JP2615935B2 - Electrolyte plate for molten carbonate fuel cell - Google Patents

Electrolyte plate for molten carbonate fuel cell

Info

Publication number
JP2615935B2
JP2615935B2 JP63277340A JP27734088A JP2615935B2 JP 2615935 B2 JP2615935 B2 JP 2615935B2 JP 63277340 A JP63277340 A JP 63277340A JP 27734088 A JP27734088 A JP 27734088A JP 2615935 B2 JP2615935 B2 JP 2615935B2
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
electrolyte plate
matrix
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63277340A
Other languages
Japanese (ja)
Other versions
JPH02126563A (en
Inventor
義和 山桝
敏明 柿原
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP63277340A priority Critical patent/JP2615935B2/en
Publication of JPH02126563A publication Critical patent/JPH02126563A/en
Application granted granted Critical
Publication of JP2615935B2 publication Critical patent/JP2615935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料の有する化学エネルギーを直接電気エネ
ルギーに変換するエネルギー部門で用いる燃料電池のう
ち、特に、電解質として溶融炭酸塩を用いる溶融炭酸塩
型燃料電池の電解質板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel cell used in an energy sector for directly converting chemical energy of a fuel into electric energy, particularly a molten carbonate using a molten carbonate as an electrolyte. The present invention relates to an electrolyte plate of a fuel cell.

[従来の技術] 現在にまで提案されている溶融炭酸塩型燃料電池とし
ては、電解質としての溶融炭酸塩を、多孔質のマトリッ
クステープにしみ込ませてなる電解質板を作り、この電
解質板をカソード(酸素極)とアノード(燃料極)の両
電極で両面から挟み、カソード側に酸化ガスを供給する
と共にアノード側に燃料ガスを供給することによりカソ
ードとアノードとの間で発生する電位差により発電が行
われるようにしたものを1セルとし、各セルをセパレー
タを介して多層に積層させてスタックとし、このスタッ
クを適当な締付力で締め付けるようにしてある。
[Prior Art] As a molten carbonate type fuel cell proposed up to now, an electrolyte plate is prepared by impregnating a molten matrix as an electrolyte into a porous matrix tape, and this electrolyte plate is used as a cathode ( Power is generated by a potential difference generated between the cathode and the anode by supplying an oxidizing gas to the cathode side and supplying a fuel gas to the anode side by sandwiching the oxygen electrode and the anode (fuel electrode) from both surfaces. The stack is made into one cell, and the cells are stacked in multiple layers via a separator to form a stack, and the stack is tightened with an appropriate tightening force.

上記溶融炭酸塩型燃料電池に用いられる電解質板は、
従来より種々の方法により製造されているが、その製造
方法の1つとして、数μ以下のセラミックス粒子、たと
えば、リチウムアルミネート(LiAlO2)粉末により多数
の空孔を有するマトリックスを形成し、このマトリック
スに電解質を含浸させ、マトリックスの空隙に電解質を
保持させるようにして電解質板とするものがある。
The electrolyte plate used in the molten carbonate fuel cell,
Conventionally, it is manufactured by various methods. As one of the manufacturing methods, a matrix having a large number of pores is formed by ceramic particles of several μm or less, for example, lithium aluminate (LiAlO 2 ) powder. There is an electrolyte plate in which a matrix is impregnated with an electrolyte so that the electrolyte is held in voids of the matrix.

