the cell size a ′ can be reduced to about 2 to 3 μm as described above, but since the photolithography process other than the groove formation is not included, there is no problem of mask misalignment, which contributes to the reduction of manufacturing cost. To do.

P型ベース領域25の形成は上記製造方法ではポリシリ
コンゲート24の埋め込み工程と埋め込み絶縁膜24cの形
成工程の間に行われているが、溝31の掘り込み工程前の
基板全面に予め形成しておいても良い。
Although the P-type base region 25 is formed between the step of burying the polysilicon gate 24 and the step of forming the buried insulating film 24c in the above manufacturing method, it is previously formed on the entire surface of the substrate before the trench 31 is dug. You can keep it.

なお、上記実施例はNチャネルMOSFETを例として説明
したが、PチャネルMOSFETの場合は各導電型を逆導電型
とすれば良く、ゲート上部の埋め込み絶縁層の材料はボ
ロンガラス(BSG)を採用すれば良い。
Although the above embodiment has been described by taking the N-channel MOSFET as an example, in the case of the P-channel MOSFET, each conductivity type may be opposite conductivity type, and the material of the buried insulating layer above the gate is boron glass (BSG). Just do it.

またパワーMOSFETに限らず、ドレイン層下に少数キャ
リア注入層を設けることにより同様の効果を奏するIGBT
を実現できることは云う迄もない。
In addition to the power MOSFET, an IGBT that has a similar effect by providing a minority carrier injection layer under the drain layer
Needless to say, can be realized.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明に係る絶縁ゲート電界効
果型トランジスタは、ゲートを包囲する絶縁膜のうち少
なくともその上部膜における側面に沿ってソース領域と
しての第1導電型領域を添設しており、ゲートの周囲に
は絶縁膜を挟んで第2導電型領域が隣接するものである
から、次の効果を奏する。
As described above, in the insulated gate field effect transistor according to the present invention, the first conductivity type region as the source region is additionally provided along at least the side surface of the upper film of the insulating film surrounding the gate. Since the second conductivity type region is adjacent to the periphery of the gate with the insulating film interposed therebetween, the following effects can be obtained.

第2導電型領域の占有域にフォトリソグラフィー工程
を施してソースコンタクト部を設けずとも、ゲートのほ
ぼ上部に配されたソース領域の上面に、コンタクト部が
形成されるので、従来に比してパターニングの微細化が
大幅に達成され、チャネル抵抗の大幅低減と高密度集積
化による大電流容量化が達成される。
Even if the source contact portion is not provided by performing the photolithography process on the occupied area of the second conductivity type region, the contact portion is formed on the upper surface of the source region disposed substantially above the gate. Substantial miniaturization of patterning is achieved, and a large reduction in channel resistance and high current capacity by high-density integration are achieved.

フォトリソグラフィー工程が削減されるので、従来に
比して歩留りが良く、製造コストの低廉化が図れる。
Since the number of photolithography steps is reduced, the yield is higher than that of the conventional method, and the manufacturing cost can be reduced.

