JPH1074529A - Fused carbonate type fuel cell and its manufacture - Google Patents

Fused carbonate type fuel cell and its manufacture

Info

Publication number
JPH1074529A
JPH1074529A JP8229887A JP22988796A JPH1074529A JP H1074529 A JPH1074529 A JP H1074529A JP 8229887 A JP8229887 A JP 8229887A JP 22988796 A JP22988796 A JP 22988796A JP H1074529 A JPH1074529 A JP H1074529A
Authority
JP
Japan
Prior art keywords
carbonate
electrode
alkali metal
impregnated
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8229887A
Other languages
Japanese (ja)
Inventor
Yoichi Seta
田 曜 一 瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8229887A priority Critical patent/JPH1074529A/en
Publication of JPH1074529A publication Critical patent/JPH1074529A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an oxidant pole from being compressed and deformed in the thickness direction by applying fastening load to a battery in the process of a temperature rise to 450 deg.C or less when starting the battery. SOLUTION: A fused carbonate type fuel cell has an electrolyte layer formed by impregnating an electrolyte holding matrix 2 mainly containing ceramics with mixed alkali metal carbonate and held between a fuel pole 1a formed of porous sintered body mainly containing nickel and an oxidant pole 1b formed of nickel porous sintered body. Part of the hole capacity of the oxidant pole 1b is previously impregnated with mixed alkali metal carbonate 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融炭酸塩型燃料
電池に係わり、特に電池起動時の昇温過程での酸化剤極
の圧縮変形を低減した溶融炭酸塩型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell, and more particularly to a molten carbonate fuel cell in which the compression deformation of an oxidizer electrode during the temperature rise process at the time of starting the battery is reduced.

【0002】[0002]

【従来の技術】近年、高効率のエネルギー変換装置とし
て溶融炭酸塩型燃料電池の開発が進められている。溶融
炭酸塩型燃料電池は、アルカリ金属炭酸塩からなる電解
質共晶塩を溶融温度以上で溶融状態にし、電池反応を生
起させるもので、他の燃料電池、たとえばリン酸型燃料
電池に比べて高価な貴金属触媒を必要とせずに発電効率
が高い等の大きな特徴を有している。
2. Description of the Related Art In recent years, a molten carbonate fuel cell has been developed as a highly efficient energy conversion device. A molten carbonate fuel cell is a type in which an electrolyte eutectic salt composed of an alkali metal carbonate is brought into a molten state at a melting temperature or higher to cause a cell reaction, and is more expensive than other fuel cells, for example, a phosphoric acid fuel cell. It has major features such as high power generation efficiency without the need for a noble metal catalyst.

【0003】このような溶融炭酸塩型燃料電池は、図8
に示すように、対向して配置された多孔質燃料極1aと
酸化剤極1bと、これらの電極間に挟まれた共晶炭酸塩
電解質を含浸した電解質保持マトリックス2からなる単
位電池を、ガスチャンネル4a,4bを具備したセパ
レータ5を介して交互に複数個積層して構成されてい
る。多孔質酸化剤極1bには厚み方向に均質な多孔質構
造を有するニッケル焼結体等が通常用いられる。
[0003] Such a molten carbonate fuel cell is shown in FIG.
As shown in FIG. 1, a unit cell 3 including a porous fuel electrode 1a and an oxidant electrode 1b disposed opposite to each other, and an electrolyte holding matrix 2 impregnated with a eutectic carbonate electrolyte sandwiched between these electrodes is It is configured by alternately laminating a plurality of layers via a separator 5 having gas channels 4a and 4b. For the porous oxidizer electrode 1b, a nickel sintered body having a porous structure uniform in the thickness direction is usually used.

【0004】この燃料電池の運転時には、600℃〜7
00℃の温度で電解質層2中の共晶炭酸塩を溶融させ、
酸化剤極1bおよび燃料極1aにそれぞれ供給された酸
化剤ガスおよび燃料ガスと電極/電解質界面での電気化
学反応により発電を行わせるようにしている。このよう
な溶融炭酸塩型燃料電池の安定な発電のためには、電極
および電解質層等の起電部品が、長時間にわたってその
形状を維持する必要がある。
During operation of this fuel cell, a temperature of 600 ° C. to 7 ° C.
At a temperature of 00 ° C., the eutectic carbonate in the electrolyte layer 2 is melted,
Power is generated by an electrochemical reaction at the electrode / electrolyte interface with the oxidizing gas and fuel gas supplied to the oxidizing electrode 1b and the fuel electrode 1a, respectively. For stable power generation of such a molten carbonate fuel cell, it is necessary to maintain the shape of the electromotive components such as electrodes and electrolyte layers for a long time.

【0005】[0005]

【発明が解決しようとする課題】酸化剤極としては、通
常ニッケル粉末を有機バインダー、可塑材および有機溶
剤と混合しスラリー化した後、ドクターブレード等によ
りシート化する湿式成形法、あるいはニッケル粉末を直
接耐熱性の受け板上に散布、擦り切って成形する乾式成
形法により原料粉末をシート化した後、不活性あるいは
還元雰囲気中で焼結して得られる気孔率70〜85%の
多孔質焼結体が用いられている。この酸化剤極として用
いられるニッケル多孔質焼結体は、電池に組み込んだ
後、約450℃以上の温度で酸化剤ガスを供給すること
により酸化ニッケルとなり、その酸化ニッケルとなった
酸化剤極は、酸化前の金属状ニッケル多孔質体に比較し
て耐圧縮強度が向上する。
The oxidizer electrode is usually formed by mixing nickel powder with an organic binder, a plasticizer and an organic solvent to form a slurry, and then forming a sheet with a doctor blade or the like, or a nickel powder. A raw material powder is formed into a sheet by a dry molding method of directly spraying, scraping and shaping on a heat-resistant receiving plate, and then sintered in an inert or reducing atmosphere to obtain a porous sintered material having a porosity of 70 to 85%. Consolidation is used. The nickel porous sintered body used as the oxidizer electrode is turned into nickel oxide by supplying an oxidizer gas at a temperature of about 450 ° C. or more after being assembled in the battery, and the oxidizer electrode that has become the nickel oxide is In addition, the compressive strength is improved as compared with the metallic nickel porous body before oxidation.

【0006】しかし、電池起動時の450℃以下の昇温
過程での酸化剤極は金属ニッケル状態であり、酸化ニッ
ケル酸化剤極に比較して耐圧縮強度が低いため、電池の
締め付け荷重により厚み方向に圧縮変形を生じる。その
結果電極、電解質層、ガスチャンネル等の起電部品間で
接触不良を生じ、内部抵抗増加により性能低下を引き起
こす恐れがあった。
However, the oxidizer electrode is in a metallic nickel state during the temperature rise process at 450 ° C. or less when the battery is started, and has a lower compressive strength than the nickel oxide oxidizer electrode. Compressive deformation occurs in the direction. As a result, poor contact may occur between the electromotive components such as the electrodes, the electrolyte layer, and the gas channels, and the performance may be degraded due to an increase in internal resistance.

【0007】そこで本発明は、上述した問題点を解決す
ることが出来る溶融炭酸塩型燃料電池及び製造法を提供
することを目的としている。
Accordingly, an object of the present invention is to provide a molten carbonate type fuel cell and a manufacturing method capable of solving the above-mentioned problems.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、第1の発明は酸化剤極の空孔の一部分に予め混合ア
ルカリ金属炭酸塩を含浸してから燃料極と電解質保持マ
トリックスを積層して電池を組み立てる。
In order to solve the above-mentioned problems, a first invention is to impregnate a part of pores of an oxidizer electrode with a mixed alkali metal carbonate beforehand, and then laminate a fuel electrode and an electrolyte holding matrix. And assemble the battery.

【0009】第2の発明は、酸化剤極の空孔の50〜9
8%に予め混合アルカリ金属炭酸塩を含浸してから燃料
極と電解質保持マトリックスを積層して電池を組み立て
る。
In a second aspect of the present invention, 50 to 9 holes of the oxidant electrode are formed.
After impregnating 8% with the mixed alkali metal carbonate in advance, the fuel electrode and the electrolyte holding matrix are laminated to assemble the battery.

【0010】また第3の発明は、酸化剤極の空孔容積の
50〜98%と燃料極の空孔容積の80〜100%に混
合アルカリ金属炭酸塩を予め含浸してから電解質保持マ
トリックスと積層して電池を組み立てる。
In a third aspect of the present invention, a mixed alkali metal carbonate is preliminarily impregnated into 50 to 98% of the pore volume of the oxidant electrode and 80 to 100% of the pore volume of the fuel electrode, and then the electrolyte holding matrix is formed. Laminate and assemble the battery.

【0011】第4の発明は、酸化剤極または酸化剤極と
燃料極の空孔に予め含浸する混合アルカリ金属炭酸塩と
して、炭酸リチウム/炭酸カリウム、炭酸リチウム/炭
酸ナトリウムの混合アルカリ金属炭酸塩のうちから一種
を用いる。
According to a fourth aspect of the present invention, there is provided a mixed alkali metal carbonate of lithium carbonate / potassium carbonate or lithium carbonate / sodium carbonate as a mixed alkali metal carbonate which is previously impregnated into pores of the oxidizer electrode or the oxidizer electrode and the fuel electrode. Use one of them.

【0012】また第5の発明は、燃料極に比較して酸化
剤極に含浸する混合アルカリ金属炭酸塩中の炭酸リチウ
ム含有量を高くする。
According to a fifth aspect of the present invention, the content of lithium carbonate in the mixed alkali metal carbonate impregnated in the oxidant electrode is made higher than that in the fuel electrode.

【0013】さらに第6の発明は、電池組立後の起動時
に、酸素を含有する脱バインダーガスを燃料極及び酸化
剤極の両極から供給して、電解質層中の電解質保持マト
リックスバインダーの脱バインダーを行った後、酸化剤
極にのみ酸素含有の酸化剤ガスを供給し酸化剤極を酸化
し、引き続き混合アルカリ金属炭酸塩を溶融して酸化剤
極、燃料極及び電解質保持マトリックス中に混合アルカ
リ金属炭酸塩を含浸する。
In a sixth aspect of the present invention, a debinding gas containing oxygen is supplied from both the fuel electrode and the oxidizer electrode at the start-up after the battery assembly to remove the binder of the electrolyte holding matrix binder in the electrolyte layer. After that, the oxygen-containing oxidizing gas is supplied only to the oxidizing electrode to oxidize the oxidizing electrode, and subsequently the mixed alkali metal carbonate is melted to mix the mixed alkali metal in the oxidizing electrode, the fuel electrode and the electrolyte holding matrix. Impregnate with carbonate.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施の形態)図1は、本発明の第1の実施の形
態の単電池の模式図である。使用する電極は、原料粉末
を乾式で成形し焼結する方法で製作した。すなわち酸化
剤極は以下の工程で製作した。平均粒径10ミクロンの
ニッケル粉末を、カーボン製の耐熱受け板上に約1.5
mmの厚みに散布し、その表面をブレードで擦り切って一
定厚みの成形粉体を得た。これを、このまま窒素ガス雰
囲気中で850℃で焼結し、厚み約1mm、気孔率82%
の多孔質焼結体7を得、酸化剤極1bとした。
(First Embodiment) FIG. 1 is a schematic view of a unit cell according to a first embodiment of the present invention. The electrode to be used was manufactured by a method in which the raw material powder was dry-formed and sintered. That is, the oxidant electrode was manufactured by the following steps. Nickel powder with an average particle size of 10 microns is placed on a carbon
The powder was sprayed to a thickness of mm, and the surface was scraped off with a blade to obtain a molded powder having a constant thickness. This is sintered as it is at 850 ° C. in a nitrogen gas atmosphere, and has a thickness of about 1 mm and a porosity of 82%.
Was obtained as the oxidant electrode 1b.

【0015】この酸化剤極1bに混合アルカリ金属炭酸
塩として、酸化剤極の空孔容積の90%に相当する量の
炭酸リチウム/炭酸カリウム=62/38モル比の共晶
炭酸塩(融点 490℃)9を含浸した。含浸は、酸化
剤極の表面に共晶炭酸塩を所定量散布し、表面をへらで
ならしてほぼ均等な厚みに成型した後、この上に離型処
理したカーボン板を積載し、980Pa程度の荷重を掛
けながら、窒素ガス雰囲気中で530℃で溶融し含浸し
た。
As an alkali metal carbonate mixed with the oxidizer electrode 1b, an amount of lithium carbonate / potassium carbonate corresponding to 90% of the pore volume of the oxidizer electrode is a eutectic carbonate having a molar ratio of 62/38 (melting point: 490). C) 9 was impregnated. Impregnation is performed by spraying a predetermined amount of eutectic carbonate on the surface of the oxidizer electrode, shaping the surface with a spatula to form a substantially uniform thickness, and then mounting a release-treated carbon plate on this, and about 980 Pa. While applying a load, the sample was melted and impregnated at 530 ° C. in a nitrogen gas atmosphere.

【0016】また、燃料極1aは、平均粒径6ミクロン
のニッケル−アルミナ合金粉末を、酸化剤極1bと同様
にカーボン製耐熱受け板上に約1.5mmの厚みに散布
し、その表面をブレードで擦り切って一定厚みの成形粉
体を得た。これを、このまま窒素ガス雰囲気中で110
0℃で焼結し、厚み約0.9mm、気孔率50%の多孔質
焼結体8を得、燃料極1aとした。
The fuel electrode 1a is formed by spraying a nickel-alumina alloy powder having an average particle diameter of 6 μm on a carbon heat-resistant receiving plate to a thickness of about 1.5 mm in the same manner as the oxidizing electrode 1b. The powder was scraped off with a blade to obtain a molded powder having a constant thickness. This is directly converted to 110 in a nitrogen gas atmosphere.
Sintering was performed at 0 ° C. to obtain a porous sintered body 8 having a thickness of about 0.9 mm and a porosity of 50%, which was used as a fuel electrode 1a.

【0017】これらの燃料極1a及び酸化剤極1bから
なる電極を、平均粒径1ミクロンのリチウムアルミネー
ト保持材、有機バインダー、可塑剤からなる混合スラリ
ーをドクターブレード装置により約0.3mmの厚みに成
形した電解質保持用マトリックス2を挟持して組み立
て、単電池を構成した。各電極には、電池発電用の反
応ガスを供給するためのガスチャンネル4a,4bを配
置した。なお、電池全体の電解質の必要量は、酸化剤極
1bに含浸した炭酸塩を加えて、燃料極側のガスチャン
ネル4aの溝内にも炭酸塩を組立時に配置してまかなっ
た。このようにして構成した単電池を、酸化剤極側ガス
チャンネル4bに酸素5%−窒素95%のガスを供給し
ながら室温から400℃まで昇温した。なお、この間に
単電池には上下方向に98kPaの締め付け圧力を付加
した。このようにして、400℃までに電解質保持マト
リックス中の有機バインダーを揮散した後、酸化剤極ガ
スチャンネル4bへの供給ガスを酸素10%−窒素90
%のガスに切り換え、470℃まで昇温して約24時間
保持し酸化剤極の酸化を行った。
An electrode composed of the fuel electrode 1a and the oxidant electrode 1b was coated with a mixed slurry composed of a lithium aluminate holding material having an average particle diameter of 1 micron, an organic binder, and a plasticizer to a thickness of about 0.3 mm by a doctor blade device. an electrolyte retaining matrix 2 molded assembly to clamp, to constitute a unit cell 6. Gas channels 4a and 4b for supplying a reaction gas for battery power generation were arranged on each electrode. The required amount of the electrolyte in the entire battery was determined by adding carbonate impregnated in the oxidant electrode 1b and disposing the carbonate in the groove of the gas channel 4a on the fuel electrode side at the time of assembly. The temperature of the unit cell thus configured was raised from room temperature to 400 ° C. while supplying a gas of 5% oxygen to 95% nitrogen to the oxidant electrode side gas channel 4b. Meanwhile, a tightening pressure of 98 kPa was applied to the unit cell in the vertical direction. After the organic binder in the electrolyte holding matrix is volatilized up to 400 ° C. in this manner, the supply gas to the oxidant electrode gas channel 4b is changed to 10% oxygen-90% nitrogen.
% Gas, and the temperature was raised to 470 ° C. and maintained for about 24 hours to oxidize the oxidant electrode.

【0018】引き続き、共晶炭酸塩の溶融温度である4
90℃まで昇温し、溶融した炭酸塩を酸化剤極1b、燃
料極1a及び電解質保持用マトリックス2中に再分配
し、燃料極側ガスチャンネル4aには炭酸ガスを供給し
ながら電池の運転温度である650℃まで昇温した。6
50℃到達後、酸化剤ガスとして空気/炭酸ガス=70
/30モル比、燃料ガスとして水素/炭酸ガス=80/
20モル比の反応ガスを供給して発電を行った。
Subsequently, the melting temperature of eutectic carbonate, 4
The temperature was raised to 90 ° C., and the molten carbonate was redistributed into the oxidizer electrode 1b, the fuel electrode 1a, and the electrolyte holding matrix 2, and while supplying carbon dioxide gas to the fuel electrode side gas channel 4a, the operating temperature of the battery was increased. The temperature was raised to 650 ° C. 6
After reaching 50 ° C., air / carbon dioxide gas = 70 as the oxidizing gas.
/ 30 molar ratio, hydrogen / carbon dioxide gas = 80 /
Electric power was generated by supplying a reaction gas at a molar ratio of 20.

【0019】図2は、本発明の第1の実施の形態の単電
池の起動・昇温パターンである。発電は、150mA・
cm-2の定電流で行い、約1000時間の電池の内部抵
抗、電池電圧の変化を記録した。1000時間発電後、
電池を降温、分解し酸化剤極の発電前後の厚み変化を測
定した。
FIG. 2 shows a start-up / heating pattern of the unit cell according to the first embodiment of the present invention. The power generation is 150mA
The test was performed at a constant current of cm −2 , and changes in the internal resistance and battery voltage of the battery for about 1000 hours were recorded. After 1000 hours of power generation,
The battery was cooled down and decomposed, and the thickness change of the oxidant electrode before and after power generation was measured.

【0020】比較例として、酸化剤極には炭酸塩を含浸
せず空孔容積の100%に炭酸リチウム/炭酸カリウム
=62/38%の共晶炭酸塩を含浸したニッケル−アル
ミナ合金粉からなる燃料極と電解質保持マトリックスで
単電池を構成した。
As a comparative example, the oxidizer electrode is made of a nickel-alumina alloy powder in which 100% of the pore volume is impregnated with a eutectic carbonate of lithium carbonate / potassium carbonate = 62/38% without impregnating the carbonate. A unit cell was composed of the fuel electrode and the electrolyte holding matrix.

【0021】このように構成した単電池を、酸化剤極に
酸素5%−窒素95%のガスを供給しながら室温から4
00℃まで昇温した。なお、この間に単電池には上下方
向に98kPaの締め付け圧力を付加した。このように
して、400℃までに電解質保持マトリックス中の有機
バインダーを揮散した後、酸化剤極への供給ガスを酸素
10%−窒素90%のガスに切り換え、470℃まで昇
温して約24時間保持し酸化剤極の酸化を行った。
The unit cell thus constructed is cooled from room temperature to 4% while supplying a gas of 5% oxygen-95% nitrogen to the oxidizer electrode.
The temperature was raised to 00 ° C. Meanwhile, a tightening pressure of 98 kPa was applied to the unit cell in the vertical direction. After the organic binder in the electrolyte holding matrix is volatilized up to 400 ° C. in this way, the gas supplied to the oxidant electrode is switched to a gas of 10% oxygen-90% nitrogen, and the temperature is raised to 470 ° C. to about 24%. After holding for a while, the oxidant electrode was oxidized.

【0022】引き続き、共晶炭酸塩の溶融温度である4
90℃まで昇温し、溶融した炭酸塩を酸化剤極1b、燃
料極1a及び電解質保持用マトリックス2中に再分配
し、燃料極には炭酸ガスを供給しながら電池の運転温度
である650℃まで昇温した。650℃到達後、酸化剤
ガスとして空気/炭酸ガス=70/30モル比、燃料ガ
スとして水素/炭酸ガス=80/20モル比の反応ガス
を供給して発電を行った。発電は、150mA・cm-2
定電流で行い、約1000時間の電池の電池電圧の変化
を記録した。1000時間発電後、電池を昇温、分解し
酸化剤極の発電前後の厚み変化を測定した。1000時
間の発電経過後の酸化剤極の厚み変化率及び単電池性能
の変化を図3及び図4に示す。比較例では、酸化剤極の
厚みは約20%程度減少しており1000時間発電経過
後の単電池性能も6%程度の低下が見られた。これに対
し、第1の実施の形態の単電池では、酸化剤極の厚み変
化は0.52%の減少にとどまった。また、1000時
間経過後の単電池性能は0.3%の低下にとどまった。
Subsequently, the melting temperature of the eutectic carbonate, 4
The temperature was raised to 90 ° C., and the molten carbonate was redistributed into the oxidizer electrode 1b, the fuel electrode 1a, and the electrolyte holding matrix 2. While supplying carbon dioxide gas to the fuel electrode, the operating temperature of the battery was 650 ° C. Temperature. After reaching 650 ° C., power was generated by supplying a reaction gas having an air / carbon dioxide gas = 70/30 molar ratio as an oxidizing gas and a hydrogen / carbon dioxide gas = 80/20 molar ratio as a fuel gas. Power generation was performed at a constant current of 150 mA · cm −2 , and the change in battery voltage of the battery for about 1000 hours was recorded. After power generation for 1000 hours, the battery was heated and decomposed, and the thickness change of the oxidant electrode before and after power generation was measured. FIGS. 3 and 4 show the change in the thickness of the oxidant electrode and the change in the cell performance after the power generation for 1000 hours. In the comparative example, the thickness of the oxidant electrode was reduced by about 20%, and the cell performance after power generation for 1000 hours was also reduced by about 6%. On the other hand, in the unit cell of the first embodiment, the change in the thickness of the oxidant electrode was reduced by only 0.52%. In addition, the performance of the cell after 1000 hours has been reduced by only 0.3%.

【0023】(第2の実施の形態)図5は、本発明の第
2の実施の形態の単電池の模式図である。第1の実施の
形態で酸化剤極1bの空孔に炭酸リチウム/炭酸カリウ
ム=62/38モル比の共晶炭酸塩9を予め含浸したの
と同じ方法で、燃料極1aの空孔容積の100%に、炭
酸リチウム/炭酸カリウム=62/38モル比の共晶炭
酸塩10を予め含浸した。この燃料極1aと第1の実施
の形態で使用した細孔容量の90%に相当する量の炭酸
リチウム/炭酸カリウム=62/38モル比の共晶炭酸
塩を含浸した酸化剤極1bで第1の実施の形態で用いた
電解質保持マトリックス2を挟持し、第1の実施の形態
と同様に単電池を構成した。このようにして構成した
単電池を、酸化剤極側ガスチャンネル4bに酸素5%
−窒素95%のガスを供給しながら室温から400℃ま
で昇温した。なお、この間に単電池には上下方向に98
kPa締め付け圧力を付加した。このようにして、40
0℃までにマトリックス中の有機バインダーを揮散した
後、酸化剤極側ガスチャンネル4bへの供給ガスを酸素
10%−窒素90%のガスに切り替え、470℃まで昇
温して約24時間保持し酸化剤極1bの酸化を行った。
(Second Embodiment) FIG. 5 is a schematic view of a unit cell according to a second embodiment of the present invention. In the same manner as in the first embodiment, the pores of the oxidant electrode 1b were previously impregnated with the eutectic carbonate 9 in a molar ratio of lithium carbonate / potassium carbonate = 62/38, and the pore volume of the fuel electrode 1a was reduced. 100% was previously impregnated with eutectic carbonate 10 in a lithium carbonate / potassium carbonate = 62/38 molar ratio. The fuel electrode 1a and the oxidizer electrode 1b impregnated with eutectic carbonate in an amount of lithium carbonate / potassium carbonate = 62/38 molar ratio corresponding to 90% of the pore volume used in the first embodiment are used. A single cell 6 was formed in the same manner as in the first embodiment, sandwiching the electrolyte holding matrix 2 used in the first embodiment. The unit cell 6 configured as described above is supplied to the oxidant electrode side gas channel 4b with 5% oxygen.
-The temperature was raised from room temperature to 400 ° C. while supplying a gas of 95% nitrogen. During this time, the cell has 98
A kPa tightening pressure was applied. Thus, 40
After the organic binder in the matrix is volatilized to 0 ° C., the gas supplied to the oxidant electrode side gas channel 4b is switched to a gas of 10% oxygen to 90% nitrogen, and the temperature is raised to 470 ° C. and maintained for about 24 hours. The oxidant electrode 1b was oxidized.

【0024】引き続き、共晶炭酸塩の溶融温度である4
90℃まで昇温し、溶融した炭酸塩を酸化剤極1b、燃
料極1a及び電解質保持用マトリッスク2中に再分配
し、燃料極側ガスチャンネル4aには炭酸ガスを供給し
ながら電池の運転温度である650℃まで昇温した。6
50℃到達後、酸化剤ガスとして空気/炭酸ガス=70
/30モル比、燃料ガスとして水素/炭酸ガス=80/
20モル比の反応ガスを供給して発電を行った。単電池
の起動・昇温パターンは第1の実施の形態で示した図2
に示すパターンを用いた。発電は、150mA・cm-2
定電流で行い、約1000時間の電池の電池電圧の変化
を記録した。1000時間発電後、電池を降温、分解し
酸化剤極の発電前後の厚み変化を測定した。
Subsequently, the melting temperature of eutectic carbonate, 4
The temperature was raised to 90 ° C., and the molten carbonate was redistributed into the oxidizer electrode 1b, the fuel electrode 1a, and the electrolyte-holding matrix 2, and the operating temperature of the battery was increased while supplying carbon dioxide to the fuel electrode side gas channel 4a. The temperature was raised to 650 ° C. 6
After reaching 50 ° C., air / carbon dioxide gas = 70 as the oxidizing gas.
/ 30 molar ratio, hydrogen / carbon dioxide gas = 80 /
Electric power was generated by supplying a reaction gas at a molar ratio of 20. The start-up / heating pattern of the unit cell is shown in FIG. 2 shown in the first embodiment.
Was used. Power generation was performed at a constant current of 150 mA · cm −2 , and the change in battery voltage of the battery for about 1000 hours was recorded. After power generation for 1000 hours, the battery was cooled and decomposed, and the thickness change of the oxidant electrode before and after power generation was measured.

【0025】比較例は、第1の実施の形態での比較例と
同様である。1000時間の発電経過後の酸化剤極の厚
み変化率及び単電池性能の変化を図3及び図4に示す。
比較例では、酸化剤極の厚みは約20%程度減少してお
り1000時間発電経過後の単電池性能も6%程度の低
下が見られた。これに対し、第2の実施の形態の単位電
池では、酸化剤極の厚み変化は0.61%の減少にとど
まった。また、1000時間経過後の単電池性能は0.
4%の低下にとどまった。
The comparative example is the same as the comparative example in the first embodiment. FIGS. 3 and 4 show the change in the thickness of the oxidant electrode and the change in the cell performance after the power generation for 1000 hours.
In the comparative example, the thickness of the oxidant electrode was reduced by about 20%, and the cell performance after power generation for 1000 hours was also reduced by about 6%. On the other hand, in the unit battery of the second embodiment, the change in the thickness of the oxidizer electrode was reduced by only 0.61%. In addition, the performance of the cell after 1000 hours has passed is 0.1.
It was only a 4% drop.

【0026】(第3の実施の形態)第1の実施の形態に
おいて、酸化剤極1bに含浸する共晶炭酸塩として炭酸
リチウム/炭酸ナトリウム=53/47%の共晶炭酸塩
(融点 500℃)9を予め含浸し、第1の実施の形態
で使用したニッケル−アルミナ合金粉からなる燃料極1
aとリチウムアルミネートを主成分とする電解質保持マ
トリックス2とで第1の実施の形態と同様に単電池
構成した。この単電池を、酸化剤極側ガスチャンネル4
bに酸素5%−窒素95%のガスを供給しながら室温か
ら400℃まで昇温した。なお、この間に単位電池には
上下方向に1kg/cm2 の締め付け圧力を付加した。この
ようにして、400℃までにマトリックス中の有機バイ
ンダーを揮散した後、酸化剤側ガスチャンネル4bへの
供給ガスを酸素10%−窒素90%のガスに切り替え、
470℃まで昇温して約24時間保持し酸化剤極1bの
酸化を行った。
(Third Embodiment) In the first embodiment, a eutectic carbonate of lithium carbonate / sodium carbonate = 53/47% (melting point: 500 ° C.) was used as the eutectic carbonate impregnated in the oxidant electrode 1b. 9) A fuel electrode 1 made of nickel-alumina alloy powder used in the first embodiment, impregnated with 9 in advance
a and the electrolyte holding matrix 2 containing lithium aluminate as a main component constituted a unit cell 6 in the same manner as in the first embodiment. This cell is connected to the oxidant electrode side gas channel 4
The temperature was raised from room temperature to 400 ° C. while supplying a gas of 5% oxygen-95% nitrogen to b. Meanwhile, a tightening pressure of 1 kg / cm 2 was applied to the unit battery in the vertical direction. Thus, after the organic binder in the matrix is volatilized up to 400 ° C., the supply gas to the oxidant-side gas channel 4 b is switched to a gas of 10% oxygen-90% nitrogen,
The temperature was raised to 470 ° C. and maintained for about 24 hours to oxidize the oxidant electrode 1b.

【0027】引き続き、共晶炭酸塩の溶融温度である5
00℃まで昇温し、溶融した炭酸塩を酸化剤極1b、燃
料極1a及び電解質保持用マトリックス2中に再分配
し、燃料極側ガスチャンネル4aには炭酸ガスを供給し
ながら電池の運転温度である650℃まで昇温した。6
50℃到達後、酸化剤ガスとして空気/炭酸ガス=70
/30モル比、燃料ガスとして水素/炭酸ガス=80/
20モル比の反応ガスを供給して発電を行った。図6
は、本発明の第3の実施の形態の単電池の起動・昇温の
パターンである。発電は、150mA・cm-2の定電流で
行い、約1000時間の電池の電池電圧の変化を記録し
た。1000時間発電後、電池を降温、分解し酸化剤極
の発電前後の厚み変化を測定した。
Subsequently, the melting temperature of the eutectic carbonate, 5
The temperature was raised to 00 ° C., and the molten carbonate was redistributed into the oxidizer electrode 1b, the fuel electrode 1a, and the electrolyte holding matrix 2, and while supplying carbon dioxide gas to the fuel electrode side gas channel 4a, the operating temperature of the battery was increased. The temperature was raised to 650 ° C. 6
After reaching 50 ° C., air / carbon dioxide gas = 70 as the oxidizing gas.
/ 30 molar ratio, hydrogen / carbon dioxide gas = 80 /
Electric power was generated by supplying a reaction gas at a molar ratio of 20. FIG.
7 shows a start-up / heating pattern of the unit cell according to the third embodiment of the present invention. Power generation was performed at a constant current of 150 mA · cm −2 , and the change in battery voltage of the battery for about 1000 hours was recorded. After power generation for 1000 hours, the battery was cooled and decomposed, and the thickness change of the oxidant electrode before and after power generation was measured.

【0028】比較例は、第1の実施の形態での比較例と
同様である。1000時間の発電経過後の酸化剤極の厚
み変化率及び単電池性能の変化を図3及び図4に示す。
比較例では、酸化剤極の厚みは約20%程度減少してお
り1000時間発電経過後の単電池性能も6%程度の低
下が見られた。これに対し、第3の実施の形態の単位電
池では、酸化剤極の厚み変化は0.68%の減少にとど
まった。また、1000時間経過後の単電池性能は0.
43%の低下にとどまった。
The comparative example is the same as the comparative example in the first embodiment. FIGS. 3 and 4 show the change in the thickness of the oxidant electrode and the change in the cell performance after the power generation for 1000 hours.
In the comparative example, the thickness of the oxidant electrode was reduced by about 20%, and the cell performance after power generation for 1000 hours was also reduced by about 6%. On the other hand, in the unit battery of the third embodiment, the change in the thickness of the oxidant electrode was reduced by only 0.68%. In addition, the performance of the cell after 1000 hours has passed is 0.1.
It was down only 43%.

【0029】(第4の実施の形態)第2の実施の形態に
おいて、酸化剤極1bに含浸する共晶炭酸塩として炭酸
リチウム/炭酸ナトリウム=53/47%の共晶炭酸塩
(融点 500℃)9を予め含浸し、空孔容積の100
%に炭酸リチウム/炭酸ナトリウム=53/47%の共
晶炭酸塩10を含浸したニッケル−アルミナ合金粉から
なる燃料極1aと電解質保持マトリックス2で第1の実
施の形態と同様に単電池を構成した。この単電池
を、酸化剤極側ガスチャンネル4bに酸素5%−窒素9
5%のガスを供給しながら室温から400℃まで昇温し
た。なお、この間に単電池には上下方向に98kPaの
締め付け圧力を付加した。このようにして、400℃ま
でにマトリックス中の有機バインダーを揮散した後、酸
化剤極側ガスチャンネル4bへの供給ガスを酸素10%
−窒素90%のガスに切り替え、470℃まで昇温して
約24時間保持し酸化剤極1bの酸化を行った。
(Fourth Embodiment) In the second embodiment,
The eutectic carbonate impregnated into the oxidant electrode 1b
Lithium / sodium carbonate = 53/47% eutectic carbonate
(Melting point 500 ° C.) 9 beforehand, and the pore volume of 100
% Of lithium carbonate / sodium carbonate = 53/47%
From nickel-alumina alloy powder impregnated with crystalline carbonate 10
The first fuel cell 1a and the electrolyte holding matrix 2
Single battery as in the embodiment6Was configured. This cell6
Is supplied to the oxidant electrode side gas channel 4b by oxygen 5% -nitrogen 9
Raise the temperature from room temperature to 400 ° C while supplying 5% gas.
Was. During this time, the cell has a vertical pressure of 98 kPa.
Tightening pressure was applied. Thus, up to 400 ° C.
After evaporating the organic binder in the matrix in
The supply gas to the agent electrode side gas channel 4b is oxygen 10%
-Switch to 90% nitrogen gas and heat up to 470 ° C
It was kept for about 24 hours to oxidize the oxidant electrode 1b.