かかる方法により得られた電解質板は、カソードとア
ノードの両電極により挟まれて電池を構成するが、カソ
ード側に供給される酸化ガスとアノード側に供給される
燃料ガスを完全に分離しなければならない。しかし、電
解質板は、燃料電池の運転、停止に伴い室温と燃料電池
の運転温度(約650℃)との間で熱的に繰返し作動され
ることによる大きな応力を受ける。最大の応力は燃料電
極が遮断されて電解質が液相より固相へ移動する際に発
生する。かかる相変化に伴って体積が急激に変化してエ
ネルギーを放出するが、このエネルギーは電解質板に割
れを生じさせることによって逃がされる。電解質板に表
裏方向に貫通する割れが生じると、最早、電解質板は、
酸化ガスと燃料ガスとを分離する能力を維持できず、酸
化ガスと燃料ガスが直接接触してしまい、電池出力の低
下もしくは爆発の危険性を生じるという問題がある。
The electrolyte plate obtained by such a method constitutes a battery by being sandwiched between the cathode and the anode electrodes, but the oxidizing gas supplied to the cathode side and the fuel gas supplied to the anode side must be completely separated. No. However, the electrolyte plate is subjected to a large stress due to the repeated thermal operation between room temperature and the operating temperature of the fuel cell (about 650 ° C.) when the fuel cell is operated and stopped. Maximum stress occurs when the fuel electrode is shut off and the electrolyte moves from the liquid phase to the solid phase. The volume changes rapidly with this phase change and releases energy, which is dissipated by causing cracks in the electrolyte plate. When a crack that penetrates the electrolyte plate in the front and back direction occurs, the electrolyte plate is no longer
There is a problem that the ability to separate the oxidizing gas and the fuel gas cannot be maintained, and the oxidizing gas and the fuel gas come into direct contact with each other, resulting in a decrease in battery output or a risk of explosion.

かかる問題を解決するために、従来では、上記したよ
うな数μ以下のリチウムアルミネート粒子を支持粒子と
するマトリックスを形成するに際し、上記粒子よりもは
るかに大きい(50〜150μ)リチウムアルミネートの粗
粒子を、上記支持粒子としての数μ以下のリチウムアル
ミネート粒子に対し適宜の割り合い(たとえば、数μ以
下のリチウムアルミネート粒子90vol%に対し10vol%)
で混入し、電解質板に発生する表裏方向への貫通割れ
を、上記混入したリチウムアルミネートの粗粒子で低減
し、電解質板の強化を図るようにしたもの(特開昭57−
27569号公報)、あるいは、上記のような電解質板の強
化手段として、100μ以上の長さを有し且つ長さ1と直
径dの比1/dが10以上からなるリチウムアルミネート長
繊維を、マトリックスに混入し、該リチウムアルミネー
ト長繊維により電解質板の貫通割れを低減させるように
して電解質板の強化を図るようにしたもの(特公昭63−
26511号公報)、等が提案されている。
In order to solve such a problem, conventionally, when forming a matrix using lithium aluminate particles of several μ or less as support particles as described above, lithium aluminate much larger than the above particles (50 to 150 μ) is used. The coarse particles are appropriately divided into lithium aluminate particles of several μ or less as the support particles (for example, 10 vol% for 90 vol% of lithium aluminate particles of several μ or less).
The penetration cracks in the front and back directions generated in the electrolyte plate by the mixing are reduced by the coarse particles of the mixed lithium aluminate to strengthen the electrolyte plate (Japanese Patent Laid-Open No. Sho 57-79).
No. 27569), or a lithium aluminate filament having a length of 100 μ or more and having a ratio 1 / d of length 1 to diameter d of 10 or more, Incorporated into a matrix, the lithium aluminate filaments reduce penetration cracks in the electrolyte plate to strengthen the electrolyte plate (Japanese Patent Publication No. 63-63).
26511) and the like.