また上記構造の絶縁ゲート電界効果型トランジスタの
製造方法によれば、溝掘り込み後、ソース領域がセルフ
アラインで形成されるので、微細化の促進にかかわら
ず、歩留りの向上により製造コストの低廉化に役立つ。
Further, according to the method of manufacturing the insulated gate field effect transistor having the above structure, the source region is formed in self-alignment after the trench is dug. To help.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に係る絶縁ゲート電界効果型トランジ
スタをパワーMOSFETに適用した実施例の構造を示す縦断
面図である。 第2図(A)乃至(I)は、同パワーMOSFETの製造プロ
セスを説明する縦断面図である。 第3図は、従来の縦型パワーMOSFETの構造を示す縦断面
図である。 第4図(A)乃至(I)は、同縦型パワーMOSFETの製造
プロセスを説明する縦断面図である。 1……ドレイン層、2……N型ベース層、9……ドレイ
ン電極、24……埋め込みポリシリコンゲート、24a,24b
……シリコン酸化膜、24c……埋め込み絶縁層、25……
P型ベース領域、26……ソース領域、27……ソース電
極、28……チャネル反転層、31……溝、32……シリコン
酸化膜、33……ポリシリコン層、35……リンガラス(PS
G)層、a……セルの大きさ(ゲート間距離)。
FIG. 1 is a longitudinal sectional view showing the structure of an embodiment in which an insulated gate field effect transistor according to the present invention is applied to a power MOSFET. 2A to 2I are vertical cross-sectional views for explaining the manufacturing process of the power MOSFET. FIG. 3 is a vertical sectional view showing the structure of a conventional vertical power MOSFET. 4A to 4I are vertical cross-sectional views for explaining the manufacturing process of the vertical power MOSFET. 1 ... Drain layer, 2 ... N-type base layer, 9 ... Drain electrode, 24 ... Embedded polysilicon gate, 24a, 24b
...... Silicon oxide film, 24c …… Built-in insulating layer, 25 ……
P-type base region, 26 ... Source region, 27 ... Source electrode, 28 ... Channel inversion layer, 31 ... Groove, 32 ... Silicon oxide film, 33 ... Polysilicon layer, 35 ... Phosphor glass (PS
G) layer, a ... Cell size (distance between gates).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1導電型半導体基板上に溝を掘り込んで
表面酸化した後、該溝内にゲート材料を埋め込み、次に
該溝周囲に第2導電型領域形成用不純物を拡散し、次に
該溝内に第1導電型領域形成用不純物を含有する絶縁材
料を埋め込み、しかる後、その第1導電型領域形成用不
純物を拡散することを特徴とする絶縁ゲート電界効果型
トランジスタの製造方法。
1. A trench is formed on a first conductivity type semiconductor substrate to oxidize its surface, a gate material is buried in the trench, and then impurities for forming a second conductivity type region are diffused around the trench. Then, an insulating material containing an impurity for forming the first conductivity type region is buried in the groove, and thereafter, the impurity for forming the first conductivity type region is diffused, to manufacture an insulated gate field effect transistor. Method.
【請求項2】第1導電型半導体基板上に第2導電型領域
を形成した後、第2導電型領域を周囲に備えるべく溝を
掘り込んで表面酸化し、該溝内にゲート材料及び第1導
電型領域形成用不純物を含有する絶縁材料を順次埋め込
み、しかる後、その第1導電型領域形成用不純物を拡散
することを特徴とする絶縁ゲート電界効果型トランジス
タの製造方法。
2. After forming a second conductivity type region on a first conductivity type semiconductor substrate, a groove is dug to surface-provide the second conductivity type region, and surface oxidation is performed. A method for manufacturing an insulated gate field effect transistor, which comprises sequentially burying an insulating material containing an impurity for forming a first conductivity type region, and then diffusing the impurity for forming a first conductivity type region.
JP1131085A 1989-05-24 1989-05-24 Method for manufacturing insulated gate field effect transistor Expired - Lifetime JP2689606B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1131085A JP2689606B2 (en) 1989-05-24 1989-05-24 Method for manufacturing insulated gate field effect transistor
DE4011276A DE4011276C2 (en) 1989-05-24 1990-04-06 Insulated gate field effect transistor (IGFET) and method for its manufacture
US07/521,230 US5086007A (en) 1989-05-24 1990-05-08 Method of manufacturing an insulated gate field effect transistor
FR9006240A FR2647596B1 (en) 1989-05-24 1990-05-18 INSULATED GRID FIELD EFFECT TRANSISTOR AND MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131085A JP2689606B2 (en) 1989-05-24 1989-05-24 Method for manufacturing insulated gate field effect transistor

Publications (2)

Publication Number Publication Date
JPH02309678A JPH02309678A (en) 1990-12-25
JP2689606B2 true JP2689606B2 (en) 1997-12-10

Family

ID=15049634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131085A Expired - Lifetime JP2689606B2 (en) 1989-05-24 1989-05-24 Method for manufacturing insulated gate field effect transistor

Country Status (4)

