JP2646383B2 - Adsorbent production method - Google Patents

Adsorbent production method

Info

Publication number
JP2646383B2
JP2646383B2 JP63274441A JP27444188A JP2646383B2 JP 2646383 B2 JP2646383 B2 JP 2646383B2 JP 63274441 A JP63274441 A JP 63274441A JP 27444188 A JP27444188 A JP 27444188A JP 2646383 B2 JP2646383 B2 JP 2646383B2
Authority
JP
Japan
Prior art keywords
spherical
adsorbent
temperature
resin
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63274441A
Other languages
Japanese (ja)
Other versions
JPH02122828A (en
Inventor
勝也 徳冨
昭 横山
隆伸 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP63274441A priority Critical patent/JP2646383B2/en
Publication of JPH02122828A publication Critical patent/JPH02122828A/en
Application granted granted Critical
Publication of JP2646383B2 publication Critical patent/JP2646383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は吸着剤の製造方法に関し、さらに詳しくは高
速液体クロマトグラフィー(HPLC)、ゲル浸透クロマト
グラフィー(GPC)等に用いられるカラム充填剤等とし
て有用な炭素または黒鉛質の表面多孔性球状吸着剤の製
造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing an adsorbent, and more specifically, a column packing material used for high performance liquid chromatography (HPLC), gel permeation chromatography (GPC), and the like. The present invention relates to a method for producing a carbon or graphitic superficially porous spherical adsorbent useful as a carbonaceous material.

[従来の技術および発明が解決しようとする課題] 従来、カラム充填剤としては、試料の分離が良好にで
きることからODS−シリカ系充填剤が主に用いられてき
たが、これは化学的な安定性が充分ではなく、特に耐ア
ルカリ性に課題があり、さらに120℃程度を超えるよう
な条件下では側鎖が離脱して充填剤としての機能を失っ
てしまうので耐熱性に関しても充分なものではなかっ
た。
[Problems to be Solved by Conventional Techniques and Inventions] Conventionally, ODS-silica-based packing materials have been mainly used as column packing materials because of their good separation of samples. Is not sufficient, especially there is a problem in alkali resistance, further under conditions such as exceeding about 120 ℃, the side chain is released and loses the function as a filler, so it is not sufficient with respect to heat resistance Was.

またHPLC、GPC等用カラム充填剤として、ハイポーラ
ス型架橋球状ポリマー系充填剤が多用されているが、こ
れは溶媒により膨潤するので体積変化が生じ、さらにそ
の体積変化の割合が溶媒の種類によって異なるという課
題を有しており、また耐熱性に関しても現在市販されて
いるものでは140〜150℃が使用限界(高温GPC用)であ
り、やはり充分なものではなかった。
In addition, as a column filler for HPLC, GPC, etc., a highly porous cross-linked spherical polymer-based filler is frequently used, but this swells with a solvent, causing a volume change, and the rate of the volume change depends on the type of the solvent. It has the problem of being different, and with respect to heat resistance as well, the current limit of use in commercial products is 140-150 ° C. (for high-temperature GPC), which is still not sufficient.

そこで、上述の課題を解決する吸着剤として、従来は
ガス吸着、溶剤回収等に利用されていた活性炭のような
炭素系吸着剤が考えられた。しかし、市販されている活
性炭は破砕状、ペレット状のものが大半であり、球状の
ものにしても大多数は細孔径が20Å未満のミクロポアの
ものなので、一般に細孔径が20〜1000Åのトランジショ
ナルポアの球状吸着剤が好適に使用されるHPLC、GPC等
用カラム充填剤としては活性炭は一般に不適であった。
他方、従来の炭素系吸着剤のうちHPLC、GPC等用カラム
充填剤に供することが可能なものであっても、その細孔
径、粒子径を任意に、精度よく制御することが困難であ
り、試料の分離能力等の点で不十分なものであった。
Therefore, as an adsorbent for solving the above-mentioned problems, a carbon-based adsorbent such as activated carbon which has been conventionally used for gas adsorption, solvent recovery, and the like has been considered. However, most of activated carbon on the market is in the form of crushed or pellets, and even spherical ones are generally micropores with a pore diameter of less than 20 mm, so transitional pores with a pore diameter of 20 to 1000 mm are generally used. Activated carbon was generally unsuitable as a column packing material for HPLC, GPC, etc., in which a spherical spherical adsorbent is suitably used.
On the other hand, among the conventional carbon-based adsorbents, even those that can be supplied to column packing materials for HPLC, GPC, etc., it is difficult to control the pore size and particle size arbitrarily and accurately, The sample separation performance was insufficient.

本発明はかかる現状に鑑み、細孔径、粒子径が任意
に、かつ精度よく制御されており、試料の分離が良好で
あり、しかもカラム充填剤として充分な強度、優れた耐
薬品性、耐熱性を持ち、溶媒による体積変化も起こさな
い、HPLC、GPC等用のカラム充填剤等として有用な吸着
剤の製造方法を提供することを目的とする。
In view of the present situation, the present invention has a pore size and a particle size that are arbitrarily and precisely controlled, the sample is separated well, and has sufficient strength as a column filler, excellent chemical resistance, and heat resistance. It is an object of the present invention to provide a method for producing an adsorbent which has a low viscosity and does not cause a change in volume due to a solvent, and is useful as a column filler for HPLC, GPC and the like.

[課題を解決するための手段] 本発明の上記目的は、フェノール樹脂、ナフタレン樹
脂、フラン樹脂、キシレン樹脂、ジビニルベンゼン重合
体、スチレン−ジビニルベンゼン共重合体、メソカーボ
ンのうち少なくとも一種からなる球状粒子と、炭素質材
料からなる微粒子とをメカノケミカル法により混合して
球状粒子表面に微粒子を均一に付着、固定化させて得ら
れる表面多孔性球体を、一定条件下で熱処理した後に焼
成することによって達成される。
[Means for Solving the Problems] The object of the present invention is to provide a sphere made of at least one of phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, and mesocarbon. Particles and fine particles made of a carbonaceous material are mixed by a mechanochemical method to uniformly adhere and fix the fine particles on the surface of the spherical particles. Achieved by

すなわち本発明は、フェノール樹脂、ナフタレン樹
脂、フラン樹脂、キシレン樹脂、ジビニルベンゼン重合
体、スチレン−ジビニルベンゼン共重合体、メソカーボ
ンのうち少なくとも一種からなる粒子径5〜120μの球
状粒子と、粒子径15〜100nmの炭素質材料からなる微粒
子とをメカノケミカル法により混合して該球状粒子表面
に該微粒子を均一に付着、固定化させて得られる表面多
孔性球体を、酸化性雰囲気下、昇温速度10〜40℃/hrで
昇温して100〜400℃に保持し、次いで不活性雰囲気また
は真空下、昇温速度50〜600℃/hrで昇温して最終処理温
度800〜3000℃で焼成することを特徴とする吸着剤の製
造方法にある。
That is, the present invention is a phenolic resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, spherical particles having a particle diameter of at least one of mesocarbon and 5-120μ, the particle diameter A fine particle made of a carbonaceous material of 15 to 100 nm is mixed by a mechanochemical method to uniformly adhere and fix the fine particles on the surface of the spherical particles. The temperature is raised at a rate of 10 to 40 ° C / hr and kept at 100 to 400 ° C, and then, under an inert atmosphere or vacuum, the temperature is raised at a rate of 50 to 600 ° C / hr and the final processing temperature is 800 to 3000 ° C. A method for producing an adsorbent characterized by firing.

本発明の製造方法において出発材料として用いられる
球状粒子は、フェノール樹脂、ナフタレン樹脂、フラン
樹脂、キシレン樹脂、ジビニルベンゼン重合体、スチレ
ン−ジビニルベンゼン共重合体、メソカーボンのうち少
なくとも一種からなり、以下に詳述する焼成によって収
率よく炭素化および/または黒鉛化されるものであり、
粒子径は5〜120μのものが有効に使用される。
The spherical particles used as a starting material in the production method of the present invention are composed of at least one of phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, and mesocarbon. Are carbonized and / or graphitized in good yield by the calcination described in detail in
Particles having a particle diameter of 5 to 120 μm are effectively used.

また、本発明の製造方法において上記球状粒子と共に
出発材料として用いられる微粒子は、カーボンブラッ
ク、コロイド状黒鉛、黒鉛粉末、コークス粉末、上記の
球状粒子の成分である化合物を焼成して炭素化させたも
のの粉末等の炭素質材料のうち少なくとも一種からなる
ものであり、粒子径は15〜100nmのものが有効に使用さ
れる。
The fine particles used as a starting material together with the spherical particles in the production method of the present invention are carbon black, colloidal graphite, graphite powder, coke powder, and carbonized by firing a compound that is a component of the spherical particles. It is made of at least one of carbonaceous materials such as powders, and particles having a particle size of 15 to 100 nm are effectively used.

なお、それぞれの混合割合は、球状粒子100重量部に
対して微粒子1〜4重量部であることが好ましい。上記
出発材料とすることによって、以下に詳述するメカノケ
ミカル法による混合において球状粒子表面に微粒子が良
好に付着、固定化され、目的とする吸着剤が良好に得ら
れる。
The mixing ratio is preferably 1 to 4 parts by weight of the fine particles with respect to 100 parts by weight of the spherical particles. By using the above-mentioned starting material, fine particles can be favorably adhered and immobilized on the spherical particle surface in the mixing by the mechanochemical method described in detail below, and the desired adsorbent can be obtained satisfactorily.

本発明の製造方法においては、先ず前記の球状粒子と
微粒子とをメカノケミカル法により混合して球状粒子表
面に微粒子を均一に付着、固定化させて表面多孔性球状
を得る。
In the production method of the present invention, first, the spherical particles and the fine particles are mixed by a mechanochemical method to uniformly adhere and fix the fine particles on the surface of the spherical particles to obtain a surface porous sphere.

本発明の製造方法で用いられるメカノケミカル法は一
般に粉体/粉末混合法とも呼ばれる方法である。すなわ
ち、粒子径の異なる異種粉体(例えば本発明における球
状粒子と微粒子)を加圧下で乾式混合することによって
まず球状粒子表面に微粒子が付着された状態となり、さ
らに混合を行なうと球状粒子に付着された微粒子に加え
られる機械的衝撃、圧力、摩擦力等によるメカノケミカ
ル反応によって微粒子と接触している球状粒子表面部分
が軟化、融解等して微粒子が球状粒子表面に固定化され
る。この混合は本発明にあっては常温、空気中でも可能
であり、混合時間は10〜100分が好ましい。また、加圧
条件等の他の条件も本発明にあっては特に制限されず、
用いる出発材料、処理量等によって適宜選択され、混合
中に各粒子が粉砕せず、球状粒子表面に微粒子が均一に
付着、固定化され、結果として良好な吸着剤が得られれ
ばよい。
The mechanochemical method used in the production method of the present invention is a method generally called a powder / powder mixing method. That is, by dry-mixing different kinds of powders having different particle diameters (for example, the spherical particles and the fine particles in the present invention) under pressure, the fine particles are first adhered to the surface of the spherical particles. The surface portion of the spherical particle in contact with the fine particle is softened or melted by a mechanochemical reaction due to mechanical shock, pressure, frictional force or the like applied to the fine particle, and the fine particle is fixed to the spherical particle surface. In the present invention, the mixing can be performed at room temperature or in the air, and the mixing time is preferably 10 to 100 minutes. Further, other conditions such as pressure conditions are not particularly limited in the present invention,
It is appropriately selected depending on the starting material to be used, the treatment amount, and the like, and it is sufficient that the fine particles are uniformly adhered and fixed on the spherical particle surface without mixing each particle during mixing, and as a result, a good adsorbent can be obtained.

また、上記のメカノケミカル法による混合に使用する
装置としては、球状粒子表面に微粒子を付着させる工程
だけであればV型混合機のような一般的な混合装置でも
可能であるが、固定化される工程には機械的衝撃、圧
力、摩擦力等を連続して加えられる装置が必要であり、
自動乳鉢、遠心回転型混合機等が好ましい。なお、本発
明にあっては、付着、固定化の両工程を同一の混合装置
で連続して行なうことも、別々の装置を用いて行なうこ
とも可能である。
In addition, as a device used for mixing by the above mechanochemical method, a general mixing device such as a V-type mixer can be used as long as it is only a step of attaching fine particles to the spherical particle surface, but it is immobilized. Process requires equipment that can continuously apply mechanical impact, pressure, frictional force, etc.
An automatic mortar, a centrifugal rotary mixer or the like is preferred. In the present invention, both the steps of attaching and immobilizing can be performed continuously by the same mixing apparatus, or can be performed by using separate apparatuses.

次に、上記のようにして得られた表面多孔性球体を空
気、酸素等の酸化性雰囲気下、昇温速度10〜40℃/hrで
昇温して100〜400℃に、好ましくは0.1〜1時間保持し
て熱処理を施す。
Next, the surface porous sphere obtained as described above is heated to 100 to 400 ° C. at a temperature rising rate of 10 to 40 ° C./hr, in an oxidizing atmosphere such as air or oxygen, preferably to 0.1 to 400 ° C. The heat treatment is performed by holding for 1 hour.

さらに、本発明の製造方法においては、このようにし
て熱処理された表面多孔性球体を窒素ガス、アルゴンガ
ス等の不活性雰囲気下または真空下、昇温速度50〜600
℃/hrで昇温し、最終処理温度800〜3000℃で焼成して炭
素化および/または黒鉛化処理を行ない、炭素または黒
鉛質の表面多孔性球状吸着剤を得る。なお、上記焼成の
際に、処理温度1200℃までは昇温速度50〜300/hrで昇温
することが望ましく、また1200℃以下で一旦0.1〜1時
間保持することが好ましい。
Furthermore, in the production method of the present invention, the surface porous spheres thus heat-treated are heated under an inert atmosphere such as nitrogen gas or argon gas or under vacuum at a heating rate of 50 to 600.
The temperature is raised at a rate of ° C./hr, and calcined at a final treatment temperature of 800 to 3000 ° C. to carry out a carbonization and / or graphitization treatment to obtain a carbon or graphite surface porous spherical adsorbent. In the firing, the temperature is desirably increased at a heating rate of 50 to 300 / hr up to a treatment temperature of 1200 ° C., and is preferably held once at 1200 ° C. or lower for 0.1 to 1 hour.

このように本発明の製造方法によって得られる炭素ま
たは黒鉛質の表面多孔性球状吸着剤は、使用する球状粒
子および微粒子の各粒子径等を選択することによって簡
便に、しかも精度よく、粒子径3〜100μ、細孔径50〜3
50Åの範囲の吸着剤を任意に得ることが可能であり、得
られる吸着剤の比表面積は2〜10m2g(BET法による)で
ある。また、本発明の製造方法における収率は10〜70%
である。
As described above, the carbon or graphite superficially porous spherical adsorbent obtained by the production method of the present invention can easily and accurately obtain a particle diameter of 3 by selecting the respective particle diameters of the spherical particles and fine particles to be used. ~ 100μ, pore size 50 ~ 3
An adsorbent in the range of 50 ° can be arbitrarily obtained, and the specific surface area of the obtained adsorbent is 2 to 10 m 2 g (by the BET method). The yield in the production method of the present invention is 10 to 70%.
It is.

[実施例] 以下、実施例に基づいて本発明をより具体的に説明す
る。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples.

実施例1 湿式分級によって18〜22μに整粒した市販の球状フェ
ノール樹脂10.0gと平均粒子径30nmのカーボンブラック
0.30gとを出発材料として使用した。これらを均一に混
合した後、自動乳鉢中で10分間混合処理を行ない、球状
フェノール樹脂粒子表面をカーボンブラック粒子で均一
に被覆させ、かつメカノケミカル反応により固定化させ
て表面多孔性球状を得た。
Example 1 10.0 g of a commercially available spherical phenol resin sized to 18 to 22 μm by wet classification and carbon black having an average particle diameter of 30 nm
0.30 g was used as starting material. After mixing these uniformly, a mixing treatment was performed for 10 minutes in an automatic mortar, the spherical phenol resin particles were uniformly coated with carbon black particles, and immobilized by a mechanochemical reaction to obtain a surface porous sphere. .

この表面多孔性球体を空気中で30℃/hrの昇温速度で2
80℃まで昇温し、1時間保持して熱処理を行なった。
The surface porous sphere is heated in air at a rate of 30 ° C / hr.
The temperature was raised to 80 ° C., and the heat treatment was performed while maintaining the temperature for 1 hour.

次に、熱処理された表面多孔性球体を窒素雰囲気下
で、200℃/hrの昇温速度で1000℃まで昇温して1時間保
持して炭素化させ、引き続いて黒鉛化炉内で600℃/hrの
昇温速度で最終的に2000℃まで昇温して黒鉛化せしめて
黒鉛質の表面多孔性球状吸着剤を得た。
Next, the heat-treated superficially porous spheres are heated to 1000 ° C. at a rate of 200 ° C./hr in a nitrogen atmosphere and held for 1 hour to be carbonized, and subsequently 600 ° C. in a graphitization furnace. Finally, the temperature was raised to 2000 ° C. at a heating rate of / hr to graphitize to obtain a graphitic superficially porous spherical adsorbent.

得られた吸着剤の粒子径は10±2μ程度、細孔径は17
0±50Å程度、BET法による比表面積は5.32gであり、収
率は44%であった。
The obtained adsorbent has a particle diameter of about 10 ± 2 μm and a pore diameter of 17
0 ± 50 Å approximately, a specific surface area by BET method was 5.3 2 g, the yield was 44%.

この黒鉛質の表面多孔性球状吸着剤を、4mmφ×250mm
lのHPLC用カラムに湿式充填し、HPLC装置に装着した。
溶離液をメタノール/水=80/20重量%混合液として、
カラムを安定化させた後、下記条件においてフタル酸エ
ステル類の混合物(1:フタル酸ジメチル、2:フタル酸ジ
アリル、3:フタル酸ジ−n−ブチル)の分離を行なっ
た。その結果のHPLCチャートを第1図に示す。
This graphite surface porous spherical adsorbent is 4mmφ × 250mm
1) The column for HPLC was wet-packed and mounted on an HPLC device.
The eluent is a methanol / water = 80/20% by weight mixture,
After stabilizing the column, a mixture of phthalates (1: dimethyl phthalate, 2: diallyl phthalate, 3: di-n-butyl phthalate) was separated under the following conditions. The resulting HPLC chart is shown in FIG.

(測定条件) 流 量 1.0ml/min 検出器 UV(254nm) 温 度 26℃ 圧 力 55kg/cm2 第1図から明らかなように、実施例1によって得られ
る黒鉛質の表面多孔性球状吸着剤は、HPLC用カラム充填
剤として供することにより、上記各フタル酸エステル類
を良好に分離することが可能である。
(Measurement conditions) Flow rate 1.0 ml / min Detector UV (254 nm) Temperature 26 ° C. Pressure 55 kg / cm 2 As is clear from FIG. 1, the graphitic surface porous spherical adsorbent obtained in Example 1 By using as a column packing material for HPLC, the above phthalic esters can be separated well.

実施例2 使用するカーボンブラックを平均粒子径47nmのものと
し、使用量を0.36gとした以外は実施例1と同様にして
黒鉛質の表面多孔性球状吸着剤を得た。
Example 2 A graphite surface porous spherical adsorbent was obtained in the same manner as in Example 1 except that the carbon black used had an average particle diameter of 47 nm and the amount used was 0.36 g.

得られた吸着剤の粒子径は10±2μ程度、細孔径は20
0±50Å程度、BET法による比表面積は3.3m2/gであり、
収率は45%であった。
The obtained adsorbent has a particle diameter of about 10 ± 2 μm and a pore diameter of about 20 ± 2 μm.
About 0 ± 50Å, specific surface area by BET method is 3.3m 2 / g,
The yield was 45%.

この黒鉛質の表面多孔性球状吸着剤を用いて実施例1
と同様にして下記条件においてフタル酸エステル類の混
合物の分離を行なった。その結果のHPLCチャートを第2
図に示す。
Example 1 using this graphitic superficially porous spherical adsorbent
A mixture of phthalic esters was separated under the following conditions in the same manner as described above. The resulting HPLC chart is
Shown in the figure.

(測定条件) 流 量 1.0ml/min 検出器 UV(254nm) 温 度 25℃ 圧 力 95kg/cm2 第2図から明らかなように、実施例2によって得られ
る黒鉛質の表面多孔性球状吸着剤も、HPLC用カラム充填
剤として供することにより、上記各フタル酸エステル類
を良好に分離することが可能である。
(Measurement conditions) Flow rate 1.0 ml / min Detector UV (254 nm) Temperature 25 ° C Pressure 95 kg / cm 2 As is clear from FIG. 2, the graphitic surface porous spherical adsorbent obtained in Example 2 Also, by providing the phthalate as a column packing material for HPLC, the above-mentioned phthalates can be separated well.

実施例3 まず、平均分子量が2000のポリビニルアルコール20g
と水400gをフラスコ中で撹拌して完全に溶解させる。こ
こにジビニルベンゼン50gとスチレン50gの混合液100g、
重合触媒としてのベンゼンパーオキサイド1.0gおよび乳
化剤としてのノニオン(非イオン性界面活性剤;ポリカ
ルボン酸型高分子界面活性剤)1.0gを添加して懸濁さ
せ、撹拌しながら75〜85℃まで加温して重合反応を開始
させて1時間重合反応させた。その間に重合反応による
発熱によって反応溶液は95〜98℃まで昇温した。その
後、得られた反応溶液を50℃以下になるまで撹拌しなが
ら冷却し、さらに室温まで放冷して分散液を得た。得ら
れた分散液から球状生成物を濾別し、これを水で2回、
さらにメタノールで3回洗浄した後、揮発成分による引
火に注意しながら100℃前後で乾燥して球状ジビニルベ
ンゼン重合体を得た。
Example 3 First, 20 g of polyvinyl alcohol having an average molecular weight of 2000
And 400 g of water are stirred in a flask to dissolve completely. Here, 100 g of a mixture of 50 g of divinylbenzene and 50 g of styrene,
1.0 g of benzene peroxide as a polymerization catalyst and 1.0 g of nonionic (nonionic surfactant; polycarboxylic acid type polymer surfactant) as an emulsifier are added, suspended, and stirred to 75 to 85 ° C. The polymerization reaction was started by heating, and the polymerization reaction was performed for 1 hour. During this period, the temperature of the reaction solution rose to 95 to 98 ° C. due to the heat generated by the polymerization reaction. Thereafter, the obtained reaction solution was cooled with stirring until the temperature became 50 ° C. or lower, and further cooled to room temperature to obtain a dispersion. The spherical product was separated from the resulting dispersion by filtration, and this was washed twice with water.
After further washing with methanol three times, the polymer was dried at about 100 ° C. while paying attention to ignition due to volatile components, to obtain a spherical divinylbenzene polymer.

得られた球状ジビニルベンゼン重合体を湿式分級によ
って15〜25μに整粒し、これを10.0gと、平均粒子径47n
mのカーボンブラック0.30gとを出発材料として用いた以
外は実施例1と同様にして黒鉛質の表面多孔性球状吸着
剤を得た。
The obtained spherical divinylbenzene polymer was sized to 15 to 25 μ by wet classification, and 10.0 g of this was averaging 47 n.
A graphite-like surface-porous spherical adsorbent was obtained in the same manner as in Example 1 except that 0.30 g of m carbon black was used as a starting material.

得られた吸着剤の粒子径は8〜15μ、細孔径は175±3
0Å程度、BET法による比表面積は3.0m2/gであり、収率
は14%であった。
The particle size of the obtained adsorbent is 8 to 15μ, and the pore size is 175 ± 3.
The specific surface area by BET method was about 0Å, and the specific surface area was 3.0 m 2 / g, and the yield was 14%.

この黒鉛質の表面多孔性球状吸着剤を用いて実施例1
と同様にしてフタル酸エステル類の混合物の分離を行な
ったところ、第1図と同様の結果が得られ、前記各フタ
ル酸エステル類を良好に分離することができた。
Example 1 using this graphitic superficially porous spherical adsorbent
When a mixture of phthalic esters was separated in the same manner as in the above, the same result as in FIG. 1 was obtained, and each of the phthalic esters could be separated well.

実施例4 偏光顕微鏡視野観察下におけるメソフェーズ量(光学
的異方性領域)が100%、軟化点、311℃、キノリン不溶
分(QI)が17重量%、トルエン不溶分(TI)が80重量%
の石炭系バルクメソフェーズを微粉砕した後、分級して
粒子径25〜50μのピッチ粉末を得た。
Example 4 A mesophase amount (optically anisotropic region) under a polarizing microscope visual field observation was 100%, a softening point, 311 ° C., a quinoline insoluble matter (QI) was 17% by weight, and a toluene insoluble matter (TI) was 80% by weight.
Was finely pulverized and then classified to obtain a pitch powder having a particle diameter of 25 to 50 μm.

得られたピッチ粉末80gをフタル酸ジイソブチル14
中に分散させ、この全量を20オートクレープ中に投入
した。
80 g of the obtained pitch powder is diisobutyl phthalate 14
The whole amount was put into 20 autoclaves.

投入後、オートクレープ系内を真空引きし、窒素ガス
でパージした。そして、ピッチ粉末の沈降を防ぐため、
直ちに撹拌機を500rpmで回転させ、撹拌しながら120℃/
hrで昇温を開始した。その後、系内の温度が330℃に達
したら直ちに放冷し、分散液を得た。なお、撹拌は150
℃に下がるまで続けた。
After charging, the inside of the autoclave system was evacuated and purged with nitrogen gas. And, to prevent sedimentation of the pitch powder,
Immediately rotate the stirrer at 500 rpm and stir at 120 ° C /
Heating started at hr. Thereafter, when the temperature in the system reached 330 ° C., it was immediately cooled to obtain a dispersion. In addition, stirring was 150
Continued until cooling to ° C.

この時、最大自生圧は6kg/cm2であった。At this time, the maximum autogenous pressure was 6 kg / cm 2 .

次に、得られた分散液をオートクレープから取り出し
て吸引濾過を行ない、濾別された球状生成物をアセトン
で洗浄、乾燥して球状のメソカーボンマイクロビーズを
調整した。
Next, the obtained dispersion was taken out of the autoclave and subjected to suction filtration, and the filtered spherical product was washed with acetone and dried to prepare spherical mesocarbon microbeads.

得られた球状のメソカーボンマイクロビーズを湿式分
級によって18〜25μに整粒した。
The obtained spherical mesocarbon microbeads were sized to 18 to 25 μ by wet classification.

他方、フラン樹脂を窒素雰囲気下50℃/hrの昇温速度
で1000℃まで加熱して炭素化後、乾式粉砕し、更にボー
ルミルにより湿式粉砕した。次いで、得られた粉体を湿
式分級によって整粒し、平均粒子径100nmの炭素質の微
粒子を得た。
On the other hand, the furan resin was heated to 1000 ° C. at a heating rate of 50 ° C./hr in a nitrogen atmosphere, carbonized, dry-ground, and further wet-ground by a ball mill. Next, the obtained powder was sized by wet classification to obtain carbonaceous fine particles having an average particle diameter of 100 nm.

上述の炭素質の微粒子0.4gとメソカーボンマイクロビ
ーズ15gとを出発材料として使用した。これらを均一に
混合した後、自動乳鉢中で40分間混合処理を行ない、メ
ソカーボンマイクロビーズ表面を炭素質の微粒子で均一
に被覆させ、かつメカノケミカル反応により固定化させ
て表面多孔性球体を得た。
0.4 g of the above-mentioned carbonaceous fine particles and 15 g of mesocarbon microbeads were used as starting materials. After mixing these uniformly, a mixing process is performed for 40 minutes in an automatic mortar, the surface of the mesocarbon microbeads is uniformly coated with carbonaceous fine particles, and fixed by a mechanochemical reaction to obtain a surface porous sphere. Was.

この表面多孔性球体を空気中で30℃/hrの昇温速度で3
00℃まで昇温し、1時間保持して熱処理を行なった。
The surface porous sphere is heated at a rate of 30 ° C./hr in air for 3 hours.
The temperature was raised to 00 ° C., and the temperature was maintained for 1 hour to perform a heat treatment.

次に、熱処理された表面多孔性球体を窒素雰囲気下で
100℃/hrの昇温速度で1000℃まで昇温して炭素化させ、
引き続いて黒鉛炉内で350℃/hrの昇温速度で最終的に23
00℃まで昇温して黒鉛化せしめて黒鉛質の表面多孔性球
状吸着剤を得た。
Next, heat-treated superficially porous spheres are placed in a nitrogen atmosphere.
Carbonized by heating up to 1000 ° C at a heating rate of 100 ° C / hr,
Subsequently, at a heating rate of 350 ° C / hr in a graphite furnace,
The temperature was raised to 00 ° C. to graphitize to obtain a graphitic surface-porous spherical adsorbent.

得られた吸着剤の粒子径は15±3μ程度、細孔径は10
00±500Å程度、BET法による比表面積は2m2/gであり、
収率は70%であった。
The particle size of the obtained adsorbent is about 15 ± 3 μm, and the pore size is 10
About 00 ± 500 に よ る, specific surface area by BET method is 2m 2 / g,
The yield was 70%.

この黒鉛質の表面多孔性球状吸着剤を4mmφ×250mml
のHPLC用カラムに湿式充填し、HPLC装置に装着した。溶
離液をメタノール/水=80/20重量%混合液として、カ
ラムを安定化させた後、下記条件においてジニトロベン
ゼン類の混合物(11:o−ジニトロベンゼン、12:m−ジニ
トロベンゼン、13:p−ジニトロベンゼン)の分離を行な
った。その結果のHPLCチャートを第3図に示す。
4mmφ × 250mml of this graphitic surface porous spherical adsorbent
Was wet packed into an HPLC column, and attached to an HPLC apparatus. The column was stabilized using an eluent of methanol / water = 80/20% by weight as a mixture, and a mixture of dinitrobenzenes (11: o-dinitrobenzene, 12: m-dinitrobenzene, 13: p -Dinitrobenzene). The resulting HPLC chart is shown in FIG.

(測定条件) 流 量 1.0ml/min 検出器 UV(254nm) 温 度 25℃ 圧 力 40kg/cm2 第3図から明らかなように、実施例4によって得られ
る黒鉛質の表面多孔性球状吸着剤は、HPLC用カラム充填
剤として供することにより、上記各ジニトロベンゼン類
を良好に分離することが可能である。
(Measurement conditions) Flow rate 1.0 ml / min Detector UV (254 nm) Temperature 25 ° C. Pressure 40 kg / cm 2 As is clear from FIG. 3, the graphitic surface porous spherical adsorbent obtained in Example 4 By using as a column packing material for HPLC, the above dinitrobenzenes can be satisfactorily separated.

[発明の効果] 以上説明のごとく、本発明の製造方法によって得られ
る炭素質または黒鉛質の表面多孔性球状吸着剤は、その
目的に応じて粒子径、細孔径を任意に、かつ精度よく調
節することができ、しかも球状吸着剤の表面近傍部分が
多孔質であるため、HPLC、GPC等用のカラム充填剤等と
して試料の分離を良好に行なうことが可能である。
[Effects of the Invention] As described above, the carbonaceous or graphitic superficially porous spherical adsorbent obtained by the production method of the present invention can adjust the particle diameter and the pore diameter arbitrarily and precisely according to the purpose. In addition, since the portion near the surface of the spherical adsorbent is porous, it is possible to satisfactorily separate the sample as a column packing material for HPLC, GPC and the like.

また、本発明によって得られる吸着剤は焼成によって
得られた炭素質または黒鉛質であるので、強度はカラム
充填剤として充分で、かつ耐薬品性、耐熱性に優れ、溶
媒による体積変化も起こさない。
In addition, since the adsorbent obtained by the present invention is carbonaceous or graphite obtained by calcination, the strength is sufficient as a column filler, and is excellent in chemical resistance and heat resistance, and does not cause a volume change due to a solvent. .

従って本発明によって得られる吸着剤はHPLC、GPC等
用のカラム充填剤等として、例えば各種エステル類の分
離、各種含チッ素化合物(ニトロ基を含むもの等)の分
離、オルト、メタ、パラ位の各置換体の分離等に好適に
使用可能である。
Accordingly, the adsorbent obtained by the present invention can be used as a column packing for HPLC, GPC, etc., for example, for separation of various esters, separation of various nitrogen-containing compounds (such as those containing a nitro group), ortho, meta, para-position. Can be suitably used for separation of each of the substituted products.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図はそれぞれ本発明の一実施例(実施
例1、実施例2)に係るフタル酸エステル類の混合物
(1〜3)のHPLCチャートであり、 第3図は本発明の一実施例(実施例4)に係るジニトロ
ベンゼン類の混合物(11〜13)のHPLCチャートである。 1:フタル酸ジメチル、 2:フタル酸ジアリル、 3:フタル酸ジ−n−ブチル、 11:o−ジニトロベンゼン、 12:m−ジニトロベンゼン、 13:p−ジニトロベンゼン。
1 and 2 are HPLC charts of a mixture of phthalic esters (1 to 3) according to one embodiment (Examples 1 and 2) of the present invention, respectively. FIG. It is an HPLC chart of the mixture (11-13) of dinitrobenzenes concerning one Example (Example 4). 1: dimethyl phthalate, 2: diallyl phthalate, 3: di-n-butyl phthalate, 11: o-dinitrobenzene, 12: m-dinitrobenzene, 13: p-dinitrobenzene.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 30/48 G01N 30/48 J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location G01N 30/48 G01N 30/48 J

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フェノール樹脂、ナフタレン樹脂、フラン
樹脂、キシレン樹脂、ジビニルベンゼン重合体、スチレ
ン−ジビニルベンゼン共重合体、メソカーボンのうち少
なくとも一種からなる粒子径5〜120μの球状粒子と、
粒子径15〜100nmの炭素質材料からなる微粒子とをメカ
ノケミカル法により混合して該球状粒子表面に該微粒子
を均一に付着、固定化させて得られる表面多孔性球体
を、酸化性雰囲気下、昇温速度10〜40℃/hrで昇温して1
00〜400℃に保持し、次いで不活性雰囲気または真空
下、昇温速度50〜600℃/hrで昇温して最終処理温度800
〜3000℃で焼成することを特徴とする吸着剤の製造方
法。
(1) spherical particles of at least one of phenolic resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, and mesocarbon having a particle diameter of 5 to 120 μm;
Surface microspheres obtained by mixing fine particles of carbonaceous material having a particle diameter of 15 to 100 nm with the mechanochemical method and uniformly adhering the fine particles to the surface of the spherical particles, and immobilizing the same, under an oxidizing atmosphere, Heat up at a rate of 10-40 ° C / hr and
The temperature is maintained at 00 to 400 ° C., and then the temperature is increased at a heating rate of 50 to 600 ° C./hr under an inert atmosphere or vacuum to a final processing temperature of 800
A method for producing an adsorbent, wherein the method is calcined at 3000C.
JP63274441A 1988-11-01 1988-11-01 Adsorbent production method Expired - Lifetime JP2646383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274441A JP2646383B2 (en) 1988-11-01 1988-11-01 Adsorbent production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274441A JP2646383B2 (en) 1988-11-01 1988-11-01 Adsorbent production method

Publications (2)

Publication Number Publication Date
JPH02122828A JPH02122828A (en) 1990-05-10
JP2646383B2 true JP2646383B2 (en) 1997-08-27

Family

ID=17541723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274441A Expired - Lifetime JP2646383B2 (en) 1988-11-01 1988-11-01 Adsorbent production method

Country Status (1)

Country Link
JP (1) JP2646383B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787029B2 (en) 2001-08-31 2004-09-07 Cabot Corporation Material for chromatography
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
JP5133543B2 (en) * 2006-09-12 2013-01-30 Jfeケミカル株式会社 Method for producing mesocarbon microsphere graphitized material
EP2334425B1 (en) * 2008-10-06 2014-04-23 Dow Global Technologies LLC Chromatography of polyolefin polymers
JP5266428B1 (en) * 2011-10-21 2013-08-21 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery

Also Published As

Publication number Publication date
JPH02122828A (en) 1990-05-10

Similar Documents

Publication Publication Date Title
US6787029B2 (en) Material for chromatography
Yang et al. Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution
JP2645756B2 (en) Method for producing spherical carbon material
US20060133981A1 (en) Imprinted mesoporous carbons and a method of manufacture thereof
CA1117513A (en) Spherical activated carbon having low dusting property and high physical strength and process for producing the same
CN108609602B (en) Nitrogen-doped microporous carbon material based on energetic polyion liquid and preparation method thereof
JP2646383B2 (en) Adsorbent production method
JP3642532B2 (en) Production method of high-performance activated carbon
US5217505A (en) Carbonaceous adsorbents for prevention of carbon bed fires
IE42277B1 (en) Pyrolyzed polymer particles
JPH08208212A (en) Production of activated carbon
JPS6141842B2 (en)
JPH07119421B2 (en) Method for producing porous carbonaceous microspheres
JPH0692611A (en) Production of carbonaceous particle
JP4247615B2 (en) Adsorbent
JP2646374B2 (en) Method for producing carbonaceous adsorbent
JP2799187B2 (en) Porous graphitic carbon granules and support materials for chromatography using the same
CA1110223A (en) Partially pyrolyzed polymer emulsion coagulate
JPH05155673A (en) Porous carbon material and its production
JPH02221420A (en) Production of activated carbon fiber
JPH03106443A (en) Globular porous carbon particle and preparation thereof
JPS5833172B2 (en) Method for producing granular molecular sieve carbon material from coal
JPS6351161B2 (en)
CN117899816A (en) Preparation method and application of porous biochar for efficiently adsorbing perfluorinated compounds in water
JPS6252116A (en) Production of formed activated carbon