JP2661692B2 - Electrode assembly for high temperature fuel cells - Google Patents

Electrode assembly for high temperature fuel cells

Info

Publication number
JP2661692B2
JP2661692B2 JP62257274A JP25727487A JP2661692B2 JP 2661692 B2 JP2661692 B2 JP 2661692B2 JP 62257274 A JP62257274 A JP 62257274A JP 25727487 A JP25727487 A JP 25727487A JP 2661692 B2 JP2661692 B2 JP 2661692B2
Authority
JP
Japan
Prior art keywords
fuel cell
temperature fuel
heat
cathode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62257274A
Other languages
Japanese (ja)
Other versions
JPH01100866A (en
Inventor
利彦 ▲吉▼田
文也 石▲崎▼
浩之 岩崎
司 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP62257274A priority Critical patent/JP2661692B2/en
Publication of JPH01100866A publication Critical patent/JPH01100866A/en
Application granted granted Critical
Publication of JP2661692B2 publication Critical patent/JP2661692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温燃料電気のカソードとアノードとの接合
体に係り、より詳しく述べると、耐熱合金の表面を耐酸
化性及び耐還元性を有する導電性被膜で覆った、高温型
燃料電池用カソードとアノードとの接合体に関する。 〔従来の技術および発明が解決しようとする問題点〕 高温型燃料電池には650℃で使用する溶融塩型と800〜
1000℃で使用する固体電解質型がある。固体電解質燃料
電池の基本構造は、第7図に示す如く、固体電解質(例
えば部分安定化ジルコニア)1を挟んでカソード(例え
ば、ペロブスカイト型LaMnO4)2及びアノード(例えば
NiO/ZrO2)3を膜状に形成し、カソード2側に酸素又は
空気、アノード3側に燃料、例えば水素を供給するよう
になっている。ジルコニア(ZrO2)は1000℃で0.5Ω-1c
m-1の電気伝導性を示し、これはイオン伝導即ちO2-の移
動によるものであるが、ジルコニアは非常に脆いので、
カルシウムやイットリウムを3〜5%程度加えて安定化
してある。この例のような電池の反応は カソード:4e-+O2→2O2- アノード:O2-+H2→H2O+2e- で表わされ、O2-はジルコニア中を輸送される。又、こ
れは単位セルの構造であるが、単位セルを集積して複数
の単位セルを並列又は直列に接続するためには、隣り合
う単位セルの電極間を接合体(インターコネクター)で
接続する。そして、実際の燃料電池の構造は単位セルの
集積の仕方で決まり、これまでいくつかの集積構造が提
案され、実用化のための開発が進められている。 ところで、このような固体電解質燃料電池の接合体と
しては次のような条件を満たすことが好ましいとされて
いる。 1)高温での酸化および還元雰囲気下で安定。 2)高温での、酸化および還元雰囲気で良好な導電体。 3)酸化物イオン導電性固定例えば安定化ジルコニアの
熱膨張係数と近い熱膨張係数をもつ。 4)電極材の熱膨張係数と近い熱膨張係数をもつ。 また、カソード集電体としては、次の条件が要求され
る。 1)高温での酸化雰囲気下で安定。 2)高温での酸化雰囲気下で良好な導電体。 3)酸化物イオン導電性固定例えば安定化ジルコニアの
熱膨張係数と近い熱膨張係数をもつ。 4)酸素電極材の熱膨張係数と近い熱膨張係数をもつ。 従来、接合体、集電体としては金属又は導電性セラミ
ックスを用いている。しかしながら、金属を600℃以上
で用いると表面酸化層が形成され、接触抵抗が著しく増
加して、電力の抵抗損失を大きくし、燃料電池特性を悪
化させる。また、導電性セラミックスとしては金属複合
酸化物、例えばLa1-XM1 XM2O3(M1はSr,Ca又はBa、M2はC
o,Fe,Mn,Ni又はCrである)で表わされるペロブスカイト
型酸化物、特にLa1-XSrXCrO3が上記の要件を満たすもの
として提案されている。しかしながら、このような導電
性セラミックスは導電性であるとはいえ抵抗が無視でき
ず、例えば米国ウェスチングハウス社が提案しているペ
ロブスカイト型酸化物をカソード材料として用いる薄膜
円筒型燃料電池セルではカソードの抵抗が全電池抵抗の
約65%を占め、燃料電池のエネルギー効率を向上させる
上で障害となる。 そこで、近年、より高性能な燃料電池の開発を目的と
して新しい構造の電池が提案されている。その例を第5
図及び第6図に示す。第5図は部分安定化ジルコニアな
どの固体電解質でハニカム構造5を作り、ハニカム構造
の細孔(セル)の1つおきに燃料6と空気(酸素)7を
向流的に供給し、燃料6を供給する細孔内の壁面にアノ
ード、空気(酸素)7を供給する細孔内の壁面にカソー
ドを形成したものである。第6図は複数の固体電解質隔
壁11によって形成される層状空間12,13の1つおきに燃
料14と空気(酸素)15を直角方向に供給し、隔壁11の燃
料14側にアノード16、空気(酸素)側にカソード17を形
成したものである。これらの型の電池は単位体積あたり
きわめて高いエネルギー密度が期待でき、かつ、従来の
セラミックス技術が応用でき大量生産に向いていると考
えられる。しかし最大の問題は、第5図の構造では集電
体であり、第6図の構造では接合体である。 本発明は、特に、このような集電体あるいは接合体に
適した耐熱性部材を開発し、その部材を用いた電極間接
合体を提供することを目的としてなされたものである。 〔問題点を解決するための手段〕 本発明は上記問題点を、耐熱合金基材の表面に金属複
合酸化物La1-XM1 XM2O3(式中、M1はアルカリ土類金属、
M2はCo,Fe,Mn,Ni又はCr、0≦x<1である)を被覆し
て成ることを特徴とする耐熱部品を提供することによっ
て解決する。 即ち、本発明によれば、高温型燃料電池用の単位セル
のカソードと隣接する他の単位セルのアノードとの接合
体であって、耐熱合金基材の表面に金属複合酸化物La
1-xM1 xM2O3(式中、M1はアルカリ土類金属、M2はCo,Fe,
Mn,NiまたはCrであり、0≦x<1である。)が被覆さ
れていることを特徴とする高温型燃料電池用電極間接合
体が提供される。 この耐熱合金上の被膜は高温で良導電体でありかつ酸
化又は還元されにくい極めて緻密な被膜である。従っ
て、耐熱合金の高い導電性と剛体性、加工性等を保持し
たまま、高温での酸化還元性耐久性が極めて高く、また
低い接触抵抗を付加した耐熱部品が得られる。本発明の
好ましい被膜であるペロブスカイト型複合酸化物La1-XM
1 XM2O3は、高温で、酸化還元雰囲気に対して安定である
と共に、高温で100〜1000Scm-1と極めて高い導電率を示
し、かつその熱膨張率(9×10-6/℃)は基材耐熱合金
のそれ(16〜19×10-6/℃)に近い値であり、基材との
熱膨張率の相違による剥離に対しても強いという利点が
ある。しかも、その熱膨張率は固体電解質のそれ(10×
10-6/℃)に比較的近い点で、固体電解質燃料電池用の
集電体、接合体に適している。 金属複合酸化物La1-XM1 XM2O3のM2としてはCo,Fe,Mn,N
i又はCrを用いるが、これらのうち特に耐還元性であるC
rが好ましい。耐酸化性ではどれも良好である。 耐熱合金のみでは高温で酸化被膜をつくり表面が絶縁
化される。一方、複合酸化物La1-XM1 XM2O3のみではち密
化が難しく、脆く、加工性が悪い。 耐熱合金としては、特に限定はないが、コバルト基、
ニッケル基、チタニウム基、の耐熱合金が好ましい。 被膜中の酸化ランタンおよびアルカリ土類酸化物の組
成比x/(1−x)は特に限定されるものではないが、M1
/La比(M1:アルカリ土類金属)はモル比で0〜0.7、特
に0.1〜0.5が好ましい。この範囲で電気伝導性が最も良
好であり、かつ安定であるからである。 耐熱合金上に被膜を形成する方法は特に限定されるも
のではなく、被膜法としては、塗布法、溶射法、スパッ
ター法、蒸着法、プラズマCDV法、MBE法、MOCVD法、CVD
法、イオンプレーティング法、プラズマ溶射法等あらゆ
る成膜技術が利用できるが、特に、ち密性と接着性に優
れる溶射法、スパッター法、イオンプレーティング法が
好ましい。被膜は基材上に直接形成する被膜がLa1-XM1 X
M2O3の組成を有するほか、例えばランタンLaとアルカリ
土類金属M1あるいはこれらの酸化物の混合物を被覆し、
熱処理して基材と反応させてLa1-XM1 XM2O3なる組成の被
覆としてもよい。このように熱処理して基材と反応して
形成された被膜は基材との密着性がより向上する利点が
ある。また、被膜が当初よりLa1-XM1 XM2O3の組成を有す
る場合にも熱処理を行なえば結晶構造がペロブスカイト
型にされるので好ましい。しかし、この熱処理は耐熱部
品を高温下で使用することによって行なわれてもよい。 被膜の厚さは0.1μm〜1mmの範囲内であることが好ま
しい。0.1mmより薄すぎると表面保護の効果が十分でな
