JP2667930B2 - Fine processing method and device - Google Patents

Fine processing method and device

Info

Publication number
JP2667930B2
JP2667930B2 JP2314953A JP31495390A JP2667930B2 JP 2667930 B2 JP2667930 B2 JP 2667930B2 JP 2314953 A JP2314953 A JP 2314953A JP 31495390 A JP31495390 A JP 31495390A JP 2667930 B2 JP2667930 B2 JP 2667930B2
Authority
JP
Japan
Prior art keywords
light
compound
etching
substrate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2314953A
Other languages
Japanese (ja)
Other versions
JPH04188620A (en
Inventor
安栄 佐藤
信一 河手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2314953A priority Critical patent/JP2667930B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP98124754A priority patent/EP0908782A1/en
Priority to EP98124755A priority patent/EP0909989A1/en
Priority to EP98124753A priority patent/EP0909988A1/en
Priority to EP98124749A priority patent/EP0909987A1/en
Priority to EP98124750A priority patent/EP0909985A1/en
Priority to AT91116309T priority patent/ATE200829T1/en
Priority to EP98124751A priority patent/EP0908781A3/en
Priority to EP91116309A priority patent/EP0477890B1/en
Priority to DE69132587T priority patent/DE69132587T2/en
Priority to EP98124748A priority patent/EP0909986A1/en
Publication of JPH04188620A publication Critical patent/JPH04188620A/en
Priority to US08/251,666 priority patent/US5962194A/en
Priority to US08/429,288 priority patent/US6025115A/en
Priority to US08/429,287 priority patent/US5863706A/en
Priority to US08/428,431 priority patent/US5714306A/en
Priority to US08/428,518 priority patent/US5824455A/en
Priority to US08/429,289 priority patent/US5981001A/en
Application granted granted Critical
Publication of JP2667930B2 publication Critical patent/JP2667930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体、金属、絶縁体上にパターン形成を
行なう微細加工方法及び該方法を実施するに好適な装置
に関する。
TECHNICAL FIELD The present invention relates to a microfabrication method for forming a pattern on a semiconductor, a metal or an insulator, and an apparatus suitable for carrying out the method.

[従来技術] 半導体装置の製造工程における重要な技術の一つに、
所望のパターンに従って試料基板上に微細加工を施し素
子構造を形成するフオトリソグラフイープロセスがあ
る。従来、これを実施する技術として、レジスト塗布、
パターン露光、現像、エツチング、レジスト剥離等の複
雑で煩雑なプロセスが広く用いられてきた。
[Prior art] One of the important technologies in the manufacturing process of semiconductor devices is
There is a photolithography process for forming a device structure by performing fine processing on a sample substrate according to a desired pattern. Conventionally, techniques for implementing this include resist coating,
Complex and complicated processes such as pattern exposure, development, etching, and resist stripping have been widely used.

近年、半導体記憶素子に代表される様に、素子の大容
量化、機能の高性能化が急速にすすみ、それに伴い、回
路パターンがより微細化しまた回路構造も更に複雑化し
てきている。一方、液晶デイスプレイ、プラズマデイス
プレイ等の表示装置は、ますます大型化し、素子機能も
複雑化しつつある。これらのデバイスを上述のプロセス
で製造する場合、プロセスの更なる複雑化によって、コ
ストが上昇し、ごみの発生の増加等によって歩留りが低
下し全体のコストも上昇する。
In recent years, as typified by semiconductor memory elements, the capacity of the elements and the performance of the functions have been rapidly increased, and accordingly, circuit patterns have become finer and the circuit structures have become more complicated. On the other hand, display devices such as a liquid crystal display and a plasma display are becoming larger and larger, and the element functions are becoming more complicated. When these devices are manufactured by the above-mentioned process, the cost is increased due to the further complication of the process, the yield is decreased due to the increase of dust generation, etc., and the overall cost is also increased.

