JPH06145844A - Production of dispersed grain-reinforced copper alloy - Google Patents

Production of dispersed grain-reinforced copper alloy

Info

Publication number
JPH06145844A
JPH06145844A JP29347792A JP29347792A JPH06145844A JP H06145844 A JPH06145844 A JP H06145844A JP 29347792 A JP29347792 A JP 29347792A JP 29347792 A JP29347792 A JP 29347792A JP H06145844 A JPH06145844 A JP H06145844A
Authority
JP
Japan
Prior art keywords
copper
oxide
coating layer
powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29347792A
Other languages
Japanese (ja)
Inventor
Toronron Tan
トロンロン タン
Takanobu Nishimura
隆宣 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29347792A priority Critical patent/JPH06145844A/en
Publication of JPH06145844A publication Critical patent/JPH06145844A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a dispersed grain-reinforced copper alloy low in electric and thermal resistance and excellent in mechanical characteristics by plastic- working a compact to collapse the oxide coating layer into fine particles and dispersing the particles in the copper parent phase. CONSTITUTION:An inorg. or organometallic compd. is hydrolyzed or thermally decomposed to provide a coating layer of the obtained metal oxide or hydrate, and a copper oxide powder is constituted with the particle diameter preadjusted. The powder is heattreated to convert the metal hydrate to the oxide, and an oxide coating layer is obtained. The copper oxide powder alone is selectively reduced, the reduced powder is compacted. The compact is plastic-worked to collapse the oxide coating layer into fine particles, and the particles are dispersed in the copper parent phase. A dispersed grain-reinforced copper alloy improved in strength and rigidity without lowering the electric conductivity and thermal conductivity is produced in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒子分散強化型銅合金
の製造方法に係り、特に電気伝導率、熱伝導率を損うこ
となく、強度および剛性を改善した粒子分散強化型銅合
金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a particle dispersion strengthened copper alloy, and more particularly to a particle dispersion strengthened copper alloy having improved strength and rigidity without impairing electrical conductivity and thermal conductivity. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】近年、熱交換器、コイル、半導体用リー
ドフレーム、溶接用電極などの構成材料として、より高
い熱伝導率と高い機械的強度とを兼ね備えた銅合金への
要望が高まっている。しかしながら、本来、銅合金にお
ける熱伝導率と強度とは相反する特性であり、この両特
性を両立させることは困難である。
2. Description of the Related Art In recent years, there has been an increasing demand for copper alloys having higher thermal conductivity and higher mechanical strength as constituent materials for heat exchangers, coils, semiconductor lead frames, welding electrodes and the like. . However, the thermal conductivity and the strength of the copper alloy are originally contradictory characteristics, and it is difficult to make both of these characteristics compatible.

【0003】ところが、この熱伝導と強度とをある程度
両立させることが可能な銅合金として、金属酸化物など
の微細粒子を銅の母相に分散させた分散強化型銅合金が
実用化されている。
However, as a copper alloy capable of achieving both heat conduction and strength to some extent, a dispersion-strengthened copper alloy in which fine particles such as metal oxides are dispersed in a copper matrix phase has been put into practical use. .

【0004】従来、この種の粒子分散強化型銅合金を製
造する方法としては、金属粉末または金属酸化物粉末の
表面に、無機金属化合物または有機金属化合物から成る
被覆層を形成し、さらに機械的に粉砕混合した後に成形
加工する方法や前記の酸化金属粉末を還元した後に成形
加工する方法などが採用されている。
Conventionally, as a method for producing this kind of particle dispersion strengthened copper alloy, a coating layer made of an inorganic metal compound or an organic metal compound is formed on the surface of a metal powder or a metal oxide powder, and further mechanically. A method of forming and processing after pulverizing and mixing, and a method of forming and processing after reducing the metal oxide powder are adopted.

【0005】例えば、特開昭61−12840号公報お
よび特開昭62−109906号公報には、無機金属化
合物または有機金属化合物から成る被覆層を表面に有す
る金属粉末を粉砕処理した後に成形加工して粒子分散強
化型銅合金を形成する方法が開示されている。
For example, in Japanese Patent Laid-Open Nos. 61-12840 and 62-109906, metal powder having a coating layer composed of an inorganic metal compound or an organometallic compound on the surface is crushed and then molded. A method for forming a particle dispersion strengthened copper alloy is disclosed.

【0006】一方、特願昭63−269332号明細書
には、無機金属化合物または有機金属化合物から成る被
覆層を表面に有する酸化銅粉末を機械的に粉砕混合し、
加熱処理によって金属水酸化物または金属水和物を酸化
物の分散粒子に変えてから酸化銅粉末を選択還元した後
に、成形加工することにより粒子分散強化型銅合金を製
造する方法が開示されている。
On the other hand, in Japanese Patent Application No. 63-269332, copper oxide powder having a coating layer made of an inorganic metal compound or an organic metal compound on its surface is mechanically pulverized and mixed,
Disclosed is a method for producing a particle dispersion-strengthened copper alloy by subjecting a copper hydroxide powder to selective reduction after changing a metal hydroxide or a metal hydrate into dispersed particles of an oxide by heat treatment, and then molding. There is.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記特
開昭61−12840号公報および特開昭62−109
906号公報に開示された分散型強化型合金の製造方法
によれば、出発原料である金属粉末を機械的に粉砕混合
しているため、金属粉末が塑性変形し易く、均一な分散
状態が得にくくなり偏析を生じ易くなり、合金の強度特
性等が低下する問題点がある。また粉砕混合工程におい
て金属粉末が酸化し易いため、高強度で高電気伝導率を
有する合金が得にくくなる問題点があった。
However, the above-mentioned Japanese Patent Laid-Open Nos. 61-12840 and 62-109.
According to the method for manufacturing a dispersion-strengthened alloy disclosed in Japanese Patent No. 906, since the metal powder as the starting material is mechanically pulverized and mixed, the metal powder is easily plastically deformed and a uniform dispersion state is obtained. There is a problem that it becomes difficult to cause segregation and the strength characteristics of the alloy are deteriorated. Further, since the metal powder is easily oxidized in the pulverizing and mixing step, it is difficult to obtain an alloy having high strength and high electric conductivity.

【0008】一方、特願昭63−269332号明細書
に開示された粒子分散強化型銅合金の製造方法によれ
ば、例えば研究論文「粉体および粉末冶金」第34巻第
6号、259〜263頁に記述されているように、温度
900℃の水素ガスによる還元工程において、微細な酸
化物の分散粒子が、銅粉末相互間の接触部における焼結
による銅の結晶粒の成長を抑制する作用を有していない
ため、銅の結晶粒の粗大化が進行し易く銅合金の強度低
下が避けられないという問題点もあった。
On the other hand, according to the method for producing a particle dispersion strengthened copper alloy disclosed in Japanese Patent Application No. 63-269332, for example, research paper “Powder and powder metallurgy”, Vol. 34, No. 6, 259- As described on page 263, in the reduction process with hydrogen gas at a temperature of 900 ° C., fine oxide dispersed particles suppress the growth of copper crystal grains due to sintering at the contact portions between copper powders. Since it has no action, there is also a problem that coarsening of copper crystal grains is apt to proceed and a decrease in strength of the copper alloy cannot be avoided.

【0009】本発明は上記の課題を解決するためになさ
れたものであり、電気伝導率および熱伝導率を損うこと
なく強度および剛性を改善した粒子分散強化型銅合金の
製造方法を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a method for producing a particle dispersion strengthened copper alloy having improved strength and rigidity without impairing electrical conductivity and thermal conductivity. The purpose is to

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
本発明に係る粒子分散強化型銅合金の製造方法は、1種
以上の無機金属化合物または有機金属化合物を加水分解
または熱分解することによって得られる金属水酸化物ま
たは金属水和物から成る被覆層を表面に有し粒子径が予
め調整された酸化銅粉末を、加熱処理することによって
前記金属水酸化物または金属水和物を酸化物に変換して
酸化物被覆層とした後に、前記酸化銅粉末のみを選択還
元し、得られた還元粉末を成形して成形体とし、得られ
た成形体を塑性加工することにより酸化物被覆層を圧潰
して微細粒子とし、この粒子を銅母相中に分散させるこ
とを特徴とする。
In order to achieve the above object, the method for producing a particle dispersion strengthened copper alloy according to the present invention comprises the steps of hydrolyzing or thermally decomposing one or more inorganic metal compounds or organometallic compounds. A copper oxide powder having a coating layer composed of the obtained metal hydroxide or metal hydrate on the surface and having a particle size adjusted in advance, is heat treated to form an oxide of the metal hydroxide or metal hydrate. After being converted into an oxide coating layer, the copper oxide powder alone is selectively reduced, the resulting reduced powder is molded into a molded body, and the resulting molded body is plastically processed to form an oxide coating layer. Is crushed into fine particles, and the particles are dispersed in the copper matrix.

【0011】また本発明方法において使用する無機金属
化合物または有機金属加工物を構成する金属は、Al,
Ca,Cu,Fe,Si,Mo,W,Ag,Au,N
b,V,Zr,Ta,Cr,Yおよび希土類元素から選
択される少なくとも1種である。
Further, the metal constituting the inorganic metal compound or the organometallic processed product used in the method of the present invention is Al,
Ca, Cu, Fe, Si, Mo, W, Ag, Au, N
It is at least one selected from b, V, Zr, Ta, Cr, Y and rare earth elements.

【0012】これらの金属を含む無機金属化合物または
有機金属化合物の具体例としてはアルミニウムイソアミ
ラート、塩化アルミニウム、塩化ジルコニウム、塩化イ
ットリウムや塩化セリウムなどの希土類元素塩化物、ア
セチルアセトナトキレート等のキレート化合物、メトキ
シド等はのアルコキシド、オクチル酸金属塩などの各種
金属塩、有機金属脂肪酸等があり、これらの無機または
有機金属化合物は、加水分解または熱分解によって金属
水酸化物または金属水和物とされる。
Specific examples of the inorganic or organic metal compounds containing these metals include aluminum isoamylate, aluminum chloride, zirconium chloride, rare earth element chlorides such as yttrium chloride and cerium chloride, and chelates such as acetylacetonato chelate. Compounds, alkoxides such as methoxide, various metal salts such as metal octylate, organometallic fatty acids, etc., these inorganic or organometallic compounds, by hydrolysis or thermal decomposition with metal hydroxide or metal hydrate To be done.

【0013】本発明に係る粒子分散強化型銅合金の母相
の原料となる酸化銅粉末としては、酸化第一銅(Cu2
O)、酸化第二銅(CuO)および非化学量論的な酸化
銅(CuOx )がある。この酸化銅粉末は酸化物粒子の
均一分散を促進する観点から5μm以下、好ましくは1
μm以下、さらに好ましくは0.05μm以下に設定す
ることが望ましく、その平均粒径も0.01〜0.02
μm程度に微細なものを使用するとよい。
The copper oxide powder used as the raw material of the mother phase of the particle dispersion strengthened copper alloy according to the present invention is cuprous oxide (Cu 2
O), cupric oxide (CuO) and non-stoichiometric copper oxide (CuO x ). This copper oxide powder is 5 μm or less, preferably 1 from the viewpoint of promoting uniform dispersion of oxide particles.
It is desirable to set it to be less than or equal to μm, more preferably less than or equal to 0.05 μm, and its average particle size is also 0.01 to 0.02.
It is advisable to use a material as fine as about μm.

【0014】酸化銅粉末は予め、ボールミル、アトライ
ターのような粉砕混合装置を使用して上記粒径範囲に調
整しておくことが必要である。この際、粉砕混合装置の
金属製容器およびボール等からFe等の金属成分が原料
粉末中に混入することを防止するため、容器およびボー
ルは非金属製のものを使用することが望ましい。混入し
た不純物金属元素は粒子分散強化型銅合金の熱伝導度を
著しく低下させる場合があるからである。
The copper oxide powder must be adjusted in advance to the above particle size range by using a crushing and mixing device such as a ball mill or an attritor. At this time, it is desirable to use non-metal containers and balls in order to prevent metal components such as Fe from being mixed into the raw material powder from the metal containers and balls of the crushing and mixing apparatus. This is because the mixed impurity metal element may significantly reduce the thermal conductivity of the particle dispersion strengthened copper alloy.

【0015】上記酸化銅粉末の表面に形成される金属水
酸化物または金属水和物から成る被覆層は、前記無機金
属化合物または有機金属化合物を加水分解または熱分解
した後に酸化銅粉末表面に被覆することにより形成され
る。
The coating layer made of a metal hydroxide or a metal hydrate formed on the surface of the copper oxide powder is coated on the surface of the copper oxide powder after hydrolyzing or thermally decomposing the inorganic metal compound or the organometallic compound. It is formed by

【0016】この被覆層を形成するに際して、その原料
が有機金属化合物であり、常温で液体である場合には、
そのまま酸化銅粉末に添加する一方、固体または粉末状
の場合は、加熱溶融して添加する。また被覆層の原料が
金属化合物である場合には、水または溶媒に溶かしてか
ら酸化銅粉末に添加し、その表面を被覆する。
When forming the coating layer, when the raw material is an organometallic compound and is a liquid at room temperature,
While it is added to the copper oxide powder as it is, when it is solid or powdery, it is heated and melted before addition. When the raw material of the coating layer is a metal compound, it is dissolved in water or a solvent and then added to the copper oxide powder to coat the surface thereof.

【0017】また熱分解して被覆層を形成する場合の温
度は100〜700℃程度が好ましい。特に酸化銅粉末
を加熱焼結する場合、遊離炭素が含有されていると、焼
結性が悪化するため、遊離炭素を充分に除去して金属水
酸化物または金属水和物にして表面被覆を実施する。
The temperature at which the coating layer is formed by thermal decomposition is preferably about 100 to 700 ° C. In particular, when heat-sintering copper oxide powder, if free carbon is contained, the sinterability deteriorates, so free carbon is sufficiently removed to form a metal hydroxide or metal hydrate for surface coating. carry out.

【0018】次に被覆層を形成した酸化銅粉末を加熱処
理することにより、金属水酸化物または金属水和物を酸
化物に変換し、被覆層を酸化物被覆層とする。この場合
の熱処理温度としては、金属の種類により異なるが20
0〜1000℃の範囲が好適である。また熱処理雰囲気
は、真空中、アルゴン、水素雰囲気または窒素雰囲気等
の非酸化性雰囲気とする。
Next, the copper oxide powder having the coating layer formed thereon is subjected to a heat treatment to convert the metal hydroxide or the metal hydrate into an oxide, thereby forming the coating layer as an oxide coating layer. The heat treatment temperature in this case varies depending on the type of metal, but is 20
The range of 0 to 1000 ° C. is suitable. The heat treatment atmosphere is a non-oxidizing atmosphere such as vacuum, argon, hydrogen atmosphere or nitrogen atmosphere.

【0019】この酸化物被覆層が後述する塑性加工時に
微細な分散粒子となり、銅母相内に分散する。この場
合、分散粒子の銅母相に対する含有量は0.5〜6体積
(vol)%が好適である。この含有量が0.5体積%未
満であると、最終製品である粒子分散強化型銅合金にお
ける0.2%耐力が40kgf/cm2 以上にすることが困難
になる。一方、含有量が6体積%を超える過量となる場
合には、最終製品の電気伝導度を85%IACS以上に
することができず、また熱伝導率も低下し、さらに2次
加工も困難となる。また分散粒子の粒径は、銅母相に均
一に分散させる観点から1μm以下、好ましくは0.0
5μm以下に設定することが望ましい。
This oxide coating layer becomes fine dispersed particles during the plastic working described later and is dispersed in the copper matrix. In this case, the content of the dispersed particles in the copper matrix is preferably 0.5 to 6 volume (vol)%. If this content is less than 0.5% by volume, it becomes difficult to achieve a 0.2% proof stress of 40 kgf / cm 2 or more in the final product, the particle dispersion strengthened copper alloy. On the other hand, when the content exceeds 6% by volume, the electric conductivity of the final product cannot be 85% IACS or more, the thermal conductivity is lowered, and the secondary processing is difficult. Become. The particle size of the dispersed particles is 1 μm or less, preferably 0.0, from the viewpoint of uniformly dispersing in the copper matrix.
It is desirable to set it to 5 μm or less.

【0020】このような分散粒子としては、後述する還
元処理における還元性雰囲気で酸化銅より化学的に安定
であるものであればいかなるものでもよい。このような
分散粒子としては、酸化アルミニウム、酸化ジルコニウ
ム、酸化チタン、酸化珪素、酸化マグネシウム、酸化イ
ットリウム、酸化クロム、窒化アルミニウム、窒化珪
素、窒化チタン、窒化硼素、炭化チタン、炭化硼素、硼
化チタンから選ばれる1種または2種以上の混合物を挙
げることができる。
Such dispersed particles may be any particles as long as they are more chemically stable than copper oxide in a reducing atmosphere in the reduction treatment described later. Examples of such dispersed particles include aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, magnesium oxide, yttrium oxide, chromium oxide, aluminum nitride, silicon nitride, titanium nitride, boron nitride, titanium carbide, boron carbide, and titanium boride. Examples thereof include one kind or a mixture of two or more kinds.

【0021】次に酸化物被覆層を形成した酸化銅粉末を
加熱炉に装填し、アルゴン/水素気流中または水素気流
中で600〜1000℃で加熱することにより、酸化銅
のみを選択的に還元し、酸化銅は銅単体となる。
Next, the copper oxide powder having the oxide coating layer is loaded into a heating furnace and heated at 600 to 1000 ° C. in an argon / hydrogen stream or a hydrogen stream to selectively reduce only the copper oxide. However, copper oxide becomes a simple substance of copper.

【0022】この還元工程において、酸化銅の還元が終
了するまでは混合粉末の全ての部分を銅と酸化銅の共晶
温度である1065℃を超えない温度に保持する必要が
ある。これは、混合粉末の一部でも1065℃を超える
と、分散粒子の存在しない銅母相領域が拡大して不均一
な組織となり、著しく強度が低下してしまうからであ
る。
In this reduction step, all the parts of the mixed powder must be maintained at a temperature not exceeding 1065 ° C., which is the eutectic temperature of copper and copper oxide, until the reduction of copper oxide is completed. This is because even if a part of the mixed powder exceeds 1065 ° C., the copper matrix phase region in which dispersed particles do not exist expands to form a non-uniform structure, resulting in a marked decrease in strength.

【0023】このように、混合粉末が1065℃を超え
ないためには、水素による酸化銅の還元反応では多量の
熱の発生を伴うため、加熱炉の加熱温度を低く保ち、か
つ還元性ガスの分圧と流量、必要に応じて還元性ガスに
混入されるその他のガスの分圧と流量とを制御して、還
元反応における単位時間当たりの熱の発生量を低く抑
え、混合粉末を1065℃を超えない温度に保持しつつ
還元を行なう。
As described above, if the mixed powder does not exceed 1065 ° C., a large amount of heat is generated in the reduction reaction of copper oxide with hydrogen, so that the heating temperature of the heating furnace is kept low and the reducing gas By controlling the partial pressure and the flow rate, and the partial pressure and the flow rate of the other gas mixed with the reducing gas as necessary, the heat generation amount per unit time in the reduction reaction is suppressed to a low level, and the mixed powder is heated to 1065 ° C. Reduction is performed while maintaining a temperature not exceeding

【0024】酸化銅の還元がほぼ終了した時点では酸化
銅の還元による多量の熱発生はもはや起きないため、還
元炉の加熱温度をある程度高めても、その温度が106
5℃以下であれば混合粉末の温度が1065℃を超える
ことはない。
At the time when the reduction of the copper oxide is almost completed, a large amount of heat is no longer generated due to the reduction of the copper oxide.
If the temperature is 5 ° C or lower, the temperature of the mixed powder will not exceed 1065 ° C.

【0025】上記のような還元工程の後、酸化物被覆層
を表面に形成した単体銅の粉末(還元粉末)を適宜の方
法で成形して、成形体を作製し、この成形体を還元性ま
たは不活性ガス雰囲気中で焼成して焼結することによ
り、銅母相の粒界部に分散粒子が分散した粒子分散強化
型銅合金が形成される。またホットプレス成形法によっ
てビレット状の成形体を形成し、しかる後にこの成形体
に対して、熱間押出し加工、冷間押出し加工、圧延加工
等の塑性加工を実施することにより酸化物被覆層が圧潰
されて粒径が0.005〜0.05μm程度のより微細
な分散粒子が形成され、結果として銅母相中に分散粒子
が均一に分散した粒子分散強化型銅合金が形成される。
After the reducing step as described above, a powder of simple copper (reducing powder) having an oxide coating layer formed on its surface is molded by an appropriate method to prepare a molded body, and the molded body is reduced. Alternatively, by firing and sintering in an inert gas atmosphere, a particle dispersion strengthened copper alloy in which dispersed particles are dispersed in the grain boundary portion of the copper matrix phase is formed. Further, a billet-shaped molded body is formed by a hot press molding method, and thereafter the molded body is subjected to plastic working such as hot extrusion processing, cold extrusion processing, and rolling processing to form an oxide coating layer. The particles are crushed to form finer dispersed particles having a particle diameter of about 0.005 to 0.05 μm, and as a result, a particle dispersion strengthened copper alloy in which the dispersed particles are uniformly dispersed in the copper matrix phase is formed.

【0026】[0026]

【作用】上記構成に係る粒子分散強化型銅合金の製造方
法によれば、表面に酸化物被覆層を形成した微細な酸化
銅粉末を選択還元した還元粉末を使用しているため、成
形焼結時に銅と酸化物および酸化物と酸化物との接触部
において酸化物被覆層がバリアとなって銅粒子の焼結や
粒界移動が起こらない。そのため銅粒子の成長がなく、
微細な銅結晶粒子の周りに酸化物が分散したままの状態
で成形体を形成できる。また酸化物被覆層は、その後の
塑性加工によって圧潰破壊され、微細な分散粒子とな
る。この微細粒子間の距離は極めて小さくなるため、電
気および熱に対する抵抗は小さく、電気伝導率および熱
伝導率を損うことなく、引張強さ、耐力等の機械的特性
に優れた粒子分散強化型銅合金を製造することができ
る。
According to the method for producing a particle dispersion-strengthened copper alloy having the above-mentioned structure, since the reduced powder obtained by selectively reducing the fine copper oxide powder having the oxide coating layer formed on the surface is used, the compacted sintering is performed. Occasionally, the oxide coating layer acts as a barrier at the contact between copper and oxide and between oxide and oxide, so that sintering of copper particles and grain boundary migration do not occur. Therefore, there is no growth of copper particles,
A compact can be formed in a state where the oxide is still dispersed around the fine copper crystal particles. Further, the oxide coating layer is crushed and destroyed by the subsequent plastic working, and becomes fine dispersed particles. Since the distance between these fine particles is extremely small, the resistance to electricity and heat is small, and the particle dispersion strengthened type with excellent mechanical properties such as tensile strength and proof stress without impairing the electrical and thermal conductivity. Copper alloys can be manufactured.

【0027】[0027]

【実施例】次に本発明の実施例について、より具体的に
説明する。
EXAMPLES Next, examples of the present invention will be described more specifically.

【0028】実施例1 平均粒径5μmの酸化第二銅粉末をボールミルを用いて
平均粒径0.05μmになるように粉砕して原料酸化銅
粉末の粒度を調整した。
Example 1 Cupric oxide powder having an average particle size of 5 μm was pulverized with a ball mill so that the average particle size was 0.05 μm, and the particle size of the raw material copper oxide powder was adjusted.

【0029】一方、85℃の蒸留水中にアルミニウムイ
ソアミラートを滴下し、加水分解を実施した。加水分解
生成物である金属水酸化物(AlO(OH)ゲル)は約
20A(オングストローム)の微細粒子から成ってい
た。
On the other hand, aluminum isoamylate was dropped into distilled water at 85 ° C. for hydrolysis. The hydrolysis product, metal hydroxide (AlO (OH) gel), consisted of about 20 A (angstroms) of fine particles.

【0030】次に上記加水分解生成物を、最終的にAl
2 3 (アルミナ)の純銅母相中における含有量が体積
率で2%になるように、平均粒径0.05μmの原料酸
化銅粉末に被覆しゲル状の被覆層を有する酸化銅粉末を
得た。
Next, the above hydrolysis product is finally mixed with Al.
A copper oxide powder coated with a raw copper oxide powder having an average particle diameter of 0.05 μm and having a gel-like coating layer so that the content of 2 O 3 (alumina) in the pure copper matrix phase is 2% in volume ratio. Obtained.

【0031】この被覆層を形成した酸化銅粉末を温度1
50℃で乾燥させた後に、大気中で温度700℃で2時
間加熱処理を実施して、非晶質Al2 3 から成る均一
な酸化物被覆層を有する酸化銅粉末を得た。
The copper oxide powder on which this coating layer was formed was heated to a temperature of 1
After drying at 50 ° C., heat treatment was carried out in air at a temperature of 700 ° C. for 2 hours to obtain a copper oxide powder having a uniform oxide coating layer made of amorphous Al 2 O 3 .

【0032】次に。非晶質Al2 3 の酸化物被覆層を
有する酸化銅粉末を、アルゴンと水素との混合ガス気流
中で温度200℃に達した時点から選択的に還元を開始
した。還元操作は、混合ガスを構成するアルゴンと水素
との混合比を体積比で5:1とし、混合ガスの流量は2
0℃、1気圧換算値で30l/min として実施した。そ
して酸化物被覆層を有する酸化銅粉末を、最終温度70
0℃にまで昇温し、この700℃に到達した後に、アル
ゴンの供給を停止して30l/min の純水素気流中で1
時間保持した後に、常温まで冷却することにより、酸化
銅粉末を全て純銅(還元粉末)に還元した。
Next. The copper oxide powder having the oxide coating layer of amorphous Al 2 O 3 was selectively reduced at a temperature of 200 ° C. in a mixed gas flow of argon and hydrogen. In the reduction operation, the volume ratio of the mixing ratio of argon and hydrogen constituting the mixed gas was 5: 1, and the flow rate of the mixed gas was 2: 1.
It was carried out at 0 ° C. and 1 atm converted value of 30 l / min. Then, the copper oxide powder having an oxide coating layer is added to a final temperature of 70
The temperature was raised to 0 ° C, and after reaching 700 ° C, the supply of argon was stopped and the temperature was adjusted to 1 in a pure hydrogen stream of 30 l / min.
After holding for a period of time, the copper oxide powder was reduced to pure copper (reduced powder) by cooling to room temperature.

【0033】次にアルミナ被覆層(酸化物被覆層)を有
する上記還元粉末を黒鉛製型に充填して、10-3Torrの
真空中で温度900℃、成形圧力400kgf/mm2 でホッ
トプレス成形を実施して直径100mm、長さ200mmの
ビレットを製造した。しかる後に、このビレットを使用
して熱間押出し加工を行ない、上記アルミナ被覆層を圧
潰することにより、微細な分散粒子を銅母相中に分散し
た実施例1に係る粒子分散強化型銅合金製の直径22mm
の丸棒を製造した。
Next, the above-mentioned reduced powder having an alumina coating layer (oxide coating layer) was filled in a graphite mold and hot-press molded at a temperature of 900 ° C. under a vacuum of 10 −3 Torr and a molding pressure of 400 kgf / mm 2. Was carried out to produce a billet having a diameter of 100 mm and a length of 200 mm. Then, hot extrusion was performed using this billet, and the alumina coating layer was crushed to make fine dispersed particles dispersed in a copper matrix. Diameter of 22mm
Round rod was manufactured.

【0034】得られた粒子分散強化型銅合金製の丸棒の
材料特性は表1に示す通りであり、電気伝導率は91.
5%IACS、熱伝導率は0.73cal/cm・s・℃、引
張強さは55kgf/mm2 であった。
The material properties of the round bar made of the particle dispersion strengthened copper alloy obtained are as shown in Table 1, and the electric conductivity was 91.
The heat conductivity was 5% IACS, the thermal conductivity was 0.73 cal / cm · s · ° C., and the tensile strength was 55 kgf / mm 2 .

【0035】比較例1 実施例1において用いて平均粒径5μmの酸化第二銅粉
末に、実施例1と全く同一条件でアルミナ被覆層を形成
した後に、ボールミルを使用して平均粒径が0.05μ
mとなるように粉砕混合した(すなわち実施例1の場合
において、粉砕工程と被覆層形成工程とを逆にしたもの
である)。しかる後に、得られた粉砕混合粉を実施例1
と同一条件で選択還元して酸化銅を還元し、得られた還
元粉末を同様にホットプレス成形した後に熱間押出し成
形し、実施例1と同一寸法を有する比較例1の丸棒を調
製した。
Comparative Example 1 After forming an alumina coating layer on cupric oxide powder having an average particle size of 5 μm used in Example 1 under exactly the same conditions as in Example 1, a ball mill was used to obtain an average particle size of 0. .05μ
The mixture was pulverized and mixed so as to obtain m (that is, in the case of Example 1, the pulverization step and the coating layer formation step were reversed). After that, the resulting pulverized mixed powder was used in Example 1.
Copper oxide was reduced by selective reduction under the same conditions as above, and the obtained reduced powder was similarly hot press molded and then hot extruded to prepare a round bar of Comparative Example 1 having the same dimensions as Example 1. .

【0036】比較例1に係る粒子分散強化型銅合金製の
丸棒の材料特性値を測定して表1に示す結果を得た。表
1に示す結果から明らかなように、比較例1の丸棒の電
気伝導率および熱伝導率は、実施例1の丸棒の場合とほ
ぼ同水準であったが、引張強さ、0.2%耐力および伸
び等の機械的特性値については実施例1と比較して低く
なった。
The material characteristic values of the round bar made of the particle dispersion strengthened copper alloy according to Comparative Example 1 were measured and the results shown in Table 1 were obtained. As is clear from the results shown in Table 1, the electrical conductivity and thermal conductivity of the round bar of Comparative Example 1 were almost the same as those of the round bar of Example 1, but the tensile strength, 0. The mechanical property values such as 2% proof stress and elongation were lower than those of Example 1.

【0037】また実施例1および比較例1に係る丸棒状
の粒子分散強化型銅合金の材料組織における銅の結晶粒
径およびアルミナの分散状態を、透過型電子顕微鏡を用
いて観察測定した結果、ホットプレス後の実施例1に係
る銅合金の結晶粒径は0.1μmと極めて微細であった
のに対して、比較例1に係る銅合金では、1μm以上と
粗大であった。これは比較例1に係る銅合金中のアルミ
ナ粒子が粗大な銅の結晶粒界に偏在し、凝集するよう傾
向があるため、不均一な分散状態を呈するとともに、こ
の不均一な分散状態は押出し加工を実施しても解消され
なかったためである。
The crystal grain size of copper and the dispersion state of alumina in the material structures of the round rod-shaped particle dispersion strengthened copper alloys according to Example 1 and Comparative Example 1 were observed and measured by using a transmission electron microscope. The crystal grain size of the copper alloy according to Example 1 after hot pressing was as fine as 0.1 μm, whereas that of the copper alloy according to Comparative Example 1 was as coarse as 1 μm or more. This is because the alumina particles in the copper alloy according to Comparative Example 1 are unevenly distributed in coarse copper crystal grain boundaries and tend to aggregate, so that a non-uniform dispersion state is exhibited, and this non-uniform dispersion state is extruded. This is because it was not resolved even after processing.

【0038】実施例2 ジルコニア(ZrO2 )の結晶化および酸化銅の還元後
における銅母相中のジルコニア含有量を体積率で1.5
%になるように、ジルコニウムプロボキシードを被覆助
剤としてアセト酢酸エチルを添加したベンゼンに溶解し
た溶液を酸化銅粉末の表面に被覆して被覆層を形成した
以外は、実施例1と全く同一条件で選択還元操作、ホッ
トプレス成形、塑性加工することにより、実施例2に係
る粒子分散強化型銅合金製丸棒を調製した。
Example 2 The zirconia content in the copper matrix after crystallization of zirconia (ZrO 2 ) and reduction of copper oxide was 1.5 by volume.
%, Exactly the same as in Example 1 except that the surface of the copper oxide powder was coated with a solution prepared by dissolving zirconium propoxide in benzene containing ethyl acetoacetate as a coating aid to form a coating layer. A particle-dispersion-strengthened copper alloy round bar according to Example 2 was prepared by performing selective reduction operation, hot press molding, and plastic working under the conditions.

【0039】比較例2 ジルコニア(ZrO2 )の結晶化および酸化銅の還元後
における銅母相中のジルコニア含有量を体積率で1.5
%になるように、ジルコニウムプロボキシードを被覆助
剤としてアセト酢酸エチルを添加したベンゼンに溶解し
た溶液を酸化銅粉末の表面に被覆して被覆層を形成した
以外は、比較例1と全く同一条件で選択還元操作、ホッ
トプレス成形、塑性加工することにより、比較例2に係
る粒子分散強化型銅合金製丸棒を調製した。
Comparative Example 2 The zirconia content in the copper matrix after crystallization of zirconia (ZrO 2 ) and reduction of copper oxide was 1.5 by volume.
%, Exactly the same as Comparative Example 1 except that a coating layer was formed by coating the surface of copper oxide powder with a solution of zirconium propoxetide in benzene to which ethyl acetoacetate was added as a coating aid. A particle-dispersion-strengthened copper alloy round bar according to Comparative Example 2 was prepared by performing selective reduction operation, hot press molding, and plastic working under the conditions.

【0040】実施例2および比較例2に係る丸棒状粒子
分散強化型銅合金の機械的および熱電気的特性を測定し
て表1に示す結果を得た。
The mechanical and thermoelectric properties of the round rod-shaped particle dispersion strengthened copper alloys of Example 2 and Comparative Example 2 were measured and the results shown in Table 1 were obtained.

【0041】表1に示す結果から明らかなように、酸化
物としてZrO2 を同一量だけ形成した場合において
も、予め所定粒径(0.05μm)に粒度調整した酸化
銅粉末表面にZrO2 被覆層を形成した実施例2の銅合
金は、ZrO2 被覆層形成後に粉砕して粒度調整した比
較例2の銅合金と比較して、電気伝導率および熱伝導率
の相違は少ないが、引張強さ、0.2%耐力および伸び
などの機械的特性値を大幅に改善することができた。
As is clear from the results shown in Table 1, even when the same amount of ZrO 2 was formed as the oxide, the surface of the copper oxide powder whose particle size was adjusted to a predetermined particle size (0.05 μm) was coated with ZrO 2. The copper alloy of Example 2 in which the layer was formed has less difference in electrical conductivity and thermal conductivity than the copper alloy of Comparative Example 2 in which the ZrO 2 coating layer was crushed and then the particle size was adjusted, but the tensile strength was small. The mechanical property values such as 0.2% proof stress and elongation could be greatly improved.

【0042】実施例3 加水分解したギ酸イットリウムを水に溶解し、さらその
溶液にエチルアルコールを混合した溶液を、平均粒径
0.05μmの酸化第二銅粉末の表面に、塗布して被覆
層を形成し、さらに500℃1時間アンモニアガス気流
中で加熱処理をし、酸化物としてのY2 3 被覆層を形
成した酸化銅粉末を調製した以外は実施例1と同一条件
で処理して実施例3に係る粒子分散強化型銅合金から成
る丸棒を製造した。
Example 3 Hydrolyzed yttrium formate was dissolved in water, and a solution prepared by mixing ethyl alcohol with the solution was applied onto the surface of cupric oxide powder having an average particle size of 0.05 μm to form a coating layer. Was formed and further heat-treated in an ammonia gas stream at 500 ° C. for 1 hour to prepare a copper oxide powder on which a Y 2 O 3 coating layer as an oxide was formed. A round bar made of the particle dispersion strengthened copper alloy according to Example 3 was manufactured.

【0043】比較例3 加水分解したギ酸イットリウムを水に溶解し、さらその
溶液にエチルアルコールを混合した溶液を、平均粒径5
μmの酸化第二銅粉末の表面に、塗布して被覆層を形成
し、さらに500℃1時間アンモニアガス気流中で加熱
処理をし、酸化物としてのY2 3 被覆層を形成した酸
化銅粉末を調製した以外は比較例1と同一条件で処理し
て比較例3に係る粒子分散強化型銅合金から成る丸棒を
製造した。
Comparative Example 3 A solution obtained by dissolving hydrolyzed yttrium formate in water and further mixing ethyl alcohol with the solution was prepared to have an average particle size of 5
Copper oxide coated on the surface of cupric oxide powder of μm to form a coating layer and further heat-treated in an ammonia gas stream at 500 ° C. for 1 hour to form a Y 2 O 3 coating layer as an oxide. A round bar made of the particle dispersion strengthened copper alloy according to Comparative Example 3 was manufactured by treating under the same conditions as in Comparative Example 1 except that the powder was prepared.

【0044】実施例3および比較例3に係る銅合金の材
料特性を下記表1に示す。
The material properties of the copper alloys of Example 3 and Comparative Example 3 are shown in Table 1 below.

【0045】[0045]

【表1】 [Table 1]

【0046】表1に示す結果から明らかなように、実施
例1〜3に係る銅合金は、比較例1〜3と比較してほと
んど熱伝導率および電気伝導率を損うことなく、引張強
さ、0.2%耐力および伸びなどの機械的特性値におい
て優れた材料であることが確認された。
As is clear from the results shown in Table 1, the copper alloys according to Examples 1 to 3 have almost the same tensile strength as those of Comparative Examples 1 to 3 with almost no loss in thermal conductivity and electrical conductivity. It was confirmed that the material is excellent in mechanical property values such as 0.2% proof stress and elongation.

【0047】[0047]

【発明の効果】以上説明の通り本発明に係る粒子分散強
化型銅合金の製造方法によれば、表面に酸化物被覆層を
形成した微細な酸化銅粉末を選択還元した還元粉末を使
用しているため、成形焼結時に銅と酸化物および酸化物
と酸化物との接触部において酸化物被覆層がバリアとな
って銅粒子の焼結や粒界移動が起こらない。そのため銅
粒子の成長がなく、微細な銅結晶粒子の周りに酸化物が
分散したままの状態で成形体を形成できる。また酸化物
被覆層は、その後の塑性加工によって圧潰破壊され、微
細な分散粒子となる。この微細粒子間の距離は極めて小
さくなるため、電気および熱に対する抵抗は小さく、電
気伝導率および熱伝導率を損うことなく、引張強さ、耐
力等の機械的特性に優れた粒子分散強化型銅合金を製造
することができる。
As described above, according to the method for producing a particle dispersion strengthened copper alloy according to the present invention, a reduction powder obtained by selectively reducing a fine copper oxide powder having an oxide coating layer on the surface thereof is used. Therefore, the oxide coating layer acts as a barrier at the contact portion between the copper and the oxide and the oxide and the oxide during the molding and sintering, so that sintering of the copper particles and grain boundary migration do not occur. Therefore, there is no growth of copper particles, and a compact can be formed in a state where the oxide is still dispersed around the fine copper crystal particles. Further, the oxide coating layer is crushed and destroyed by the subsequent plastic working, and becomes fine dispersed particles. Since the distance between these fine particles is extremely small, the resistance to electricity and heat is small, and the particle dispersion strengthened type with excellent mechanical properties such as tensile strength and proof stress without impairing the electrical and thermal conductivity. Copper alloys can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1種以上の無機金属化合物または有機金
属化合物を加水分解または熱分解することによって得ら
れる金属水酸化物または金属水和物から成る被覆層を表
面に有し粒子径が予め調整された酸化銅粉末を、加熱処
理することによって前記金属水酸化物または金属水和物
を酸化物に変換して酸化物被覆層とした後に、前記酸化
銅粉末のみを選択還元し、得られた還元粉末を成形して
成形体とし、得られた成形体を塑性加工することにより
酸化物被覆層を圧潰して微細粒子とし、この粒子を銅母
相中に分散させることを特徴とする粒子分散強化型銅合
金の製造方法。
1. A coating layer comprising a metal hydroxide or a metal hydrate obtained by hydrolyzing or thermally decomposing one or more inorganic metal compounds or organic metal compounds is provided on the surface, and the particle size is adjusted in advance. The obtained copper oxide powder was subjected to a heat treatment to convert the metal hydroxide or metal hydrate to an oxide to form an oxide coating layer, and then selectively reducing only the copper oxide powder, which was obtained. A particle dispersion characterized in that the reduced powder is molded into a molded body, and the resulting molded body is plastically worked to crush the oxide coating layer into fine particles, and these particles are dispersed in a copper matrix. Manufacturing method of reinforced copper alloy.
【請求項2】 無機金属化合物または有機金属加工物を
構成する金属が、Al,Ca,Cu,Fe,Si,Mo,
W,Ag,Au,Nb,V,Zr,Ta,Cr,Yおよび
希土類元素から選択される少なくとも1種であることを
特徴とする請求項1記載の粒子分散強化型銅合金の製造
方法。
2. The metal constituting the inorganic metal compound or the organometallic processed product is Al, Ca, Cu, Fe, Si, Mo,
2. The method for producing a particle dispersion strengthened copper alloy according to claim 1, wherein the method is at least one selected from W, Ag, Au, Nb, V, Zr, Ta, Cr, Y and rare earth elements.
【請求項3】 酸化銅粉末の粒径を5μm以下に設定す
ることを特徴とする請求項1記載の粒子分散強化型銅合
金の製造方法。
3. The method for producing a particle dispersion strengthened copper alloy according to claim 1, wherein the particle size of the copper oxide powder is set to 5 μm or less.
JP29347792A 1992-10-30 1992-10-30 Production of dispersed grain-reinforced copper alloy Pending JPH06145844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29347792A JPH06145844A (en) 1992-10-30 1992-10-30 Production of dispersed grain-reinforced copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29347792A JPH06145844A (en) 1992-10-30 1992-10-30 Production of dispersed grain-reinforced copper alloy

Publications (1)

Publication Number Publication Date
JPH06145844A true JPH06145844A (en) 1994-05-27

Family

ID=17795249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29347792A Pending JPH06145844A (en) 1992-10-30 1992-10-30 Production of dispersed grain-reinforced copper alloy

Country Status (1)

Country Link
JP (1) JPH06145844A (en)

Similar Documents

Publication Publication Date Title
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
CN101250639B (en) Novel nanometer phase dispersion strengthening cuprum as well as preparation method and product producing technique thereof
JP4989636B2 (en) High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method
EP0583795A1 (en) Method for producing thermoelectric elements
JPS62238344A (en) Mechanical alloying method
CN111940750B (en) Preparation method of alloy powder material
CN113355548B (en) Atmosphere control powder metallurgy preparation method of graphene reinforced aluminum matrix composite
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
CN114029496A (en) Preparation method of novel superfine molybdenum-rhenium alloy powder
CN114592138B (en) Nano alumina particle reinforced copper-based composite material and preparation method thereof
JP3035615B1 (en) Metal short wire dispersed thermoelectric material and method for producing the same
CN109047788A (en) A kind of ultrafine yttria Doped Tungsten composite nanometre powder preparation method of cyclic oxidation reduction
JPH06145844A (en) Production of dispersed grain-reinforced copper alloy
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
CN110983087B (en) Method for improving oxide distribution in yttrium oxide dispersion strengthening tungsten alloy
JP2637192B2 (en) Manufacturing method of dispersion strengthened copper alloy
JPH0892672A (en) Production of dispersion strengthened alloy
JPH0379401B2 (en)
JP3625928B2 (en) Method for producing Ta / Si based sintered alloy
JP4447108B2 (en) Method for producing clathrate compounds
JP3403500B2 (en) Method for producing aluminum nitride powder and aluminum nitride sintered body
JPH0762467A (en) Dispersion-strengthening type copper alloy and its production
JP3704556B2 (en) Method for producing zinc antimony compound
JPH06169110A (en) Manufacture of thermoelectric conversion material
JPS6227123B2 (en)