く、一方1mmより厚くなりすぎると導電性が低下するか
らである。 〔実施例〕 実施例1 コバルト基合金(W14.57%,Co52.51%,Cr19.69%,Ni
9.39%,C0.10%,SiO20.48%,Mn1.51%)上に常法に従い
Rfスパッター法によりLaCoO3を約1.5μmの厚さに成膜
した。Rfスパッター法はアルゴンガス圧2〜5ミリトー
ル、電力100〜200Wで1時間行った。1000℃空気中で加
熱処理を行ったところ合金表面にはLaCoO3層の形成が認
められた。この加熱処理の目的は、スパッター法では一
部酸素が抜ける事があり、LaCoO3-yとなっているので、
加熱処理してLaCoO3としたのである。従って、スパッタ
ーの条件によっては、LaCoO3の膜ができ、加熱処理を必
要としない。この試料の1000℃での重量変化及び表面抵
抗変化を第1図に示した。時間と共にわずかな重量増お
よび抵抗の増加が認められた。しかし、LaCoO3を表面に
被覆しない合金のみと較べて、1000℃空気中での安定性
はきわめて優れている。 1000℃空気中でき安定性は極めて優れている。被覆し
ない場合の大幅な重量増は、コバルト合金基材の酸化に
基づくものである。従って、LaCoO3を表面に被覆しない
合金の表面抵抗も増大する。以上のことから、図4に示
すような高温固体電解質燃料電池に、本実施例の接合体
を用いた場合、このような抵抗増大はないが、LaCoO3
表面に被覆しない合金の場合は、重量増加に基づく抵抗
増大が生じるため、長期特性において劣る。なお、以下
の実施例においては、抵抗の増加は重量の増加に対応す
るため、重量増加について調べた。 実施例2〜5 実施例1と同様にして、表1に示す組成を有する各合
金板上にRfスパッター法でLa2O3_SrCO3(La2O3/SrCO3
ル比3:1)混合物を両面に約1μmの厚さに被着し、空
気中1000℃で24時間加熱した。 合金表面の反応生成物をX線回析分析した結果、それ
ぞれ表2に示すものが生成していることが確認された。 La2O3−SrCO3被着後の試料を空気中1000℃で加熱した
ときの重量変化を第2図に示す。比較のために表面にLa
2O3−SrCO3を被着しない合金の同様の加熱による重量変
化を第3図に示す。 また、上記加熱後の被覆合金及び裸の合金の表面抵抗
を表2に示す。 実施例3 コバルト基合金(実施例1と同じ)上に、Rfスパッタ
ー法により、La0.9Sr0.1CrO3をターゲットとして、約1
μmつけた。作製条件は実施例1と同じである。作製さ
れたLa0.9Sr0.1CrO3被覆合金は、1000℃,200時間、空気
中で重量変化は1%以下であり表面抵抗値変化も100%
以内であった。又1000℃,200時間、水素雰囲気では、重
量及び表面抵抗変化は、観測されなかった。 第4図に本発明の耐熱部品を応用した固体電解質型燃
料電池の積層構造を展開図として示す。同図中、21は固
体電解質(例、Ca安定化ジルコニア)のシートで上面に
アノード(例、NiO/ZrO2サーメット)22、下面にカソー
ド(例、La0.9Sr0.1MnO3)23が形成されている。24が接
合体で本発明の耐熱部品(例、上記実施例のコバルト基
合金上にLa0.9Sr0.1CrO3被膜)で作られている。25は外
部に電力をとり出すための電極端子である。第4図に見
られる通り、接合体24はそれに形成された溝によって空
気26及び燃料(例、水素)27の流路を構成しかつ空気26
と燃料27を分離するセパレータであると共に、隣接する
単位セルのカソード23とアノード22とを電気的に接続す
る役割をも担うものである。電極端子25は集積された単
位セルの両端部において空気26と燃料27の流路を形成す
ると共にカソード23又はアノード22との電気的接続を行
なう部材でもあり、これも本発明の耐熱部品で構成す
る。また、第4図は2つの単位セルを集積した燃料電池
を示したが、3つ以上の単位セルを集積することも可能
で、その場合には各単位セル間に接合体24を挿入する。 このような燃料電池を1000℃の高温下で空気と燃料
(水素)を供給して使用すると、接合体24及び電極端子
25の耐熱部品は長時間安定して電力を発生する。 また、本発明の耐熱部品は第5図及び第6図の燃料電
池の集電体及び接合体としてもきわめて有用である。 〔発明の効果〕 本発明によれば、高温で酸化性及び還元性雰囲気に耐
える良導電性被覆を施した耐熱良導電性金属部品が提供
され、高温燃料電池の接合体及び集電体をはじめ、高温
で電気伝導性、特に電気伝導性接触を必要とするすべて
の分野において有用である。例えば、1000℃以上の高温
で酸化還元性雰囲気に耐えかつ100〜1000Scm-1の電気伝
導度を有する保護被膜を有する良伝導性耐熱合金からな
る耐熱部品が提供される。 このような耐酸化還元性金属伝導体(耐熱部品)を用
いることにより、従来の高温固体電解質燃料電池に較べ
て格段にすぐれた性能が期待できる一体型構造の高温固
体電解質燃料電池の作成が可能となる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a joined body of a cathode and an anode for high-temperature fuel electricity. More specifically, the surface of a heat-resistant alloy has oxidation resistance and reduction resistance. The present invention relates to a joined body of a cathode and an anode for a high-temperature fuel cell covered with a conductive film. [Problems to be Solved by Conventional Techniques and Inventions] A high-temperature type fuel cell requires a molten salt type used at 650 ° C. and 800 to
There is a solid electrolyte type used at 1000 ° C. As shown in FIG. 7, the basic structure of the solid electrolyte fuel cell is such that a cathode (for example, perovskite LaMnO 4 ) 2 and an anode (for example, perovskite type LaMnO 4 ) 1 are sandwiched between a solid electrolyte (for example, partially stabilized zirconia) 1.
NiO / ZrO 2 ) 3 is formed in a film shape, and oxygen or air is supplied to the cathode 2 side, and fuel, for example, hydrogen is supplied to the anode 3 side. Zirconia (ZrO 2 ) is 0.5Ω -1 c at 1000 ℃
exhibits an electrical conductivity of m -1 , due to ionic conduction, i.e., the movement of O 2- zirconia is very brittle,
It is stabilized by adding about 3 to 5% of calcium or yttrium. The reaction of a battery like this example is represented by cathode: 4e + O 2 → 2O 2− anode: O 2− + H 2 → H 2 O + 2e , and O 2− is transported through zirconia. Also, this is a unit cell structure. In order to integrate unit cells and connect a plurality of unit cells in parallel or in series, the electrodes of adjacent unit cells are connected by a joint (interconnector). . The actual structure of the fuel cell is determined by the manner in which the unit cells are integrated, and some integrated structures have been proposed so far, and development for practical use is in progress. By the way, it is considered that such a solid electrolyte fuel cell assembly preferably satisfies the following conditions. 1) Stable under high temperature oxidation and reduction atmosphere. 2) Good conductors in oxidizing and reducing atmospheres at high temperatures. 