JPS60171215A - Manufacture of highly dispersible hyperfine particles of tungsten carbide - Google Patents

Manufacture of highly dispersible hyperfine particles of tungsten carbide

Info

Publication number
JPS60171215A
JPS60171215A JP59022837A JP2283784A JPS60171215A JP S60171215 A JPS60171215 A JP S60171215A JP 59022837 A JP59022837 A JP 59022837A JP 2283784 A JP2283784 A JP 2283784A JP S60171215 A JPS60171215 A JP S60171215A
Authority
JP
Japan
Prior art keywords
tungsten carbide
tungsten
particles
gas
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59022837A
Other languages
Japanese (ja)
Other versions
JPS6359966B2 (en
Inventor
Kaoru Miyoshi
三好 香兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP59022837A priority Critical patent/JPS60171215A/en
Publication of JPS60171215A publication Critical patent/JPS60171215A/en
Publication of JPS6359966B2 publication Critical patent/JPS6359966B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture highly dispersible hyperfine particles of tungsten carbide supported on a porous carrier by bringing a volatile tungsten compound into an adsorption and decomposition reaction on a porous carrier to form a precursor of hyperfine particles of tungsten carbide and by converting the precursor into hyperfine particles of tungsten carbide. CONSTITUTION:Vapor of a volatile tungsten compound is brought into a catalytic adsorption and decomposition reaction on the surface of a porous carrier at a temp. close to the decomposition temp. of the tungsten compound to form a precursor of hyperfine particles of tungsten carbide. The precursor is heat treated at >=600 deg.C in vacuum, an atmosphere of an inert gas or a gaseous carbonizing agent. Tungsten carbide of <=100Angstrom particle size is obtd.

Description

【発明の詳細な説明】 本発明は多孔質担体に担持された超微粒高分散炭化タン
グステンの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ultrafine, highly dispersed tungsten carbide supported on a porous carrier.

炭化タングステンは白金に類似した電子状態を持ち、触
媒としても似た挙動を示すことから、酸性電解質を用い
た水素−酸素燃料電池の電極触媒である白金の代替物と
しての可能性が精力的に検討されており、また、−酸化
炭素のメタン化反応、あるいは種々の水素化反応に用い
られる貴金属触媒の代替物として有用である。
Since tungsten carbide has an electronic state similar to that of platinum and exhibits similar behavior as a catalyst, its potential as a substitute for platinum as an electrode catalyst for hydrogen-oxygen fuel cells using acidic electrolytes is being actively explored. It is also useful as a substitute for noble metal catalysts used in -carbon oxide methanation reactions or various hydrogenation reactions.

従来、炭化タングステンは、一般的には(1)タングス
テン金属あるいはタングステン酸化物の微粉末を、炭素
、−酸化炭素あるいは炭素化剤例えはメタン等の存在下
で高温加熱処理する方法によって製造されている。
Conventionally, tungsten carbide has generally been produced by (1) a method in which fine powder of tungsten metal or tungsten oxide is heated at high temperature in the presence of carbon, carbon oxide, or a carbonizing agent such as methane. There is.

また、特殊な方法として(2)塩化タングステン、メタ
ン及び水素の混合ガスを1000〜1400℃にカロ熱
して微細な炭化タングステンを製造する方法、(J o
f the Less−Gommon Metals 
59 (1978)P85〜95参照) 、(3)アー
クプラズマを用いて製造する方法、(J of Mat
erial 5cience 16(1981)。
In addition, as a special method, (2) a method of producing fine tungsten carbide by heating a mixed gas of tungsten chloride, methane and hydrogen to 1000 to 1400°C, (J o
f the Less-Gommon Metals
59 (1978) P85-95), (3) Manufacturing method using arc plasma, (J of Mat
erial 5science 16 (1981).

P2665〜2674参照)が知られている。P2665-2674) are known.

しかしながら、前記(1)の方法によって得られる炭化
タングステンの粒子径はμmオーダーの大きさのもので
ある。また前記(2)、(6)の方法も数100〜数1
000への大きなものしか得られない。従って、このよ
うな粒子の大きなものでは、その粒径に応じた小さな表
面積となるので、十分な触媒活性も得られない欠点があ
った。
However, the particle size of tungsten carbide obtained by the method (1) is on the order of μm. In addition, the methods (2) and (6) above also have a number of 100 to 1
You can only get big ones to 000. Therefore, such large particles have a drawback that sufficient catalytic activity cannot be obtained because the surface area is small according to the particle size.