Country Link
US (1) US5086007A (en)
JP (1) JP2689606B2 (en)
DE (1) DE4011276C2 (en)
FR (1) FR2647596B1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504862B2 (en) * 1990-10-08 1996-06-05 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2582716Y2 (en) * 1991-05-28 1998-10-08 株式会社明電舎 Voltage controlled switching element
JP2582724Y2 (en) * 1991-10-08 1998-10-08 株式会社明電舎 Insulated gate type semiconductor device
JP2837014B2 (en) * 1992-02-17 1998-12-14 三菱電機株式会社 Semiconductor device and manufacturing method thereof
US5310692A (en) * 1992-05-29 1994-05-10 Sgs-Thomson Microelectronics, Inc. Method of forming a MOSFET structure with planar surface
US5316959A (en) * 1992-08-12 1994-05-31 Siliconix, Incorporated Trenched DMOS transistor fabrication using six masks
US5341011A (en) * 1993-03-15 1994-08-23 Siliconix Incorporated Short channel trenched DMOS transistor
GB9306895D0 (en) * 1993-04-01 1993-05-26 Philips Electronics Uk Ltd A method of manufacturing a semiconductor device comprising an insulated gate field effect device
US5514604A (en) * 1993-12-08 1996-05-07 General Electric Company Vertical channel silicon carbide metal-oxide-semiconductor field effect transistor with self-aligned gate for microwave and power applications, and method of making
US6034410A (en) * 1994-01-14 2000-03-07 Stmicroelectronics, Inc. MOSFET structure with planar surface
JP3481287B2 (en) * 1994-02-24 2003-12-22 三菱電機株式会社 Manufacturing method of semiconductor device
US5405794A (en) * 1994-06-14 1995-04-11 Philips Electronics North America Corporation Method of producing VDMOS device of increased power density
EP0698919B1 (en) * 1994-08-15 2002-01-16 Siliconix Incorporated Trenched DMOS transistor fabrication using seven masks
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
GB9512089D0 (en) 1995-06-14 1995-08-09 Evans Jonathan L Semiconductor device fabrication
US5689128A (en) * 1995-08-21 1997-11-18 Siliconix Incorporated High density trenched DMOS transistor
GB9604764D0 (en) * 1996-03-06 1996-05-08 Leslie Jonathan L Semiconductor device fabrication
US5904525A (en) * 1996-05-08 1999-05-18 Siliconix Incorporated Fabrication of high-density trench DMOS using sidewall spacers
US6090716A (en) * 1996-12-17 2000-07-18 Siliconix Incorporated Method of fabricating a field effect transistor
KR100244271B1 (en) * 1997-05-06 2000-02-01 김영환 semiconductor device and method for manufacturing the same
JP3164030B2 (en) * 1997-09-19 2001-05-08 日本電気株式会社 Manufacturing method of vertical field effect transistor
GB9723468D0 (en) * 1997-11-07 1998-01-07 Zetex Plc Method of semiconductor device fabrication
GB2347014B (en) * 1999-02-18 2003-04-16 Zetex Plc Semiconductor device
US6351009B1 (en) * 1999-03-01 2002-02-26 Fairchild Semiconductor Corporation MOS-gated device having a buried gate and process for forming same
US6593620B1 (en) * 2000-10-06 2003-07-15 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
JP4970660B2 (en) * 2001-04-17 2012-07-11 ローム株式会社 Semiconductor device and manufacturing method thereof
JP4225711B2 (en) * 2001-06-29 2009-02-18 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2006073971A (en) * 2004-08-04 2006-03-16 Sanken Electric Co Ltd Semiconductor element and semiconductor element manufacturing method
JP5198752B2 (en) * 2006-09-28 2013-05-15 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
KR100761354B1 (en) * 2006-10-02 2007-09-27 주식회사 하이닉스반도체 Dual poly gate of semiconductor device having multi-plane channel and method of fabricating the same
JP5135884B2 (en) * 2007-05-24 2013-02-06 富士電機株式会社 Manufacturing method of semiconductor device
US9484451B2 (en) * 2007-10-05 2016-11-01 Vishay-Siliconix MOSFET active area and edge termination area charge balance
US20110084332A1 (en) * 2009-10-08 2011-04-14 Vishay General Semiconductor, Llc. Trench termination structure
WO2011148427A1 (en) 2010-05-27 2011-12-01 Fuji Electric Co., Ltd. Mos-driven semiconductor device and method for manufacturing mos-driven semiconductor device
US9431249B2 (en) 2011-12-01 2016-08-30 Vishay-Siliconix Edge termination for super junction MOSFET devices
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
CN103681819B (en) * 2012-09-17 2017-04-19 中国科学院微电子研究所 Trench type insulated gate bipolar transistor and preparing method thereof
US9508596B2 (en) 2014-06-20 2016-11-29 Vishay-Siliconix Processes used in fabricating a metal-insulator-semiconductor field effect transistor
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
CN106575666B (en) 2014-08-19 2021-08-06 维西埃-硅化物公司 Super junction metal oxide semiconductor field effect transistor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL96608C (en) * 1969-10-03
DE3037316C2 (en) * 1979-10-03 1982-12-23 Tokyo Shibaura Denki K.K., Kawasaki, Kanagawa Process for the production of power thyristors
FR2480501A1 (en) * 1980-04-14 1981-10-16 Thomson Csf SURFACE-ACCESSIBLE DEEP GRID SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
JPS5861673A (en) * 1981-10-09 1983-04-12 Nec Corp Preparation of semiconductor device
US4767722A (en) * 1986-03-24 1988-08-30 Siliconix Incorporated Method for making planar vertical channel DMOS structures
JP2524370B2 (en) * 1986-12-05 1996-08-14 ゼネラル・エレクトリック・カンパニイ Method for manufacturing semiconductor device
JP2570742B2 (en) * 1987-05-27 1997-01-16 ソニー株式会社 Semiconductor device
JPH0766968B2 (en) * 1987-08-24 1995-07-19 株式会社日立製作所 Semiconductor device and manufacturing method thereof
US4853345A (en) * 1988-08-22 1989-08-01 Delco Electronics Corporation Process for manufacture of a vertical DMOS transistor
JP2941823B2 (en) * 1988-11-28 1999-08-30 株式会社日立製作所 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
US5086007A (en) 1992-02-04
DE4011276A1 (en) 1990-11-29
FR2647596A1 (en) 1990-11-30
JPH02309678A (en) 1990-12-25
FR2647596B1 (en) 1994-01-21
DE4011276C2 (en) 1996-07-25