[発明が解決しようとする課題] ところが、上記特開昭57−27569号公報に記載された
ものでは、電解質板の強化用添加物としてリチウムアル
ミネートの粗粒子を適宜の割り合いで混入し、電解質板
に発生しようとする貫通割れを、上記混入されたリチウ
ムアルミネート粗粒子の部分でストップさせるようにし
ようとするものであり、又、特公昭63−26511号公報に
記載のものでは、電解質板の強化用添加物としてリチウ
ムアルミネート長繊維を混入して、電解質板に発生しよ
うとする貫通割れを上記リチウムアルミネート長繊維に
よりストップさせようとするものであるが、いずれの従
来例も、電解質板の強化用添加物としてリチウムアルミ
ネートの粗粒子が長繊維を単に混入する方式であるた
め、第3図に強化用添加物として粗粒子2を混入してな
る電解質板1について示す如く、燃料電池を運転温度か
ら室温に冷却するときの炭酸塩の凝固時に、強化用添加
物としての粗粒子2の周囲と炭酸塩の界面に隙間3が生
じ、上記炭酸塩が固まるときに電解質板1に生じた多数
の割れ4が上記隙間3と連通して電解質板1を貫通して
しまうおそれがある。強化用添加物としてリチウムアル
ミネート長繊維を混入させた場合でも、燃料電池の冷却
時に炭酸塩が固体になるときには繊維と炭酸塩との界面
に隙間が出来て、同様の問題がある。
[Problems to be Solved by the Invention] However, in the method described in JP-A-57-27569, coarse particles of lithium aluminate are mixed at an appropriate ratio as a reinforcing additive for an electrolyte plate. It is intended to stop through cracks to be generated in the electrolyte plate at the portion of the mixed lithium aluminate coarse particles described above, and that disclosed in Japanese Patent Publication No. 63-26511 discloses an electrolyte. Lithium aluminate long fibers are mixed as a reinforcing agent for the plate, and the through cracks to be generated in the electrolyte plate are to be stopped by the lithium aluminate long fibers. Since coarse particles of lithium aluminate are simply mixed with long fibers as a reinforcing additive for the electrolyte plate, coarse particles 2 are mixed as a reinforcing additive in FIG. When the fuel cell is cooled from the operating temperature to room temperature during the solidification of the carbonate, a gap 3 is formed between the periphery of the coarse particles 2 as a reinforcing additive and the interface between the carbonate and the above-mentioned electrolyte plate 1. There is a possibility that a large number of cracks 4 generated in the electrolyte plate 1 when the salt solidifies communicate with the gap 3 and penetrate the electrolyte plate 1. Even when lithium aluminate long fibers are mixed in as a reinforcing additive, when the carbonate is solidified during cooling of the fuel cell, a gap is formed at the interface between the fibers and the carbonate, causing the same problem.

そこで、本発明は、強化用添加物として粗粒子又は長
繊維を混入した場合において燃料電池の冷却時に炭酸塩
が固体になるときでも、上記混入した強化用添加物の周
囲と炭酸塩の界面に隙間が生じるようなことがなく、し
たがって貫通割れが生じないような電解質板を提供しよ
うとするものである。
Therefore, the present invention provides a method for mixing a coarse particle or a long fiber as a reinforcing additive, even when the carbonate becomes solid during cooling of the fuel cell, at the interface between the periphery of the mixed reinforcing additive and the carbonate. An object of the present invention is to provide an electrolyte plate in which a gap does not occur, and thus a through crack does not occur.

[課題を解決するための手段] 本発明は、上記目的を達成するために、電解質として
の溶融炭酸塩をマトリックスに含浸させてなり且つカソ
ードとアノードの両電極で両面から挟んで燃料電池を構
成する溶融炭酸塩型燃料電池の電解質板において、リチ
ウムアルミネートの微粒子を支持粒子としてマトリック
スを形成するときに該支持粒子よりも大きい粒径で且つ
多孔質のリチウムアルミネートの粗粒子又は長繊維を強
化用添加物として上記支持粒子に対し所要の割り合いで
混入して多数の空孔を有するマトリックスを形成し、且
つ該マトリックスに溶融炭酸塩を含浸させるときに、該
溶融炭酸塩を多孔質の強化用添加物の内部にまで含浸さ
せて、該強化用添加物の内部と外部で炭酸塩が連続した
状態になるようにしてなる構成とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides a fuel cell in which a matrix is impregnated with a molten carbonate as an electrolyte and is sandwiched from both sides by a cathode and an anode. In the electrolyte plate of the molten carbonate fuel cell, when forming a matrix using lithium aluminate fine particles as support particles, coarse particles or long fibers of porous lithium aluminate having a particle size larger than the support particles are formed. As a reinforcing additive, the support particles are mixed at a required ratio to form a matrix having a large number of pores, and when the matrix is impregnated with the molten carbonate, the molten carbonate is made porous. The structure is such that the inside of the reinforcing additive is impregnated so that the carbonate is continuous inside and outside the reinforcing additive.

[作用] リチウムアルミネートの微粒子を支持粒子として形成
される多数の空孔を有するマトリックスに含浸された電
解質は、強化用添加物としての多孔質の粗粒子又は長繊
維の内部にも入り込み、燃料電池の冷却時に電解質が固
体になるとき、上記粗粒子や長繊維の内部に入ったまま
固化し、該粗粒子や長繊維周囲の電解質とがつながった
ままになるので、強化用添加物としての粗粒子や長繊維
の周囲に一連の隙間が生じることがなく、したがって、
貫通割れを生じさせることがない。
[Effect] The electrolyte impregnated in a matrix having a large number of pores formed by using lithium aluminate fine particles as support particles also enters the inside of porous coarse particles or long fibers as a reinforcing additive, and becomes a fuel. When the electrolyte becomes solid when the battery is cooled, it solidifies while remaining inside the coarse particles and long fibers, and remains connected to the electrolyte around the coarse particles and long fibers. There is no series of gaps around coarse particles and long fibers,
No through cracking occurs.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示すもので、数μ以下の
リチウムアルミネート粒子の如きセラミック粒子を支持
粒子として、該支持粒子内に該支持粒子よりはるかに大
きい粒子2(第3図参照)を強化用添加物として適宜の
割り合いで混入してマトリックス1aを形成する場合にお
いて、上記粒子2に代えて、多数の空孔を有するように
成形された多孔質のリチウムアルミネート粗粒子5を強
化用添加物として支持粒子内に混入してマトリックス1a
を形成し、このマトリックス1aに、電解質として溶融炭
酸塩(たとえば、Li2CO3又はK2CO3)を含浸させ、粗粒
子5の中にも電解質が入り込んだ電解質板1とする。
FIG. 1 shows an embodiment of the present invention, in which ceramic particles such as lithium aluminate particles having a size of several μm or less are used as support particles, and particles 2 (FIG. 3) which are much larger than the support particles in the support particles. ) As a reinforcing additive to form the matrix 1a, the porous lithium aluminate coarse particles formed so as to have a large number of pores in place of the particles 2 described above. 5 as a reinforcing additive in the support particles
The matrix 1a is impregnated with a molten carbonate (for example, Li 2 CO 3 or K 2 CO 3 ) as an electrolyte, to obtain an electrolyte plate 1 in which the electrolyte is also contained in the coarse particles 5.

上記強化用添加物としての多孔質の粗粒子5の大き
さ、該粗粒子5に形成する空孔の大きさ(空孔径)、空
孔の量(空孔率)、粗粒子5の量(添加率)等は、次の
ようにする。
The size of the porous coarse particles 5 as the reinforcing additive, the size of the pores formed in the coarse particles 5 (pore diameter), the amount of the pores (porosity), and the amount of the coarse particles 5 ( The addition ratio) is as follows.

すなわち、粗粒子5の大きさは、小さすぎると燃料電
池の熱的繰返し作動により多数生じる割れが貫通するの
を防止しきれず、又、大きすぎると、大きい粒子が多数
存在することになってマトリックス1aの構造的完全性が
低下し、又、マトリックスのガス分離能力が低減するこ
とになる。長さは20〜150μ程度とする。かかる大きさ
の粗粒子5に形成する空孔径は平均で0.3〜5μとし、
空孔率は30〜60%とする。又、粗粒子5の添加率は、貫
通割れを防止する上で支持粒子に対し5〜30vol%が有
効であることが実験により確認されている。
That is, if the size of the coarse particles 5 is too small, it is not possible to prevent penetration of many cracks generated by the thermal repetitive operation of the fuel cell. The structural integrity of 1a will be reduced and the gas separation capacity of the matrix will be reduced. The length is about 20 to 150 μ. The average pore diameter formed in the coarse particles 5 having such a size is 0.3 to 5 μm,
The porosity is 30 to 60%. Further, it has been confirmed by experiments that the addition ratio of the coarse particles 5 is 5 to 30 vol% with respect to the support particles in preventing penetration cracks.

本発明の電解質板1を用い、この電解質板1の両面を
カソード(酸素極)とアノード(燃料極)の両電極で挟
み、カソード側に酸化ガスを、又、アノード側に燃料ガ
スをそれぞれ供給するようにしたものを1セルとし、か
かるセルをセパレータを介し多層に積層して積層式燃料
電池を構成した場合において、燃料電池の運転と運転停
止を繰り返すとき、電解質板1は燃料電池の運転温度
(650℃)と室温との間で熱的に繰り返し作動されるこ
とにより大きな応力を受けることにより、又、運転温度
から室温に冷却されて電解質が固化することにより、電
解質板1には多数の割れが生じ、従来の強化用添加物と
して粗粒子を単に混入した方式では該粗粒子周囲の界面
に更に隙間が生じて、上記多数の割れが該隙間を通して
貫通するおそれがあったことは前記したが、本発明の電
解質板1では、強化用添加物としての粗粒子5が多孔質
としてあって、この粗粒子5の多孔を通して粗粒子5内
に電解質が入り込み、粗粒子5の内部と外部で電解質が
連続した状態になるようにしてあるので、上記燃料電池
の冷却時に電解質が固体になるときは、第2図に示す如
く電解質6(図中の点を密集した部分)が粗粒子5の孔
7内に入ったまま固化し、粗粒子5周辺の電解質と一連
になり、粗粒子5の周囲に一連の隙間が形成されなくな
る。これにより電解質板1の両面から生じた割れ4が粗
粒子5に達していても、この両面からの割れ4が貫通す
ることを防止することができる。
Using the electrolyte plate 1 of the present invention, both surfaces of the electrolyte plate 1 are sandwiched between a cathode (oxygen electrode) and an anode (fuel electrode), and an oxidizing gas is supplied to the cathode side, and a fuel gas is supplied to the anode side. When the fuel cell is repeatedly operated and stopped when a stacked fuel cell is configured by stacking the cells in a multilayer structure with a separator interposed therebetween, the electrolyte plate 1 operates as a fuel cell. The electrolyte plate 1 receives a large number of stresses by being repeatedly operated between the temperature (650 ° C.) and the room temperature, and by being cooled from the operating temperature to the room temperature to solidify the electrolyte. Cracks occur, and in the conventional method of simply mixing coarse particles as a reinforcing additive, a further gap is formed at the interface around the coarse particles, and the large number of cracks may penetrate through the gap. As described above, in the electrolyte plate 1 of the present invention, the coarse particles 5 as a reinforcing additive are porous, and the electrolyte enters the coarse particles 5 through the pores of the coarse particles 5 to form the coarse particles 5. Since the electrolyte is continuous inside and outside, when the fuel becomes solid when the fuel cell is cooled, as shown in FIG. 2, the electrolyte 6 (a portion where points in the figure are densely packed) as shown in FIG. The solidified solid particles 5 remain in the pores 7, solidify with the electrolyte around the coarse particles 5, and a series of gaps around the coarse particles 5 are not formed. Thereby, even if the cracks 4 generated from both surfaces of the electrolyte plate 1 reach the coarse particles 5, it is possible to prevent the cracks 4 from both surfaces from penetrating.

本発明者等は、本発明の電解質板1を用いた100mm角
の燃料電池を作り、運転温度(650℃)と室温を交互に
繰り返し、これの繰り返しを20回行った実験の結果、ク
ロスリークはなく、これにより本発明の電解質板1には
貫通割れが生じないことが確認された。
The present inventors made a 100 mm square fuel cell using the electrolyte plate 1 of the present invention, and alternately repeated the operating temperature (650 ° C.) and the room temperature. The experiment was repeated 20 times. However, it was confirmed that the electrolyte plate 1 of the present invention did not cause through cracks.

なお、上記実施例では、強化用添加物として20〜150
μのリチウムアルミネート粗粒子5を数μ以下の支持粒
子内に混入させてマトリックスを形成させる場合を示し
たが、上記リチウムアルミネート粗粒子5に代えて、多
数の孔を有するへちま型をなす多孔質のリチウムアルミ
ネート長繊維を混入し、電解質が上記リチウムアルミネ
ート長繊維中に入り込み、燃料電池を運転温度(650
℃)から室温に冷却したときにリチウムアルミネート長
繊維中に入った電解質が固化して、リチウムアルミネー
ト長繊維の周囲に一連の隙間が生じないようにしたもの
としてもよい。上記リチウムアルミネート長繊維の大き
さは、100μ以上の長さで、且つ長さ1と直径dの比1/d
が10以上の太さとし、この繊維を多孔質に成形したもの
を使用する。
In the above example, 20 to 150
Although the case where the matrix is formed by mixing the lithium aluminate coarse particles 5 into the support particles of several μm or less has been described, instead of the lithium aluminate coarse particles 5, a limp type having a large number of holes is formed. The porous lithium aluminate filament is mixed in, and the electrolyte enters the lithium aluminate filament, and the fuel cell is operated at the operating temperature (650
(C) when cooled to room temperature, the electrolyte contained in the lithium aluminate filaments may be solidified so that a series of gaps are not formed around the lithium aluminate filaments. The size of the lithium aluminate filament is 100 μ or more, and the ratio of length 1 to diameter d is 1 / d.
Has a thickness of 10 or more, and a porous material of this fiber is used.

[発明の効果] 以上述べた如く、本発明の電解質板によれば、電解質
としての溶融炭酸塩をマトリックスに含浸させてなり且
つカソードとアノードの両電極で両面から挟んで燃料電
池を構成する溶融炭酸塩型燃料電池の電解質板におい
て、リチウムアルミネートの微粒子を支持粒子としてマ
トリックスを形成するときに該支持粒子よりも大きい粒
径で且つ多孔質のリチウムアルミネートの粗粒子又は長
繊維を強化用添加物として上記支持粒子に対し所要の割
り合いで混入して多数の空孔を有するマトリックスを形
成し、且つ該マトリックスに溶融炭酸塩を含浸させると
きに、該溶融炭酸塩を多孔質の強化用添加物の内部にま
で含浸させて、該強化用添加物の内部と外部で炭酸塩が
連続した状態になるようにしてなる構成としてあるの
で、燃料電池を運転温度から室温に冷却するときに電解
質が固体になるが、このとき強化用添加物としての多孔
質の粗粒子又は長繊維の内部に入った電解質もそのまま
の状態で固体になることから上記粗粒子や長繊維の周囲
と電解質の界面に一連の隙間が生じることを防止でき
て、電解質板に小さな割れが生じてもこの割れを貫通さ
せるおそれをなくし得る、という優れた効果を奏し得
る。
[Effects of the Invention] As described above, according to the electrolyte plate of the present invention, a molten carbonate as an electrolyte is impregnated in a matrix, and a molten metal constituting a fuel cell is sandwiched between both electrodes of a cathode and an anode from both sides. When forming a matrix using lithium aluminate fine particles as support particles in an electrolyte plate of a carbonate fuel cell, the porous lithium aluminate coarse particles or long fibers having a particle size larger than the support particles are reinforced. As an additive, the support particles are mixed at a required ratio to form a matrix having a large number of pores, and when the matrix is impregnated with the molten carbonate, the molten carbonate is used for reinforcing the porous body. Since the inside of the additive is impregnated so that the carbonate is continuous between the inside and the outside of the reinforcing additive, the fuel When the battery is cooled from the operating temperature to room temperature, the electrolyte becomes solid, but at this time, the electrolyte contained inside the porous coarse particles or long fibers as a reinforcing additive becomes solid as it is. It is possible to prevent the formation of a series of gaps at the interface between the periphery of the coarse particles and the long fibers and the electrolyte, and to eliminate the risk of penetrating the crack even if a small crack occurs in the electrolyte plate. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す電解質板の概略断面
図、第2図は電解質が固まるときの状態を示す部分拡大
図、第3図は従来の電解質板の一例を示す概略断面図で
ある。 1……電解質板、1a……マトリックス、4……割れ、5
……リチウムアルミネート粗粒子、6……電解質、7…
…孔。
FIG. 1 is a schematic cross-sectional view of an electrolyte plate showing one embodiment of the present invention, FIG. 2 is a partially enlarged view showing a state when the electrolyte is solidified, and FIG. 3 is a schematic cross-sectional view showing an example of a conventional electrolyte plate. It is. 1 ... electrolyte plate, 1a ... matrix, 4 ... crack, 5
... lithium aluminate coarse particles, 6 ... electrolyte, 7 ...
... holes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質としての溶融炭酸塩をマトリックス
に含浸させてなり且つカソードとアノードの両電極で両
面から挟んで燃料電池を構成する溶融炭酸塩型燃料電池
の電解質板において、リチウムアルミネートの微粒子を
支持粒子としてマトリックスを形成するときに該支持粒
子よりも大きい粒径で且つ多孔質のリチウムアルミネー
トの粗粒子又は長繊維を強化用添加物として上記支持粒
子に対し所要の割り合いで混入して多数の空孔を有する
マトリックスを形成し、且つ該マトリックスに溶融炭酸
塩を含浸させるときに、該溶融炭酸塩を多孔質の強化用
添加物の内部にまで含浸させて、該強化用添加物の内部
と外部で炭酸塩が連続した状態になるようにしてなるこ
とを特徴とする溶融炭酸塩型燃料電池の電解質板。
An electrolyte plate of a molten carbonate fuel cell comprising a matrix impregnated with a molten carbonate as an electrolyte and sandwiching the cathode and anode from both sides to constitute a fuel cell. When forming a matrix using fine particles as support particles, coarse particles or long fibers of porous lithium aluminate having a particle size larger than the support particles are mixed with the above support particles at a required ratio as a reinforcing additive. Forming a matrix having a large number of pores, and impregnating the matrix with molten carbonate, impregnating the molten carbonate into the interior of the porous reinforcing additive to form the matrix. An electrolyte plate for a molten carbonate fuel cell, characterized in that the carbonate is continuous inside and outside the object.
JP63277340A 1988-11-04 1988-11-04 Electrolyte plate for molten carbonate fuel cell Expired - Lifetime JP2615935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277340A JP2615935B2 (en) 1988-11-04 1988-11-04 Electrolyte plate for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277340A JP2615935B2 (en) 1988-11-04 1988-11-04 Electrolyte plate for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH02126563A JPH02126563A (en) 1990-05-15
JP2615935B2 true JP2615935B2 (en) 1997-06-04

Family

ID=17582162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277340A Expired - Lifetime JP2615935B2 (en) 1988-11-04 1988-11-04 Electrolyte plate for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2615935B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035468A (en) * 1983-08-03 1985-02-23 Agency Of Ind Science & Technol Electrolyte matrix for fuel cell

Also Published As

Publication number Publication date
JPH02126563A (en) 1990-05-15

Similar Documents

Publication Publication Date Title
US4749632A (en) Sintering aid for lanthanum chromite refractories
US5629103A (en) High-temperature fuel cell with improved solid-electrolyte/electrode interface and method of producing the interface
JP2593036B2 (en) Stacked fuel cell components
EP0085405A1 (en) Fuel cell
US5453101A (en) Process for producing composite active electrolyte-matrix and laminated component tapes for molten carbonate fuel cells
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
JP2615935B2 (en) Electrolyte plate for molten carbonate fuel cell
US4804598A (en) Separator systems for silver-iron batteries
KR102443311B1 (en) Solid electrolyte materials for electrochemical secondary batteries
KR102082691B1 (en) Molten carbonate fuel cells including electrolyte impregnated matrix and methods of manufacturing the same
JP2005085758A (en) High temperature type fuel cell
JPH0799695B2 (en) Method for manufacturing molten carbonate fuel cell
JP2633522B2 (en) Fuel cell
JPH0637292B2 (en) Method for producing coarse particles of porous lithium aluminate
JPH1074529A (en) Fused carbonate type fuel cell and its manufacture
JPS62241263A (en) Fuel cell
JPH06290792A (en) Manufacture of electrode for molten carbonate fuel cell
JP2944097B2 (en) Molten carbonate fuel cell
JP2997518B2 (en) Molten carbonate fuel cell
JP3003377B2 (en) Method for manufacturing molten carbonate fuel cell
JPH07262996A (en) Fuel electrode for molten carbonate fuel cell
JPH0222503B2 (en)
JP2517750B2 (en) Method for producing molten salt fuel cell
JPH01231273A (en) Manufacture of fused carbonate fuel cell
JPH11191419A (en) Fused carbonate fuel cell