本発明は従来法の欠点を解消せんとするもので、その目
的は多孔質担体上に従来法に比べ、粒子の大きさがはる
かに小さい、すなわち粒子径が100Aよシ小さい超微
粒子炭化タングステンを分散沈着させたものを製造する
方法を提供せんとするものである。
The present invention aims to eliminate the drawbacks of the conventional method, and its purpose is to deposit ultrafine tungsten carbide particles on a porous carrier with a much smaller particle size than in the conventional method, that is, the particle diameter is smaller than 100A. It is an object of the present invention to provide a method for producing dispersed deposits.

本発明者は前記目的を達成すべく鋭意研究の結果、揮発
性タングステン化合物を用いて、多孔質担体上で吸着分
解反応させ、炭化タングステンの超微粒子の前駆体を形
成させ、これを炭化タングステンにすると、微粒子径が
100人よシ小さい炭化タングステン微粒子が高分散状
態で多孔質担体上に担持されたものが得られることを知
見した。
As a result of intensive research to achieve the above object, the present inventor used a volatile tungsten compound to cause an adsorption and decomposition reaction on a porous carrier to form a precursor of ultrafine particles of tungsten carbide, which was converted into tungsten carbide. As a result, it was discovered that tungsten carbide fine particles having a fine particle diameter of 100 times smaller were supported on a porous carrier in a highly dispersed state.

この知見に基いて本発明を完成した。The present invention was completed based on this knowledge.

本発明の要旨は、揮発性タングステン化合物の分解温度
附近の温度下で、揮発性タングステン化合物の気体を多
孔質担体表面上で接触的に吸着分解反応させて炭化タン
グステン超微粒子の前駆体を形成せしめ、これを真空中
、不活性ガス雰囲気中あるいは炭素化剤となる気体中で
600℃以上の温度で熱処理することを特徴とする@造
法にある。
The gist of the present invention is to form a precursor of ultrafine tungsten carbide particles by catalytically adsorbing and decomposing a volatile tungsten compound gas on the surface of a porous carrier at a temperature close to the decomposition temperature of the volatile tungsten compound. , which is characterized in that it is heat-treated at a temperature of 600° C. or higher in vacuum, an inert gas atmosphere, or a gas serving as a carbonizing agent.

本発明において用いる揮発性タングステン化合物として
は、例えば、タングステンカルボニル、タングステンカ
ルボニル誘導体、アルキル化タングステン、アルコキシ
タングステン、ハロゲン化タングステン、ハロゲン化タ
ングステンオキシトガどが挙げられる。タングステンカ
ルボニル誘導体としては、例えば、π−シクロ、ペンタ
ジェニルトリカルボニルヒドロタングステン、π−シク
ロペンタジエニルトリ力ルポニルメチルタングステン、
π−シクロペ/タジエニルトリカルボニルエチルタング
ステン等、アルキル化タングステンとしては、例えばヘ
キサメチルタングステン、ジヒドリドビス(シクロペン
タジェニル)タングステン等、ハロゲン化タングステン
としては、例えば、へ=it−tフロロタングステン、
ヘキサクロロタングステン、ペンタクロロタングステン
、ペンタブロモタングステン等、ハロゲン化タングステ
ンオキシドとしては、例えば、テトラフロロタングステ
ンオキシド、テトラクロロタングステンオキシド。
Examples of the volatile tungsten compound used in the present invention include tungsten carbonyl, tungsten carbonyl derivatives, alkylated tungsten, alkoxytungsten, tungsten halides, and tungsten oxytoga halides. Examples of tungsten carbonyl derivatives include π-cyclo, pentadienyltricarbonylhydrotungsten, π-cyclopentadienyltricarbonylmethyltungsten,
Examples of alkylated tungsten include hexamethyltungsten, dihydridobis(cyclopentagenyl)tungsten, etc.; examples of halogenated tungsten include he=it-t fluorotungsten;
Examples of halogenated tungsten oxides such as hexachlorotungsten, pentachlorotungsten, and pentabromotungsten include tetrafluorotungsten oxide and tetrachlorotungsten oxide.

テトラブロモタングステンオキシド等が挙げられる。し
かし、例示化合物に限定されるものではなく、比較的低
温において気化することができ、且つ気化温度より高い
温度で分解するものであればよい。
Examples include tetrabromo tungsten oxide. However, the compound is not limited to the exemplified compounds as long as it can be vaporized at a relatively low temperature and decomposed at a temperature higher than the vaporization temperature.