Similar Documents

Publication Publication Date Title
JP2689606B2 (en) Method for manufacturing insulated gate field effect transistor
JP2837014B2 (en) Semiconductor device and manufacturing method thereof
US5885878A (en) Lateral trench MISFET and method of manufacturing the same
JP3641547B2 (en) Semiconductor device including lateral MOS element
JP4829473B2 (en) Insulated gate semiconductor device and manufacturing method thereof
JP2912508B2 (en) Method of manufacturing vertical MOS transistor
JPS62229976A (en) Semiconductor device and manufacture thereof
JPH0621468A (en) Insulated gate semiconductor device
JP2002016080A (en) Manufacturing method of trench-gate type mosfet
US6459122B2 (en) Semiconductor device having a U-shaped groove in the body of the device
JPH09321291A (en) Semiconductor device
JP2000183337A (en) Semiconductor device and its manufacture
JP3354127B2 (en) High voltage element and method of manufacturing the same
JP2003303960A (en) Vertical mos semiconductor device and manufacturing method thereof
US10062778B2 (en) Semiconductor device
JP2002043562A (en) Semiconductor device and manufacturing method thereof
JPH06151728A (en) Semiconductor integrated circuit device
JP3193984B2 (en) High voltage MOS transistor
JPS60229374A (en) Semiconductor device and manufacture thereof
JPS6118170A (en) Manufacture of semiconductor device
JP2807718B2 (en) Semiconductor device and manufacturing method thereof
JPH1126761A (en) Depletion type semiconductor device and manufacture thereof
JPH0590400A (en) Semiconductor device with built-in high breakdown strength element
JP2003289145A (en) Horizontal power mos transistor and manufacturing method therefor
JPH0239473A (en) Semiconductor device having channel on trench groove side wall