JPS5861673A - Preparation of semiconductor device - Google Patents

Preparation of semiconductor device

Info

Publication number
JPS5861673A
JPS5861673A JP56161195A JP16119581A JPS5861673A JP S5861673 A JPS5861673 A JP S5861673A JP 56161195 A JP56161195 A JP 56161195A JP 16119581 A JP16119581 A JP 16119581A JP S5861673 A JPS5861673 A JP S5861673A
Authority
JP
Japan
Prior art keywords
groove
shaped groove
layer
sio2
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56161195A
Other languages
Japanese (ja)
Inventor
Masanori Yamamoto
山本 正徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56161195A priority Critical patent/JPS5861673A/en
Publication of JPS5861673A publication Critical patent/JPS5861673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain a MOSFET with V-groove with short channel length which assures easy control without deterioration of dielectric strength by providing the V- or U-groove on the (110) surface of N type Si substrate, filling it with the poly-Si and by providing the P layer, N layer to the area other than the groove. CONSTITUTION:The V- or U-groove is formed by the anisotropic etching to the (110) surface of N type Si substrate 1 and it is covered with the SiO2 2. After the poly-Si 3 is sufficiently precipitated, the groove 4 is remained by etching the area except for said groove. The SiO2 in the area other than the region 4 is removed by etching, the P layer 6 and N layer 7 are formed, a window is opened on the SiO2 over the layer 7. Thereby, the gate electrode 9 is formed on the source electrode 8, SiO2 of the U-groove and a new SiO2, while the drain electrode 10 at the rear side of substrate. In the above structure, since the p-n junction end abuts almost vertically to the internal surface 11 of the groove, the field is not easily concentrated, said method can also be applied to the U-groove, while channel length can be controlled easily and thereby the channel can be shortened and high integration can be realized.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り1%にV字型溝も
しくは、0字塁溝を具える絶縁ゲート型電界効来トラン
ジスタ(以下MO8FETと称す)の電気的特性の向上
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and relates to electrical characteristics of an insulated gate field effect transistor (hereinafter referred to as MO8FET) having a V-shaped groove or a zero-shaped groove in 1%. This is related to the improvement of

従来%vPf−型溝もしくはU字型溝MO8FET輯成
する場合、−導電型1例えばN型で主面が結晶(100
)の半導体基板に1反対導電型、例えばP型の不純物を
拡散して、P型半導体領域を形成し。
Conventionally, when constructing a %vPf-type groove or U-shaped groove MO8FET, -conductivity type 1 is, for example, N type, and the main surface is crystalline (100
), an impurity of one opposite conductivity type, for example, P type, is diffused into the semiconductor substrate to form a P type semiconductor region.

その後V字型#$1r形成していた。これによりs V
字型層もしくはU字型溝と拡散層との傾きが約54゜7
40 あり、逆ベベルなので耐圧が小さくなるのに加え
、チャンネル長が不安定になるなど欠点が多かった。ま
た、V字形#Iを形成した後酸化膜成長ケ行ない、主面
に垂直な方向の酸化層厚の違いによシ、v字形溝以外の
部分にベース・ソース領域をそれぞれ形成し、逆ベベル
になること管防ぐ方法も考えられているが、高耐圧向き
のU字形溝にはこの方法分用いると%U字形隣の底の部
分に不純物拡散されてしまうとかイオン注入によシ。
Thereafter, a V-shaped #$1r was formed. This allows s V
The slope of the diffusion layer and the U-shaped layer or U-shaped groove is approximately 54°7.
40, which has many disadvantages such as a reverse bevel, which reduces the withstand voltage and makes the channel length unstable. In addition, after forming the V-shaped #I, an oxide film is grown, and due to the difference in oxide layer thickness in the direction perpendicular to the main surface, base and source regions are formed in parts other than the V-shaped groove, and a reverse bevel is formed. A method has been considered to prevent the tube from becoming a tube, but if this method is used for a U-shaped groove for high voltage resistance, impurities will be diffused into the bottom part next to the U-shaped groove, or ion implantation will cause problems.

不純物領域管形成するので不純物領域の濃度が低くなる
などの欠点がある。
Since the impurity region is formed as a tube, there are drawbacks such as a low concentration of the impurity region.

□ 本発明の目的は耐圧を損なわずチャンネル長の短く
、制御のしやすいV字型溝もしくはU字型溝MO8FE
Te得ることのできる半導体装置の製造方法を提供する
にある。
□ The purpose of the present invention is to create a V-shaped groove or U-shaped groove MO8FE that has a short channel length and is easy to control without sacrificing withstand voltage.
An object of the present invention is to provide a method for manufacturing a semiconductor device that can obtain Te.

本発明のさらに他の目的は、集積度の高いV字型溝もし
くはU字型溝MO8FETが容易かっ、確実に得られる
半導体装置の製造方法を提供するKする。
Still another object of the present invention is to provide a method for manufacturing a semiconductor device that allows a highly integrated V-groove or U-shaped groove MO8FET to be easily and reliably obtained.

本発明の製造方法は結晶面(100)を主面とする一導
電型の半導体基板の一主面にV字型溝もしくはU字型#
1¥r形成し、このV、字型擲もしくは、U字型溝を含
む表面に他の物質例えば、ポリシリコンを成長させる。
In the manufacturing method of the present invention, a V-shaped groove or a U-shaped #
1\r is formed, and another material such as polysilicon is grown on the surface including this V-shaped groove or U-shaped groove.

ポリシリコンの主面に、V字型溝もしくはV字型溝が形
成されていない程度にポリシリコンを成長させ、これを
エツチングしてV字型溝もしくはU字型溝のみにポリシ
リコンが残っているようにする。つぎに、このポリシリ
コン會利用して前記基板に反対導電型の不純物のイオン
注入もしくは、不純物拡散を行ない前記V字型溝もしく
はU字型溝以外の部分に反対導電型半導体領域?形成し
、つぎに−導電型不純物のイオン注入もしくは、不純物
拡散を行ない前記V字型溝もL〈はjU字型溝以外の部
分の反対導電型半導体領域に一導電型半導体領域号形成
し前記V字溝もしくはU字型溝部分の酸化層表面にゲー
ト電極、前記−導電型半導体領域にソース電極、前記基
板にドレイン電極tそれぞれ形成する工程を含んでいる
Polysilicon is grown on the main surface of the polysilicon to such an extent that no V-shaped groove or V-shaped groove is formed, and this is etched so that polysilicon remains only in the V-shaped groove or U-shaped groove. Make sure you are there. Next, using this polysilicon layer, ions of an impurity of the opposite conductivity type are implanted into the substrate or impurity diffusion is performed to form a semiconductor region of the opposite conductivity type in a portion other than the V-shaped groove or the U-shaped groove. Then, ion implantation of -conductivity type impurities or impurity diffusion is performed to form a semiconductor region of one conductivity type in the semiconductor region of the opposite conductivity type in a portion other than the V-shaped groove. The method includes the steps of forming a gate electrode on the surface of the oxide layer in the V-shaped groove or the U-shaped groove, a source electrode on the - conductivity type semiconductor region, and a drain electrode t on the substrate.

つぎに図倉用いて、詳細に説明する。第1図(aX(b
)、第2図は、従来例である。第1図体)%(b)は。
Next, it will be explained in detail using Zukura. Figure 1 (aX(b)
), FIG. 2 shows a conventional example. Figure 1) %(b) is.

N型基板1にP型ネ細物領域6を形成し、つぎにN型不
純物領域71−形成してから%V字型溝もしくはU字型
溝それぞれ形成し、MOSFETを形成している。この
形のMOSFETでは前述したように耐圧、チャンネル
長に問題がある。第2図は。
A P-type narrow region 6 is formed on an N-type substrate 1, and then an N-type impurity region 71 is formed, and then a V-shaped groove or a U-shaped groove is formed, respectively, to form a MOSFET. As mentioned above, this type of MOSFET has problems with voltage resistance and channel length. Figure 2 is.

V字形51ki成した後、酸化膜2の成長全行ない主面
に垂直な方向の酸化膜厚の違いKよりV字形溝以外の部
分にベース参ソース領域をそれぞれ形成している。この
形のMOSFETでは、前述したように不純物領域がイ
オン注入にょ多形成されているため、不純物m度が低く
なるなどの問題があるので、U字形溝には用いることが
できない。
After the V-shaped groove 51ki is formed, the oxide film 2 is completely grown, and base reference and source regions are respectively formed in parts other than the V-shaped groove due to the difference K in the oxide film thickness in the direction perpendicular to the main surface. In this type of MOSFET, as described above, the impurity region is formed by a large number of ion implantations, so there are problems such as a low impurity m degree, and therefore it cannot be used in a U-shaped groove.

つぎに本発明を実施例により説明する。Next, the present invention will be explained by examples.

第3図(a)ないしくd)は、本発明の製造工程を説明
するための断面図である。tず、第3図(a)に示すよ
うに、結晶面(100)t−主面とするN型半導体基板
1に酸化膜全マスクにして、異方性エツチング全行いU
字型溝を形成し、さらに酸化を行なう。
FIGS. 3(a) to 3(d) are cross-sectional views for explaining the manufacturing process of the present invention. First, as shown in FIG. 3(a), anisotropic etching is performed on an N-type semiconductor substrate 1 whose main surface is the (100) crystal plane using a full oxide film mask.
After forming the groove, oxidation is performed.

これらのプロセスによって酸化膜2が形成される。Oxide film 2 is formed by these processes.

つぎに第3図伽)に示すようKその上にポリシリコン3
を成長させる。ポリシリコン3の主面にU字型溝が形成
されない程度に、このポリシリコン3を成長させ、エツ
チングを行ない、第3図(c)K示すようにポリシリコ
ンのU字型溝部分4を残す。
Next, as shown in Figure 3, polysilicon 3 is placed on top of K.
grow. The polysilicon 3 is grown to such an extent that no U-shaped groove is formed on the main surface of the polysilicon 3, and etched to leave a U-shaped groove portion 4 of the polysilicon as shown in FIG. 3(c)K. .

ここで、U字型溝以外の酸化膜を除去しU字型溝部のポ
リシリコンを利用して、U字型溝以外の部分にP型不純
物領域6、N型不純物領域を第3図(d)K示すように
、形成する。第3図(d)Ic示すように、Nll不純
物領域7の表面管覆う酸化膜に窓なあけて、ソース電極
8%U字型溝の酸化膜2.また新しく作り直した酸化膜
の上にゲート電極9、 □基板lの裏面側にドレイン電
極lOをそれぞれ設ける。V字型街の場合も同様に製造
される。
Here, the oxide film other than the U-shaped trench is removed, and the polysilicon in the U-shaped trench is used to form a P-type impurity region 6 and an N-type impurity region in the region other than the U-shaped trench, as shown in FIG. )K Form as shown. As shown in FIG. 3(d) Ic, a window is opened in the oxide film covering the surface tube of the Nll impurity region 7, and an oxide film 2 of the source electrode 8% U-shaped groove is formed. Furthermore, a gate electrode 9 is provided on the newly remade oxide film, and a drain electrode 10 is provided on the back side of the substrate 1, respectively. V-shaped streets are manufactured in the same way.

このようにして、製造されたV字型もしくは、U字型M
O8FETでは、P型半導体細板6.およびN型半導体
領域7をイオン注入もしくは、不純物拡散で形成する際
、不純物が曲率半径をもって拡散されるので、V字型溝
もしくはU字型溝の内面11に対し、tlぼ直角にPN
接合端が突き当るようになる。これは、従来の不純物拡
散後にV字型溝もしくはU字型溝を形成した場合には、
PN接合とV字型滴面もしくはU字擲面が斜めになるの
に比べ、電界集中が起り鍵くなる。その上、U字型溝M
08 FETKも用いれるので、その効果は、大きくな
る。また、チャンネル長も制御し易くなり短チャンネル
化が可能で高集積化に役立つ。
In this way, the V-shaped or U-shaped M
In O8FET, P-type semiconductor thin plate 6. When forming the N-type semiconductor region 7 by ion implantation or impurity diffusion, the impurity is diffused with a radius of curvature.
The joint ends will now touch each other. This means that when a V-shaped groove or U-shaped groove is formed after conventional impurity diffusion,
Compared to the case where the PN junction and the V-shaped droplet surface or U-shaped droplet surface are slanted, electric field concentration occurs, which is the key. Moreover, U-shaped groove M
Since 08 FETK is also used, the effect is greater. In addition, the channel length can be easily controlled, making it possible to shorten the channels, which is useful for high integration.

なお、上側においてN導電型を一導電型、反対導電型を
P型導電型に対応させて説明したが、この対応が逆の場
合も本発明がそのまま適用できるのはいうまでもない。
Note that although the N conductivity type has been described above as corresponding to one conductivity type and the opposite conductivity type corresponds to P type conductivity, it goes without saying that the present invention can be applied as is even if the correspondence is reversed.

【図面の簡単な説明】[Brief explanation of drawings]

w、1図(&)、(b)、第2図は、従来例の溝?有す
る半導体装置の断面図、第3図(a)〜(d)は本発明
の一実施例の半導体装置の製造工程全説明するための断
面図である。 な2図において、1・・N型半導体基板% 2・・酸化
膜、3,4・・ポリシリコン、5・・N艷型半尋体基板
、6・・P型半導体領域、7・・N型半導体領域、8・
・ソース電極、9・・ゲート電極、10・・ドレイン電
極、11・・U字型溝の内面、である。 (aン 第 1 区 第 2 図 (1) 第′3 図
w, Figure 1 (&), (b), and Figure 2 are the grooves of the conventional example? 3(a) to 3(d) are cross-sectional views for explaining the entire manufacturing process of a semiconductor device according to an embodiment of the present invention. In Figure 2, 1...N-type semiconductor substrate% 2...Oxide film, 3,4...Polysilicon, 5...N-shaped half-body substrate, 6...P-type semiconductor region, 7...N type semiconductor region, 8.
- Source electrode, 9... Gate electrode, 10... Drain electrode, 11... Inner surface of U-shaped groove. (a) Section 1 Section 2 (1) Section '3

Claims (1)

【特許請求の範囲】[Claims] 結晶面(100)を主面とする一導電型の半導体基板の
一生面にV字形溝もしくはU字形靜を形成し、該V9字
形溝もしくはU字形溝を他の物質により埋め合わせ、前
記−主面に反対導電型不利物を導入し、前記V字形溝も
しくはU字形溝以外部分に反対導電型中導体領域を形成
してさらに一導電型不純物を導入して前記V字形溝もし
くはU字形溝以外の部分に一導電型半導体領域を形成す
る工程を含むこと1%黴とする半導体装置の製造方法。
A V-shaped groove or a U-shaped groove is formed on the whole surface of a semiconductor substrate of one conductivity type whose main surface is the crystal plane (100), and the V-shaped groove or U-shaped groove is filled with another substance, and the -main surface is An opposite conductivity type impurity is introduced into the V-shaped groove or the U-shaped groove, an opposite conductivity type intermediate conductor region is formed in the portion other than the V-shaped groove or the U-shaped groove, and an impurity of one conductivity type is further introduced to form the opposite conductivity type in the portion other than the V-shaped groove or the U-shaped groove. A method for manufacturing a semiconductor device including the step of forming a semiconductor region of one conductivity type in a portion.
JP56161195A 1981-10-09 1981-10-09 Preparation of semiconductor device Pending JPS5861673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161195A JPS5861673A (en) 1981-10-09 1981-10-09 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161195A JPS5861673A (en) 1981-10-09 1981-10-09 Preparation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5861673A true JPS5861673A (en) 1983-04-12

Family

ID=15730386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161195A Pending JPS5861673A (en) 1981-10-09 1981-10-09 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5861673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040034A (en) * 1989-01-18 1991-08-13 Nissan Motor Co., Ltd. Semiconductor device
US5086007A (en) * 1989-05-24 1992-02-04 Fuji Electric Co., Ltd. Method of manufacturing an insulated gate field effect transistor
US5177572A (en) * 1990-04-06 1993-01-05 Nissan Motor Co., Ltd. Mos device using accumulation layer as channel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040034A (en) * 1989-01-18 1991-08-13 Nissan Motor Co., Ltd. Semiconductor device
US5086007A (en) * 1989-05-24 1992-02-04 Fuji Electric Co., Ltd. Method of manufacturing an insulated gate field effect transistor
US5177572A (en) * 1990-04-06 1993-01-05 Nissan Motor Co., Ltd. Mos device using accumulation layer as channel

Similar Documents

Publication Publication Date Title
US20020140032A1 (en) Ultra small size vertical MOSFET device and method for the manufacture thereof
EP0586835A1 (en) High speed, low gate/drain capacitance dmos device
JPH0629532A (en) Mosfet and its manufacture
KR940001505B1 (en) Semiconductor device
JPH0945905A (en) Semiconductor device and its manufacture
JP3022714B2 (en) Semiconductor device and manufacturing method thereof
JPS5861673A (en) Preparation of semiconductor device
JP3049496B2 (en) Method of manufacturing MOSFET
JPS6346760A (en) Manufacture of semiconductor memory
JPH04294585A (en) Manufacture of vertical type mos semiconductor device
JPS5846648A (en) Manufacture of semiconductor device
JPH0335534A (en) Manufacture of semiconductor device
JPH02105576A (en) Field effect transistor
JPS6039868A (en) Manufacture of semiconductor device
JP2511010B2 (en) Method for manufacturing vertical MOS transistor
JP2864581B2 (en) Method for manufacturing semiconductor device
JPS61260676A (en) Manufacture of insulated gate type semiconductor device
JPS60226168A (en) Complementary mos semiconductor device
KR100211948B1 (en) Fabrication method of power transistor on soi wafer
JPH0334655B2 (en)
KR940004267B1 (en) Manufacturing method of mos fet
JPH01143358A (en) Manufacture of mos semiconductor integrated circuit device
KR970005951B1 (en) Semiconductor device & method of manufacturing the same
JP2887902B2 (en) Method for manufacturing semiconductor device
JPH023243A (en) Manufacture of semiconductor device