本発明に用いる多孔質担將としては、例えば活性炭、カ
ーボンブラック等の多孔性炭素材料、シリカ、アルミナ
、マグネシア、アルミノシリケート等の多孔性無機酸化
物が挙げられる。また炭素化剤となる気体としては、例
えば、−酸化炭素。
Examples of the porous support used in the present invention include porous carbon materials such as activated carbon and carbon black, and porous inorganic oxides such as silica, alumina, magnesia, and aluminosilicate. Examples of the gas serving as a carbonizing agent include -carbon oxide.

メタン、エタン、アセチレン等の炭化水素等が挙げられ
る。しかしこれに限定されるものではなく、高温熱分解
によって炭素源と々シ、炭素化剤となる気体であればよ
い。また、これらの気体は真空中または不活性ガス中に
混入して共存状態としてもよい。
Examples include hydrocarbons such as methane, ethane, and acetylene. However, the present invention is not limited to this, and any gas may be used as long as it becomes a carbon source and a carbonizing agent through high-temperature pyrolysis. Further, these gases may be mixed in a vacuum or an inert gas to form a coexisting state.

本発明の実施態様を以下説明する。Embodiments of the present invention will be described below.

先ず、炭化タングステンを担持させる多孔質担体を予め
真空中あるいは不活性気体中で500〜1ooo℃で3
0分以上加熱して、担体に物理吸着及び化学吸着してい
る例えば、水、炭酸ガス、−酸化炭素あるいは硫黄化合
物等を除去し担体を清浄にする。次いでこの担体の温度
を揮発性ダンゲステン化合物の分解温度附近に保ち、そ
の上に揮発性タングステン化合物の気体を、圧力1〜1
00T Or r Nあるいは不活性ガスの共存下で、
揮発性タングステン化合物の分圧が1〜100 Tor
rとなるようにし、また、担体層を通過する気体の浅速
度が0.1〜20 m/ secとなるように気体を供
給する。これにより揮発性タングステン化合物は担体表
面に接触的に吸着分解され、炭化タンゲステン超微粒子
の前駆体が形成される。
First, a porous carrier supporting tungsten carbide is prepared in advance at 500 to 100°C in a vacuum or an inert gas.
The carrier is heated for 0 minutes or more to remove water, carbon dioxide, carbon oxide, sulfur compounds, etc. that are physically or chemically adsorbed on the carrier, thereby cleaning the carrier. Next, the temperature of this carrier is maintained near the decomposition temperature of the volatile dungsten compound, and the volatile tungsten compound gas is poured onto the carrier at a pressure of 1 to 1.
00T Or r In the presence of N or inert gas,
Partial pressure of volatile tungsten compound is 1 to 100 Torr
The gas is supplied such that the shallow velocity of the gas passing through the carrier layer is 0.1 to 20 m/sec. As a result, the volatile tungsten compound is catalytically adsorbed and decomposed on the carrier surface, and a precursor of ultrafine tungsten carbide particles is formed.

この場合、扉発性タングステン化合物の気体の分圧が高
すぎたり、気体の洟速度が小さすぎたりすると、生成す
る炭化タングステンの粒子の大きさが大きくなったり、
分散度が悪くなったシするので、その分圧、及び線速度
は前記の範囲であることが好ましい。
In this case, if the partial pressure of the tungsten compound gas is too high or the gas velocity is too low, the size of the tungsten carbide particles generated will increase.
Since the degree of dispersion may deteriorate, it is preferable that the partial pressure and linear velocity are within the above range.

次にこの系を真空下、不活性ガス雰囲気下あるいは炭素
化剤となる気体の共存状態となし、600℃以上、例え
ば600〜1200℃に加熱すると、粒子の大きさが1
00人より小さい炭化タングステンが担体に担持され、
よく分散されたものが容易に得られる。
Next, this system is heated to 600°C or higher, for example 600 to 1200°C, under vacuum, an inert gas atmosphere, or in the coexistence of a gas that serves as a carbonizing agent, and the particle size decreases to 1.
Tungsten carbide smaller than 0.00 is supported on a carrier,
A well-dispersed product is easily obtained.

本発明の方法において、多孔質担体として多孔質炭素材
料を用いる場合は、揮発性タングステン化合物の接触的
吸着分解後の加熱処理において担体自体が炭素化剤とな
り得るので、必ずしも、炭素化剤となし得る気体の共存
を必要としない。しかし、炭素系以外の多孔質担体を用
いる場合には、炭素化剤となる気体を共存させることを
必要とする場合もある。
In the method of the present invention, when a porous carbon material is used as a porous carrier, the carrier itself can serve as a carbonizing agent in the heat treatment after catalytic adsorption decomposition of a volatile tungsten compound, so it is not necessarily used as a carbonizing agent. Does not require coexistence of gas to obtain. However, when using a porous carrier other than carbon-based, it may be necessary to coexist with a gas serving as a carbonizing agent.

また、本発明の方法では、炭化タフゲステンの調製の各
過程における処理条件を種々変えることにより、得られ
る炭化タングステン粒子の化学組成を任意に変えること
ができる。すなわち、その化学組嚢w2c 、α−we
 、β−we等、あるいはこれらの複合物となし得る。
Further, in the method of the present invention, the chemical composition of the obtained tungsten carbide particles can be arbitrarily changed by variously changing the treatment conditions in each step of preparing Toughgesten Carbide. That is, the chemical cyst w2c, α-we
, β-we, etc., or a composite thereof.

例えば、カーボンブラックを担体として用い、揮発性タ
ングステン化合物としてヘキサカルボニルタングステン
を用いた場合、吸着分解後の加熱処理の温度を、600
〜700℃の比較的低温で行えば、β−WCの割合が多
い複合物が得られ、900〜1000℃の比較的高温で
行えば、W2Cの割合が多くなる。また900℃より高
い温度で、処理時間を長くすると、α−WCの割合が多
いものが得られる。しかし、この場合、粒子の大きさが
大きくなる傾向がある。
For example, when carbon black is used as a carrier and hexacarbonyltungsten is used as a volatile tungsten compound, the temperature of the heat treatment after adsorption and decomposition is set to 600°C.
If carried out at a relatively low temperature of ~700°C, a composite with a high proportion of β-WC will be obtained, and if carried out at a relatively high temperature of 900-1000°C, a composite with a high proportion of W2C will be obtained. Furthermore, if the temperature is higher than 900° C. and the treatment time is prolonged, a product with a high proportion of α-WC can be obtained. However, in this case, the particle size tends to increase.

実施例1゜ 揮発性タングステン化合物を加熱気化するだめの気化室
を有する内径26鰭φの石英管にカーボンブラック(表
面積490 m2.Q’ 、顆粒状成形物50〜80 
mesh ) 3.6 Vを充填し、気化室圧はヘキサ
カルボニルタングステン(以下W(CO)6と記載する
)を入れた。この系を真空ポンプを用いて104Tor
rの真空に引き、気化室は室温以下に保って、カーボン
ブラック層を900〜950℃に加熱し、1時間前処理
を行った。
Example 1 Carbon black (surface area 490 m2.Q', granular moldings 50 to 80
mesh ) 3.6 V, and the vaporization chamber pressure was set to hexacarbonyltungsten (hereinafter referred to as W(CO)6). This system was heated to 104 Tor using a vacuum pump.
The carbon black layer was heated to 900 to 950° C. and pretreated for 1 hour while the vaporization chamber was kept at room temperature or lower.

次に、系内を真空ポンプで引きながら、カーボンブラッ
ク層を200℃に保ち、気化室の温度を140℃にあげ
、気化したW(CO)6の気体をカーボンブラック上に
導き吸着分解させた。得られた試料中のW(Co)6の
吸着分解物の含有率は58重量%であった。
Next, while drawing the inside of the system with a vacuum pump, the carbon black layer was maintained at 200°C, and the temperature of the vaporization chamber was raised to 140°C, and the vaporized W(CO)6 gas was introduced onto the carbon black and adsorbed and decomposed. . The content of adsorbed and decomposed W(Co)6 in the obtained sample was 58% by weight.

この試料を電子顕微鏡で観察した結果、吸着分解物はカ
ーボンブラックの一次粒子(約200〜300人)の表
面に均一に分散し、約50〜150人の広がりをもって
島状に沈着しているのが認められた。また試料のX#j
!回折測定を行った結禾、W(00,)6あるいはその
分解物の回折ピークが全く認められなかった。
As a result of observing this sample with an electron microscope, it was found that the adsorbed and decomposed products were uniformly dispersed on the surface of the primary particles of carbon black (approximately 200 to 300 particles), and were deposited in the form of islands with a spread of approximately 50 to 150 particles. was recognized. Also, the sample X#j
! No diffraction peaks of W(00,)6 or its decomposition products were observed during diffraction measurements.

また、X線光電子分光測定を行った結果、タングステン
原子の4f軌道電子によるスペクトルはβ−WCのもの
に近い結合エネルギーを有するものであることが認めら
れた。
Furthermore, as a result of X-ray photoelectron spectroscopy measurements, it was found that the spectrum of 4f orbital electrons of tungsten atoms has a binding energy close to that of β-WC.

次に、W(Go+6の吸着分解後、系内を1O−3To
rrの真空に保ちながら、カーボンブラック層を900
〜1000℃に加熱して1時間熱処理をわい炭化タング
ステンを製造した。得られた試料中の炭化タフゲステン
の含有率は56重量%であった。
Next, after adsorption and decomposition of W (Go+6), the system was filled with 1O-3To
The carbon black layer was heated to 900% while maintaining the vacuum of rr.
Tungsten carbide was produced by heat treatment at ~1000°C for 1 hour. The content of Toughgesten carbide in the obtained sample was 56% by weight.

この試料を電子顕微鏡で観察した結果、吸着分解時の極
薄層状沈着物が粒子状に変形し、それらの粒子径は約3
0〜90人で、平均約60人であった。またX線回折及
びXi!il電子分光による測定の結果、炭化タングス
テンは100%のW2Cであることが認められた。
As a result of observing this sample with an electron microscope, the ultrathin layered deposits during adsorption and decomposition were deformed into particles, and the particle size was approximately 3.
The number of participants ranged from 0 to 90, with an average of about 60. Also, X-ray diffraction and Xi! As a result of measurement using il electron spectroscopy, it was found that tungsten carbide was 100% W2C.

実施例2゜ 実施例1と同様にしてW(CO)6ガスを吸着分解した
ものを作り、系内を真空に保ち、カーボンブラック層を
630〜680℃で2.5時間加熱処理を行った。
Example 2゜A product in which W(CO)6 gas was adsorbed and decomposed was prepared in the same manner as in Example 1, the system was kept in vacuum, and the carbon black layer was heat-treated at 630 to 680°C for 2.5 hours. .

得られた試料を電子顕微鏡で観察した結果、カーボンブ
ラックの一次粒子表面に均一に炭化タングステン粒子が
分散沈着され、その平均粒径は65人であった。また、
X線回折測定の結果、炭化タングステンはW2Cとβ−
WCとの割合が47 : 53の複合物であることが認
められた。
As a result of observing the obtained sample with an electron microscope, it was found that tungsten carbide particles were uniformly dispersed and deposited on the surface of the primary particles of carbon black, and the average particle size was 65 particles. Also,
As a result of X-ray diffraction measurement, tungsten carbide has W2C and β-
It was recognized that the composition was a composite with a ratio of 47:53 to WC.

実施例3゜ カーボンブラック3.6f及びW(Co)63.Ofを
用いた以外は実施例1と同様にして前処理を行った後、
系内を真空ポンプで引きながら、カーボンブラック層の
温度を190℃に保って、W(Co)6を入れた気化室
の温度”を100℃に加熱して気化させ、カーボンブラ
ック表面上で接触的に吸着分解させた。
Example 3 Carbon black 3.6f and W(Co)63. After pretreatment was performed in the same manner as in Example 1 except that Of was used,
While drawing the inside of the system with a vacuum pump, the temperature of the carbon black layer was maintained at 190°C, and the temperature of the vaporization chamber containing W(Co)6 was heated to 100°C to vaporize it, and it came into contact with the carbon black surface. It was adsorbed and decomposed.

ついで、系内に常圧の一酸化炭素ガスを25〇−/ m
inの流速で流しながら、カーボンブラック層を600
〜790℃に加熱して1時間熱処理を行った。
Next, atmospheric pressure carbon monoxide gas was introduced into the system at 250 m
The carbon black layer was heated at a flow rate of 600 in.
Heat treatment was performed at ~790°C for 1 hour.

得られた試料を電子顕微鏡で観察した結果、カーボンブ
ラック表面に均一に分散沈着した炭化タングステン粒子
が認められ、その平均粒径は約70人であった。また試
料をX線回折測定の結果、炭化タングステンはW2Cと
β−WOとの割合が33二67の複合物であることが認
められた。
As a result of observing the obtained sample with an electron microscope, tungsten carbide particles were found to be uniformly dispersed and deposited on the surface of the carbon black, and the average particle size was about 70 particles. Further, as a result of X-ray diffraction measurement of the sample, it was found that tungsten carbide was a composite material with a ratio of W2C and β-WO of 33267.

実施例4゜ 実施例3で得られた試料を、更にヘリウム雰囲気中で約
1200〜1400℃で10秒加熱処理を行った。この
試料を電子顕微鏡で観察した結果、炭化タングステン粒
子の平均粒径は約85人であった。またX線回折測定の
結果、炭化タングステンはW2C、β−we及びα−w
eの割合が34 : 54 :29の複合体であること
が認められた。
Example 4 The sample obtained in Example 3 was further heat-treated at about 1200 to 1400° C. for 10 seconds in a helium atmosphere. As a result of observing this sample with an electron microscope, the average particle size of the tungsten carbide particles was approximately 85 mm. In addition, as a result of X-ray diffraction measurement, tungsten carbide was found to be W2C, β-we and α-w.
It was observed that the complex had a ratio of e of 34:54:29.

実施例5゜ 実施例1における担体のカーボンブラックに代えr−ア
ルミナ(表面積292 m2/ t 、 30〜50m
esh ) 5.8 fを用い、実施例1と同様にして
真空下、500〜550℃で1時間前処理を行った。次
にr−アルミナ層を200℃に保ち、系内を真空ポンプ
で引きながら、W(Co)68.Ofを入れた気化室を
120℃に加熱して気化させ、これをγ−アルミナ層に
導き、接触的に吸着分解させた。次いで真空下、700
〜800℃で1.5時間加熱処理した。
Example 5 R-alumina (surface area 292 m2/t, 30-50 m
Pretreatment was carried out in the same manner as in Example 1 at 500 to 550° C. for 1 hour under vacuum using esh) 5.8 f. Next, while keeping the r-alumina layer at 200°C and drawing the inside of the system with a vacuum pump, W(Co68. The vaporization chamber containing Of was heated to 120° C. to vaporize it, and this was introduced into the γ-alumina layer where it was catalytically adsorbed and decomposed. Then under vacuum, 700
Heat treatment was performed at ~800°C for 1.5 hours.

得られた試料中の炭化タングステンの含有率は約40重
量%であった。これを電子顕微鏡で観察した結果、炭化
タングステン粒子がr−アルミナ表面に均一に分散沈着
されており、炭化タングステン粒子の平均粒径は約65
人であった。またX線回折測定の結果、この炭化タング
ステンはW2Cとβ−WCの割合が35 : 65の複
合体であることが認められた。
The content of tungsten carbide in the obtained sample was about 40% by weight. As a result of observing this with an electron microscope, it was found that tungsten carbide particles were uniformly dispersed and deposited on the r-alumina surface, and the average particle size of the tungsten carbide particles was approximately 65 mm.
It was a person. Further, as a result of X-ray diffraction measurement, it was confirmed that this tungsten carbide was a composite of W2C and β-WC in a ratio of 35:65.

実施例6、 活性炭(表面積625 m2/ fの粉末) 3.6 
r及びπ−シクロペンタジェニルトリカルボニルヒドロ
タングステン(以下Iと略記する)102を用い、実施
例1と同様にして活性炭の前処理をカ゛った。
Example 6, activated carbon (powder with surface area 625 m2/f) 3.6
Pretreatment of activated carbon was carried out in the same manner as in Example 1 using r and π-cyclopentadienyltricarbonylhydrotungsten (hereinafter abbreviated as I) 102.

次いで系内を真空ポンプで引きながら、活性炭層の温度
を190℃に保ち、■を入れた気化室を120℃に加熱
して■を気化させて活性炭層に導き、接触的に吸着分解
させた。
Next, while drawing a vacuum pump inside the system, the temperature of the activated carbon layer was maintained at 190°C, and the vaporization chamber containing ■ was heated to 120°C to vaporize ■ and guide it to the activated carbon layer where it was catalytically adsorbed and decomposed. .

次いで、系内金真空に保ちながら、活性炭層を900〜
950℃で1時間加熱処理を行った。得られた試料を電
子顕微鏡で観察した結果、炭化タングステン粒子は活性
炭表面に均一に分散沈着されておシ、その粒子の平均粒
径は約70人であった。
Next, while keeping the system in a vacuum, the activated carbon layer was heated to 900 ~
Heat treatment was performed at 950°C for 1 hour. As a result of observing the obtained sample with an electron microscope, it was found that tungsten carbide particles were uniformly dispersed and deposited on the activated carbon surface, and the average particle size of the particles was about 70 mm.

またX線回折測定の結果、炭化タングステンはW2Cと
β−WCの割合が75 ニー 25の複合体であること
が認められた。
Further, as a result of X-ray diffraction measurement, it was confirmed that tungsten carbide is a composite of W2C and β-WC in a ratio of 75:25.

実施例7゜ カーボンブラック(表面積1500 m2/r、顆粒状
物50〜80 mesh ) 3.81?及びテトラク
Oロタングステンオキサイド(以下…と略記する)8.
01を用い、実施例1と同様にしてカーボンブラックの
前処理を行った。
Example 7 Carbon black (surface area 1500 m2/r, granules 50-80 mesh) 3.81? and Tetra-O-rotungsten oxide (hereinafter abbreviated as...)8.
Carbon black was pretreated in the same manner as in Example 1 using 01.

次いで、カーボンブラック層を200℃に保ち、■を入
れた気化室を120℃に加熱し、5t/minの流速で
気化した■ガスとヘリウ、ムの混合ガスをカーボンブラ
ック層に導き、接触的に吸着分解させた。
Next, the carbon black layer was maintained at 200°C, the vaporization chamber containing the gas was heated to 120°C, and the mixed gas of the gas and helium, which had been vaporized at a flow rate of 5 t/min, was introduced into the carbon black layer and catalytically heated. was adsorbed and decomposed.

次に、ヘリウムガスを通じながら、カーボンブラック層
を900〜930℃で30分間加熱処理を行った。得ら
れた試料を電子顕微鏡で観察した結果、炭化タングステ
ンはカーボンブラック表面に均一ニ分散沈着されており
、炭化タングステン粒子の平均粒径は約95人であった
。またX線回折測定の結果、炭化タングステンはW2C
とβ−wcの割合が80720の複合物であることが認
められた。
Next, the carbon black layer was heat-treated at 900 to 930°C for 30 minutes while passing helium gas through it. As a result of observing the obtained sample with an electron microscope, it was found that tungsten carbide was deposited in a uniform and bidisperse manner on the surface of the carbon black, and the average particle size of the tungsten carbide particles was about 95 mm. Furthermore, as a result of X-ray diffraction measurement, tungsten carbide is W2C.
It was recognized that it was a composite with a ratio of 80,720.

以上のように1本発明の方法によると、粒子径が100
人よシ小さい超微粒子炭化タングステンが担体上に均一
に分散沈着されたものが容易に得られ、且つ炭化タング
ステンの化学組成も容易に変更し得られる優れた効果を
奏し得られる。
As described above, according to the method of the present invention, the particle size is 100
Ultrafine tungsten carbide particles smaller than humans can be easily dispersed and deposited uniformly on a carrier, and the chemical composition of tungsten carbide can also be easily changed, resulting in excellent effects.

特許出願人 新技術開発事業団 同 三 好 香兼Patent applicant: New Technology Development Corporation Same as Sanyoshi Kakane

Claims (1)

【特許請求の範囲】[Claims] 1、 揮発性タングステン化合物の分解温度附近の温度
下で、揮発性タングステン化合物の気体を多孔質担体表
面上で接触的に吸着分解反応させて炭化タングステン超
微粒子の前駆体を形成せしめ、これを真空中、不活性ガ
ス雰囲気中あるいは炭素化剤となる気体中で、600℃
以上の温度で熱処理することを特徴とする多孔質担体に
相持された超微粒高分散炭化タングステンの製造法。
1. At a temperature close to the decomposition temperature of the volatile tungsten compound, the gas of the volatile tungsten compound is catalytically adsorbed and decomposed on the surface of the porous carrier to form a precursor of ultrafine tungsten carbide particles, which is then heated in a vacuum. 600℃ in an inert gas atmosphere or a carbonizing agent gas
A method for producing ultrafine, highly dispersed tungsten carbide supported on a porous carrier, characterized by heat treatment at a temperature above.
JP59022837A 1984-02-13 1984-02-13 Manufacture of highly dispersible hyperfine particles of tungsten carbide Granted JPS60171215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59022837A JPS60171215A (en) 1984-02-13 1984-02-13 Manufacture of highly dispersible hyperfine particles of tungsten carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59022837A JPS60171215A (en) 1984-02-13 1984-02-13 Manufacture of highly dispersible hyperfine particles of tungsten carbide

Publications (2)

Publication Number Publication Date
JPS60171215A true JPS60171215A (en) 1985-09-04
JPS6359966B2 JPS6359966B2 (en) 1988-11-22

Family

ID=12093818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59022837A Granted JPS60171215A (en) 1984-02-13 1984-02-13 Manufacture of highly dispersible hyperfine particles of tungsten carbide

Country Status (1)

Country Link
JP (1) JPS60171215A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501721A (en) * 1989-03-28 1991-04-18 ペシネ・ルシエルシユ Method for producing heavy metal carbide with high specific surface area
JPH03208811A (en) * 1990-01-12 1991-09-12 Tokyo Tungsten Co Ltd Superfine wc powder and production thereof
JP2004510570A (en) * 2000-09-29 2004-04-08 オスラム・シルバニア・インコーポレイテッド Supported tungsten carbide material
JP2009525258A (en) * 2006-01-30 2009-07-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Nanoporous carbon material and system and method using the same
US9468901B2 (en) 2011-01-19 2016-10-18 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815823B2 (en) * 2004-03-31 2011-11-16 三菱化学株式会社 Fuel cell catalyst and method for producing the same, fuel cell electrode and fuel cell using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501721A (en) * 1989-03-28 1991-04-18 ペシネ・ルシエルシユ Method for producing heavy metal carbide with high specific surface area
JPH03208811A (en) * 1990-01-12 1991-09-12 Tokyo Tungsten Co Ltd Superfine wc powder and production thereof
JP2004510570A (en) * 2000-09-29 2004-04-08 オスラム・シルバニア・インコーポレイテッド Supported tungsten carbide material
JP2009525258A (en) * 2006-01-30 2009-07-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Nanoporous carbon material and system and method using the same
US9468901B2 (en) 2011-01-19 2016-10-18 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same

Also Published As

Publication number Publication date
JPS6359966B2 (en) 1988-11-22

Similar Documents

Publication Publication Date Title
Domínguez et al. Microwave-assisted catalytic decomposition of methane over activated carbon for CO2-free hydrogen production
Di et al. Cold plasma treatment of catalytic materials: a review
KR101738610B1 (en) A method for preparation of metal oxide-loaded catalyst in porous substrate
US5789337A (en) Material having ultrafine gold particles immobilized thereon and method for production thereof
US9700877B2 (en) Metal-carbon hybrid composite having nitrogen-doped carbon surface and method for manufacturing the same
Fujimoto et al. Structure and reactivity of PdOx/ZrO2Catalysts for methane oxidation at low temperatures
Loof et al. Rapid sintering in NO of nanometer-sized Pt particles on γ-Al2O3 observed by CO temperature-programmed desorption and transmission electron microscopy
Griboval-Constant et al. Catalytic behaviour of cobalt or ruthenium supported molybdenum carbide catalysts for FT reaction
Knözinger et al. Alumina-supported CO hydrogenation catalysts prepared from molecular osmium and ruthenium clusters
US20040147620A1 (en) Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts
de Beer et al. Hydrodesulphurization activity and coking propensity of carbon and alumina supported catalysts
CA2883503A1 (en) Catalyst for producing hydrogen and method for producing hydrogen
Van den Broek et al. Determination of surface coverage of catalysts: Temperature programmed experiments on platinum and iridium sponge catalysts after low temperature ammonia oxidation
JPH09502414A (en) Process for producing hydrogen / carbon monoxide mixture or hydrogen from methane
Cabrera et al. Methane production from the catalyzed reaction of graphite and water vapor at low temperatures (500–600 K)
JPS60171215A (en) Manufacture of highly dispersible hyperfine particles of tungsten carbide
Serp et al. One-step preparation of highly dispersed supported rhodium catalysts by low-temperature organometallic chemical-vapor-deposition
Yan et al. Coordination and reaction mechanism of furan on Ru (001)
Moreno-Castilla et al. Hydrogenation of carbon oxides by Ru/activated carbon catalysts obtained from Ru3 (CO) 12: effect of pretreatment on their dispersion, composition and activity
JP2004523459A (en) How to use molybdenum carbide catalyst
JPH05345130A (en) Carbonaceous shape-selective catalyst and production thereof
JP2006202687A (en) Electrode catalyst for fuel cell of metal cluster
CA1206134A (en) Metal carbon catalyst preparation
Pisanu et al. Total ethane oxidation over Pd/α-Al2O3: the palladium oxidation state under reaction conditions
JP2004261771A (en) Unsupported catalyst for directly decomposing hydrocarbon, production method thereof and production method of hydrogen and carbon by directly decomposing hydrocarbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees