JP2637192B2 - Manufacturing method of dispersion strengthened copper alloy - Google Patents

Manufacturing method of dispersion strengthened copper alloy

Info

Publication number
JP2637192B2
JP2637192B2 JP26933288A JP26933288A JP2637192B2 JP 2637192 B2 JP2637192 B2 JP 2637192B2 JP 26933288 A JP26933288 A JP 26933288A JP 26933288 A JP26933288 A JP 26933288A JP 2637192 B2 JP2637192 B2 JP 2637192B2
Authority
JP
Japan
Prior art keywords
copper alloy
dispersion
powder
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26933288A
Other languages
Japanese (ja)
Other versions
JPH02118036A (en
Inventor
慶三 島村
達吉 逢坂
景隆 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26933288A priority Critical patent/JP2637192B2/en
Publication of JPH02118036A publication Critical patent/JPH02118036A/en
Application granted granted Critical
Publication of JP2637192B2 publication Critical patent/JP2637192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は分散強化型銅合金の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a method for producing a dispersion strengthened copper alloy.

(従来の技術) 近年、スリップリング,高磁場発生用コイル材料,半
導体用リードフレーム,スポット溶接用電極などへの応
用のために、高い電気伝導度と高い機械的強度とを兼ね
備えた銅合金への要望が強まって来ている。ところで、
銅合金における電気伝導度とは相反する特性であり、こ
の両者を両立させることは困難であった。しかしながら
銅の母相に分散粒子が分散してなる分散強化銅合金を用
いれば、この相反する二つの特性であるところの電気伝
導度と強度とをある程度両立させ得ることが知られてい
る。しかしながら、分散強化型銅合金でこの相反する二
つの特性を充分に両立させるためには、非常に微細な分
散粒子を銅の母相中に均一に分散させることが必要であ
るが、これまで充分な特性を有するものが得られなかっ
た。
(Prior art) In recent years, for applications to slip rings, coil materials for generating high magnetic fields, lead frames for semiconductors, and electrodes for spot welding, copper alloys with both high electrical conductivity and high mechanical strength have been developed. Demands are growing. by the way,
It is a characteristic that is inconsistent with the electrical conductivity of a copper alloy, and it has been difficult to achieve both. However, it is known that the use of a dispersion-strengthened copper alloy in which dispersed particles are dispersed in a copper matrix can achieve both of these two contradictory characteristics, electrical conductivity and strength. However, it is necessary to disperse very fine dispersed particles uniformly in a copper matrix in order to sufficiently balance these two conflicting properties with a dispersion-strengthened copper alloy. Those having excellent characteristics could not be obtained.

こうした従来の分散強化型銅合金の製造方法として
は、例えば、内部酸化による方法があげられる。この方
法は、銅と銅より酸化されやすい元素との合金の粉末あ
るいは切粉を酸化雰囲気中で加熱して表面を酸化させ、
これを密閉容器に封入して加熱することによって表面の
酸素を内部に拡散させ、添加合金元素の酸化物粒子を内
部に分散させた粉末あるいは切粉を得る方法である。こ
の方法によれば微細で均一な分散粒子の分散が得られる
が、同時に次のような問題点がある。すなわち、粉末表
面の酸素を内部に拡散させて添加元素を完全に酸化させ
る内部酸化処理に非常な長時間を必要し、どうしても一
部の添加元素は酸化されず固溶元素として銅の母相中に
残留しやすい。こうして添加元素が酸化されず固溶元素
として銅の母相中に残留すると合金の電気伝導度は大巾
に低下してしまうため、高電気伝導度の合金を得ること
ができない。
As a method for producing such a conventional dispersion-strengthened copper alloy, for example, a method based on internal oxidation can be mentioned. In this method, a powder or a chip of an alloy of copper and an element more easily oxidized than copper is heated in an oxidizing atmosphere to oxidize the surface,
This is a method in which oxygen in the surface is diffused inside by enclosing this in a closed container and heated to obtain a powder or a chip in which oxide particles of the added alloy element are dispersed. According to this method, fine and uniform dispersion of dispersed particles can be obtained, but at the same time, there are the following problems. In other words, it takes a very long time for the internal oxidation treatment to completely oxidize the additional elements by diffusing oxygen on the powder surface into the inside, and some of the additional elements are inevitably not oxidized and become solid solution elements in the copper matrix. Easy to remain in If the additive element is not oxidized and remains in the copper matrix as a solid solution element, the electrical conductivity of the alloy is greatly reduced, so that an alloy having high electrical conductivity cannot be obtained.

一方、比較的簡単な方法に機械的混合法がある。例え
ば、銅の粉末と分散粒子の粉末とをボールミルなどの高
エネルギー混合機を用いて粉砕、混合を行なう方法であ
る。しかし、一般的に銅と分散粒子とのかさ密度が大き
く異なることが多いため、これによっても微細かつ均一
な分散粒子の分散は得られず、したがって強度の高い合
金は得られない。さらにこの派生的方法として、無機金
属化合物または有機金属化合物を加水分解または熱分解
することによって得られる金属水酸化物または金属水和
物からなる被覆層を表面に有する銅粉末を機械的に粉砕
混合する製造方法が提案(特開昭61−12840号公報,特
開昭62−109906号公報)されている。これによると、分
散粒子自身は微細になるが、マトリックスの銅は塑性変
形するため、分散粒子の均一な分散が得られず、強度の
高い合金は得られない。
On the other hand, a relatively simple method is a mechanical mixing method. For example, a method of pulverizing and mixing copper powder and powder of dispersed particles using a high energy mixer such as a ball mill. However, in general, the bulk density of copper and the dispersed particles is often largely different, so that fine and uniform dispersion of the dispersed particles cannot be obtained, and therefore an alloy having high strength cannot be obtained. Further, as a derivative method, copper powder having a coating layer made of a metal hydroxide or metal hydrate obtained by hydrolyzing or pyrolyzing an inorganic metal compound or an organic metal compound is mechanically pulverized and mixed. (Japanese Patent Application Laid-Open Nos. 61-12840 and 62-109906) have been proposed. According to this, although the dispersed particles themselves become fine, copper in the matrix is plastically deformed, so that uniform dispersion of the dispersed particles cannot be obtained, and an alloy having high strength cannot be obtained.

(発明が解決しようとする課題) 上述の如く、従来の分散強化型銅合金では分散粒子の
分散が不充分である、あるいは添加元素が銅母相中に固
溶して残留し、高電気伝導度と高強度とを兼ね備えるこ
とが困難であるという欠点があった。そこで本発明は、
高電気伝導度と高強度とをともに兼ね備えた分散強化型
銅合金の製造方法を提供することを目的とする。
(Problems to be Solved by the Invention) As described above, in the conventional dispersion-strengthened copper alloy, the dispersion of dispersed particles is insufficient, or the additive element remains as a solid solution in the copper matrix and has high electric conductivity. There is a drawback that it is difficult to provide both strength and strength. Therefore, the present invention
It is an object of the present invention to provide a method for producing a dispersion-strengthened copper alloy having both high electric conductivity and high strength.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段及び作用) 本発明者らは、上述した欠点を解決するための方法に
関して種々の考察および実験を行なった。そして機械的
混合法に着目して、原材料として酸化銅を用いる方法に
ついて深く考察を加えた。その結果、銅酸化物と分散粒
子を粉砕混合する工程において、(i)分散粒子の原材
料として数μm以下の微粉末を用いると微粉末は2次粒
子を作りやすいうえに、特に銅酸化物との電気的陰性度
の違いによっては分散粒子が均一に分散せずに、逆に凝
集する。一方、(ii)数μm以上の粉末を使用すると理
想的な分散粒子の大きさ(0.05μm以下)に粉砕するの
に長時間を必要とし、さらに微粉末になってくると上記
と同じ理由によって凝集する場合がある。との知見を得
た。そして、この問題点を克服するための方法として、
無機金属化合物または有機金属化合物を加水分解または
熱分解することによって得られる金属水酸化物または金
属水和物からなる被覆層を表面に有する酸化銅粉末を用
いる方法を考察した。この金属水酸化物または金属水和
物の被覆層は、加水分解または熱分解の条件を制御すれ
ば非常に薄く生成させることができるうえに、非結晶質
であるため、酸化銅の微粉末の表面にも付着しやすく加
熱処理によって容易に微細な酸化物に換えることができ
る。さらに酸化銅は銅に比べて格段に粉砕しやすく微粉
末化しやすいという利点を備えている。
(Means and Actions for Solving the Problems) The present inventors have conducted various studies and experiments on a method for solving the above-mentioned disadvantages. Focusing on the mechanical mixing method, the method using copper oxide as a raw material was deeply considered. As a result, in the step of pulverizing and mixing the copper oxide and the dispersed particles, (i) when a fine powder having a size of several μm or less is used as a raw material of the dispersed particles, the fine powder can easily form secondary particles, and particularly, the copper oxide and the copper oxide are used. However, depending on the difference in the electronegativity of the particles, the dispersed particles are not uniformly dispersed but are instead aggregated. On the other hand, (ii) when a powder having a size of several μm or more is used, it takes a long time to pulverize to an ideal dispersed particle size (0.05 μm or less). May agglomerate. I got the knowledge. And as a way to overcome this problem,
A method using a copper oxide powder having on its surface a coating layer made of a metal hydroxide or metal hydrate obtained by hydrolyzing or thermally decomposing an inorganic metal compound or an organic metal compound was considered. The coating layer of the metal hydroxide or metal hydrate can be formed very thin by controlling the conditions of hydrolysis or thermal decomposition, and is non-crystalline. It easily adheres to the surface and can be easily converted to fine oxide by heat treatment. Further, copper oxide has an advantage that it is much easier to pulverize and pulverize than copper.

そしてこの方法に関して種々の実験を行った結果、本
発明を完成させるに至った。
As a result of conducting various experiments on this method, the present invention was completed.

すなわち、本発明による分散強化型銅合金の製造方法
は、無機金属化合物または有機金属化合物を加水分解ま
たは熱分解することによって得られる金属水酸化物また
は金属水和物からなる被覆層を表面に有する酸化銅粉末
を機械的に粉砕混合し、加熱処理によってこの金属水酸
化物または金属水和物を酸化物の分散微粒子に換えた
後、さらに前記酸化銅を選択還元して粉末化し、得られ
た粉末を成型加工することを特徴としている。
That is, the method for producing a dispersion-strengthened copper alloy according to the present invention has a coating layer made of a metal hydroxide or metal hydrate obtained by hydrolyzing or thermally decomposing an inorganic metal compound or an organic metal compound on the surface. The copper oxide powder was mechanically pulverized and mixed, and after this metal hydroxide or metal hydrate was changed to dispersed fine particles of an oxide by a heat treatment, the copper oxide was further reduced and powdered to obtain a powder. It is characterized by processing powder.

本発明製造方法では、まず母相の原料となる酸化銅と
分散粒子の原料とを用意する。この酸化銅としては通
常、酸化第一銅(Cu2O)あるいは酸化第二銅(CuO)を
用いるが、その他の非化学量論的な酸化銅(CuOx)も用
いることができる。酸化銅の粉末は、微細かつ均一に分
散させるために5μm以下、特に1μm以下の粒径であ
ることが望ましい。
In the production method of the present invention, first, copper oxide as a raw material of a mother phase and a raw material of dispersed particles are prepared. As the copper oxide, cuprous oxide (Cu 2 O) or cupric oxide (CuO) is usually used, but other non-stoichiometric copper oxide (CuOx) can also be used. It is desirable that the copper oxide powder has a particle size of 5 μm or less, particularly 1 μm or less in order to disperse finely and uniformly.

また、本発明において使用する無機金属化合物または
有機金属化合物に含まれる金属は、ベリリウム,硼素,
マグネシウム,アルミニウム,珪素,カルシュウム,チ
タニウム,クロム,イットリウム,ジルコニウム,ラン
タン,セリウム,ハフニュウム,トリウムから選択され
た1種または2種以上である。こらの金属を含む無機金
属化合物または有機金属化合物は加水分解または熱分解
することによって金属酸化物または金属水和物の被覆層
となるものであって、塩化アルミニウムのような金属塩
化物、金属の錯化合物例えばアセチルアセトナトキレー
ト、アルコキシド例えばプロポキシド、金属塩例えばカ
ルボン酸金属塩、または有機金属脂肪歳塩等があげられ
る。
The metal contained in the inorganic metal compound or the organic metal compound used in the present invention is beryllium, boron,
One or more selected from magnesium, aluminum, silicon, calcium, titanium, chromium, yttrium, zirconium, lanthanum, cerium, hafnium, and thorium. The inorganic metal compound or the organic metal compound containing these metals forms a coating layer of a metal oxide or a metal hydrate by being hydrolyzed or thermally decomposed. Examples include complex compounds such as acetylacetonatochelates, alkoxides such as propoxide, metal salts such as metal carboxylate, and organic metal fatty acid salts.

このような被覆層を形成するとき、有機金属化合物が
常温で液体の場合はそのまま適用し、固体状または粉末
状の場合は加熱溶融して適用する。またいずれの場合に
おいても溶媒に溶解させておいても良い。その溶媒とし
ては、アルコール類、ベンゼンがあり、被覆の助剤とし
てはアセト酢酸類、エチレングリコール類が望ましい。
無機金属化合物の場合はゾルまたはゲル状にした後、水
または溶媒に溶かして酸化銅の表面に被覆すれば良い。
When forming such a coating layer, when the organometallic compound is liquid at room temperature, it is applied as it is, and when it is solid or powdered, it is applied by heating and melting. In any case, it may be dissolved in a solvent. Examples of the solvent include alcohols and benzene, and preferred coating aids include acetoacetic acids and ethylene glycols.
In the case of an inorganic metal compound, it may be formed into a sol or gel, then dissolved in water or a solvent, and coated on the surface of copper oxide.

さらに、本発明で用いられる加水分解処理は、水分を
含む空気中または水分を含む雰囲気ガス例えばアルゴ
ン、水素中で実施でき、表面被覆層を金属水酸化物また
は金属水和物とした後、加熱処理で金属酸化物に変え
る。この時の加水分解の速度が大きい場合は生成する金
属酸化物も大きくなり理想的な強度がえられないので、
被覆の助剤等を添加して反応速度を遅くする必要があ
る。また一部のアセチルアセトナートのように加熱処理
の加熱速度や温度が高いときに粗大化するものは比較的
低温度で徐々に熱処理する必要がある。一方熱分解処理
の温度は100℃以上であれば良い。この場合も上記と同
様、化合物によっては熱分解の速度を遅くするように温
度を調節する必要がある。
Furthermore, the hydrolysis treatment used in the present invention can be carried out in air containing moisture or in an atmosphere gas containing moisture, such as argon or hydrogen, and after heating the surface coating layer to a metal hydroxide or metal hydrate, Convert to metal oxide by processing. If the rate of hydrolysis at this time is high, the generated metal oxide also becomes large, and the ideal strength cannot be obtained.
It is necessary to add a coating aid or the like to reduce the reaction rate. In addition, those which become coarse when the heating rate or temperature of the heat treatment is high, such as some acetylacetonates, need to be gradually heat-treated at a relatively low temperature. On the other hand, the temperature of the thermal decomposition treatment may be 100 ° C. or higher. In this case as well, it is necessary to adjust the temperature so as to slow down the rate of thermal decomposition depending on the compound as described above.

分散粒子の混合割合は、少なすぎると合金の強度が得
られず、また多すぎると導電率の低下が著しくなり、さ
らに二次加工が困難となるため、還元後の銅合金に対し
て1〜7体積%含まれるようにするのが好適である。ま
た、これらのうちで酸化アルミニウムがもっとも分散粒
子として適しており、少ない添加量で電気伝導度をおと
すことなく、高い強度のものを得ることができる。この
酸化アルミニウム分散の場合の最適含有量は還元後の銅
合金に対して1.5〜6体積%であり、この範囲より添加
量が少ないと0.2%耐力が40Kg/mm2未満となり、またこ
の範囲より添加量が多いと導電率が85%IACS未満となっ
てしまう。
If the mixing ratio of the dispersed particles is too small, the strength of the alloy cannot be obtained, and if it is too large, the decrease in conductivity becomes remarkable, and further secondary processing becomes difficult. It is preferable to contain 7% by volume. Of these, aluminum oxide is most suitable as the dispersed particles, and a high strength can be obtained with a small amount of addition without lowering the electrical conductivity. The optimum content in the case of this aluminum oxide dispersion is 1.5 to 6% by volume with respect to the copper alloy after reduction. If the addition amount is less than this range, the 0.2% proof stress will be less than 40 kg / mm 2. If the amount of addition is large, the electrical conductivity will be less than 85% IACS.

本発明においては、金属水酸化物または金属水和物か
らなる被覆層を表面に有する酸化銅粉末を混合する方法
としては、ボールミル,アトライターなど公知の混合装
置を使用することができるが、容器およびボールは非金
属製であることが望ましい。金属製のものを用いた場
合、混合物中に鉄などの金属が混入して、得られる合金
の電気伝導度を著しく低下させるおそれがあるためであ
る。
In the present invention, as a method of mixing the copper oxide powder having a coating layer made of a metal hydroxide or a metal hydrate on the surface, a known mixing device such as a ball mill or an attritor can be used. And the ball is desirably non-metallic. This is because, when a metal material is used, a metal such as iron may be mixed into the mixture and the electric conductivity of the obtained alloy may be significantly reduced.

そしてこの混合物は酸化銅のみを選択的に還元するよ
うに還元ポテンシャルが調整された雰囲気中で還元した
後、成形し、還元性あるいは不活性雰囲気中で焼結す
る。還元した後、成形と焼結とを同時に行うホットプレ
スを施しても良い。また、還元前の混合物を成形し、酸
化銅のみを選択的に還元するように還元ポテンシャルが
調整された雰囲気中で還元と焼結とを同時に行うことも
でき、還元前の混合物を型に入れ酸化銅のみを選択的に
還元するように還元ポテンシャルが調整された雰囲気中
でホットプレスを施すことにより、成形、還元、焼結を
同時に行うこともできる。
Then, the mixture is reduced in an atmosphere in which a reduction potential is adjusted so as to selectively reduce only copper oxide, then molded, and sintered in a reducing or inert atmosphere. After reduction, hot pressing for simultaneously performing molding and sintering may be performed. Alternatively, the mixture before reduction can be formed, and reduction and sintering can be performed simultaneously in an atmosphere in which the reduction potential is adjusted so that only copper oxide is selectively reduced. By performing hot pressing in an atmosphere in which the reduction potential is adjusted so as to selectively reduce only copper oxide, molding, reduction, and sintering can be performed simultaneously.

こうして得られる分散強化型銅合金はそのまま使用す
るか、あるいは必要に応じて機械加工や熱処理等の二次
加工を行なって使用する。こうして得られた本発明によ
る分散強化型銅合金は、母相中に他の元素が固溶してい
ないので、室温における電気伝導度が高いだけでなく、
低温における電気伝導度も内部酸化法による分散強化型
銅合金などに比べ極めて高い。また、本発明の分散強化
型銅合金は二次加工性においても優れている。
The dispersion-strengthened copper alloy thus obtained may be used as it is, or may be subjected to secondary processing such as machining or heat treatment if necessary. The dispersion-strengthened copper alloy according to the present invention thus obtained has high electrical conductivity at room temperature because other elements are not dissolved in the matrix,
The electric conductivity at a low temperature is extremely higher than that of a dispersion-strengthened copper alloy or the like by an internal oxidation method. Further, the dispersion-strengthened copper alloy of the present invention is also excellent in secondary workability.

以下に本発明を更に詳しく実施例によって説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

(実施例) 実施例1 85℃の水中にアルミニウムイソアミラートを滴下して
加水分解し、AlO(OH)ゲルを得た。この5wt%を平均粒
径1μmの酸化第二銅粉末に被覆した。これを115℃で
乾燥した後、窒素気流中1時間370℃で熱処理をして酸
化第二銅粉末の表面にAl2O3の非晶質被覆相を形成させ
た。次いで、ボールミルで50時間粉砕混合し、これを90
0℃の純水素気流中で1時間保持した後冷却して分散強
化型合金粉末を得た。この粉末をカーボン型中に充填
し、真空中860℃の温度で400Kg/cm2の圧力をかけるホッ
トプレス成形を行なって分散強化型銅合金のビレットを
得た。得られたビレットの室温における電気伝導度を測
定した。またこのビレットから引張試験片を切り出し、
室温における0.2%耐力、引張り強さ、引張り伸びを測
定した。それらの結果を表に示す。
(Example) Example 1 Aluminum isoamylate was dropped into water at 85 ° C and hydrolyzed to obtain an AlO (OH) gel. This 5 wt% was coated on cupric oxide powder having an average particle size of 1 μm. This was dried at 115 ° C. and then heat-treated at 370 ° C. for 1 hour in a nitrogen stream to form an amorphous coating phase of Al 2 O 3 on the surface of the cupric oxide powder. Then, the mixture was ground and mixed in a ball mill for 50 hours.
After maintaining for 1 hour in a pure hydrogen gas stream at 0 ° C., the mixture was cooled to obtain a dispersion strengthened alloy powder. This powder was filled in a carbon mold and subjected to hot press molding in vacuum at a temperature of 860 ° C. and a pressure of 400 kg / cm 2 to obtain a billet of a dispersion-strengthened copper alloy. The electrical conductivity of the obtained billet at room temperature was measured. Also, a tensile test piece was cut out from this billet,
The 0.2% proof stress, tensile strength and tensile elongation at room temperature were measured. The results are shown in the table.

実施例2 四塩化ジルコニウムをアンモニア溶液により加水分解
してゾル状のZr(OH)とし、これを平均粒径0.8μm
の酸化第一銅粉末に被覆した。これを、570℃のアルゴ
ン気流中で45分間熱処理して後、アトライターで3時間
混合粉砕し、さらに900℃の純水素気流中で1時間保持
した後冷却して分散強化型銅合金粉末を得た。これをプ
レス成形したあと950℃で1時間焼結し、押出し加工を
行って、分散強化型銅合金のビレットを得た。以下実施
例1と同様の測定を行った。その結果を表に示す。
Example 2 Zirconium tetrachloride is hydrolyzed with an ammonia solution to form sol-form Zr (OH) 4 , which has an average particle diameter of 0.8 μm.
Cuprous oxide powder. This is heat-treated in an argon gas stream at 570 ° C. for 45 minutes, mixed and pulverized with an attritor for 3 hours, further kept in a pure hydrogen gas stream at 900 ° C. for 1 hour, and then cooled to obtain a dispersion-strengthened copper alloy powder. Obtained. This was press-molded, sintered at 950 ° C. for 1 hour, and extruded to obtain a billet of a dispersion-strengthened copper alloy. Hereinafter, the same measurement as in Example 1 was performed. The results are shown in the table.

実施例3 セルウムアセチルアセトナートをアセト酢酸エチルに
3wt%溶解させて、平均粒径5μmの酸化第二銅粉末に
被覆した後、110℃のアルゴン気流中で加水分解し、さ
らに480℃の窒素気流中で1時間加熱と振動型ボールミ
ルの50時間粉砕混合の工程を経て、900℃の純水素気流
中で1時間保持し、その後冷却して分散化型銅合金粉末
を得た。この粉末を真空中900℃,400kg/cm2の圧力で、
カーボン型を用いたホットプレス成形を行なって分散強
化型銅合金のビレットを得た。以下実施例1と同様の測
定を行った。その結果を表に示す。
Example 3 Cellum acetylacetonate to ethyl acetoacetate
3 wt% is dissolved and coated on a cupric oxide powder having an average particle size of 5 μm, hydrolyzed in an argon stream at 110 ° C., and further heated in a nitrogen stream at 480 ° C. for 1 hour and a vibration type ball mill for 50 hours. After the pulverization and mixing process, the mixture was kept in a pure hydrogen gas stream at 900 ° C. for 1 hour, and then cooled to obtain a dispersed copper alloy powder. This powder is placed in a vacuum at 900 ° C under a pressure of 400 kg / cm 2 ,
Hot press molding using a carbon mold was performed to obtain a billet of a dispersion strengthened copper alloy. Hereinafter, the same measurement as in Example 1 was performed. The results are shown in the table.

実施例4 イットリウムイソプロポキシドをベンゼンに溶かし、
平均粒径5μmの酸化第二銅粉末に被覆した後、室温で
加水分解し、被覆層にY2(OH)を生成させ、さらに48
0℃の窒素気流中で1時間加熱とアトライターの5時間
粉砕混合を実施した。これを、900℃の純水素気流中で
1時間保持して還元した後冷却して分散強化型銅合金粉
末を得た。この粉末を真空中750℃のHIP成形後、押出し
加工を行って、分散強化型銅合金のビレットを得た。以
下実施例1と同様の測定を行った。その結果を表に示
す。
Example 4 Yttrium isopropoxide was dissolved in benzene,
After coating on cupric oxide powder having an average particle size of 5 μm, it is hydrolyzed at room temperature to form Y 2 (OH) 3 on the coating layer.
Heating was performed in a nitrogen stream at 0 ° C. for 1 hour, and pulverization and mixing of the attritor were performed for 5 hours. This was held in a pure hydrogen stream at 900 ° C. for 1 hour for reduction and then cooled to obtain a dispersion-strengthened copper alloy powder. This powder was subjected to HIP molding at 750 ° C. in a vacuum and then extruded to obtain a billet of a dispersion-strengthened copper alloy. Hereinafter, the same measurement as in Example 1 was performed. The results are shown in the table.

実施例5 アルミニウムプロポキシドを石油エーテルに溶解して
平均粒径5μmの酸化第二銅粉末に被覆した後、200℃
で加水分解し、さらに480℃の窒素気流中で1時間加熱
とボールミルの50時間粉砕混合を実施した。これを、90
0℃の純水素気流中で1時間保持して還元した後冷却し
て分散強化型銅合金粉末を得た。この粉末を真空中750
℃のHIP成形後、押出し加工を行って、分散強化型銅合
金のビレットを得た。以下実施例1と同様の測定を行っ
た。その結果を表に示す。
Example 5 Aluminum propoxide was dissolved in petroleum ether and coated on a cupric oxide powder having an average particle size of 5 μm.
And heated in a nitrogen stream at 480 ° C. for 1 hour and pulverized and mixed in a ball mill for 50 hours. This is 90
The resultant was held in a pure hydrogen gas stream at 0 ° C. for 1 hour for reduction and then cooled to obtain a dispersion-strengthened copper alloy powder. 750 this powder in vacuum
After HIP molding at ℃, extrusion was performed to obtain a billet of a dispersion strengthened copper alloy. Hereinafter, the same measurement as in Example 1 was performed. The results are shown in the table.

比較例1 市販の内部酸化法により製造されたアルミナ分散強化
型銅合金(Al2O3含有量3.0体積%)のビレットの電気伝
導度を測定した。さらに、実施例1と同様、ビレットか
ら引張試験片を切り出し、室温における0.2%耐力、引
張り強さ、引張り伸びを測定した。それらの結果を表に
示す。
Comparative Example 1 The electrical conductivity of a billet of an alumina dispersion strengthened copper alloy (Al 2 O 3 content: 3.0% by volume) manufactured by a commercially available internal oxidation method was measured. Further, as in Example 1, a tensile test piece was cut out from the billet, and 0.2% proof stress, tensile strength, and tensile elongation at room temperature were measured. The results are shown in the table.

比較例2 母相の原料として、平均粒径5μmの電解銅粉を用
い、分散粒子としてAl2O3粒子を用いた。これらをAl2O3
製の容器とボールからなるボールミル中で4日間混合粉
砕した。次にこの混合物をArとH2(混合比5:1,流量3
/min)の混合ガス気流中で900℃,1時間の還元を行った
後、真空中900℃,400kg/cm2の圧力で、カーボン型を用
いたホットプレス成形を行なって分散強化型銅合金のビ
レットを得た。以下実施例1と同様の測定を行った。そ
の結果を表に示す。
Comparative Example 2 Electrolytic copper powder having an average particle size of 5 μm was used as a raw material of a mother phase, and Al 2 O 3 particles were used as dispersed particles. These are Al 2 O 3
Was mixed and pulverized for 4 days in a ball mill composed of a container and balls. This mixture was then mixed with Ar and H 2 (mixing ratio 5: 1, flow rate 3
/ min) 900 ° C. in a mixed gas flow of, after the reduction of 1 hour, 900 ° C. in a vacuum, at a pressure of 400 kg / cm 2, dispersion strengthened copper alloy by performing hot press molding using carbon-type I got a billet. Hereinafter, the same measurement as in Example 1 was performed. The results are shown in the table.

比較例3 実施例1と同様な処理により得たAlO(OH)ゲルを、
平均粒径2μmの電解銅粉に被覆した。これを115℃で
乾燥した後、窒素気流中1時間370℃で熱処理をして銅
粉末の表面にAl2O3の非晶質被覆相を形成させた。次い
で、ボールミルで50時間粉砕混合し、これを900℃の純
水素気流中で1時間保持し、冷却後分散強化型銅合金粉
末を得た。この粉末をカーボン型中に充填し、真空中86
0℃の温度で、400kg/cm2の圧力をかけるホップレス成形
を行なって分散強化型銅合金のビレットを得た。得られ
たビレットの室温における電気伝導度を測定した。さら
にビレットから引張試験片を切り出し、室温における0.
2%耐力、引張り強さ、引張り伸びを測定した。それら
の結果を表に示す。
Comparative Example 3 AlO (OH) gel obtained by the same treatment as in Example 1 was
It was coated with electrolytic copper powder having an average particle size of 2 μm. This was dried at 115 ° C. and then heat-treated at 370 ° C. for 1 hour in a nitrogen stream to form an amorphous coating phase of Al 2 O 3 on the surface of the copper powder. Next, the mixture was pulverized and mixed in a ball mill for 50 hours, and the mixture was kept in a pure hydrogen gas stream at 900 ° C. for 1 hour. This powder is filled in a carbon mold, and
At a temperature of 0 ° C., hopless forming was performed under a pressure of 400 kg / cm 2 to obtain a billet of a dispersion-strengthened copper alloy. The electrical conductivity of the obtained billet at room temperature was measured. Further, a tensile test piece was cut out from the billet, and the tensile test piece was removed at room temperature.
The 2% proof stress, tensile strength and tensile elongation were measured. The results are shown in the table.

表からわかるように、本発明によれば高い電気伝導度
と高い機械的強度とをともに備えた分散強化型銅合金が
得られる。
As can be seen from the table, according to the present invention, a dispersion strengthened copper alloy having both high electric conductivity and high mechanical strength can be obtained.

〔発明の効果〕 本発明によれば高い電気伝導度と高い機械的強度とを
兼ねて備えた分散強化型銅合金を低いコストで製造する
ことができるため、その工業的価値は極めて大である。
[Effects of the Invention] According to the present invention, a dispersion-strengthened copper alloy having both high electrical conductivity and high mechanical strength can be manufactured at low cost, and therefore, its industrial value is extremely large. .

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一種以上の無機金属化合物または有機金属
化合物を加水分解または熱分解することによって得られ
る金属水酸化物または金属水和物からなる被覆層を表面
に有する酸化銅粉末を機械的に粉砕混合し、加熱処理に
よって前記金属水酸化物または前記金属水和物を酸化物
の分散粒子に換えた後、前記酸化銅を選択還元して粉末
化し、得られた粉末を成型加工することを特徴とする分
散強化型銅合金の製造方法。
1. A copper oxide powder having a coating layer made of a metal hydroxide or metal hydrate obtained by hydrolyzing or pyrolyzing one or more inorganic metal compounds or organometallic compounds on a surface thereof is mechanically prepared. After pulverizing and mixing and converting the metal hydroxide or the metal hydrate into dispersed particles of an oxide by heat treatment, the copper oxide is selectively reduced to powder, and the obtained powder is molded and processed. A method for producing a dispersion strengthened copper alloy.
【請求項2】無機金属化合物または有機金属化合物に含
まれる金属が、ベリリウム,硼素,マグネシウム,アル
ミニウム,珪素,カルシュウム,チタニウム,クロム,
イットリウム,ジルコニウム,ランタン,セリウム,ハ
フニュウム,トリウムから選択された1種または2種以
上であり、酸化物となった分散粒子を合計して還元後の
銅合金において1〜7体積%含有させることを特徴とす
る請求項1記載の分散強化型銅合金の製造方法。
2. The method according to claim 1, wherein the metal contained in the inorganic metal compound or the organic metal compound is beryllium, boron, magnesium, aluminum, silicon, calcium, titanium, chromium, or the like.
One or more selected from yttrium, zirconium, lanthanum, cerium, hafnium, and thorium, wherein the total of the dispersed particles that have become oxides is included in the reduced copper alloy in an amount of 1 to 7% by volume. The method for producing a dispersion-strengthened copper alloy according to claim 1.
【請求項3】分散粒子が酸化アルミニウムであって、還
元後の銅合金において1.5〜6体積%含有させることを
特徴とする請求項2記載の分散強化型銅合金の製造方
法。
3. The method for producing a dispersion-strengthened copper alloy according to claim 2, wherein the dispersed particles are aluminum oxide and are contained in the copper alloy after reduction in an amount of 1.5 to 6% by volume.
JP26933288A 1988-10-27 1988-10-27 Manufacturing method of dispersion strengthened copper alloy Expired - Lifetime JP2637192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26933288A JP2637192B2 (en) 1988-10-27 1988-10-27 Manufacturing method of dispersion strengthened copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26933288A JP2637192B2 (en) 1988-10-27 1988-10-27 Manufacturing method of dispersion strengthened copper alloy

Publications (2)

Publication Number Publication Date
JPH02118036A JPH02118036A (en) 1990-05-02
JP2637192B2 true JP2637192B2 (en) 1997-08-06

Family

ID=17470889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26933288A Expired - Lifetime JP2637192B2 (en) 1988-10-27 1988-10-27 Manufacturing method of dispersion strengthened copper alloy

Country Status (1)

Country Link
JP (1) JP2637192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757522B2 (en) * 2005-04-06 2011-08-24 フクビ化学工業株式会社 Insulation board
DE102008035275A1 (en) * 2008-07-29 2010-02-11 Siemens Aktiengesellschaft Rotor with superconducting rotor winding and the rotor winding surrounding uniform envelope

Also Published As

Publication number Publication date
JPH02118036A (en) 1990-05-02

Similar Documents

Publication Publication Date Title
CN101250639B (en) Novel nanometer phase dispersion strengthening cuprum as well as preparation method and product producing technique thereof
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
CN109576529B (en) High-performance dispersion copper alloy and preparation method thereof
CN1940116A (en) Zero-sintering and hydrogen-expansion nano-diffusion reinforced Cu-Al2O3 alloy and its production
CN114592138B (en) Nano alumina particle reinforced copper-based composite material and preparation method thereof
JP2011202208A (en) Method of producing metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
JP2637192B2 (en) Manufacturing method of dispersion strengthened copper alloy
CN106521205A (en) Method for preparing aluminum oxide dispersion strengthening copper-based composite material
US3533760A (en) Dispersion strengthened nickel-chromium alloy composition
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
JPH03159902A (en) Multicomponent oxide for production of oxide superconductor and production of oxide superconductor
JPH0892672A (en) Production of dispersion strengthened alloy
US20220118515A1 (en) Powders based on niobium-tin compounds for manufacturing superconducting components
JPH0379401B2 (en)
JP2014165260A (en) Method of producing thermoelectric conversion material
JPS6148573B2 (en)
JP5003648B2 (en) Method for producing oxide-coated copper fine particles
JP3403500B2 (en) Method for producing aluminum nitride powder and aluminum nitride sintered body
JPH0832597B2 (en) Method for manufacturing aluminum nitride sintered body
Hyde et al. Preparation of dense beryllium oxide
JPH06145844A (en) Production of dispersed grain-reinforced copper alloy
JPS61183108A (en) Preparation of fine powder of aluminium nitride
CN115927894B (en) Aluminum alloy material for automobile heat dissipation parts and preparation method thereof
JPS6112801A (en) Production of powder for dispersion-strengthened alloy
JPS6376774A (en) Heat resistant high electrical conductivity copper alloy clad material