3) oxide ion conductive fixing, for example, having a thermal expansion coefficient close to that of stabilized zirconia; 4) It has a thermal expansion coefficient close to that of the electrode material. The following conditions are required for the cathode current collector. 1) Stable under oxidizing atmosphere at high temperature. 2) Good conductor under high temperature oxidizing atmosphere. 3) oxide ion conductive fixing, for example, having a thermal expansion coefficient close to that of stabilized zirconia; 4) It has a thermal expansion coefficient close to that of the oxygen electrode material. Conventionally, metal or conductive ceramics has been used as a joined body or a current collector. However, when a metal is used at a temperature of 600 ° C. or higher, a surface oxide layer is formed, the contact resistance is significantly increased, the power loss is increased, and the fuel cell characteristics are deteriorated. Further, as the conductive ceramic, a metal composite oxide, for example, La 1-X M 1 X M 2 O 3 (M 1 is Sr, Ca or Ba, M 2 is C
o, Fe, Mn, Ni or Cr), and in particular, La 1-X Sr X CrO 3 has been proposed as satisfying the above requirements. However, although such conductive ceramics are conductive, their resistance cannot be ignored.For example, in a thin-film cylindrical fuel cell using a perovskite oxide as a cathode material proposed by Westinghouse Corporation of the United States, a cathode is used. Account for about 65% of the total cell resistance, which is an obstacle to improving the energy efficiency of fuel cells. Therefore, in recent years, a battery having a new structure has been proposed for the purpose of developing a higher performance fuel cell. Example 5
FIG. 6 and FIG. FIG. 5 shows that a honeycomb structure 5 is made of a solid electrolyte such as partially stabilized zirconia, and fuel 6 and air (oxygen) 7 are supplied countercurrently to every other pore (cell) of the honeycomb structure. The anode is formed on the wall surface in the pore supplying air, and the cathode is formed on the wall surface in the pore supplying air (oxygen) 7. FIG. 6 shows that a fuel 14 and air (oxygen) 15 are supplied at right angles to every other layered space 12, 13 formed by a plurality of solid electrolyte partitions 11, and an anode 16 and air are supplied to the fuel 14 side of the partition 11. The cathode 17 is formed on the (oxygen) side. These types of batteries can be expected to have an extremely high energy density per unit volume, and are suitable for mass production because conventional ceramics technology can be applied. However, the biggest problem is the current collector in the structure of FIG. 5, and the junction in the structure of FIG. The present invention has been made to develop a heat-resistant member suitable for such a current collector or a joined body, and to provide an inter-electrode joined body using the member. [Means for Solving the Problems] The present invention solves the above problems by forming a metal composite oxide La 1-X M 1 X M 2 O 3 (where M 1 is an alkaline earth metal,
M 2 is solved by providing a heat-resistant component, characterized by comprising coated Co, Fe, Mn, Ni or Cr, is 0 ≦ x <1) the. That is, according to the present invention, it is a joined body of a cathode of a unit cell for a high-temperature fuel cell and an anode of another unit cell adjacent to the unit cell.
1-x M 1 x M 2 O 3 (where M 1 is an alkaline earth metal, M 2 is Co, Fe,
Mn, Ni or Cr, and 0 ≦ x <1. ) Is provided, which provides an interelectrode assembly for a high-temperature fuel cell. The coating on the heat-resistant alloy is a very dense coating that is a good conductor at high temperatures and is not easily oxidized or reduced. Therefore, it is possible to obtain a heat-resistant component having extremely high oxidation-reduction durability at high temperatures and a low contact resistance while maintaining the high conductivity, rigidity, workability, and the like of the heat-resistant alloy. Perovskite-type composite oxide La 1-X M which is a preferred film of the present invention
1 X M 2 O 3 is stable at high temperatures in an oxidation-reduction atmosphere, exhibits an extremely high electrical conductivity of 100 to 1000 Scm -1 at high temperatures, and has a coefficient of thermal expansion (9 × 10 −6 / ° C.). ) Is a value close to that of the heat-resistant base material (16 to 19 × 10 −6 / ° C.), and has an advantage that it is resistant to peeling due to a difference in thermal expansion coefficient from the base material. Moreover, its coefficient of thermal expansion is that of a solid electrolyte (10 ×
(10 −6 / ° C.), which is suitable for current collectors and junctions for solid oxide fuel cells. Co, Fe, Mn, N as M 2 of the metal composite oxide La 1-X M 1 X M 2 O 3
i or Cr is used. Among them, C which is particularly resistant to reduction is used.
r is preferred. All have good oxidation resistance. The heat-resistant alloy alone forms an oxide film at a high temperature and the surface is insulated. On the other hand, with only the composite oxide La 1-X M 1 X M 2 O 3 , it is difficult to densify, brittle, and poor in workability. The heat-resistant alloy is not particularly limited, but may be a cobalt-based,
Nickel-based and titanium-based heat-resistant alloys are preferred. The composition ratio x / (1-x) of lanthanum oxide and alkaline earth oxide in the coating is not particularly limited, but M 1
The / La ratio (M 1 : alkaline earth metal) is preferably in a molar ratio of 0 to 0.7, particularly preferably 0.1 to 0.5. This is because the electric conductivity is the best and stable in this range. The method of forming the coating on the heat-resistant alloy is not particularly limited, and the coating method includes a coating method, a thermal spraying method, a sputtering method, a vapor deposition method, a plasma CDV method, an MBE method, a MOCVD method, and a CVD method.
Although any film forming technique such as an ion plating method, an ion plating method, and a plasma spraying method can be used, a thermal spraying method, a sputtering method, and an ion plating method, which are excellent in tightness and adhesion, are particularly preferable. The coating is La 1-X M 1 X directly on the substrate
In addition to having the composition of M 2 O 3 , for example, lanthanum La and alkaline earth metal M 1 or a mixture of these oxides,
It may be heat-treated and reacted with the substrate to form a coating having a composition of La 1-X M 1 X M 2 O 3 . The coating formed by reacting with the substrate by the heat treatment in this manner has an advantage that the adhesion to the substrate is further improved. Also, when the coating has a composition of La 1 -X M 1 X M 2 O 3 from the beginning, it is preferable to perform heat treatment because the crystal structure becomes a perovskite type. However, this heat treatment may be performed by using the heat-resistant component at a high temperature. The thickness of the coating is preferably in the range of 0.1 μm to 1 mm. If the thickness is smaller than 0.1 mm, the effect of protecting the surface is not sufficient, while if it is larger than 1 mm, the conductivity is reduced. Example 1 Example 1 Cobalt-based alloy (W 14.57%, Co 52.51%, Cr 19.69%, Ni
9.39%, C0.10%, SiO 2 0.48%, according to a conventional method to Mn1.51%) on
LaCoO 3 was deposited to a thickness of about 1.5 μm by Rf sputtering. The Rf sputtering method was performed at an argon gas pressure of 2 to 5 mTorr and a power of 100 to 200 W for 1 hour. Heat treatment in air at 1000 ° C. revealed the formation of a LaCoO 3 layer on the alloy surface. The purpose of this heat treatment is that, in some cases, oxygen is released in the sputtering method, and LaCoO 3-y is used.
Heat treatment was performed to obtain LaCoO 3 . Therefore, depending on the sputtering conditions, a LaCoO 3 film is formed, and heat treatment is not required. FIG. 1 shows the change in weight and the change in surface resistance at 1000 ° C. of this sample. A slight increase in weight and resistance over time was noted. However, the stability in air at 1000 ° C. is extremely superior to that of an alloy having no LaCoO 3 coating on the surface. It is made in air at 1000 ° C and has excellent stability. The significant weight gain without coating is due to oxidation of the cobalt alloy substrate. Therefore, the surface resistance of the alloy whose surface is not coated with LaCoO 3 also increases. From the above, when the joined body of the present embodiment is used for the high-temperature solid electrolyte fuel cell as shown in FIG. 4, there is no such increase in resistance, but in the case of an alloy that does not coat LaCoO 3 on the surface, Since the resistance increases due to the weight increase, the long-term characteristics are inferior. In the following examples, an increase in weight was examined because an increase in resistance corresponds to an increase in weight. Examples 2 to 5 A mixture of La 2 O 3 _SrCO 3 (La 2 O 3 / SrCO 3 molar ratio: 3: 1) was formed on each alloy plate having the composition shown in Table 1 by Rf sputtering in the same manner as in Example 1. Was applied to both sides to a thickness of about 1 μm and heated in air at 1000 ° C. for 24 hours. As a result of X-ray diffraction analysis of the reaction product on the alloy surface, it was confirmed that the products shown in Table 2 were formed. FIG. 2 shows the change in weight when the sample after La 2 O 3 —SrCO 3 was applied was heated at 1000 ° C. in air. La on the surface for comparison
FIG. 3 shows a change in weight of the alloy not coated with 2 O 3 —SrCO 3 by the same heating. Table 2 shows the surface resistance of the coated alloy and the bare alloy after the heating. Example 3 On a cobalt-based alloy (same as that of Example 1), Rf sputtering was performed to target La 0.9 Sr 0.1 CrO 3 to about 1%.
μm. The manufacturing conditions are the same as in the first embodiment. The produced La 0.9 Sr 0.1 CrO 3 coated alloy has a weight change of 1% or less and a surface resistance change of 100% in air at 1000 ° C. for 200 hours.
Was within. In a hydrogen atmosphere at 1000 ° C. for 200 hours, changes in weight and surface resistance were not observed. FIG. 4 is a developed view showing a laminated structure of a solid oxide fuel cell to which the heat-resistant component of the present invention is applied. In the figure, 21 is a sheet of solid electrolyte (eg, Ca stabilized zirconia), on which an anode (eg, NiO / ZrO 2 cermet) 22 is formed on the upper surface, and a cathode (eg, La 0.9 Sr 0.1 MnO 3 ) 23 is formed on the lower surface. ing. Reference numeral 24 denotes a joined body, which is made of a heat-resistant component of the present invention (eg, a La 0.9 Sr 0.1 CrO 3 coating on the cobalt-based alloy of the above embodiment). Reference numeral 25 denotes an electrode terminal for extracting electric power to the outside. As can be seen in FIG. 4, conjugate 24 defines a flow path for air 26 and fuel (eg, hydrogen) 27 by grooves formed therein, and
And a fuel 27, and also serves to electrically connect the cathode 23 and the anode 22 of the adjacent unit cell. The electrode terminal 25 is a member that forms a flow path for the air 26 and the fuel 27 at both ends of the integrated unit cell and also makes an electrical connection to the cathode 23 or the anode 22. I do. FIG. 4 shows a fuel cell in which two unit cells are integrated, but it is also possible to integrate three or more unit cells. In this case, a joined body 24 is inserted between each unit cell. When such a fuel cell is used by supplying air and fuel (hydrogen) at a high temperature of 1000 ° C., the assembly 24 and the electrode terminals
The 25 heat-resistant parts generate power stably for a long time. Further, the heat-resistant component of the present invention is extremely useful also as a current collector and a joined body of the fuel cell shown in FIGS. 5 and 6. [Effects of the Invention] According to the present invention, there is provided a heat-resistant and good-conductive metal part provided with a good-conductive coating that withstands an oxidizing and reducing atmosphere at a high temperature. It is useful in all fields requiring electrical conductivity at high temperatures, especially electrical conductive contacts. For example, there is provided a heat-resistant component made of a highly conductive heat-resistant alloy having a protective coating that withstands an oxidation-reduction atmosphere at a high temperature of 1000 ° C. or higher and has an electric conductivity of 100 to 1000 Scm −1 . By using such a redox-resistant metal conductor (heat-resistant component), it is possible to create a high-temperature solid electrolyte fuel cell with an integrated structure that can be expected to have much better performance than conventional high-temperature solid electrolyte fuel cells. Becomes

【図面の簡単な説明】 第1図は実施例の被覆物の1000℃空気中での重量変化及
び抵抗変化を表わすグラフ図、 第2図及び第3図は実施例の被覆物及び未被覆合金の10
00℃空気中の重量変化を示すグラフ図、 第4図は本発明の耐熱部品を接合体として用いた高温固
体電解質燃料電池の構造模式展開図、 第5図及び第6図は高温固体電解質燃料電池の模式図、
第7図は固体電解質燃料電池の基本構造を示す模式図で
ある。 1……固体電解質、2……カソード、 3……アノード、6……燃料、 7……空気、11……固体電解質、 14……燃料、15……空気、 16……アノード、17……カソード、 21……固体電解質、22……アノード、 23……カソード、24……接合体、 25……電極端子、26……空気、 27……燃料。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a change in weight and a change in resistance of a coated article of Example in air at 1000 ° C. FIG. 2 and FIG. 3 are coated articles of Example and uncoated alloy Of 10
FIG. 4 is a graph showing the change in weight in air at 00 ° C. FIG. 4 is a schematic development view of a high-temperature solid electrolyte fuel cell using the heat-resistant component of the present invention as a joined body; FIG. 5 and FIG. Schematic diagram of the battery,
FIG. 7 is a schematic diagram showing the basic structure of a solid oxide fuel cell. 1 ... solid electrolyte, 2 ... cathode, 3 ... anode, 6 ... fuel, 7 ... air, 11 ... solid electrolyte, 14 ... fuel, 15 ... air, 16 ... anode, 17 ... Cathode, 21: Solid electrolyte, 22: Anode, 23: Cathode, 24: Assembly, 25: Electrode terminal, 26: Air, 27: Fuel.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−267268(JP,A) 特開 昭61−141661(JP,A) 特開 昭54−30434(JP,A) 米国特許4629537(US,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-61-267268 (JP, A)                 JP-A-61-141661 (JP, A)                 JP-A-54-30434 (JP, A)                 U.S. Patent 4,295,537 (US, A)

Claims (1)

(57)【特許請求の範囲】 1.高温型燃料電池用の単位セルのカソードと隣接する
他の単位セルのアノードとの接合体であって、耐熱合金
基材の表面に、金属複合酸化物La1-xM1 xM2O3(式中、M1
はアルカリ土類金属、M2はCo,Fe,Mn,NiまたはCrであ
り、0≦x<1である。)が被覆されていることを特徴
とする高温型燃料電池用電極間接合体。 2.La1-xM1 xM2O3がペロブスカイト型結晶構造を有す
る、特許請求の範囲第1項記載の高温型燃料電池用電極
間接合体。 3.前記耐熱合金がコバルト基、ニッケル基またはチタ
ン基のいずれかである、特許請求の範囲第1又は2項に
記載の高温型燃料電池用電極間接合体。 4.前記複合酸化物中のランタンとアルカリ土類金属の
モル比が0.05〜0.7の範囲内である、特許請求の範囲第
1,2又は3項に記載の高温型燃料電池用電極間接合体。 5.前記金属複合酸化物の被覆の厚さが0.1μm〜0.1mm
の範囲内である、特許請求の範囲第1〜4項のいずれか
1項に記載の高温型燃料電池用電極間接合体。
(57) [Claims] A joined body of a cathode of a unit cell for a high-temperature fuel cell and an anode of an adjacent unit cell, and a metal composite oxide La 1-x M 1 x M 2 O 3 on a surface of a heat-resistant alloy substrate (Where M 1
Is an alkaline earth metal, M 2 is Co, Fe, Mn, Ni or Cr, and 0 ≦ x <1. ), Wherein the electrode-to-electrode assembly for a high-temperature fuel cell is coated. 2. La 1-x M 1 x M 2 O 3 has a perovskite crystal structure, high-temperature fuel cell electrode intermediate conjugate of claim 1 wherein the appended claims. 3. 3. The high-temperature fuel cell interelectrode assembly according to claim 1, wherein the heat-resistant alloy is one of a cobalt group, a nickel group and a titanium group. 4. The molar ratio between lanthanum and alkaline earth metal in the composite oxide is in the range of 0.05 to 0.7,
4. The interelectrode assembly for a high-temperature fuel cell according to 1, 2, or 3. 5. The coating thickness of the metal composite oxide is 0.1 μm to 0.1 mm
The interelectrode assembly for a high-temperature fuel cell according to any one of claims 1 to 4, which is within the range of:
JP62257274A 1987-10-14 1987-10-14 Electrode assembly for high temperature fuel cells Expired - Fee Related JP2661692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257274A JP2661692B2 (en) 1987-10-14 1987-10-14 Electrode assembly for high temperature fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257274A JP2661692B2 (en) 1987-10-14 1987-10-14 Electrode assembly for high temperature fuel cells

Publications (2)

Publication Number Publication Date
JPH01100866A JPH01100866A (en) 1989-04-19
JP2661692B2 true JP2661692B2 (en) 1997-10-08

Family

ID=17304102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257274A Expired - Fee Related JP2661692B2 (en) 1987-10-14 1987-10-14 Electrode assembly for high temperature fuel cells

Country Status (1)

Country Link
JP (1) JP2661692B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038264A (en) * 1989-06-05 1991-01-16 Sanyo Electric Co Ltd Solid electrolyte fuel cell
JPH04138670A (en) * 1990-09-28 1992-05-13 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JP2000053424A (en) 1998-07-24 2000-02-22 Sulzer Hexis Ag Perovskite for coating of interconnector, interconnector and fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629537A (en) 1985-05-17 1986-12-16 Hsu Michael S Compact, light-weight, solid-oxide electrochemical converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2735934C3 (en) * 1977-08-10 1980-07-31 Dornier System Gmbh, 7990 Friedrichshafen Connection material for the electrical series connection of electrochemical cells
DE3445251A1 (en) * 1984-12-12 1986-06-12 Dornier System Gmbh, 7990 Friedrichshafen ELECTRICALLY CONDUCTIVE CERAMICS
JPS61267268A (en) * 1985-05-21 1986-11-26 Mitsubishi Electric Corp Fluid passage plate for molten carbonate type fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629537A (en) 1985-05-17 1986-12-16 Hsu Michael S Compact, light-weight, solid-oxide electrochemical converter

Also Published As

Publication number Publication date
JPH01100866A (en) 1989-04-19

Similar Documents

Publication Publication Date Title
US4950562A (en) Solid electrolyte type fuel cells
US6326096B1 (en) Solid oxide fuel cell interconnector
JP3712733B2 (en) Fuel cell interconnector device
JP3756524B2 (en) Electrical interconnector for planar fuel cell
US7651810B2 (en) Interconnect supported fuel cell assembly, preform and method of fabrication
CN102292859A (en) Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
JP2003501796A (en) Gas separator for fuel cells
JPH08185870A (en) Separator for solid electrolyte fuel cell
US5230849A (en) Electrochemical converter assembly and overlay methods of forming component structures
JPH08138690A (en) Solid electrolyte fuel cell
AU751725B2 (en) Perowskite for a coating of interconnectors
KR20060051869A (en) Interconnect supported electrolyzer assembly, preform and method of fabrication
JP2604437B2 (en) High-temperature fuel cell interelectrode assembly and high-temperature fuel cell cathode current collector
JP2661692B2 (en) Electrode assembly for high temperature fuel cells
JP4352447B2 (en) Solid oxide fuel cell separator with excellent conductivity
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JPH07201340A (en) Solid electrolyte fuel cell
JPH0294365A (en) Solid electrolyte fuel cell
RU2790543C1 (en) Battery of tubular solid oxide fuel cells and method for its manufacture
RU2779038C1 (en) Method for manufacture of battery of tubular solid oxide fuel cells, and battery manufactured by claimed method
JPH038264A (en) Solid electrolyte fuel cell
JPH0237669A (en) Fuel cell of solid electrolyte type
JPH0412457A (en) High-temperature type fuel cell
JPH06219834A (en) Sintered compact with electric conductivity at high temperature and its production
JPH04138670A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees