JP2651530B2 - Organometallic compound supply equipment for vapor phase growth - Google Patents

Organometallic compound supply equipment for vapor phase growth

Info

Publication number
JP2651530B2
JP2651530B2 JP63094093A JP9409388A JP2651530B2 JP 2651530 B2 JP2651530 B2 JP 2651530B2 JP 63094093 A JP63094093 A JP 63094093A JP 9409388 A JP9409388 A JP 9409388A JP 2651530 B2 JP2651530 B2 JP 2651530B2
Authority
JP
Japan
Prior art keywords
carrier
organometallic compound
container
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63094093A
Other languages
Japanese (ja)
Other versions
JPH01265511A (en
Inventor
憲一 讃良
忠明 八子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63094093A priority Critical patent/JP2651530B2/en
Publication of JPH01265511A publication Critical patent/JPH01265511A/en
Application granted granted Critical
Publication of JP2651530B2 publication Critical patent/JP2651530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は気相成長用有機金属化合物供給装置に関す
る。更に詳細には常温で固体の有機金属化合物(以下、
気化用固体原料と称する場合がある。)を該有機金属化
合物に対しては不活性な担体に被覆してなる担体担持有
機金属化合物を用いた気相成長用有機金属化合物供給装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an organic metal compound supply apparatus for vapor phase growth. More specifically, an organometallic compound that is solid at room temperature (hereinafter, referred to as “organic metal compound”)
It may be referred to as a solid material for vaporization. The present invention relates to an organic metal compound supply device for vapor phase growth using a carrier-supported organic metal compound obtained by coating the above) with an inert carrier for the organic metal compound.

〈従来の技術〉 近年有機金属化合物は、電子工業用において、例えば
化合物半導体の原料として使用されている。
<Prior Art> In recent years, organometallic compounds have been used in the electronics industry, for example, as raw materials for compound semiconductors.

該有機金属化合物を電子工業において使用する場合に
は、通常水素ガス等のキャリアガスを有機金属化合物と
接触するように吹き流し、有機金属化合物の飽和蒸気と
して気相成長装置に導き使用される。
When the organometallic compound is used in the electronics industry, a carrier gas such as hydrogen gas is usually blown off so as to come into contact with the organometallic compound, and is introduced into a vapor phase growth apparatus as a saturated vapor of the organometallic compound.

この場合有機金属化合物がその使用温度において液体
である場合には、第2図に示すようなキャリアガスを該
有機金属化合物中にバブリングできるような細管を備え
た容器に、該液状有機金属を充填するとともに、細管よ
りキャリアガスを吹込みバブリングすれば、直ちにその
時の温度に見合った該有機金属化合物の飽和蒸気を得る
ことができる。
In this case, when the organometallic compound is liquid at the operating temperature, the liquid organometallic is filled in a container provided with a capillary capable of bubbling a carrier gas into the organometallic compound as shown in FIG. At the same time, if a carrier gas is blown from the thin tube and bubbling is performed, a saturated vapor of the organometallic compound corresponding to the temperature at that time can be obtained immediately.

しかし常温(室温)で固体であるような有機金属化合
物の場合には、液体と異なりキャリアガスを吹込んでも
積層する固体有機金属化合物中にキャリアガスが通過す
る流路が形成されたり、或いは気化により小粒径となっ
た固体有機金属化合物が容器底部に堆積し、結果として
固体有機金属化合物とキャリアガスの充分な接触が得ら
れず、気相成長装置へ安定した濃度の有機金属化合物の
供給ができないとの致命的欠点を有する。
However, in the case of an organometallic compound which is solid at room temperature (room temperature), unlike a liquid, even when a carrier gas is blown, a flow path through which the carrier gas passes is formed in the solid organometallic compound to be laminated or vaporized. As a result, the solid organometallic compound having a small particle size accumulates at the bottom of the container, and as a result, sufficient contact between the solid organometallic compound and the carrier gas is not obtained, so that a stable concentration of the organometallic compound is supplied to the vapor phase growth apparatus. It has a fatal disadvantage that it cannot be performed.

〈発明が解決しようとする課題〉 かかる事情下に鑑み本発明者等は常温で固体状有機金
属化合物を用いかつ一定の再現性ある有機金属化合物の
蒸発量が得られる方法を見出すことを目的として鋭意検
討した結果、該常温で固体状有機金属化合物に対しては
不活性な担体に予め固体状有機金属化合物を被覆し、こ
れを気相成長用気化用固体原料として用いる場合には、
上記目的がすべて解決しえることを見出し、本発明を完
成するに至った。
<Problems to be Solved by the Invention> In view of such circumstances, the present inventors aimed at finding a method of using a solid organometallic compound at room temperature and obtaining a constant and reproducible evaporation amount of the organometallic compound. As a result of diligent studies, the solid organic metal compound at room temperature is coated with a solid organic metal compound in advance on an inert carrier, and when this is used as a solid material for vaporization for vapor phase growth,
The inventors have found that all of the above objects can be solved, and have completed the present invention.

〈課題を解決するための手段〉 即ち本発明は常温で固体の有機金属化合物を収納し、
該気化用固体有機金属化合物を昇華せしめる容器よりな
る気相成長用有機金属化合物供給装置において該容器上
部にキャリヤーガス導入口、底部にキャリヤーガス導入
口を配設し、かつ該容器内に気化用有機金属化合物に対
して不活性な担体に該有機金属化合物を被覆した担体担
持有機金属化合物を充填してなることを特徴とする気相
成長用有機金属化合物供給装置を提供するにある。
<Means for Solving the Problems> That is, the present invention contains a solid organometallic compound at room temperature,
In an organic metal compound supply device for vapor phase growth comprising a container for sublimating the solid organometallic compound for vaporization, a carrier gas inlet is provided at the top of the container, a carrier gas inlet is provided at the bottom, and a vaporizer is provided in the container. It is an object of the present invention to provide an organic metal compound supply device for vapor phase growth, wherein a carrier inert to the organic metal compound is filled with a carrier-supporting organic metal compound coated with the organic metal compound.

以下、本発明を更に詳述する。 Hereinafter, the present invention will be described in more detail.

本発明に於いて使用する気化用固体原料としては室温
で固体であって、気相成長用原料となりえる有機金属化
合物であればよく、より具体的にはトリメチルインジウ
ム、ジメチルクロルインジウム、シクロペンタジエニル
インジウム、トリメチルインジウム・トリメチルアルシ
ンアダクト、トリメチルインジウム・トリメチルホスフ
ィンアダクト等のインジウム化合物、エチル沃化亜鉛、
エチルシクロペンタジエニル亜鉛、シクロペンタジエニ
ル亜鉛等の亜鉛化合物、メチルジクロルアルミニウム等
のアルミニウム化合物、メチルジクロルガリウム、ジメ
チルクロルガリウム、ジメチルブロモガリウム等のガリ
ウム化合物、ビスシクロペンタジエニルマグネシウム等
が挙げられる。
The solid material for vaporization used in the present invention may be any organometallic compound which is solid at room temperature and can be used as a material for vapor phase growth, and more specifically, trimethylindium, dimethylchloroindium, and cyclopentadiene. Indium compounds such as enylindium, trimethylindium / trimethylarsine adduct, trimethylindium / trimethylphosphine adduct, ethyl zinc iodide,
Zinc compounds such as ethylcyclopentadienyl zinc and cyclopentadienyl zinc; aluminum compounds such as methyldichloroaluminum; gallium compounds such as methyldichlorogallium, dimethylchlorogallium and dimethylbromogallium; biscyclopentadienylmagnesium Is mentioned.

またこれら気化用固体原料を担持せしめる気化用固体
原料に対して不活性な担体としてはアルミナ、シリカ、
ムライト、グラッシーカーボン、グラファイト、チタン
酸カリ、石英、窒化珪素、窒化硼素、炭化珪素等のセラ
ミックス類、ステンレス、アルミニウム、ニッケル、タ
ングステン等の金属類、弗素樹脂、硝子等が使用され
る。担体の形状は特に限定されるものではなく、不定形
状、球状、繊維状、網状、コイル状、円管状等各種形状
のものが使用される。
In addition, as the carrier inert to the solidification material for vaporization which supports the solidification material for vaporization, alumina, silica,
Ceramics such as mullite, glassy carbon, graphite, potassium titanate, quartz, silicon nitride, boron nitride, and silicon carbide, metals such as stainless steel, aluminum, nickel, and tungsten, fluorine resins, and glass are used. The shape of the carrier is not particularly limited, and various shapes such as an irregular shape, a spherical shape, a fibrous shape, a net shape, a coil shape, and a tubular shape are used.

担体は比表面積が大きい方が好ましく、担体表面が平
滑なものより100〜2000μm程度の微細な凹凸を有する
もの、あるいは担体自身に多数の気孔(空隙)を有する
ものが好ましい。このような担体としてはアルミナポー
ル、ラシヒリング、ヘリパック、ディクソンパッキン、
ステンレス焼結エレメント、グラスウール等が挙げられ
る。
The carrier preferably has a large specific surface area. The carrier preferably has fine irregularities of about 100 to 2000 μm than the carrier having a smooth surface, or the carrier itself has many pores (voids). Such carriers include alumina poles, Raschig rings, helipaks, Dixon packings,
Stainless steel sintered elements, glass wool and the like can be mentioned.

担体に固体原料を担持させる方法は、従来一般に実施
されている方法を採用することができる。
As a method for supporting the solid raw material on the carrier, a method generally used in the related art can be adopted.

例えば回転容器中に担体と原料固体とを予め重量比に
従って投入し、次いでこれを加熱して原料固体を融解せ
しめ、その後回転撹拌しつつ徐冷するとか、原料固体を
加熱溶融した中に担体を投入し、次いで過剰の溶融原料
を抜き取った後冷却する等何れの方法を採用してもよ
い。
For example, a carrier and a raw material solid are charged in a rotating container in advance according to a weight ratio, and then heated to melt the raw material solid, and then gradually cooled while being rotated and stirred, or while the raw material solid is heated and melted, the carrier is melted. Any method may be employed, such as charging, then extracting excess molten raw material, and then cooling.

担持を行うに際しては、予め担体に含まれる酸素や湿
分、その他の揮発性不純物を除去しておく事が肝要であ
る。もし、担体表面に酸素や湿分等が存在すると、原料
固体が変質したり汚染されたりするため、気相成長用原
料として使用した際に、得られる膜の品質を損なうばか
りでなく、本発明の目的とする原料の安定供給が出来な
くなる。この様な不都合を避けるために担体は予め、そ
の材料の許容される範囲の温度で加熱しつつ真空脱気を
行い、然る後に窒素やアルゴン等の不活性ガスで空隙部
を置換しておく事が推奨される。
When carrying the carrier, it is important to remove oxygen, moisture, and other volatile impurities contained in the carrier in advance. If oxygen or moisture is present on the surface of the carrier, the raw material solids are altered or contaminated, so that when used as a raw material for vapor phase growth, not only does the quality of the obtained film be impaired, but also the present invention The stable supply of the desired raw material cannot be achieved. In order to avoid such inconvenience, the carrier is preliminarily subjected to vacuum degassing while being heated at a temperature within a permissible range of the material, and then the void is replaced with an inert gas such as nitrogen or argon. Things are recommended.

担体上に担持する固体原料は通常、担体100重量部に
対して10〜100重量部、好ましくは20〜50重量部の範囲
とするのがよい。
The amount of the solid raw material supported on the carrier is usually in the range of 10 to 100 parts by weight, preferably 20 to 50 parts by weight, per 100 parts by weight of the carrier.

10重量部以下では、容器容積に示める原料固体の量が
少ないため、容器を必要以上に大きくしなければなら
ず、経済的ではない。
If the amount is less than 10 parts by weight, the amount of raw material solid indicated in the container volume is small, so the container must be made larger than necessary, which is not economical.

また担体100重量部に対して原料固体を100重量部以上
担持させた場合には、担持させなかった場合と比べて、
充填容積当りの固体原料表面積が期待する程には大きく
ならないためか本発明の目的とする効果が充分得られな
くなる。
Also, when 100 parts by weight or more of the raw material solid is supported on 100 parts by weight of the carrier, compared with the case where the solid is not supported,
Probably because the surface area of the solid raw material per packed volume is not as large as expected, the desired effect of the present invention cannot be sufficiently obtained.

このようにして得られた担体担持有機金属化合物は気
相成長用原料として使用される。
The carrier-supported organometallic compound thus obtained is used as a raw material for vapor phase growth.

第1図は上記方法により得られた担体担持有機金属化
合物を適用した気相成長に用いる原料供給装置の一実施
態様を示すものであり、図中1は湾曲状の底部を有する
容器、2はキャリヤーガス導入口、3はキャリヤーガス
導出口、4は担体担持有機金属化合物を示す。
FIG. 1 shows one embodiment of a raw material supply apparatus used for vapor phase growth to which a carrier-supported organometallic compound obtained by the above method is applied. In the figure, 1 is a container having a curved bottom, and 2 is a container having a curved bottom. A carrier gas inlet 3, a carrier gas outlet 3, and a carrier-supported organometallic compound 4 are shown.

キャリヤーガス導出口3は容器中央底部に開口部を有
しもう一方の端部は図示しない気相成長装置に接続され
ている。また担体担持有機金属化合物はやはり図示して
いない供給口より容器1内に所望量供給し積層せしめ
る。しかる後、水素ガス等のキャリヤーガスを2のキャ
リヤーガス導入口より所定量で供給し担体担持有機金属
化合物の間隙をぬいながら容器の上部より下部にキャリ
ヤーガスを移行せしめることにより、該温度での気相成
長用有機金属化合物を飽和濃度で含むキャリヤーガスを
キャリヤーガス導出口3を経て図示しない気相成長装置
に供給する。
The carrier gas outlet 3 has an opening at the bottom center of the container, and the other end is connected to a vapor growth apparatus (not shown). Also, a desired amount of the carrier-supported organometallic compound is supplied into the container 1 from a supply port (not shown) and laminated. Thereafter, a carrier gas such as hydrogen gas is supplied in a predetermined amount from the second carrier gas inlet, and the carrier gas is transferred from the upper portion to the lower portion of the container while removing the gap between the carrier-supported organometallic compounds, so that the temperature at the temperature is reduced. A carrier gas containing an organic metal compound for vapor phase growth at a saturated concentration is supplied to a vapor phase growth apparatus (not shown) via a carrier gas outlet 3.

上記装置において容器1の底部を湾曲状のものを使用
例にて記載したが、安定に使用しえる固体状有機金属化
合物の量を無視するならば底部が真直ぐな容器の使用は
勿論可能であるし、また、キャリヤーガス導出口3を少
なくとも底部で複数に分散し飽和濃度のガスを比較的安
定に収集することも可能であるが、装置の簡便さおよび
飽和濃度のガスを安定にしかも高効率で使用しえる点よ
り湾曲状底部を有する容器の使用が推奨される。
In the above-described apparatus, the case where the bottom of the container 1 is curved is described in the usage example. However, if the amount of the solid organometallic compound that can be used stably is neglected, a container having a straight bottom can be used. In addition, it is possible to disperse the carrier gas outlet 3 at least at a plurality of portions at the bottom to collect the gas having the saturated concentration relatively stably. However, the apparatus is simple and the gas having the saturated concentration can be stably collected with high efficiency. The use of a container with a curved bottom is recommended because it can be used in.

また、担体担持有機金属化合物の容器への供給量は、
通常キャリヤーガス導入口より下部を目処とするが、キ
ャリヤーガス導入口を分散し担体担持有機金属化合物積
層上部に均一にキャリヤーガスの導入が可能な構造とな
す場合にはこの限りではない。
In addition, the supply amount of the carrier-supported organometallic compound to the container is:
Usually, the lower part of the carrier gas inlet is targeted. However, this is not the case when the carrier gas inlet is dispersed and the carrier gas can be uniformly introduced into the upper part of the carrier-supported organometallic compound layer.

〈発明の効果〉 以上詳述した本発明によれば、単に気相成長に用いる
常温で固体の有機金属化合物を担体に担持せしめこれを
気相成長に用いる気化用有機金属化合物供給装置に適用
するという極めて簡単な方法を採用するのみで、気相成
長装置への一定の再現性ある気相成長用有機金属化合物
の供給を可能とし、その結果安定に使用できる固体状有
機金属化合物の得量を増加せしめたもので、その産業上
の利用価値は頗る大なるものである。
<Effects of the Invention> According to the present invention described in detail above, an organic metal compound which is solid at room temperature used for vapor phase growth is simply supported on a carrier, and this is applied to an organic metal compound supply device for vaporization used for vapor phase growth. Only by adopting an extremely simple method, it is possible to supply a certain reproducible organometallic compound for vapor phase growth to a vapor phase growth apparatus, and as a result, to obtain a stable amount of a solid organometallic compound that can be used. It has been increased, and its industrial utility value is very large.

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

〈実施例〉 実施例1 不二見研磨材製の4mmφアルミナ球100gを三方コック
付二口フラスコに仕込み、約150℃に加熱しつつ真空処
理を2時間行った。
<Example> Example 1 100 g of 4mmφ alumina spheres made of Fujimi abrasive was charged into a two-necked flask equipped with a three-way cock, and vacuum treatment was performed for 2 hours while heating to about 150 ° C.

次いでこれを室温まで冷却し、窒素ガス雰囲気中でト
リメチルインジウム60gを仕込んだ。
Then, it was cooled to room temperature and charged with 60 g of trimethylindium in a nitrogen gas atmosphere.

該フラスコをロータリーエバポレーターに取りつけ、
油浴を用いて90〜95℃に加熱し、トリメチルインジウム
を融解させた。トリメチルインジウムの液相がほぼ無く
なった時点で油浴を取り外しフラスコを冷却した。
Attach the flask to a rotary evaporator,
Heat to 90-95 ° C. using an oil bath to melt the trimethylindium. When the liquid phase of trimethylindium almost disappeared, the oil bath was removed and the flask was cooled.

アルミナ球部分を窒素雰囲気下で別の容器に取り外し
て秤量した所全重量は140gであった。
The alumina sphere portion was removed to another container under a nitrogen atmosphere and weighed to find that the total weight was 140 g.

また同様の方法で、アルミナ球の代わりにディクソン
パッキン100gを用いたところ、処理後のディクソンパッ
キン全重量は128gであった。
Further, in the same manner, when 100 g of Dickson packing was used instead of alumina spheres, the total weight of Dickson packing after the treatment was 128 g.

実施例2 第1図に示すような、ガス導入口が容器上部に位置
し、ガス導出口が容器底部に開口しており、それぞれの
口にバルブを備えた直径38ミリメートルの容器に実施例
1で得られたアルミナ球担持トリメチルインジウム70g
を仕込んだ。
Example 2 As shown in FIG. 1, a gas inlet was located at the top of the container, a gas outlet was open at the bottom of the container, and a container having a diameter of 38 mm was provided with a valve at each port. 70 g of trimethylindium supported on alumina spheres obtained in
Was charged.

次いで該容器を20℃の恒温槽に浸け、出口側をトリメ
チルインジウム捕集用の深冷トラップに接続した。その
後容器のガス導入側から水素ガスを毎分400cc流し、4
時間毎に中断してトラップに捕集されたトリメチルイン
ジウムの重量を測定した。
Next, the container was immersed in a thermostat at 20 ° C., and the outlet side was connected to a cryogenic trap for collecting trimethylindium. Thereafter, 400 cc of hydrogen gas is flowed per minute from the gas introduction side of the container.
The weight of trimethylindium collected in the trap interrupted every hour was measured.

その結果、アルミナ球に担持されているトリメチルイ
ンジウムの重量が4.3gになるまではトラップに捕集され
た1回当りのトリメチルインジウムは1.03〜1.08gの範
囲で推移した。
As a result, until the weight of trimethylindium supported on the alumina spheres became 4.3 g, the amount of trimethylindium collected in the trap was changed in the range of 1.03 to 1.08 g.

また同様にして実施例1で得られたディクソンパッキ
ン担持トリメチルインジウム90gを直径60ミリメートル
の容器に充填して測定したところ、担持されているトリ
メチルインジウムの量が9.3gになるまでは、1回当りの
トリメチルインジウムは1.09〜1.12gの範囲で推移し
た。
Similarly, when 90 g of Dickson packing-supported trimethylindium obtained in Example 1 was filled in a container having a diameter of 60 mm and measured, the amount of trimethylindium supported was reduced to 9.3 g per time. In the range of 1.09 to 1.12 g.

比較例1 実施例2で用いた直径38ミリメートルの容器に加熱真
空処理した4φアルミナ球50gとトリメチルインジウム
の結晶粉末20.0gを充填して全体を上下に振り、それぞ
れを混ぜ合わせた。
Comparative Example 1 The vessel having a diameter of 38 millimeters used in Example 2 was filled with 50 g of 4φ alumina spheres heated and vacuum-treated and 20.0 g of trimethylindium crystal powder, and the whole was shaken up and down and mixed.

次いでこれを実施例2と同様の方法で気化させ、捕集
したトリメチルインジウムの重量を測定した所、1〜3
回目は実施例2と同様の捕集量が得られたが、3回目測
定後の容器内のトリメチルインジウムの重量が16.82gで
あるにもかかわらず、4回目からは捕集量が低下し始
め、4回目の捕集量は0.98gであった。
Next, this was vaporized in the same manner as in Example 2, and the weight of the collected trimethylindium was measured.
At the first time, the same collection amount as that of Example 2 was obtained. However, although the weight of trimethylindium in the container after the third measurement was 16.82 g, the collection amount began to decrease from the fourth time. The fourth collection amount was 0.98 g.

比較例2 トリメチルインジウムの結晶粉末20.0gを直径38mmの
容器に充填し、実施例2と同様の方法で気化させ、捕集
したトリメチルインジウムの重量を測定したところ1回
目1.01g、2回目0.97g、3回目0.92g、4回目0.87gであ
った。
Comparative Example 2 A container of 38 mm in diameter was filled with 20.0 g of trimethylindium crystal powder, vaporized in the same manner as in Example 2, and the weight of the collected trimethylindium was measured. The first time was 1.01 g, and the second time was 0.97 g. The third time was 0.92 g, and the fourth time was 0.87 g.

比較例3 第2図に示す構造の直径38ミリメートルの容器を用い
た他は実施例2と同様に、アルミナ球に担持されたトリ
メチルインジウムの気化重量を測定した。
Comparative Example 3 The vaporization weight of trimethylindium supported on alumina spheres was measured in the same manner as in Example 2 except that a container having a diameter of 38 mm having the structure shown in FIG. 2 was used.

その結果容器内のトリメチルインジウムの量が13gに
なるまでは1.03g〜1.08gで推移したが、その後急激に減
少した。
As a result, it changed from 1.03 g to 1.08 g until the amount of trimethylindium in the container became 13 g, but then decreased sharply.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明で得た担体担持有機金属化合物を充填し
た気相成長用有機金属化合物供給装置、第2図は常温で
液体の有機金属化合物を充填した気相成長用有機金属化
合物供給装置を示し、図中1は容器、2はキャリヤーガ
ス導入口、3はキャリヤーガス導出口、4は担体担持有
機金属化合物を示す。
FIG. 1 is an apparatus for supplying an organometallic compound for vapor phase growth filled with a carrier-supported organometallic compound obtained by the present invention, and FIG. 2 is an apparatus for supplying an organometallic compound for vapor phase growth filled with a liquid organometallic compound at room temperature. In the figure, 1 is a container, 2 is a carrier gas inlet, 3 is a carrier gas outlet, and 4 is a carrier-supported organometallic compound.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】常温で固体の有機金属化合物を収納し、該
気化用固体有機金属化合物を昇華せしめる容器よりなる
気相成長用有機金属化合物供給装置において、該容器上
部にキアリヤーガス導入口、底部にキアリヤーガス導出
口を配設し、かつ該容器内に気化用有機金属化合物に対
して不活性な担体に該有機金属化合物を被覆した担体担
持有機金属化合物を充填してなることを特徴とする気相
成長用有機金属化合物供給装置。
An apparatus for supplying an organometallic compound for vapor phase growth comprising a container for containing an organometallic compound which is solid at normal temperature and sublimating the solid organometallic compound for vaporization. A gas phase characterized by comprising a carrier gas outlet, and filling the carrier with an organic metal compound coated with the organic metal compound in a carrier inert to the organic metal compound for vaporization in the container. Organic metal compound supply equipment for growth.
JP63094093A 1988-04-15 1988-04-15 Organometallic compound supply equipment for vapor phase growth Expired - Lifetime JP2651530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094093A JP2651530B2 (en) 1988-04-15 1988-04-15 Organometallic compound supply equipment for vapor phase growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094093A JP2651530B2 (en) 1988-04-15 1988-04-15 Organometallic compound supply equipment for vapor phase growth

Publications (2)

Publication Number Publication Date
JPH01265511A JPH01265511A (en) 1989-10-23
JP2651530B2 true JP2651530B2 (en) 1997-09-10

Family

ID=14100837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094093A Expired - Lifetime JP2651530B2 (en) 1988-04-15 1988-04-15 Organometallic compound supply equipment for vapor phase growth

Country Status (1)

Country Link
JP (1) JP2651530B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277703A (en) * 2006-03-15 2007-10-25 Ube Ind Ltd Carrier-supported organometallic compound for vapor-phase growth, its producing method, and carrier-supported organometallic compound filling device filled with the compound
US7722720B2 (en) 2004-12-08 2010-05-25 Rohm And Haas Electronic Materials Llc Delivery device
US8277886B2 (en) 2006-05-22 2012-10-02 Rohm And Haas Electronic Materials Llc Delivery device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269389A (en) * 1988-08-31 1990-03-08 Toyo Stauffer Chem Co Formation of saturated vapor of solid organometallic compound in vapor growth method
US7601225B2 (en) 2002-06-17 2009-10-13 Asm International N.V. System for controlling the sublimation of reactants
TWI271443B (en) * 2002-06-17 2007-01-21 Asm Int Method of producing vapor from solid precursor and substrate processing system using the same
US6915592B2 (en) * 2002-07-29 2005-07-12 Applied Materials, Inc. Method and apparatus for generating gas to a processing chamber
KR101183109B1 (en) * 2002-07-30 2012-09-24 에이에스엠 아메리카, 인코포레이티드 Sublimation system employing carrier gas
JP4585182B2 (en) * 2003-07-11 2010-11-24 東ソー・ファインケム株式会社 Trimethylindium filling method and filling container
SG160401A1 (en) * 2005-03-16 2010-04-29 Advanced Tech Materials System for delivery of reagents from solid sources thereof
JP4710481B2 (en) * 2005-08-17 2011-06-29 住友化学株式会社 Organometallic compound supply container
JP5655874B2 (en) * 2006-03-15 2015-01-21 宇部興産株式会社 Support-supported organometallic compound for vapor phase growth, production method thereof, and organometallic compound filling device for vapor phase growth filled with the compound
WO2008045972A2 (en) 2006-10-10 2008-04-17 Asm America, Inc. Precursor delivery system
JP5045062B2 (en) * 2006-10-30 2012-10-10 住友化学株式会社 Method for supplying solid organometallic compound
KR101822779B1 (en) 2008-02-11 2018-01-26 엔테그리스, 아이엔씨. Ion source cleaning in semiconductor processing systems
JP5257197B2 (en) * 2008-03-31 2013-08-07 住友化学株式会社 Organometallic compound feeder
US11926894B2 (en) 2016-09-30 2024-03-12 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US10876205B2 (en) 2016-09-30 2020-12-29 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11634812B2 (en) 2018-08-16 2023-04-25 Asm Ip Holding B.V. Solid source sublimator
US11624113B2 (en) 2019-09-13 2023-04-11 Asm Ip Holding B.V. Heating zone separation for reactant evaporation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620051B2 (en) * 1987-08-27 1994-03-16 宇部興産株式会社 Method of filling cylinder of organometallic compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722720B2 (en) 2004-12-08 2010-05-25 Rohm And Haas Electronic Materials Llc Delivery device
JP2007277703A (en) * 2006-03-15 2007-10-25 Ube Ind Ltd Carrier-supported organometallic compound for vapor-phase growth, its producing method, and carrier-supported organometallic compound filling device filled with the compound
US8277886B2 (en) 2006-05-22 2012-10-02 Rohm And Haas Electronic Materials Llc Delivery device

Also Published As

Publication number Publication date
JPH01265511A (en) 1989-10-23

Similar Documents

Publication Publication Date Title
JP2651530B2 (en) Organometallic compound supply equipment for vapor phase growth
CN101476115A (en) Vaporizer delivery ampoule
JP2003511337A (en) Method and apparatus for growing silicon carbide crystal
JP2009267388A (en) Organometallic-compound feeder
JPS6256395A (en) Manufacture of silicon rod and equipment
EP1076117A2 (en) Crystal growth apparatus employing embedded purification chamber
JP5050739B2 (en) Organometallic compound supply container
JP4310880B2 (en) Method and apparatus for producing silicon carbide single crystal
JP4710481B2 (en) Organometallic compound supply container
US20080121182A1 (en) Apparatus of supplying organometallic compound
JP5431649B2 (en) Carrier-supported organometallic compound filling device for vapor phase growth, method for producing carrier-supported organometallic compound for vapor phase growth, and method for supplying carrier-supported organometallic compound for vapor phase growth
JP2008111147A (en) Method of supplying solid organometallic compound
JP5655874B2 (en) Support-supported organometallic compound for vapor phase growth, production method thereof, and organometallic compound filling device for vapor phase growth filled with the compound
JP6627737B2 (en) Single crystal pulling device
JPH06183897A (en) Method for growing silicon carbide single crystal
JPS6355194A (en) Filling of organometallic compound
GB2213403A (en) Method and apparatus for growing CdxHg1-xTe
JPS6247551A (en) Method and device for decomposition thin film of semiconductor substrate
US3796589A (en) Method of vapor seal coating plutonium oxide particles with molybdenum
Niu et al. Silicon nano-wires fabricated by thermal evaporation of silicon wafer
JPH0684276B2 (en) Gas rectifying member for single crystal pulling device
JP2005166771A (en) Charging vessel for liquid cvd material, charging vessel of liquid cvd material and method of vaporizing and supplying using them
WO2002061170A1 (en) Purification systems, methods and devices
JPS61127697A (en) Production of silicon single crystal
CN116716653A (en) Silicon carbide material, preparation method thereof and application of carbon powder

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 11

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

EXPY Cancellation because of completion of term