一方上述のレジストを用いたフオトリソグラフイープ
ロセスに代わって、煩雑なプロセスを大幅に短縮してパ
ターンの形成を行なう光エツチング方法が提案され、た
とえば第5回ドライプロセスシンポジウム講演予稿集
(関根、岡野、堀池、97ページ、1983)には1例が記載
されている。この論文では、塩素ガスを導入した反応室
内にポリシリコン(p−Si)膜を堆積した基板を設置し
た後、紫外線光をマスクを通してSi基板上に選択的に照
射することで、紫外線が照射された部分だけエツチング
が進行し、p−Si膜にパターンが形成されるプロセスが
報告されている。このプロセスを用いることによって、
レジスト塗布、現像、レジスト剥離等の工程が無くな
り、工程が簡略化され、歩留まりを向上させ大幅にコス
トを軽減できる。更に従来の反応性イオンエツチングで
問題となるイオン照射による損傷も発生しないため、損
傷がないエツチングが可能となる。
On the other hand, instead of the photolithography process using the above-mentioned resist, an optical etching method for forming a pattern by greatly shortening a complicated process has been proposed. For example, the proceedings of the 5th Dry Process Symposium (Sekine, Okano) Horiike, p. 97, 1983) describes one example. In this paper, after a substrate on which a polysilicon (p-Si) film is deposited is installed in a reaction chamber into which chlorine gas is introduced, ultraviolet light is selectively irradiated onto the Si substrate through a mask, whereby ultraviolet light is irradiated. It has been reported that the etching progresses only in the above-mentioned portion and a pattern is formed in the p-Si film. By using this process,
Steps such as resist coating, development, and resist stripping are eliminated, the steps are simplified, the yield is improved, and the cost can be significantly reduced. Further, since damage due to ion irradiation, which is a problem in conventional reactive ion etching, does not occur, etching without damage can be performed.

しかしながらこの光エツチング方法では、加工溝内部
での光散乱や回折によってパターンに忠実な微細加工を
行なうことが非常に困難であり、また完全な異方性エツ
チングを行なうためには、側壁保護膜を形成しなくては
ならず、結果としてこの膜が残渣として残り、素子に悪
影響を及ぼす場合があった。また大面積の表示装置例え
ば14″液晶デイスプレイを製造する場合、p−Siのエツ
チング速度が非常に低くせいぜい40Å/min程度(前述の
関根等の報告)であり他のエツチング方法に比べ2桁程
低くなる。更にこれに比べ照射面積は〜2×104倍大き
めで、光源として現在の最高出力のエキシマレーザー
(100W程度)を使ったとしても実用レベルにとても達し
ないのが実情である。加えて紫外線照射窓にエツチング
反応で生成した物質が堆積し、度々窓をクリーニングし
なくてはならない欠点があった。
However, in this optical etching method, it is extremely difficult to perform fine processing faithful to the pattern by light scattering and diffraction inside the processing groove. In order to perform complete anisotropic etching, the side wall protective film must be formed. It must be formed, and as a result, this film remains as a residue, which may adversely affect the device. In the case of manufacturing a large-area display device, for example, a 14 ″ liquid crystal display, the etching speed of p-Si is very low, at most 40 ° / min (reported by Sekine et al. Described above), which is about two orders of magnitude compared to other etching methods. In addition, the irradiation area is up to 2 × 10 4 times larger than this, and even if a current maximum output excimer laser (about 100 W) is used as a light source, it does not reach a practical level at all. As a result, the substance generated by the etching reaction accumulates on the ultraviolet irradiation window, and the window must be frequently cleaned.

[課題を解決するための手段及び作用] 本発明の微細加工方法は、改質ガス雰囲気中で、基板
の表面に、該基板表面を構成する化合物の結合エネルギ
ー以上のエネルギーを有し該化合物を還元する光を選択
的に照射することによって、該基板表面の該光が照射さ
れた領域を選択的に還元し、該基板表面に該化合物の還
元物で構成されるパターン構造を有する表面改質層を形
成する工程と、該表面改質層を保護膜として、表面非改
質層をエッチングする工程と、を有することを特徴とす
る。
[Means and Actions for Solving the Problems] The microfabrication method of the present invention provides a method for producing a compound having an energy equal to or higher than the binding energy of a compound constituting the substrate surface on a surface of the substrate in a modified gas atmosphere. A surface modification having a pattern structure composed of a reduced product of the compound on the surface of the substrate, by selectively reducing the light-irradiated region of the substrate surface by selectively irradiating the reducing light. A step of forming a layer; and a step of etching a non-surface-modified layer using the surface-modified layer as a protective film.