【0030】引き続き、共晶炭酸塩の溶融温度である5
00℃まで昇温し、溶融した炭酸塩を酸化剤極1b、燃
料極1a及び電解質保持用マトリックス2中に再分配
し、燃料極側ガスチャンネル4aには炭酸ガスを供給し
ながら電池の運転温度である650℃まで昇温した。6
50℃到達後、酸化剤ガスとして空気/炭酸ガス=70
/30モル比、燃料ガスとして水素/炭酸ガス=80/
20モル比の反応ガスを供給して発電を行った。単電池
の起動・昇温パターンは第1の実施の形態で示した図2
に示すパターンを用いた。発電は、150mA・cm-2
定電流で行い、約1000時間の電池の電池電圧の変化
を記録した。1000時間発電後、電池を降温・分解し
酸化剤極の発電前後の厚み変化を測定した。
Subsequently, the melting temperature of the eutectic carbonate, 5
The temperature was raised to 00 ° C., and the molten carbonate was redistributed into the oxidizer electrode 1b, the fuel electrode 1a, and the electrolyte holding matrix 2, and while supplying carbon dioxide gas to the fuel electrode side gas channel 4a, the operating temperature of the battery was increased. The temperature was raised to 650 ° C. 6
After reaching 50 ° C., air / carbon dioxide gas = 70 as the oxidizing gas.
/ 30 molar ratio, hydrogen / carbon dioxide gas = 80 /
Electric power was generated by supplying a reaction gas at a molar ratio of 20. The start-up / heating pattern of the unit cell is shown in FIG. 2 shown in the first embodiment.
Was used. Power generation was performed at a constant current of 150 mA · cm −2 , and the change in battery voltage of the battery for about 1000 hours was recorded. After 1000 hours of power generation, the battery was cooled down and decomposed, and the thickness change of the oxidant electrode before and after power generation was measured.

【0031】比較例は、第1の実施の形態での比較例と
同様である。1000時間の発電経過後の酸化剤極の厚
み変化率及び単電池性能の変化を図3及び図4に示す。
比較例では、酸化剤極の厚みは約20%程度減少してお
り1000時間発電経過後の単電池性能も6%程度の低
下が見られた。これに対し、第4の実施の形態の単位電
池では、酸化剤極の厚み変化は0.55%の減少にとど
まった。また、1000時間経過後の単電池性能は0.
38%の低下にとどまった。
The comparative example is the same as the comparative example in the first embodiment. FIGS. 3 and 4 show the change in the thickness of the oxidant electrode and the change in the cell performance after the power generation for 1000 hours.
In the comparative example, the thickness of the oxidant electrode was reduced by about 20%, and the cell performance after power generation for 1000 hours was also reduced by about 6%. On the other hand, in the unit battery of the fourth embodiment, the change in the thickness of the oxidant electrode was reduced by only 0.55%. In addition, the performance of the cell after 1000 hours has passed is 0.1.
It was down only 38%.

【0032】(第5の実施の形態)第2の実施の形態に
おいて、酸化剤極1bに含浸する共晶炭酸塩としてより
炭酸リチウム含有量の多い炭酸リチウム/炭酸カリウム
=70/30%の混合炭酸塩9を予め含浸し、空孔容積
の100%に炭酸リチウム/炭酸カリウム=62/38
%の共晶炭酸塩10を含浸したニッケル−アルミナ合金
粉からなる燃料極1aと電解質保持マトリックス2で第
1の実施の形態と同様に単電池を構成した。この単電
を、酸化剤極側ガスチャンネル4bに酸素5%−窒
素95%のガスを供給しながら室温から400℃まで昇
温した。なお、この間に単電池には上下方向に98kP
aの締め付け圧力を付加した。このようにして、400
℃までにマトリックス中の有機バインダーを揮散した
後、酸化剤極側ガスチャンネル4bへの供給ガスを酸素
10%−窒素90%のガスに切り替え、540℃まで昇
温して約12時間保持し酸化剤極1bの酸化を行った。
(Fifth Embodiment) In the second embodiment, a mixture of lithium carbonate / potassium carbonate having a higher lithium carbonate content = 70/30% as a eutectic carbonate impregnating the oxidant electrode 1b. Carbonate 9 was previously impregnated, and lithium carbonate / potassium carbonate = 62/38 to 100% of the pore volume.
The fuel cell 1a made of nickel-alumina alloy powder impregnated with the eutectic carbonate 10% and the electrolyte holding matrix 2 constituted the unit cell 6 in the same manner as in the first embodiment. This single cell 6 was heated from room temperature to 400 ° C. while supplying a gas of 5% oxygen-95% nitrogen to the oxidant electrode side gas channel 4b. During this time, the cell has 98 kP in the vertical direction.
a tightening pressure was applied. Thus, 400
After evaporating the organic binder in the matrix to ℃, the gas supplied to the oxidant electrode side gas channel 4b is switched to a gas of 10% oxygen-90% nitrogen, and the temperature is raised to 540 ° C. and maintained for about 12 hours to oxidize. The electrode 1b was oxidized.

【0033】この間、燃料極1aに含浸した共晶炭酸塩
の溶融温度である490℃では、溶融した炭酸塩を酸化
剤極1bの一部、燃料極1a及び電解質保持用マトリッ
スク2中に再分配させ、燃料極側ガスチャンネル4aに
は炭酸ガスを供給しながら電池の運転温度である650
℃まで昇温した。650℃到達後、酸化剤ガスとして空
気/炭酸ガス=70/30モル比、燃料ガスとして水素
/炭酸ガス=80/20モル比の反応ガスを供給して発
電を行った。図8は、本発明の第5の実施の形態の起動
・昇温パターンである。発電は、150mA・cm-2の定
電流で行い、約1000時間の電池の電池電圧の変化を
記録した。1000時間発電後、電池を降温、分解し酸
化剤極の発電前後の厚み変化を測定した。
At this time, at 490 ° C., which is the melting temperature of the eutectic carbonate impregnated in the anode 1a, the molten carbonate is redistributed into a part of the oxidizer electrode 1b, the anode 1a and the electrolyte holding matrix 2. Then, while supplying carbon dioxide gas to the fuel electrode side gas channel 4a, the operating temperature of the battery is 650.
The temperature was raised to ° C. After reaching 650 ° C., power was generated by supplying a reaction gas having an air / carbon dioxide gas = 70/30 molar ratio as an oxidizing gas and a hydrogen / carbon dioxide gas = 80/20 molar ratio as a fuel gas. FIG. 8 shows a startup / heating pattern according to the fifth embodiment of the present invention. Power generation was performed at a constant current of 150 mA · cm −2 , and the change in battery voltage of the battery for about 1000 hours was recorded. After power generation for 1000 hours, the battery was cooled and decomposed, and the thickness change of the oxidant electrode before and after power generation was measured.

【0034】比較例は、第1の実施の形態での比較例と
同様である。1000時間の発電経過後の酸化剤極の厚
み変化率及び単電池性能の変化を図3及び図4に示す。
比較例では、酸化剤極の厚みは約20%程度減少してお
り1000時間発電経過後の単電池性能も6%程度の低
下が見られた。これに対し、第5の実施の形態の単位電
池では、酸化剤極の厚み変化は0.4%の減少にとどま
った。また、1000時間経過後の単電池性能は0.2
5%の低下にとどまった。
The comparative example is the same as the comparative example in the first embodiment. FIGS. 3 and 4 show the change in the thickness of the oxidant electrode and the change in the cell performance after the power generation for 1000 hours.
In the comparative example, the thickness of the oxidant electrode was reduced by about 20%, and the cell performance after power generation for 1000 hours was also reduced by about 6%. On the other hand, in the unit battery of the fifth embodiment, the change in the thickness of the oxidizer electrode was reduced by only 0.4%. Moreover, the cell performance after 1000 hours has passed is 0.2
The drop was only 5%.

【0035】以上の効果は、本発明の実施の形態に限定
されるものではない。本発明の実施の形態1乃至5で
は、酸化剤極の空孔容積の90%に炭酸塩を含浸した
が、酸化剤極の耐圧縮変形を防止できる補強効果を発揮
できる炭酸塩量、好ましくは酸化剤極の空孔容積の50
〜98%に含浸してもその効果は損なわれない。
The above effects are not limited to the embodiment of the present invention. In Embodiments 1 to 5 of the present invention, 90% of the pore volume of the oxidant electrode was impregnated with carbonate. However, the amount of carbonate capable of exhibiting a reinforcing effect capable of preventing the oxidant electrode from compressive deformation, preferably 50 of the pore volume of the oxidant electrode
Impregnation up to 98% does not impair the effect.

【0036】また、燃料極に予め含浸する炭酸塩の量
は、本発明の実施の形態2乃至5では空孔容積の100
%としたが、単位電池の炭酸塩必要量を満たす量、好ま
しくは燃料極の空孔容積の80〜100%に含浸しても
その効果は損なわれない。
In the second to fifth embodiments of the present invention, the amount of the carbonate which is previously impregnated into the fuel electrode is 100% of the pore volume.
%, But the effect is not impaired even if impregnating an amount satisfying the required amount of carbonate of the unit cell, preferably 80 to 100% of the pore volume of the fuel electrode.

【0037】[0037]

【発明の効果】本発明によれば酸化剤極の空孔の一部分
に予め混合アルカリ金属炭酸塩を含浸する事により、電
池組立後のマトリックス脱バインダー中の昇温過程にお
いて、電池締め付け荷重下においても空孔中に含浸され
た固体炭酸塩の補強効果により金属酸化剤極多孔質細孔
構造が維持され、酸化剤極の圧縮変形による厚み減少に
起因する起電部品間の接触不良が低減される結果、良好
な電池性能を発揮することが出来る。
According to the present invention, a part of the pores of the oxidizer electrode is impregnated with the mixed alkali metal carbonate in advance, thereby increasing the temperature during the matrix debinding after the battery is assembled and under the battery tightening load. Also, the porous pore structure of the metal oxidizer electrode is maintained by the reinforcing effect of the solid carbonate impregnated in the pores, and the poor contact between the electromotive components due to the thickness reduction due to the compressive deformation of the oxidizer electrode is reduced. As a result, good battery performance can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の単電池の模式図。FIG. 1 is a schematic view of a unit cell according to a first embodiment of the present invention.

【図2】本発明の第1、2及び4の実施の形態の単電池
の起動・昇温パターン。
FIG. 2 shows a start-up / heating pattern of the unit cells according to the first, second and fourth embodiments of the present invention.

【図3】本発明の第1乃至第5の実施の形態の酸化剤極
の厚み変化。
FIG. 3 shows a change in thickness of an oxidizer electrode according to the first to fifth embodiments of the present invention.

【図4】本発明の第1乃至第5の実施の形態の単電池の
性能の変化。
FIG. 4 shows a change in performance of the unit cells according to the first to fifth embodiments of the present invention.

【図5】本発明の第2の実施の形態の単電池の模式図。FIG. 5 is a schematic view of a unit cell according to a second embodiment of the present invention.

【図6】本発明の第3の実施の形態の単電池の起動・昇
温パターン。
FIG. 6 shows a start-up / heating pattern of the unit cell according to the third embodiment of the present invention.

【図7】本発明の第5の実施の形態の単電池の起動・昇
温パターン。
FIG. 7 shows a start-up / heating pattern of a unit cell according to a fifth embodiment of the present invention.

【図8】従来の単電池の構成。FIG. 8 is a configuration of a conventional unit cell.

【符号の説明】[Explanation of symbols]

1a 燃料極 1b 酸化剤極 2 電解質保持マトリックス 3 単位電池 4a,4b ガスチャンネル 5 セパレータ 7,8 多孔質焼結体 9,10 共晶炭酸塩 1a Fuel electrode 1b Oxidizer electrode 2 Electrolyte holding matrix 3 Unit battery 4a, 4b Gas channel 5 Separator 7,8 Porous sintered body 9,10 Eutectic carbonate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ニッケルを主成分とする多孔質焼結体から
なる燃料極及びニッケル多孔質焼結体からなる酸化剤極
の間に、セラミックスを主成分とする電解質保持マトリ
ックスに混合アルカリ金属炭酸塩を含浸した電解質層を
挟持した溶融炭酸塩型燃料電池において、予め前記酸化
剤極の空孔容積の一部に該混合アルカリ金属炭酸塩を含
浸したことを特徴とする溶融炭酸塩型燃料電池。
An alkali metal carbonate mixed with an electrolyte holding matrix mainly composed of ceramics is provided between a fuel electrode composed of a porous sintered body composed mainly of nickel and an oxidizer electrode composed of a porous sintered body of nickel. A molten carbonate fuel cell in which a salt-impregnated electrolyte layer is sandwiched, wherein a part of the pore volume of the oxidant electrode is impregnated with the mixed alkali metal carbonate in advance. .
【請求項2】酸化剤極の空孔容積の50〜98%に混合
アルカリ金属炭酸塩を予め含浸したことを特徴とする請
求項1記載の溶融炭酸塩型燃料電池。
2. The molten carbonate fuel cell according to claim 1, wherein 50 to 98% of the pore volume of the oxidant electrode is impregnated with a mixed alkali metal carbonate in advance.
【請求項3】酸化剤極の空孔容積の50〜98%と燃料
極の空孔容積の80〜100%に混合アルカリ金属炭酸
塩を予め含浸したことを特徴とする請求項1または2記
載の溶融炭酸塩型燃料電池。
3. The method according to claim 1, wherein 50 to 98% of the pore volume of the oxidizer electrode and 80 to 100% of the pore volume of the fuel electrode are previously impregnated with the mixed alkali metal carbonate. Molten carbonate fuel cell.
【請求項4】含浸する混合アルカリ金属炭酸塩として炭
酸リチウム/炭酸カリウム、炭酸リチウム/炭酸ナトリ
ウムの混合アルカリ金属炭酸塩のうちから一種を用いた
ことを特徴とする請求項1乃至3のいずれかに記載の溶
融炭酸塩型燃料電池。
4. A mixed alkali metal carbonate to be impregnated, wherein one of lithium carbonate / potassium carbonate and lithium carbonate / sodium carbonate mixed alkali metal carbonate is used. 2. The molten carbonate fuel cell according to item 1.
【請求項5】燃料極に比較して酸化剤極に含浸する混合
アルカリ金属炭酸塩中の炭酸リチウム含浸量を高くした
ことを特徴とする請求項1乃至4のいずれかに記載の溶
融炭酸塩型燃料電池。
5. The molten carbonate according to claim 1, wherein the amount of lithium carbonate impregnated in the mixed alkali metal carbonate impregnating the oxidant electrode is higher than that of the fuel electrode. Type fuel cell.
【請求項6】電池組立後の起動時に、酸素を含有する脱
バインダーガスを燃料極及び酸化剤極の両極から供給し
て、電解質層中の電解質保持マトリックスバインダーの
脱バインダーを行った後、酸化剤極にのみ酸素含有の酸
化剤ガスを供給し酸化剤極を酸化し、引き続き混合アル
カリ金属炭酸塩を溶融して酸化剤極、燃料極及び電解質
保持マトリックス中に混合アルカリ金属炭酸塩を含浸し
たことを特徴とする請求項1乃至5のいずれかに記載の
溶融炭酸塩型燃料電池の製造法。
6. A debinding gas containing oxygen is supplied from both the fuel electrode and the oxidant electrode at the time of start-up after assembling the battery, and after debinding of the electrolyte holding matrix binder in the electrolyte layer, oxidation is performed. The oxygen-containing oxidizing gas was supplied only to the anode, the oxidizing electrode was oxidized, and then the mixed alkali metal carbonate was melted to impregnate the mixed alkali metal carbonate in the oxidizing electrode, fuel electrode, and electrolyte holding matrix. A method for producing a molten carbonate fuel cell according to any one of claims 1 to 5, characterized in that:
JP8229887A 1996-08-30 1996-08-30 Fused carbonate type fuel cell and its manufacture Pending JPH1074529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8229887A JPH1074529A (en) 1996-08-30 1996-08-30 Fused carbonate type fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8229887A JPH1074529A (en) 1996-08-30 1996-08-30 Fused carbonate type fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH1074529A true JPH1074529A (en) 1998-03-17

Family

ID=16899278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8229887A Pending JPH1074529A (en) 1996-08-30 1996-08-30 Fused carbonate type fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH1074529A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009815C2 (en) * 1998-08-06 2000-02-15 Stichting Energie Method of manufacturing an MCFC electrochemical cell.
JP2008166195A (en) * 2006-12-28 2008-07-17 Doosan Heavy Industries & Construction Co Ltd Manufacturing method of electrolyte impregnating air pole of fused carbonate fuel cell
JP2008166286A (en) * 2006-12-29 2008-07-17 Doosan Heavy Industries & Construction Co Ltd Manufacturing method of electrolyte impregnation electrode of molten carbonate fuel cell utilizing wet method
JP2009277391A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Electrode of molten carbonate fuel cell, manufacturing method therefor, and the molten carbonate fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009815C2 (en) * 1998-08-06 2000-02-15 Stichting Energie Method of manufacturing an MCFC electrochemical cell.
WO2000008702A1 (en) * 1998-08-06 2000-02-17 Stichting Energieonderzoek Centrum Nederland Method for the production of an mcfc electrochemical cell
JP2008166195A (en) * 2006-12-28 2008-07-17 Doosan Heavy Industries & Construction Co Ltd Manufacturing method of electrolyte impregnating air pole of fused carbonate fuel cell
JP2008166286A (en) * 2006-12-29 2008-07-17 Doosan Heavy Industries & Construction Co Ltd Manufacturing method of electrolyte impregnation electrode of molten carbonate fuel cell utilizing wet method
JP2009277391A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Electrode of molten carbonate fuel cell, manufacturing method therefor, and the molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
JP5219298B2 (en) Thin solid oxide battery
US20080193803A1 (en) Precursor Infiltration and Coating Method
JP2010537390A (en) Removal of impurity phase from electrochemical devices
US20030003348A1 (en) Fuel cell
CN107978768B (en) Fuel cell assembly and preparation method thereof
KR101637917B1 (en) Protonic conducting solid oxide fuel cell and method for preparing thereof
JP2013532364A (en) Method for producing solid oxide fuel cell unit cell
KR100874110B1 (en) Manufacturing method of anode for solid oxide fuel cell, anode, and solid oxide fuel cell
JP4512911B2 (en) Solid oxide fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JPH1074529A (en) Fused carbonate type fuel cell and its manufacture
US5641328A (en) Fuel cell cathodes
JPH06196180A (en) Manufacture of solid electrolyte type fuel cell
KR100318207B1 (en) A method for impregnating a electrolyte for molten carbonate fuel cell
KR102369060B1 (en) Solid oxide fuel cell comprising anode alkaline-based promoter loaded
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JPS61260555A (en) Compounded constituent element for internal reforming type fuel cell
JP4705336B2 (en) Electrolyte / electrode assembly and method for producing the same
JPH0711962B2 (en) Method for manufacturing gas diffusion electrode
JP2944097B2 (en) Molten carbonate fuel cell
JPH06176764A (en) Electrode provided with rib for fuel cell and manufacture thereof
CA3131876A1 (en) Solid oxide fuel cell comprising anode alkaline-based promoter loaded
JPH07262996A (en) Fuel electrode for molten carbonate fuel cell
JP2517750B2 (en) Method for producing molten salt fuel cell
KR0141146B1 (en) Electrode for Molten Carbonate Fuel Cell and Manufacturing Method Thereof