また、本発明の微細加工装置は、第1の反応容器と、
該第1の反応容器内に処理光を導入する光導入手段と、
該第1の反応容器内を排気する排気手段を備え、該第1
の反応容器内に配された基板の表面に前記処理光の照射
により表面改質層を形成する光表面処理部と、第2の反
応容器と、該第2の反応容器内に反応ガスを導入する反
応ガス導入手段と、該第2の反応容器内にプラズマ発生
用のエネルギーを供給するエネルギー供給手段を備え、
前記表面改質層をマスクとして表面非改質層をエッチン
グするエッチング処理部と、を有する微細加工装置であ
って、前記処理光は前記基板表面を構成する化合物の結
合エネルギー以上のエネルギーを有し、該化合物の該光
が照射された領域を選択的に還元する光であることを特
徴とする。
Further, the microfabrication device of the present invention includes a first reaction vessel,
Light introducing means for introducing processing light into the first reaction vessel;
Exhaust means for exhausting the inside of the first reaction vessel;
Of the substrate disposed in the reaction container, a photo-surface treatment unit for forming a surface modification layer by irradiation of the treatment light, a second reaction container, and a reaction gas introduced into the second reaction container. A reaction gas introducing means for supplying a plasma generating energy into the second reaction vessel;
A microfabrication apparatus comprising: an etching treatment section that etches a surface non-modified layer using the surface modified layer as a mask, wherein the processing light has an energy equal to or higher than a binding energy of a compound forming the substrate surface. , Which is a light that selectively reduces the irradiated area of the compound.

本発明によれば基板表面を構成する化合物を選択的に
還元して表面改質層を形成し、該表面改質層を保護膜と
して、表面非改質層をエツチングすることによってレジ
ストを使うことなく、高速の異方性微細加工が可能とな
る。
According to the present invention, a resist is used by selectively reducing a compound constituting a substrate surface to form a surface-modified layer, using the surface-modified layer as a protective film, and etching a non-surface-modified layer. In addition, high-speed anisotropic fine processing can be performed.

又本発明を用いると高真空中で光照射が行なわれるた
め、光照射窓の汚れを防ぐことができる。
Further, when the present invention is used, light irradiation is performed in a high vacuum, so that the light irradiation window can be prevented from being contaminated.

[実施例] 本発明を図面に基づいて説明する。第1図は本発明の
微細加工装置の好適な1例を模式的に表わす図面であ
る。第1図に示した装置は大まかにロードロツク部、光
表面処理部としての光潜像形成部、エツチング処理部に
よって構成される。
[Example] The present invention will be described with reference to the drawings. FIG. 1 is a drawing schematically showing a preferred example of the microfabrication device of the present invention. The apparatus shown in FIG. 1 roughly comprises a load lock section, an optical latent image forming section as an optical surface processing section, and an etching processing section.

ここでロードロツク部は必ずしも必要なものではな
い。同図において、1は被処理試料、2は試料1を真空
雰囲気下に、又は大気雰囲気に戻すためのロードロツク
室、3a,3b,3c,3dは真空排気装置である。4a,4b,4cは試
料1を出し入れでき真空機密可能なゲートバルブ、5a,5
b,5c,5dはガスを導入するためのガス導入口、6は潜像
室である。7b,7cは試料保持台、8は不図示のコンピユ
ータによって制御され、試料保持台7bを2次元的に移動
可能とするXY移動装置である。そして9は光源としての
希ガスエキシマレーザー、10は結像光学系としての凹面
ミラー、11は厚さ1mmのMgF2単結晶板からなる窓、12は
レーザー光の吸収をなくすための光学系減圧容器であ
る。13は試料のエツチングを行なうエツチング室、14は
マイクロ波ガス励起装置、15はマイクロ波ガス励起装置
14で発生した励起ガスをエツチング室13に輸送するため
の輸送管である。次に具体的な実施例を用いて本発明を
説明する。
Here, the load lock unit is not always necessary. In FIG. 1, reference numeral 1 denotes a sample to be processed, 2 denotes a load lock chamber for returning the sample 1 to a vacuum atmosphere or to the atmosphere, and 3a, 3b, 3c, and 3d denote vacuum evacuation devices. 4a, 4b and 4c are gate valves that can take in and out sample 1 and can be vacuum sealed, 5a and 5c
Reference numerals b, 5c, and 5d denote gas inlets for introducing gas, and 6 denotes a latent image chamber. Reference numerals 7b and 7c denote sample holders, and 8 denotes an XY moving device controlled by a computer (not shown) to move the sample holder 7b two-dimensionally. 9 is a rare gas excimer laser as a light source, 10 is a concave mirror as an imaging optical system, 11 is a window made of a MgF 2 single crystal plate having a thickness of 1 mm, 12 is a decompression optical system for eliminating laser light absorption. Container. 13 is an etching chamber for etching a sample, 14 is a microwave gas excitation device, and 15 is a microwave gas excitation device.
A transport pipe for transporting the excited gas generated in 14 to the etching chamber 13. Next, the present invention will be described with reference to specific examples.

[実施例1] Si基板上に厚さ1000ÅのSiO2膜を熱酸化法によって形
成し、該SiO2膜に微細加工を施した。第1図に示した装
置を用いて該処理を行った。先ず、ゲートバルブ4aを開
け試料であるSi基板1をロードロツク室2に入れた後、
真空排気装置3aによってロードロツク室内の圧力が10-8
torr以下になるよう排気した。予め潜像室6は圧力が10
-8torr以下に真空排気装置3bによって排気されており、
続いてゲートバルブ4bを開けSi基板1を試料保持台7bに
載せ、ゲートバルブ4bを閉じた後、真空排気装置によっ
て潜像室6内の圧力が10-8torr以下になるように排気し
た。又光学系減圧容器12内を10-2torr以下に真空排気装
置3dによって排気し、更に常に潜像室6との圧力差が10
torr以下となるように真空排気装置3dを調整した。次に
希ガスエキシマレーザーであるArエキシマレーザー9を
発振させ、1パルス当たりのエネルギーが50mjのレーザ
ー光を取り出し、凹面ミラー10によって集光させ、窓11
を通してSi基板表面にスポツトサイズ5μmの領域に照
射した。発振光の波長は126nmエネルギーは9.8evである
ため、試料表面のSiO2膜のSi−O結合エネルギーは8.3e
vより大きく、この結合を切断しSiを析出させた。本実
施例では厚さ50ÅのSi層を形成できた。又XY移動装置8
によって試料保持台7bを2次元的に移動させることによ
って、所望のパターンのSi層を形成できた。
[Example 1] A SiO 2 film having a thickness of 1000 ° was formed on a Si substrate by a thermal oxidation method, and the SiO 2 film was finely processed. The processing was performed using the apparatus shown in FIG. First, after opening the gate valve 4a and inserting the sample Si substrate 1 into the load lock chamber 2,
The pressure inside the load lock chamber is reduced to 10 -8 by the evacuation device 3a.
The air was evacuated so that it was below torr. The latent image chamber 6 has a pressure of 10
It is evacuated by the vacuum evacuation device 3b to -8 torr or less,
Subsequently, the gate valve 4b was opened, the Si substrate 1 was placed on the sample holder 7b, and the gate valve 4b was closed. Then, the pressure in the latent image chamber 6 was evacuated by the vacuum evacuation device to 10 -8 torr or less. Further, the inside of the optical system decompression container 12 is evacuated to 10 −2 torr or less by the vacuum evacuation device 3d, and the pressure difference from the latent image chamber 6 is constantly 10
The evacuation device 3d was adjusted so as to be not more than torr. Next, the Ar excimer laser 9, which is a rare gas excimer laser, is oscillated to take out a laser beam with an energy of 50 mj per pulse, which is focused by the concave mirror 10, and the window 11
Through the surface of the Si substrate to a spot size of 5 μm. Since the wavelength of the oscillation light is 126 nm and the energy is 9.8 ev, the Si-O bond energy of the SiO 2 film on the sample surface is 8.3 e.
It was larger than v and this bond was broken to precipitate Si. In this example, a 50-mm-thick Si layer could be formed. XY moving device 8
By moving the sample holder 7b two-dimensionally, an Si layer having a desired pattern could be formed.

所望のパターンのSi層を形成した後、ゲートバルブ4c
を開け予め真空排気装置3cによって10-8torr以下に真空
排気してあるエツチング室13内に試料1を入れ、試料保
持台7cに載せた。ゲートバルブ4cを閉じ、再びエツチン
グ室13を真空排気装置3cによって10-8torr以下に真空排
気した。ガス導入口5cよりエツチングガスはここではNH
3500sccm、NF3100sccm、をマイクロ波ガス励起装置内14
に導入し、エツチング室1の圧力が0.25torrになるよう
に真空排気系を操作制御した。マイクロ波発生装置(不
図示)で発生した2.45GHz、700Wのマイクロ波をマイク
ロ波ガス励起装置4cに供給し該エツチングガスをプラズ
マ化した。プラズマによって励起されたガスを輸送管15
を通してエツチング室13に供給することでSi層をマスク
としてSiO2のみを選択的にエツチングすることができ、
所望のパターンが形成できた。この処理は通常の光エツ
チングに比べ高速で処理できしかもきれいなエツチング
面が得られた。又高真空中で光処理プロセスが行なわれ
たため窓が汚れずクリーニングも必要なくなった。
After forming the Si layer of the desired pattern, the gate valve 4c
The sample 1 was placed in the etching chamber 13 that was previously evacuated to 10 −8 torr or less by the vacuum evacuation device 3c and placed on the sample holder 7c. The gate valve 4c was closed, and the etching chamber 13 was again evacuated to 10 -8 torr or less by the evacuation device 3c. The etching gas here is NH from the gas inlet 5c.
3 500 sccm, NF 3 100 sccm, in microwave gas excitation device 14
The vacuum exhaust system was operated and controlled so that the pressure in the etching chamber 1 was 0.25 torr. A microwave of 2.45 GHz and 700 W generated by a microwave generator (not shown) was supplied to the microwave gas excitation device 4c to turn the etching gas into plasma. Transport tube 15 for gas excited by plasma
It is possible to selectively etch only SiO 2 using the Si layer as a mask by supplying it to the etching chamber 13 through
A desired pattern was formed. This processing can be performed at a higher speed than ordinary optical etching, and a clean etching surface can be obtained. Also, since the light treatment process was performed in a high vacuum, the windows were not stained and cleaning was not required.

[実施例2] Si基板上に堆積したSi34膜の微細加工を行なった。
まずSi34膜を、熱CVD法により1000Åの厚さで形成し
た。続いて第1の実施例と同様に、試料であるSi基板
を、潜像室内の試料保持台7bに載せた後、第1の実施例
と同様に、Si基板表面にArエキシマレーザー光を照射
し、Si34膜上に所望のパターンでSiを析出させた。な
おArエキシマレーザー光の代わりにKrレーザー光でも同
様の効果が得られた。これはSi34膜のSi−N結合の結
合エネルギー(4.6ev)よりKrレーザー光のエネルギー
(8.5ev)が大きいため容易にSi−N結合を切断できる
からである。次いでエツチング処理は第1図に示した装
置のエツチング処理部としてのエツチング装置の代わり
に第2図に示したマイクロ波プラズマエツチング装置を
接続した装置を用いて行なった。同図において、3eは真
空排気装置、5eはガス導入口、7eは試料保持台、16はエ
ツチング室、17はエツチング用プラズマを発生させるプ
ラズマ室、18はプラズマ室にマイクロ波を供給するため
のマイクロ波透過窓である。そして19はパラズマ室17の
内部に磁場を発生させるための電磁コイル、20,21は電
磁コイル19及びプラズマ室17を冷却するための冷却水を
導入するための冷却水導入口、同出口である。次に第1
の実施例と同様にSi基板をエツチング室16内の試料保持
台7eに載せた。次いでゲートバルブ4cを閉じエツチング
室16内圧力を10-8torr以下に真空排気した。5eよりエツ
チングガスここではCF630sccm、C2430sccm、をプラ
ズマ室16内に導入し、エツチング室16の圧力が4×10-4
torrになるように真空排気系を操作制御した。電磁コイ
ル19及びプラズマ室17を冷却するため冷却水を冷却水導
入口20より導入し、同出口21より排出すると共に、電磁
コイル19に電流を流し、プラズマ室内に磁場を発生させ
た。そしてマイクロ波発生装置(図示せず)で発生した
2.45GHz、500Wのマイクロ波を導波管を用いて伝送しマ
イクロ波透過窓18からエツチング室に供給した。エツチ
ング室16中では、マイクロ波の電場と、磁場によって効
率よく電子が加速され中性粒子を電離し濃いプラズマが
発生した。なお磁場の大きさを、電子サイクロトロン共
鳴が起こる磁場の大きさ(2.45GHzのマイクロ波の場合8
75Gauss)にしておくことにより効率よくプラズマが発
生した。プラズマ室で発生したプラズマは磁力線に沿っ
てプラズマ室17からエツチング室16に拡散し、Si基板上
のSi34膜表面に達する。こうしてSi34膜のみが選択
的にエツチングされ、Si層をマスクとして所望のパター
ンの微細加工ができた。この加工は通常の光エツチング
に比べ高速でしかもきれいなエツチング面を得ることが
できた。またガス圧力が4×10-4torrと低圧であるた
め、イオンは他の粒子と衝突することなくSi34表面に
達するため異方性の良いエツチングができ、更にイオン
エネルギーは十数eVであるため損傷の少ないエツチング
ができた。
Example 2 Fine processing of a Si 3 N 4 film deposited on a Si substrate was performed.
First, a Si 3 N 4 film was formed with a thickness of 1000 ° by a thermal CVD method. Subsequently, as in the first embodiment, the Si substrate, which is a sample, is placed on the sample holder 7b in the latent image chamber, and then the surface of the Si substrate is irradiated with Ar excimer laser light, as in the first embodiment. Then, Si was deposited in a desired pattern on the Si 3 N 4 film. A similar effect was obtained with Kr laser light instead of Ar excimer laser light. This is because the energy of Kr laser light (8.5 ev) is larger than the bond energy (4.6 ev) of the Si—N bond of the Si 3 N 4 film, so that the Si—N bond can be easily broken. Next, the etching process was carried out by using an apparatus to which a microwave plasma etching apparatus shown in FIG. 2 was connected instead of the etching apparatus as an etching processing section of the apparatus shown in FIG. In the figure, 3e is a vacuum exhaust device, 5e is a gas inlet, 7e is a sample holder, 16 is an etching chamber, 17 is a plasma chamber for generating plasma for etching, and 18 is for supplying microwaves to the plasma chamber. It is a microwave transmission window. Reference numeral 19 denotes an electromagnetic coil for generating a magnetic field inside the plasma chamber 17, and reference numerals 20 and 21 denote cooling water inlets and outlets for introducing cooling water for cooling the electromagnetic coil 19 and the plasma chamber 17. . Then the first
The Si substrate was placed on the sample holder 7e in the etching chamber 16 in the same manner as in the example. Next, the gate valve 4c was closed, and the pressure in the etching chamber 16 was evacuated to 10 -8 torr or less. From 5e, an etching gas, CF 6 30sccm, C 2 H 4 30sccm, was introduced into the plasma chamber 16 so that the pressure in the etching chamber 16 was 4 × 10 -4.
The evacuation system was operated and controlled so that the pressure became torr. Cooling water for cooling the electromagnetic coil 19 and the plasma chamber 17 was introduced through the cooling water inlet 20 and discharged through the outlet 21, and a current was passed through the electromagnetic coil 19 to generate a magnetic field in the plasma chamber. And generated by a microwave generator (not shown)
A microwave of 2.45 GHz and 500 W was transmitted using a waveguide and supplied from a microwave transmission window 18 to an etching chamber. In the etching chamber 16, electrons were efficiently accelerated by the microwave electric field and the magnetic field, and neutralized particles were ionized to generate dense plasma. The magnitude of the magnetic field is determined by the magnitude of the magnetic field at which electron cyclotron resonance occurs (8.
By setting the pressure to 75 Gauss), plasma was efficiently generated. The plasma generated in the plasma chamber is diffused from the plasma chamber 17 to the etching chamber 16 along the lines of magnetic force, and reaches the surface of the Si 3 N 4 film on the Si substrate. Thus, only the Si 3 N 4 film was selectively etched, and fine processing of a desired pattern could be performed using the Si layer as a mask. This processing was faster than ordinary photo-etching, and a clean etching surface could be obtained. In addition, since the gas pressure is as low as 4 × 10 -4 torr, the ions reach the Si 3 N 4 surface without colliding with other particles, so that anisotropic etching can be performed, and the ion energy is more than ten eV. As a result, etching with less damage was achieved.

[発明の効果] 以上説明した様に、表面改質層を形成する工程におい
て、処理光として基板表面を構成する化合物の結合エネ
ルギー以上のエネルギーを有し、該化合物を還元する光
を用い、該光が照射された領域の化合物を選択的に還元
することによって、一般に還元されにくい半導体、金属
の化合物を選択的に還元し、表面改質層を形成すること
ができる。そして該表面改質層をマスクとしてエツチン
グ工程を行なうことによって、高速加工が可能となり、
しかもきれいなエツチング面が得られる。又高真空中で
光照射するため光照射窓が汚れるのが防げる。
[Effects of the Invention] As described above, in the step of forming a surface-modified layer, light having energy equal to or higher than the binding energy of the compound constituting the substrate surface and reducing the compound is used as the processing light. By selectively reducing the compound in the region irradiated with light, it is possible to selectively reduce the compound of semiconductor or metal which is generally difficult to reduce, and form the surface modification layer. By performing an etching step using the surface modified layer as a mask, high-speed processing becomes possible,
Moreover, a clean etching surface can be obtained. Further, since the light is irradiated in a high vacuum, the light irradiation window can be prevented from being stained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の微細加工装置の好適な1例を示す模式
図、第2図はマイクロ波プラズマエツチング処理装置の
例を示す模式図である。 1……被処理試料 2……ロードロツク室 3a,3b,3c,3d,3e……真空排気装置 4a,4b,4c……ゲートバルブ 5a,5b,5c,5d,5e……ガス導入口 6……潜像室 7b,7c,7e……試料保持台 8……XY移動装置 9……希ガスエキシマレーザー 10……凹面ミラー 11……MgF2単結晶板 12……光学系減圧容器 13……エツチング室 14……マイクロ波ガス励起装置 15……輸送管 16……エツチング室 17……プラズマ室 18……マイクロ波透過窓 19……電磁コイル 20,21……冷却水導入口、同出口 である。
FIG. 1 is a schematic diagram showing a preferred example of the fine processing apparatus of the present invention, and FIG. 2 is a schematic diagram showing an example of a microwave plasma etching processing apparatus. 1 ... sample to be processed 2 ... load lock chamber 3a, 3b, 3c, 3d, 3e ... evacuation device 4a, 4b, 4c ... gate valve 5a, 5b, 5c, 5d, 5e ... gas inlet 6 ... … Latent image chambers 7b, 7c, 7e… Sample holder 8… XY moving device 9… Rare gas excimer laser 10… Concave mirror 11… MgF 2 single crystal plate 12… Optical decompression container 13… Etching room 14… Microwave gas excitation device 15… Transport tube 16… Etching room 17… Plasma room 18… Microwave transmission window 19 …… Electromagnetic coil 20,21… Cooling water inlet and outlet is there.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】改質ガス雰囲気中で、基板の表面に、該基
板表面を構成する化合物の結合エネルギー以上のエネル
ギーを有し該化合物を還元する光を選択的に照射するこ
とによって、該基板表面の該光が照射された領域を選択
的に還元し、該基板表面に該化合物の還元物で構成され
るパターン構造を有する表面改質層を形成する工程と、
該表面改質層を保護膜として、表面非改質層をエッチン
グする工程と、を有することを特徴とする微細加工方
法。
1. A method for selectively irradiating a surface of a substrate with light having an energy equal to or higher than the binding energy of a compound constituting the surface of the substrate and reducing the compound in a modified gas atmosphere. Selectively reducing the light-irradiated region of the surface, forming a surface modified layer having a pattern structure composed of a reduced product of the compound on the substrate surface,
Etching the non-surface modified layer using the surface modified layer as a protective film.
【請求項2】前記化合物としてシリコン窒化膜を用い、
前記光の光源としてArエキシマレーザーを用いる請求項
1記載の微細加工方法。
2. A silicon nitride film is used as the compound,
2. The fine processing method according to claim 1, wherein an Ar excimer laser is used as the light source.
【請求項3】前記化合物としてシリコン窒化膜を用い、
前記光の光源としてKrエキシマレーザーを用いる請求項
1記載の微細加工方法。
3. A silicon nitride film as the compound,
2. The fine processing method according to claim 1, wherein a Kr excimer laser is used as the light source.
【請求項4】前記化合物としてシリコン酸化膜を用い、
前記光の光源としてArエキシマレーザーを用いる請求項
1記載の微細加工方法。
4. A silicon oxide film as the compound,
2. The fine processing method according to claim 1, wherein an Ar excimer laser is used as the light source.
【請求項5】第1の反応容器と、該第1の反応容器内に
処理光を導入する光導入手段と、該第1の反応容器内を
排気する排気手段を備え、該第1の反応容器内に配され
た基板の表面に前記処理光の照射により表面改質層を形
成する光表面処理部と、 第2の反応容器と、該第2の反応容器内に反応ガスを導
入する反応ガス導入手段と、該第2の反応容器内にプラ
ズマ発生用のエネルギーを供給するエネルギー供給手段
を備え、前記表面改質層をマスクとして表面非改質層を
エッチングするエッチング処理部と、を有する微細加工
装置であって、 前記処理光は前記基板表面を構成する化合物の結合エネ
ルギー以上のエネルギーを有し、該化合物の該光が照射
された領域を選択的に還元する光であることを特徴とす
る微細加工装置。
5. A first reaction vessel, a light introducing means for introducing processing light into the first reaction vessel, and an exhaust means for exhausting the inside of the first reaction vessel, the first reaction vessel comprising: A photo-surface treatment unit for forming a surface modification layer on the surface of a substrate placed in a container by irradiation with the treatment light, a second reaction container, and a reaction for introducing a reaction gas into the second reaction container. A gas introduction unit, an energy supply unit for supplying energy for plasma generation into the second reaction container, and an etching processing unit for etching the surface non-modified layer using the surface modified layer as a mask. A microfabrication apparatus, wherein the processing light has energy equal to or higher than the binding energy of a compound forming the substrate surface, and is light that selectively reduces a region of the compound irradiated with the light. And fine processing equipment.
JP2314953A 1990-09-26 1990-11-19 Fine processing method and device Expired - Fee Related JP2667930B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2314953A JP2667930B2 (en) 1990-11-19 1990-11-19 Fine processing method and device
EP98124755A EP0909989A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
EP98124753A EP0909988A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method
EP98124749A EP0909987A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
EP98124750A EP0909985A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
AT91116309T ATE200829T1 (en) 1990-09-26 1991-09-25 PHOTOLITHOGRAPHIC PROCESSING METHOD AND APPARATUS
EP98124751A EP0908781A3 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
EP91116309A EP0477890B1 (en) 1990-09-26 1991-09-25 Processing method and apparatus
EP98124754A EP0908782A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method
DE69132587T DE69132587T2 (en) 1990-09-26 1991-09-25 Photolithographic processing method and device
EP98124748A EP0909986A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
US08/251,666 US5962194A (en) 1990-09-26 1994-05-31 Processing method and apparatus
US08/429,288 US6025115A (en) 1990-09-26 1995-04-25 Processing method for etching a substrate
US08/429,287 US5863706A (en) 1990-09-26 1995-04-25 Processing method for patterning a film
US08/428,431 US5714306A (en) 1990-09-26 1995-04-25 Processing method and apparatus
US08/428,518 US5824455A (en) 1990-09-26 1995-04-25 Processing method and apparatus
US08/429,289 US5981001A (en) 1990-09-26 1995-04-25 Processing method for selectively irradiating a surface in presence of a reactive gas to cause etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314953A JP2667930B2 (en) 1990-11-19 1990-11-19 Fine processing method and device

Publications (2)

Publication Number Publication Date
JPH04188620A JPH04188620A (en) 1992-07-07
JP2667930B2 true JP2667930B2 (en) 1997-10-27

Family

ID=18059652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314953A Expired - Fee Related JP2667930B2 (en) 1990-09-26 1990-11-19 Fine processing method and device

Country Status (1)

Country Link
JP (1) JP2667930B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57208142A (en) * 1981-06-17 1982-12-21 Toshiba Corp Method for forming fine pattern
JPH0682643B2 (en) * 1987-03-13 1994-10-19 科学技術庁長官官房会計課長 Surface treatment method

Also Published As

Publication number Publication date
JPH04188620A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
EP0477890B1 (en) Processing method and apparatus
US5110407A (en) Surface fabricating device
US4687544A (en) Method and apparatus for dry processing of substrates
US5320707A (en) Dry etching method
JPS631097B2 (en)
JPH07326562A (en) Method for forming fine pattern
JPS6175529A (en) Dry etching method and apparatus therefor
JP5271267B2 (en) Mask layer processing method before performing etching process
JPH0622222B2 (en) Light processing equipment
US5308791A (en) Method and apparatus for processing surface of semiconductor layer
JPH04253328A (en) Surface treatment device
US5573891A (en) Method and apparatus for fine processing
JP2667930B2 (en) Fine processing method and device
JPH03263827A (en) Digital etching apparatus
JPH0513319A (en) Pattern formation
JPS62232927A (en) Method and device for dry etching
JP2709188B2 (en) Semiconductor device fine processing method and apparatus
JP2615070B2 (en) Etching method
JPH03155621A (en) Dry etching method
JP2966036B2 (en) Method of forming etching pattern
JP2672185B2 (en) Thin film element processing method and apparatus
JP2622188B2 (en) Fine processing method of thin film device
JPH0475336A (en) Method and apparatus for surface processing
JPH02262335A (en) Eliminating method of organic compound film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees