JP2613179B2 - Photocatalyst and water purification method using the same - Google Patents

Photocatalyst and water purification method using the same

Info

Publication number
JP2613179B2
JP2613179B2 JP6182910A JP18291094A JP2613179B2 JP 2613179 B2 JP2613179 B2 JP 2613179B2 JP 6182910 A JP6182910 A JP 6182910A JP 18291094 A JP18291094 A JP 18291094A JP 2613179 B2 JP2613179 B2 JP 2613179B2
Authority
JP
Japan
Prior art keywords
photocatalyst
water
treated
inorganic porous
water purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6182910A
Other languages
Japanese (ja)
Other versions
JPH07148434A (en
Inventor
英司 野村
徳雄 吹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP6182910A priority Critical patent/JP2613179B2/en
Publication of JPH07148434A publication Critical patent/JPH07148434A/en
Application granted granted Critical
Publication of JP2613179B2 publication Critical patent/JP2613179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光触媒体及びその光触
媒機能を利用した水の浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst and a method for purifying water utilizing the photocatalytic function.

【0002】[0002]

【従来の技術】生活排水、灌漑排水または産業排水に
は、窒素・リンなどの物質を多量に含むものがあり、こ
れらは湖沼、河川、海湾における富栄養化現象を起こし
ている。富栄養化によってプランクトン、ピコプランク
トン、アオコ、アカコなどの藻類が増殖すると、プラン
クトンの一種であるホルミディウムあるいはオシラトリ
アが作る臭気物質の2−メチルイソボルネオールなどに
より水がかび臭くなり、生活環境、特に生活用水に悪影
響を及ぼしたり、あるいは湖沼や河川の水を緑色、褐色
に着色するいわゆる水の華や淡水赤潮を形成したり、ま
た、海水を赤褐色、桃色、褐色に着色するいわゆる赤潮
を形成し、景観を損ねたり、水中の酸素を消化して酸素
不足の状態を引き起こしたり、発生したプランクトンが
魚のえらにつまったりして水産に多大な被害を与える。
さらに、増殖した藻類は、浄水場、ダムなどの濾過池や
濾過用スクリーンをつまらせるなど浄水処理に支障をき
たしたりする。また、生活排水、灌漑排水または産業排
水には、カビなどの真菌類や放線菌などの菌類、大腸菌
などの細菌類が含まれ、これらは湖沼、河川、海湾など
で増殖する場合がある。菌類には、チフスや赤痢菌のよ
うな伝染病菌、腐食を促進する硫黄細菌、鉄細菌、硫酸
塩還元菌、スライムを作る細菌類や真菌類、水に臭気を
つける放線菌など有害なものも少なくなく、種々の被害
が発生している。特に、魚類、貝類、カニ、エビ、カエ
ルなどの水棲動物や海草、海藻などの水棲植物を養殖し
た池や水槽、魚類などを飼育した観賞用の池や水槽など
の飼養域では、さらに、***物、餌の腐敗物などによっ
ても、水が汚れ、悪臭が発散したり、***物、餌の腐敗
物などから菌類や細菌類が発生する被害が頻繁に起こっ
ている。さらに、生活排水、灌漑排水または産業排水に
は、上記以外に洗剤、油などの酸素要求物質、半導体製
造工場などの排水に含まれる有機ハロゲン化合物や農薬
などの有害な物質が含まれる場合があり、湖沼、河川、
海湾を汚染し、生物に被害を及ぼす場合がある。
2. Description of the Related Art Some domestic wastewater, irrigation wastewater, and industrial wastewater contain a large amount of substances such as nitrogen and phosphorus, which cause eutrophication in lakes, marshes, rivers, and sea bays. When algae such as plankton, picoplankton, blue-green algae, and red coconut grow due to eutrophication, water becomes musty due to the odorant 2-methylisoborneol, which is a kind of plankton, formed by holmidium or osilatria. It adversely affects the water, or forms the so-called water flower or freshwater red tide that colors the water of lakes and marshes green and brown, and also forms the so-called red tide that colors seawater reddish brown, pink and brown, The landscape is damaged, the oxygen in the water is digested, causing a lack of oxygen, and the plankton generated is caught in the gills of the fish, causing great damage to fisheries.
In addition, the algae that have multiplied may impede water purification treatment by, for example, pinching filter ponds and filtration screens in water purification plants and dams. In addition, domestic wastewater, irrigation wastewater, or industrial wastewater contains fungi such as molds, fungi such as actinomycetes, and bacteria such as Escherichia coli, which may multiply in lakes, marshes, rivers, sea bays, and the like. Fungi include harmful organisms such as infectious disease bacteria such as typhoid and Shigella, sulfur bacteria that promote corrosion, iron bacteria, sulfate reducing bacteria, bacteria and fungi that make slime, and actinomycetes that make water odor. Not a few, various damages have occurred. In particular, excretion occurs in ponds and aquariums where aquatic animals such as fish, shellfish, crabs, shrimps, and frogs and aquatic plants such as seaweeds and seaweeds are raised, as well as ornamental ponds and aquariums where fish are raised. Water and dirt, odors are emitted, and fungi and bacteria are frequently generated from excrement, food decay, and the like, due to food and food decay. In addition, household wastewater, irrigation wastewater or industrial wastewater may contain other harmful substances such as detergents, oils and other oxygen-requiring substances, organic halogen compounds and pesticides contained in wastewater from semiconductor manufacturing plants, etc. , Lakes, rivers,
It can contaminate sea bays and cause damage to organisms.

【0003】増殖した藻類、菌類、細菌類を殺藻あるい
は殺菌するには、たとえば、塩素、オゾン、硫酸銅、紫
外線などによって処理する方法が採用されている。ま
た、藻類、菌類、細菌類により発生した臭気物質や着色
物質を取り除くには、たとえば、活性炭などに吸着させ
る方法が採用されている。特に、汚染の進んだ湖沼、河
川から取水する浄水場では、多量の活性炭を投与して水
質の向上につとめている。一方、酸化チタンなどの光半
導体粒子にそのバンドギャップ以上のエネルギーを持つ
波長の光を照射すると光励起により伝導帯に電子を、価
電子帯に正孔を生じるが、この光励起して生じた電子の
持つ強い還元力や正孔の持つ強い酸化力を利用して殺菌
あるいは脱臭する方法が提案されている。
[0003] In order to kill or sterilize the grown algae, fungi and bacteria, a method of treating them with, for example, chlorine, ozone, copper sulfate, ultraviolet rays or the like is adopted. In order to remove odorous substances and coloring substances generated by algae, fungi and bacteria, for example, a method of adsorbing the substances on activated carbon or the like is adopted. In particular, at water treatment plants that take water from polluted lakes and rivers, a large amount of activated carbon is administered to improve water quality. On the other hand, when light of a wavelength having energy equal to or greater than the band gap is applied to optical semiconductor particles such as titanium oxide, electrons are generated in the conduction band and holes are generated in the valence band by photoexcitation. A method of sterilizing or deodorizing by utilizing the strong reducing power possessed by the gas and the strong oxidizing power possessed by the holes has been proposed.

【0004】[0004]

【発明が解決しようとする課題】前記の塩素やオゾンな
どで処理する方法では藻類、菌類、細菌類を減少させる
ことはできるものの、その効果は充分でなく、また、処
理時間が長くかかったり、使用した薬剤やその薬剤から
生じた化合物が被処理水中に残留するなどの問題があ
る。活性炭吸着法では、臭気や着色を減少できるもの
の、藻類、菌類、細菌類を死滅させるものではない。前
記の光半導体粒子を用いた方法は、通常、照射する光の
利用効率を良くし、高い光触媒機能を得るために、超微
粒子の光半導体を個々に分散させた状態で処理を行って
いる。このため、光半導体粒子を被処理水系から分離す
る必要があるが、この分離操作が極めて困難なこともあ
り、未だ実用化されていない。
The above-mentioned method of treating with chlorine or ozone can reduce algae, fungi and bacteria, but the effect is not sufficient, and the treatment takes a long time. There is a problem that the used drug or a compound generated from the drug remains in the water to be treated. The activated carbon adsorption method can reduce odor and coloring, but does not kill algae, fungi, and bacteria. In the method using the above-mentioned optical semiconductor particles, in order to improve the utilization efficiency of irradiation light and obtain a high photocatalytic function, the treatment is performed in a state where ultrafine optical semiconductors are individually dispersed. For this reason, it is necessary to separate the optical semiconductor particles from the water system to be treated, but this separation operation is extremely difficult and has not yet been put to practical use.

【0005】[0005]

【課題を解決するための手段】本発明者らは、光半導体
粒子の持つ光触媒機能に着目し、被処理水に含まれる藻
類、菌類、細菌類などの有害生物を死滅させ、有害な物
質を分解して被処理水を浄化する方法を種々検討した結
果、(1)光触媒として用いる光半導体粒子の分離操作
を容易にするために、種々の担体表面に光半導体粒子を
付着させた物質を用いたところ、物質同士の接触や被処
理水との接触などにより物質の摩耗や破壊が起こり、物
質表面から光半導体粒子が剥離したり、光半導体粒子が
付着していない面が現れたりして、前記物質の光触媒機
能が短期間に低下してしまうこと、一方、前記の担体と
して無機多孔質粒子を用いると、この無機多孔質粒子が
有する空孔内に存在する光半導体粒子によって、その光
触媒機能が長期間に渡って維持できること、(2)この
ような光触媒体を被処理水と接触しうる箇所に配置し、
次いで、該光触媒体に紫外線を含有した光を照射する
と、殺藻、殺菌、脱臭、脱色あるいは有害な物質の分解
が簡便、且つ容易に行うことができ、被処理水を浄化す
ることができること、(3)しかも、無機多孔質粒子に
は、光半導体粒子と水質浄化機能を有する微生物とを付
着することができ、該光半導体粒子の光触媒機能と微生
物の水質浄化機能によって被処理水を短時間に浄化する
ことができることなどを見出した。これらの知見に基づ
き、さらに、研究して本発明を完成した。
Means for Solving the Problems The present inventors have paid attention to the photocatalytic function possessed by the optical semiconductor particles, killed pests such as algae, fungi and bacteria contained in the water to be treated, and eliminated harmful substances. As a result of various studies on the method of decomposing and purifying the water to be treated, (1) In order to facilitate the separation operation of the photo-semiconductor particles used as the photocatalyst, a substance having the photo-semiconductor particles adhered to various carrier surfaces was used. However, abrasion and destruction of the substance occur due to contact between the substances and contact with the water to be treated, and the optical semiconductor particles are peeled off from the surface of the substance, or a surface where the optical semiconductor particles are not attached appears, The photocatalytic function of the substance is reduced in a short time. On the other hand, when inorganic porous particles are used as the carrier, the photocatalytic function is caused by the optical semiconductor particles existing in the pores of the inorganic porous particles. But for a long time Can be maintained over with, disposed at a position capable of contacting the water to be treated (2) such photocatalyst,
Then, by irradiating the photocatalyst with light containing ultraviolet light, algicidal, sterilizing, deodorizing, decolorizing or decomposing harmful substances can be performed easily and easily, and the water to be treated can be purified, (3) Moreover, the photoconductive particles and the microorganisms having a water purification function can be attached to the inorganic porous particles, and the water to be treated can be reduced for a short time by the photocatalytic function of the photoconductor particles and the water purification function of the microorganisms. And found that it can be purified. Based on these findings, the present inventors have further studied and completed the present invention.

【0006】すなわち、本発明は長期間に渡って安定し
た光触媒機能を有する光触媒体を提供することにある。
また、本発明の光触媒体を用いて湖沼や河川の水、海水
のほか、貯蔵タンクなどの貯水器の水、太陽エネルギー
などを利用した給水・給湯設備や冷暖房設備内の水、風
呂水、プール用水、上水、飲料水などの生活用水あるい
は生活用水に利用される水、水棲生物の飼養域の水、さ
らには、各家庭から排出される生活排水やゴルフ場から
排出される産業排水などの排水などの被処理水の浄化に
最適な方法を提供することにある。
That is, an object of the present invention is to provide a photocatalyst having a photocatalytic function that is stable over a long period of time.
Further, using the photocatalyst of the present invention, in addition to water of lakes and marshes and rivers, seawater, water in storage tanks and other water reservoirs, water supply / hot water supply equipment utilizing solar energy, water in cooling / heating equipment, bath water, pools, etc. Water for domestic use such as irrigation water, drinking water, drinking water, or water used for domestic use, water for breeding areas of aquatic organisms, as well as domestic wastewater discharged from households and industrial wastewater discharged from golf courses An object of the present invention is to provide an optimal method for purifying treated water such as wastewater.

【0007】本発明は、無機多孔質粒子の表面の少なく
とも一部及び該無機多孔質粒子が有する空孔壁の少なく
とも一部に光半導体粒子を付着して成る光触媒体であ
る。特に、前記の無機多孔質粒子が有する空孔を光半導
体粒子で充填して成る光触媒体が好ましい。本発明にお
いて、無機多孔質粒子とは、その粒子内に空孔を有する
無機粒子を言い、天然鉱物あるいは人工に作られたのも
のを用いることができる。天然鉱物としては、たとえ
ば、安山岩質、石英安山岩質、流紋岩質、頁岩質、砂岩
質、レキ岩質などの材質の多孔質の岩石、軽石凝灰岩、
泥岩、砂利、砂、シルト、粘土や火山灰、多孔質岩石な
どを含有する物質、スコリア、スコリア凝灰岩、スコリ
アを含有する物質、焼成パーライト、焼成黒曜石、焼成
軽石、バーミュキュライト、ゼオライト、雲母、サンゴ
砂、シーシェル、麦飯石(主成分:SiO2 約70%、
Al2 3 約14%、Fe2 3 約2〜3%)などを用
いることができる。また、人工の無機多孔質粒子として
は、人工軽石、人工砂利、人工砂、メサライト(主成
分:SiO2 約70%、Al2 3 約15%、Fe2
3約5%、日本メサライト工業社製)、クリスバール
(主成分:SiO2 約86〜87%、Al2 3 約5〜
7%、Fe2 3 約1〜3%)などの人工骨材、多孔質
ガラス、中空ガラス、多孔質ブロック、陶磁器などを用
いることができる。さらに、合成ゼオライト、発泡性シ
リカなどのセラミックス、活性炭、木炭、炭、コーク
ス、フライアッシュ、高炉スラッグ、発砲コンクリート
(ALC)、軽量コンクリートなどの無機多孔質粒子を
そのまま或いは造粒・成形して用いることもできる。本
発明においては、空孔の容積が大きく廉価であることか
ら天然鉱物が好ましい。
[0007] The present invention is a photocatalyst obtained by attaching photo-semiconductor particles to at least a part of the surface of inorganic porous particles and at least a part of a pore wall of the inorganic porous particles. In particular, a photocatalyst formed by filling the pores of the inorganic porous particles with optical semiconductor particles is preferable. In the present invention, the inorganic porous particles refer to inorganic particles having pores in the particles, and natural minerals or artificially produced ones can be used. Examples of natural minerals include andesitic, quartz andesitic, rhyolite, shale, sandstone, relicite, and other porous rocks, pumice tuff,
Materials containing mudstone, gravel, sand, silt, clay and volcanic ash, porous rock, etc., scoria, scoria tuff, materials containing scoria, calcined perlite, calcined obsidian, calcined pumice, vermiculite, zeolite, mica, coral sand, Seashell, Elvan (main component: SiO 2 about 70%,
Al 2 O 3 about 14%, Fe 2 O 3 about 2 to 3%) or the like can be used. Examples of artificial inorganic porous particles include artificial pumice, artificial gravel, artificial sand, and mesalite (main components: about 70% SiO 2, about 15% Al 2 O 3 , Fe 2 O
3 about 5%, manufactured by Nippon Mesalite Industry Co., Ltd., Chrisval (main component: about 86 to 87% of SiO 2 , about 5 to 5% of Al 2 O 3 )
Artificial aggregates such as 7%, about 1 to 3 % of Fe 2 O 3 ), porous glass, hollow glass, porous blocks, and ceramics can be used. Furthermore, inorganic porous particles such as synthetic zeolites, expandable silica and other ceramics, activated carbon, charcoal, charcoal, coke, fly ash, blast furnace slag, foamed concrete (ALC), lightweight concrete, etc. are used as they are or granulated and molded. You can also. In the present invention, natural minerals are preferred because the pore volume is large and inexpensive.

【0008】光触媒機能を有する光半導体粒子は、酸化
チタン、酸化亜鉛、酸化タングステン、酸化鉄、チタン
酸ストロンチウム、硫化モリブデン、硫化カドミウムな
どの公知の光半導体を、単一または2種以上を組み合わ
せて用いることができる。特に、高い光触媒機能を有
し、化学的に安定であり、かつ、無害である酸化チタン
が好ましい。本発明において、酸化チタンとは、酸化チ
タンのほか、含水酸化チタン、水和酸化チタン、メタチ
タン酸、オルトチタン酸、水酸化チタンなどと一般に呼
ばれているものを含み、その結晶型は問わない。前記の
酸化チタンは種々の公知の方法で得ることができる。た
とえば、硫酸チタニル、塩化チタン、有機チタン化合
物などのチタン化合物を、必要に応じて核形成用種子の
存在下に、加水分解する方法、必要に応じて核形成用
種子の存在下に、硫酸チタニル、塩化チタン、有機チタ
ン化合物などのチタン化合物にアルカリを添加し、中和
する方法、塩化チタン、有機チタン化合物などを気相
酸化する方法、前記、の方法で得られた酸化チタ
ンを焼成する方法が挙げられる。特に、前記、の方
法で得られた酸化チタンは光触媒機能が高いため好まし
い。光半導体粒子の光触媒機能を向上させるために、該
光半導体粒子の表面に白金、金、銀、銅、パラジウム、
ロジウム、ルテニウムなどの金属、酸化ルテニウム、酸
化ニッケルなどの金属酸化物を被覆しても良い。
The optical semiconductor particles having a photocatalytic function include known optical semiconductors such as titanium oxide, zinc oxide, tungsten oxide, iron oxide, strontium titanate, molybdenum sulfide, and cadmium sulfide, singly or in combination of two or more. Can be used. In particular, titanium oxide which has a high photocatalytic function, is chemically stable, and is harmless is preferable. In the present invention, the titanium oxide includes, in addition to titanium oxide, those commonly referred to as hydrous titanium oxide, hydrated titanium oxide, metatitanic acid, orthotitanic acid, titanium hydroxide, and the like, regardless of the crystal type. . The above-mentioned titanium oxide can be obtained by various known methods. For example, a method of hydrolyzing a titanium compound such as titanyl sulfate, titanium chloride and an organic titanium compound in the presence of seeds for nucleation, if necessary, and optionally titanyl sulfate in the presence of seeds for nucleation. , Titanium chloride, a method of adding an alkali to a titanium compound such as an organic titanium compound and neutralizing the same, a method of vapor-phase oxidation of titanium chloride and an organic titanium compound, and a method of firing the titanium oxide obtained by the above method Is mentioned. In particular, titanium oxide obtained by the above method is preferable because of its high photocatalytic function. In order to improve the photocatalytic function of the optical semiconductor particles, platinum, gold, silver, copper, palladium,
Metals such as rhodium and ruthenium, and metal oxides such as ruthenium oxide and nickel oxide may be coated.

【0009】また、本発明は、無機多孔質粒子の表面及
び該無機多孔質粒子が有する空孔壁に光半導体粒子と水
質浄化機能を有する微生物とを付着してなる光触媒体で
ある。水質浄化機能を有する微生物としては、亜硝酸
菌、硝酸菌及び硫黄細菌からなる群より選ばれる少なく
とも一種が好ましい。水質浄化機能を有する微生物を付
着するには、該微生物を培養した溶液に無機多孔質粒子
または光半導体粒子を付着した無機多孔質粒子を浸漬し
たり、或いは、該微生物を培養した溶液を無機多孔質粒
子または光半導体粒子を付着した無機多孔質粒子に吹き
付けたりする方法を用いることができる。水質浄化機能
を有する微生物の付着量は適宜設定できる。
Further, the present invention is a photocatalyst obtained by adhering an optical semiconductor particle and a microorganism having a water purification function to the surface of the inorganic porous particle and the pore wall of the inorganic porous particle. As the microorganism having a water purification function, at least one selected from the group consisting of nitrite, nitrate and sulfur bacteria is preferable. To attach microorganisms having a water purification function, the inorganic porous particles to which the inorganic porous particles or the photosemiconductor particles are attached can be immersed in a solution in which the microorganisms have been cultured, or the solution in which the microorganisms have been cultured can be used in an inorganic porous solution. For example, a method of spraying porous particles or optical semiconductor particles onto the attached inorganic porous particles can be used. The amount of microorganisms having a water purification function can be appropriately set.

【0010】本発明の光触媒体は、無機多孔質粒子を適
宜選択したり、光半導体粒子の付着量を適宜選定して、
得られる光触媒体の見かけ比重を任意に調整することが
できる。光触媒体の見かけ比重が1より大きいと、光触
媒体が水底に沈み固定化され、光触媒体の流出が少なく
なることから好ましい。また、見かけ比重が1以下であ
ると、光触媒体の流出を防止する手段を講ずる必要があ
るものの、光触媒体が被処理水の中を浮遊したり、浮上
したりして、藻類などの処理物との接触が一層良くな
り、光触媒機能を向上させることができる。本発明の光
触媒体は、その平均粒径を0.1mm以上、特に0.1
〜100mm、さらに1〜100mmとすることによ
り、光触媒体自身の流出が少なく、また、取扱易いこと
から好ましい。光半導体粒子の付着量は適宜設定できる
が、無機多孔質粒子の重量に対して0.5〜70重量%
程度が適当である。
In the photocatalyst of the present invention, the inorganic porous particles are appropriately selected, and the amount of the attached photo-semiconductor particles is appropriately selected.
The apparent specific gravity of the obtained photocatalyst can be arbitrarily adjusted. When the apparent specific gravity of the photocatalyst is greater than 1, the photocatalyst sinks to the bottom of the water and is fixed. If the apparent specific gravity is 1 or less, it is necessary to take measures to prevent the outflow of the photocatalyst, but the photocatalyst floats or floats in the water to be treated, and the treated product such as algae And the photocatalytic function can be improved. The photocatalyst of the present invention has an average particle size of 0.1 mm or more, particularly 0.1 mm or more.
It is preferable to set the thickness to 、 100 mm, more preferably 1mm100 mm, because the outflow of the photocatalyst itself is small and handling is easy. The adhesion amount of the optical semiconductor particles can be appropriately set, but is 0.5 to 70% by weight based on the weight of the inorganic porous particles.
The degree is appropriate.

【0011】本発明の光触媒体を得るには、前記の光半
導体粒子を、たとえば、水、アルコール、トルエンなど
の溶媒に懸濁させる。必要に応じて種々の分散剤や結着
剤を加えても良い。得られた懸濁液に無機多孔質粒子を
入れ、必要に応じて脱気処理を行い、含浸させる方法、
ディップコーティングする方法などを用いて無機多孔質
粒子に塗布し、あるいは懸濁液を無機多孔質粒子に吹き
付け、次いで、乾燥して無機多孔質粒子の表面の少なく
とも一部及び該無機多孔質粒子が有する空孔壁の少なく
とも一部に光半導体粒子を付着し、さらには該空孔内に
光半導体粒子を充填する。付着した光半導体粒子は必要
に応じて焼成しても良く、この焼成により、光半導体粒
子を無機多孔質粒子に強固に接着させることができる。
前記の焼成は100℃以上、好ましくは200〜800
℃、特に好ましくは300〜800℃の温度で焼成する
のが適当である。特に、前記、の方法で得られた酸
化チタンを溶媒に高度に分散させて酸化チタンゾルと
し、この酸化チタンゾルを塗布あるいは吹き付けするの
が好ましい。また、光半導体となりうる化合物を、無機
多孔質粒子の存在下に、加水分解あるいは中和して、光
半導体粒子を無機多孔質粒子に付着させ、次いで、乾燥
あるいは焼成することもできる。さらには、光半導体粒
子と無機多孔質粒子とを混合機などで混合して、次い
で、得られた混合物を乾燥あるいは焼成しても良い。こ
のようにして本発明の光触媒体が得られる。
In order to obtain the photocatalyst of the present invention, the above-mentioned photo-semiconductor particles are suspended in a solvent such as water, alcohol and toluene. Various dispersants and binders may be added as needed. Putting inorganic porous particles into the obtained suspension, performing a deaeration treatment if necessary, and impregnating a method,
It is applied to the inorganic porous particles using a method such as dip coating, or a suspension is sprayed on the inorganic porous particles, and then dried to form at least a part of the surface of the inorganic porous particles and the inorganic porous particles. The optical semiconductor particles are adhered to at least a part of the pore wall, and the optical semiconductor particles are filled in the pores. The attached photo-semiconductor particles may be fired if necessary, and the firing can make the photo-semiconductor particles firmly adhere to the inorganic porous particles.
The calcination is performed at 100 ° C. or higher, preferably 200 to 800.
C., particularly preferably at a temperature of 300 to 800.degree. C., is suitable. In particular, it is preferable that the titanium oxide obtained by the above method is highly dispersed in a solvent to form a titanium oxide sol, and the titanium oxide sol is applied or sprayed. Further, a compound that can become an optical semiconductor can be hydrolyzed or neutralized in the presence of the inorganic porous particles to adhere the optical semiconductor particles to the inorganic porous particles, and then dried or fired. Further, the optical semiconductor particles and the inorganic porous particles may be mixed with a mixer or the like, and then the obtained mixture may be dried or fired. Thus, the photocatalyst of the present invention is obtained.

【0012】本発明の光触媒体を用いて被処理水の浄化
を行うには、湖沼、河川、海湾、湖岸、川岸、海岸、流
水路、貯水器内、濾過器内あるいは水棲生物の飼養域内
などの被処理水と接触しうる箇所に、前記の光触媒体を
設置したり、あるいは前記の光触媒体を被処理水に投入
したりして配置する。次に、配置した光触媒体に紫外線
を含有した光を照射させ、光半導体粒子の光触媒機能を
利用して被処理水を浄化する。紫外線を含有した光とし
ては、たとえば、太陽光や蛍光灯、ブラックランプ、キ
セノンフラッシュランプ、水銀灯などの光が挙げられ
る。特に、300〜400nmの近紫外線を含有した光
が好ましい。本発明においては、太陽光、蛍光灯の光で
でも被処理水を浄化できる。紫外線を含有した光の照射
量や照射時間などは被処理水の汚染の程度などによって
適宜設定できる。光触媒体に紫外線を含有した光を照射
させる方法は適宜選択できるが、たとえば、水面上部か
ら照射したり、被処理水の中に光源を設置して照射した
り、水槽内の被処理水を浄化する場合、水槽の側面部か
ら照射したりすることもできる。また、本発明の光触媒
体を、被処理水と接触しうる前記の箇所に配置し、次い
で、該光触媒体に紫外線を含有した光を照射すると、照
射を受ける箇所では、該光触媒体の光触媒機能によって
該被処理水を浄化でき、しかも、紫外線を含有した光の
照射を受けない同じ反応系内の箇所では、反応系内で発
生した水質浄化機能を有する微生物が無機多孔質粒子に
付着したり、予め水質浄化機能を有する微生物を光触媒
体に付着させることによって、該微生物による浄化を行
うことができる。
[0012] Purification of the water to be treated using the photocatalyst of the present invention is carried out in lakes, marshes, rivers, sea bays, lake shores, river banks, shores, flowing water channels, in reservoirs, in filters, or in aquatic breeding areas. The photocatalyst is placed at a location where it can come into contact with the water to be treated, or the photocatalyst is placed in the water to be treated. Next, the arranged photocatalyst is irradiated with light containing ultraviolet rays, and the water to be treated is purified by utilizing the photocatalytic function of the optical semiconductor particles. Examples of the light containing ultraviolet light include light from sunlight, a fluorescent lamp, a black lamp, a xenon flash lamp, and a mercury lamp. In particular, light containing near-ultraviolet light of 300 to 400 nm is preferable. In the present invention, the water to be treated can be purified even by sunlight or light from a fluorescent lamp. The irradiation amount and irradiation time of the light containing ultraviolet rays can be appropriately set depending on the degree of contamination of the water to be treated. The method of irradiating the photocatalyst with light containing ultraviolet light can be appropriately selected. For example, irradiation is performed from above the water surface, irradiation is performed by installing a light source in the water to be treated, or water to be treated in the water tank is purified. In this case, irradiation can be performed from the side surface of the water tank. Further, the photocatalyst of the present invention is disposed at the above-mentioned location where it can come into contact with the water to be treated, and then the photocatalyst is irradiated with light containing ultraviolet light. In the same reaction system where the water to be treated can be purified by the irradiation of light containing ultraviolet rays, microorganisms having a water purification function generated in the reaction system adhere to the inorganic porous particles. By previously attaching a microorganism having a water purification function to the photocatalyst, purification by the microorganism can be performed.

【0013】[0013]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定させるものではない。 実施例1 硫酸チタニルを加熱加水分解して得られた酸性チタニア
ゾル(石原産業社製、CS−C)をTiO2 基準で40
g/lに水で希釈した。次に、この希釈液に園芸用軽石
のひゅうが土(商品名、ひゅうが土販売株式会社製、平
均粒子径15mm)を2時間含浸させた後、アンモニア
水を添加してpH7に中和して、ひゅうが土の表面及び
ひゅうが土の空孔壁に酸化チタンを付着させた。引き続
き、酸化チタンを付着させたひゅうが土を濾別分離し、
水洗し、乾燥した後、大気中600℃の温度で2時間焼
成した。次いで、焼成したひゅうが土を水洗し、乾燥し
て光触媒体A(見かけ比重1.0)を得た。この光触媒
体Aの酸化チタンの付着量はひゅうが土100重量部に
対して2.5重量部であった。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited thereto. Example 1 An acidic titania sol (CS-C, manufactured by Ishihara Sangyo Co., Ltd.) obtained by hydrolyzing titanyl sulfate was heated to 40 on a TiO 2 basis.
g / l with water. Next, the dilute solution was impregnated with horticultural pumice hyuga soil (trade name, manufactured by Hyuga soil sales Co., Ltd., average particle diameter 15 mm) for 2 hours, and then neutralized to pH 7 by adding aqueous ammonia, Titanium oxide was deposited on the surface of the humid soil and on the pore walls of the humid soil. Then, the hiyu to which titanium oxide was attached separated the soil by filtration,
After washing with water and drying, it was fired in the atmosphere at a temperature of 600 ° C. for 2 hours. Next, the calcined hyu was washed with soil and dried to obtain photocatalyst A (apparent specific gravity 1.0). The amount of titanium oxide deposited on the photocatalyst A was 2.5 parts by weight with respect to 100 parts by weight of the clay.

【0014】比較例 実施例1において、酸化チタンを付着させていないひゅ
うが土を比較試料として用いた。
Comparative Example In Example 1, a humid earth to which titanium oxide was not adhered was used as a comparative sample.

【0015】実施例1の光触媒体A2kg及び比較例1
の試料2kgをそれぞれ水槽の底に敷き詰め、被処理水
50リットルを入れて、水槽の外側から20W蛍光灯2
本で光照射しながら金魚(和金)20匹を飼育した。な
お、この水槽には0.5gの餌を1日2回投与した。実
施例1及び比較例1の水槽から3週間後の被処理水を採
取して、波長600nmにおける透過率を測定したとこ
ろ、実施例1の被処理水は透過率95.0%であるのに
対して、比較例1の被処理水の透過率は28.2%であ
り、実施例1において水の汚れを防止する顕著な効果が
認められた。また比較例1の水槽中には1週間後に植物
プランクトンの発生が認められたが、実施例1の水槽中
には3週間後までは植物プランクトンの発生はほとんど
認められなかった。その後、さらに2週間を経過した
後、光触媒体Aの表面の一部に緑色の植物プランクトン
の発生が認められたが、2〜3日経過すると緑色の植物
プランクトンが黒化した。これは酸化チタンの光触媒機
能により、植物プランクトンが枯死したものであった。
このことにより、酸化チタンには殺藻機能があることが
確認された。また、試験開始から4週間後の被処理水中
の生菌数と大腸菌群数を下記の方法で調べたところ、実
施例1の被処理水には生菌数6820個/ml、大腸菌
群数3750個/mlが存在していたが、比較例1の被
処理水には生菌数8000個/ml、大腸菌群数470
0個/mlが存在しており、光触媒体Aにより菌類、細
菌類の増殖を抑制できた。なお、光触媒体Aの光触媒機
能は2年間ほとんど変化しないことを確認した。
2 kg of photocatalyst A of Example 1 and Comparative Example 1
2 kg of each sample was spread on the bottom of the water tank, and 50 liters of water to be treated were put therein.
Twenty goldfish (Japanese gold) were bred while irradiating the book with light. In addition, 0.5 g of the food was administered twice a day to this aquarium. The water to be treated after 3 weeks was collected from the water tanks of Example 1 and Comparative Example 1 and the transmittance at a wavelength of 600 nm was measured. The water to be treated in Example 1 had a transmittance of 95.0%. On the other hand, the transmittance of the water to be treated in Comparative Example 1 was 28.2%, and a remarkable effect of preventing contamination of water in Example 1 was recognized. Further, the occurrence of phytoplankton was observed in the water tank of Comparative Example 1 after one week, but the occurrence of phytoplankton was hardly observed in the water tank of Example 1 until three weeks later. Then, after a further two weeks, the generation of green phytoplankton was observed on a part of the surface of the photocatalyst A, but after two to three days, the green phytoplankton turned black. This was due to the death of phytoplankton due to the photocatalytic function of titanium oxide.
This confirmed that titanium oxide had an algicidal function. The number of viable bacteria and the number of coliforms in the water to be treated 4 weeks after the start of the test were examined by the following method. The treated water in Example 1 contained 6820 viable bacteria / ml and 3750 coliforms. However, the water to be treated in Comparative Example 1 contained 8000 viable bacteria / ml and 470 coliform bacteria.
At 0 cells / ml, the photocatalyst A was able to suppress the growth of fungi and bacteria. In addition, it was confirmed that the photocatalytic function of the photocatalyst A hardly changed for two years.

【0016】<生菌類及び大腸菌群数の測定方法>採取
した水を無菌水で10倍、100倍希釈し、滅菌したシ
ャーレ5枚に1mlずつ分注し、次いで、培地を10m
l添加し、攪拌した後、37℃で1晩培養させ、翌日、
コロニー数を数えた。 <使用した培地> 生菌数:ブレインハートインフュージョンブイヨン(ニ
ッスイ社製) 大腸菌群数:デゾキシコレート培地(ニッスイ社製)
<Measurement Method of Viable Bacteria and Escherichia coli Group Number> The collected water was diluted 10-fold and 100-fold with sterile water, dispensed 1 ml at a time into 5 sterilized petri dishes, and then the medium was diluted with 10 m
After adding, stirring and culturing at 37 ° C. overnight, the next day,
The number of colonies was counted. <Medium used> Number of viable bacteria: Brain Heart Infusion Bouillon (Nissui) Number of coliforms: Desoxycholate medium (Nissui)

【0017】実施例2 硫酸チタニルを加熱加水分解して得られた、TiO2
準で400g/lの酸性チタニアゾル(石原産業社製、
CS−C)に園芸用軽石のひゅうが土(商品名、ひゅう
が土販売株式会社製、平均粒子径15mm)を2日含浸
させた後、ひゅうが土を濾別分離し、水洗し、乾燥し
て、酸化チタンをひゅうが土の表面及このひゅうが土が
有する空孔壁に付着させ、さらに、酸化チタンをひゅう
が土の空孔内に充填させた。引き続き、酸化チタンを付
着させたひゅうが土を大気中600℃の温度で2時間焼
成した。次いで、焼成したひゅうが土を水洗し、乾燥
し、光触媒体B(見かけ比重1.2)を得た。この光触
媒体Bの酸化チタンの付着量はひゅうが土100重量部
に対して35重量部であった。
Example 2 400 g / l acidic titania sol based on TiO 2 obtained by heating and hydrolyzing titanyl sulfate (manufactured by Ishihara Sangyo Co., Ltd.)
CS-C) is impregnated with horticultural pumice hyuga soil (trade name, manufactured by Hyuga soil sales Co., Ltd., average particle size 15 mm) for 2 days, then the hyuga soil is separated by filtration, washed with water and dried, The titanium oxide was adhered to the surface of the soil and the pore walls of the soil, and the titanium oxide was filled in the pores of the soil. Subsequently, the hues on which the titanium oxide was adhered were fired in the atmosphere at a temperature of 600 ° C. for 2 hours. Next, the calcined hyu was washed with soil and dried to obtain a photocatalyst B (apparent specific gravity 1.2). The amount of titanium oxide attached to the photocatalyst B was 35 parts by weight with respect to 100 parts by weight of the clay.

【0018】実施例2の光触媒体B300gを生活用水
に利用される琵琶湖の被処理水50リットルを入れた水
槽の底に敷き詰め、水槽の外側からブラックライト2本
で光照射しながらカビ臭さの成分である2−メチルイソ
ボルネオールの濃度の変化を調べた。光照射前には27
pptであった2−メチルイソボルネオールの濃度は、
光照射後30分間でほとんどの人間がカビ臭さを感じな
い10pptに低下した。なお、光触媒体Bの光触媒機
能は2年間ほとんど変化しないことを確認した。なお、
前記の光触媒体Bを用いて、生活排水を同様に処理した
ところ、生活排水に含まれていた有機物を分解して、C
OD値が低下した。
300 g of the photocatalyst B of Example 2 was spread on the bottom of a water tank containing 50 liters of treated water of Lake Biwa, which is used for domestic water, and was irradiated with light with two black lights from the outside of the water tank to reduce mold odor. The change in the concentration of the component 2-methylisoborneol was examined. 27 before light irradiation
The concentration of 2-methylisoborneol, which was ppt, was
In 30 minutes after the light irradiation, it decreased to 10 ppt at which most humans did not feel moldy odor. In addition, it was confirmed that the photocatalytic function of the photocatalyst B hardly changed for two years. In addition,
When domestic wastewater was similarly treated using the photocatalyst B, organic matter contained in the domestic wastewater was decomposed and C
The OD value decreased.

【0019】比較実験として、実施例2において、光触
媒体Bを用いないこと以外は同様に処理して、2−メチ
ルイソボルネオールの濃度の変化を調べた。この結果、
2−メチルイソボルネオールの濃度は変化しないことが
わかった。なお、生活排水を同様に処理したところ、生
活排水に含まれていた有機物は分解されず、COD値は
変化しなかった。
As a comparative experiment, a change in the concentration of 2-methylisoborneol was examined in the same manner as in Example 2 except that the photocatalyst B was not used. As a result,
It was found that the concentration of 2-methylisoborneol did not change. In addition, when the domestic wastewater was similarly treated, the organic matter contained in the domestic wastewater was not decomposed, and the COD value did not change.

【0020】実施例3 硝酸菌としてNitrosomonasとTrobar
orの培養液を2リットルの滅菌水に分散させた溶液
に、実施例2で製造した光触媒体B1kgを1時間浸漬
した後、光触媒体Bを分離し、常温で風乾して、水質浄
化機能を有する微生物と光半導体粒子とを付着した、本
発明の光触媒体Cを得た。
Example 3 Nitrosomonas and Trobar as nitrate bacteria
Or, 1 kg of the photocatalyst B prepared in Example 2 was immersed in a solution of the culture solution of 2 liters in sterilized water for 1 hour, and then the photocatalyst B was separated and air-dried at room temperature to obtain a water purification function. The photocatalyst C of the present invention to which the microorganisms and the photo-semiconductor particles were attached was obtained.

【0021】実施例2の光触媒体B1kg、実施例3の
光触媒体C1kg、比較試料として比較例1の試料1k
g、比較試料として市販のナイロンウール製フィルター
(比較例2)をそれぞれ、容器(W320mm×L11
5mm×H100mm)に充填高さ80mmに充填し
た。これらの容器に水を流した時の溢流水面から50m
mの高さに10Wのブラックライト(1本)と、水を送
液するポンプを備えた。金魚20匹を飼育した水槽(水
50リットル)の上に、前記の容器を置き、この容器に
水槽内の水を送液し、水を循環して、魚類に有毒なNH
4 、NO2 の濃度変化を調べた。NH4 の濃度変化を表
1に、NO2 の濃度変化を表2に、さらに、NO2 が酸
化されて生成する硝酸(NO3 )の濃度変化を表3に示
す。実施例2及び実施例3の光触媒体B、Cを用いた場
合、NH4 、NO2 の濃度は低い状態で保持されること
がわかった。特に、水質浄化機能を有する微生物と光半
導体粒子とを付着した光触媒体Cはその効果が一層顕著
であった。これは、光半導体粒子の光触媒機能によりN
4 、NO2 が毒性の低い硝酸(NO3 )に酸化された
ためである。また、光触媒体Cの場合は、紫外線を含有
した光が照射されるところでは光触媒体の光触媒機能に
より、また、紫外線を含有した光の照射を受けない同じ
反応系内の箇所では、光触媒体に付着した水質浄化機能
を有する微生物により、NH4 、NO2 が硝酸(N
3 )に一層早く酸化されたためである。一方、比較試
料として用いた比較例1の試料や比較例2のナイロンウ
ール製フィルターを用いた場合には、NH4 、NO2
濃度は高くなることがわかった。なお、これらの比較試
料を用いた場合でも、実験開始3〜4週間目においてN
4 の濃度が低下するのは、徐々に増殖した微生物が水
を浄化するためと推察される。
1 kg of the photocatalyst B of Example 2, 1 kg of the photocatalyst C of Example 3, and 1 k of the sample of Comparative Example 1 as a comparative sample
g, a commercially available nylon wool filter (Comparative Example 2) was used as a comparative sample in a container (W320 mm × L11).
(5 mm × H100 mm) at a filling height of 80 mm. 50m from the overflow surface when water is poured into these containers
A 10 W black light (one) at a height of m and a pump for sending water were provided. The above-mentioned container is placed on an aquarium (50 liters of water) in which 20 goldfish are bred, and water in the aquarium is sent to this container, the water is circulated, and NH toxic to fishes is circulated.
4. The change in the concentration of NO 2 was examined. Table 1 shows the change in the concentration of NH 4 , Table 2 shows the change in the concentration of NO 2 , and Table 3 shows the change in the concentration of nitric acid (NO 3 ) generated by oxidation of NO 2 . When the photocatalysts B and C of Example 2 and Example 3 were used, it was found that the concentrations of NH 4 and NO 2 were kept in a low state. In particular, the effect of the photocatalyst C to which the microorganism having the water purification function and the photo-semiconductor particles were attached was more remarkable. This is because of the photocatalytic function of the optical semiconductor particles.
This is because H 4 and NO 2 were oxidized to nitric acid (NO 3 ) having low toxicity. Further, in the case of the photocatalyst C, the photocatalyst function of the photocatalyst is applied where the light containing the ultraviolet light is irradiated. NH 4 and NO 2 are converted to nitric acid (N) by microorganisms having a water purification function attached thereto.
This is because it was oxidized earlier to O 3 ). On the other hand, it was found that when the sample of Comparative Example 1 used as a comparative sample and the nylon wool filter of Comparative Example 2 were used, the concentrations of NH 4 and NO 2 were high. Note that even when these comparative samples were used, N
It is presumed that the concentration of H 4 decreases because microorganisms that have grown gradually purify water.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】実施例4 硫酸チタニルを加熱加水分解して得られた、TiO2
準で400g/lの酸性チタニアゾル(石原産業株式会
社製、CS−N)にメサライト(商品名、日本メサライ
ト工業社製、平均粒子径5mm)400gを1時間含浸
させた後、メサライトを濾別分離し、乾燥して酸化チタ
ンをメサライトの表面及びメサライトが有する空孔壁に
付着させ、さらに酸化チタンをメサライトの空孔内に充
填させた。引き続き、酸化チタンを付着させたメサライ
トを大気中で500℃の温度で2時間焼成した。次い
で、焼成したメサライトを水洗し、乾燥して本発明の光
触媒体Dを得た。この光触媒体Dの酸化チタン付着量は
メサライト100重量部に対して2.0重量部であっ
た。25gの光触媒体Dを8リットルのガラス容器に入
れた後、悪臭成分であるアセトアルデヒドを70ppm
となるように添加してガラス容器を密封した。次に、光
触媒体Dの表面で紫外光強度が1.6mW/cm2 とな
るようにブラックライトを照射し続けたところ、ガラス
容器中のアセトアルデヒドの濃度は1時間後には20p
pmに、2時間後には6ppmに減少し、酸化チタンの
光触媒機能によりアセトアルデヒドが効率良く分解され
た。
Example 4 Methalite (trade name, manufactured by Nippon Mesalite Industry Co., Ltd.) was added to 400 g / l acidic titania sol based on TiO 2 (manufactured by Ishihara Sangyo Co., Ltd., CS-N) obtained by heating and hydrolyzing titanyl sulfate. After impregnating with 400 g for 1 hour, the mesalite was separated by filtration and dried, and titanium oxide was adhered to the surface of the mesalite and the pore walls of the mesalite. Inside. Subsequently, the mesalite to which titanium oxide had been adhered was fired in air at a temperature of 500 ° C. for 2 hours. Next, the calcined mesalite was washed with water and dried to obtain a photocatalyst D of the present invention. The titanium oxide adhesion amount of this photocatalyst D was 2.0 parts by weight based on 100 parts by weight of mesalite. After putting 25 g of the photocatalyst D into an 8 liter glass container, 70 ppm of acetaldehyde as a malodorous component was added.
And the glass container was sealed. Next, when the surface of the photocatalyst D was continuously irradiated with black light so that the ultraviolet light intensity became 1.6 mW / cm 2 , the concentration of acetaldehyde in the glass container became 20 p
pm to 2 ppm after 2 hours, and acetaldehyde was efficiently decomposed by the photocatalytic function of titanium oxide.

【0026】[0026]

【発明の効果】本発明は、無機多孔質粒子の表面の少な
くとも一部及び該無機多孔質粒子が有する空孔壁の少な
くとも一部に光半導体粒子を付着して成る光触媒体であ
って、長期間に渡って安定した光触媒機能を有し、被処
理水系からの分離操作が極めて容易であるため、種々の
光触媒反応、たとえば、悪臭ガスの分解・浄化、空気の
浄化、硫黄酸化物や窒素酸化物などの酸化、土壌の殺
菌、水の分解反応、二酸化炭素の固定化反応などに用い
ることができるなど有用なものである。特に、本発明の
光触媒体を被処理水と接触しうる箇所に配置し、次い
で、該光触媒体に紫外線を含有した光を照射すると、光
半導体粒子の光触媒機能により被処理水に含まれる藻
類、菌類、細菌類などの有害生物の死滅、有害な物質の
分解、さらには脱臭、脱色を簡便、且つ容易に行えるの
で、産業用途ばかりでなく一般家庭用の水浄化方法とし
て極めて有用なものである。さらに、魚類などの飼養域
で発生するオグサレ病などの病原菌を殺菌でき、魚類な
どの死滅を防ぐことができる。また、本発明は、無機多
孔質粒子の表面及び該無機多孔質粒子が有する空孔壁に
光半導体粒子と水質浄化機能を有する微生物とを付着し
て成る光触媒体であって、紫外線を含有した光の照射を
受ける箇所では、該光触媒体の光触媒機能によって被処
理水を浄化でき、しかも、紫外線を含有した光の照射を
受けない同じ反応系内の箇所では、光触媒体に付着した
水質浄化機能を有する微生物によって、被処理水を浄化
することができるため、被処理水の浄化を短時間で行う
ことができる。また、本発明の光触媒体は安全性が高
く、適応できる有害な物質の範囲が広く、廃棄しても環
境を汚さないため、産業的に極めて有用なものである。
According to the present invention, there is provided a photocatalyst comprising a photocatalyst comprising at least a part of the surface of an inorganic porous particle and at least a part of a pore wall of the inorganic porous particle, the photocatalyst comprising: It has a stable photocatalytic function over a period of time, and is extremely easy to separate from the water system to be treated. Therefore, various photocatalytic reactions such as decomposition and purification of odorous gas, purification of air, sulfur oxides and nitrogen oxidation It is useful because it can be used for oxidation of substances, sterilization of soil, decomposition reaction of water, reaction for fixing carbon dioxide, and the like. In particular, the photocatalyst of the present invention is disposed at a place where it can come into contact with the water to be treated, and then, when the photocatalyst is irradiated with light containing ultraviolet light, algae contained in the water to be treated by the photocatalytic function of the optical semiconductor particles, Since it is simple and easy to kill harmful organisms such as fungi and bacteria, decompose harmful substances, and furthermore, deodorize and decolorize, it is extremely useful not only for industrial use but also as a general household water purification method. . Furthermore, it is possible to kill pathogens such as oxare disease that occur in the breeding area of fish and the like, and to prevent the death of fish and the like. Further, the present invention is a photocatalyst formed by adhering a photo-semiconductor particle and a microorganism having a water purification function to a surface of an inorganic porous particle and a pore wall of the inorganic porous particle, the photocatalyst comprising ultraviolet rays. In a place where light is irradiated, water to be treated can be purified by the photocatalytic function of the photocatalyst, and in a place in the same reaction system that is not irradiated with light containing ultraviolet light, a water purification function attached to the photocatalyst is provided. Since the water to be treated can be purified by the microorganism having the above, purification of the water to be treated can be performed in a short time. In addition, the photocatalyst of the present invention has high safety, has a wide range of applicable harmful substances, and does not pollute the environment even when discarded, and is therefore extremely useful industrially.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無機多孔質粒子の表面及び該無機多孔質粒
子が有する空孔壁に光半導体粒子と水質浄化機能を有す
る微生物とを付着して成る光触媒体。
1. A photocatalyst obtained by adhering an optical semiconductor particle and a microorganism having a water purification function to the surface of an inorganic porous particle and the pore wall of the inorganic porous particle.
【請求項2】水質浄化機能を有する微生物が亜硝酸菌、
硝酸菌及び硫黄細菌からなる群より選ばれる少なくとも
一種であることを特徴とする請求項に記載の光触媒
体。
2. The microorganism having a water purification function is nitrite,
The photocatalyst according to claim 1 , wherein the photocatalyst is at least one selected from the group consisting of nitric acid bacteria and sulfur bacteria.
【請求項3】請求項1に記載の光触媒体を被処理水と接
触しうる箇所に配置し、次いで、該光触媒体に紫外線を
含有した光を照射して、該光触媒体の光触媒機能によっ
て該被処理水を浄化し、しかも、紫外線を含有した光の
照射を受けない同じ反応系内の箇所では、光触媒体に付
着した水質浄化機能を有する微生物によって該被処理水
を浄化することを特徴とする水の浄化方法。
3. The photocatalyst according to claim 1 is disposed at a place where the photocatalyst can come into contact with the water to be treated, and then the photocatalyst is irradiated with light containing ultraviolet rays, and the photocatalyst is activated by the photocatalytic function of the photocatalyst. Purifying the water to be treated and, furthermore, purifying the water to be treated by microorganisms having a water purification function attached to the photocatalyst at a location in the same reaction system which is not irradiated with light containing ultraviolet rays. Water purification method.
JP6182910A 1993-07-12 1994-07-11 Photocatalyst and water purification method using the same Expired - Fee Related JP2613179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6182910A JP2613179B2 (en) 1993-07-12 1994-07-11 Photocatalyst and water purification method using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP19384493 1993-07-12
JP5-277747 1993-10-08
JP5-193844 1993-10-08
JP27774793 1993-10-08
JP6182910A JP2613179B2 (en) 1993-07-12 1994-07-11 Photocatalyst and water purification method using the same

Publications (2)

Publication Number Publication Date
JPH07148434A JPH07148434A (en) 1995-06-13
JP2613179B2 true JP2613179B2 (en) 1997-05-21

Family

ID=27325216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6182910A Expired - Fee Related JP2613179B2 (en) 1993-07-12 1994-07-11 Photocatalyst and water purification method using the same

Country Status (1)

Country Link
JP (1) JP2613179B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279755B2 (en) * 1993-08-24 2002-04-30 松下精工株式会社 Photocatalyst and method for supporting photocatalyst
JP3652742B2 (en) * 1995-09-04 2005-05-25 株式会社竹中工務店 Inorganic granular material and method for producing the same
JPH10249210A (en) * 1997-03-14 1998-09-22 Titan Kogyo Kk Photocatalyst, its manufacture and applications
JPH10337469A (en) * 1997-06-05 1998-12-22 Ootake Seramu Kk Adsorptive porous sintered compact and its production
TW546168B (en) * 1999-10-01 2003-08-11 Showa Denko Kk Composite member having photocatalyst function for deodorization or waste water treatment
US6803023B1 (en) 1999-10-01 2004-10-12 Showa Denko Kabushiki Kaisha Composite structure for deodorization or wastewater treatment
JP4621859B2 (en) * 2000-02-28 2011-01-26 独立行政法人産業技術総合研究所 Method for producing porous photocatalyst
JP2002226275A (en) * 2000-11-30 2002-08-14 Osamu Yamanaka Ceramic and method for manufacturing the same
JP4592941B2 (en) * 2000-12-14 2010-12-08 株式会社冨士エンタープライズ Water treatment agent for cooking and food production method using the same
KR100439195B1 (en) * 2001-08-06 2004-07-07 학교법인조선대학교 Method for killing of microorganisms in the water by UV-TiO2 photocatalytic reaction and reactor for killing of microorganisms
KR100791053B1 (en) * 2006-08-25 2008-01-03 이영도 Filter using scoria and an air purifier using that
KR100941738B1 (en) * 2007-10-19 2010-02-11 주식회사 누리들 Photoactive composition comprising scoria and preparation method thereof
JP7277911B2 (en) * 2019-04-17 2023-05-19 株式会社マテラ fish farming equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JP2971169B2 (en) * 1991-05-08 1999-11-02 三菱重工業株式会社 Photocatalytic composite material
JPH053360A (en) * 1991-06-25 1993-01-08 Fuji Elelctrochem Co Ltd Light stabilizer for laser
JPH0596180A (en) * 1991-10-03 1993-04-20 Agency Of Ind Science & Technol Production of fixed photocatalyst
JPH05123699A (en) * 1991-10-31 1993-05-21 Toto Ltd Circulation filter
JP2702378B2 (en) * 1992-06-15 1998-01-21 株式会社デンソー Water purification equipment

Also Published As

Publication number Publication date
JPH07148434A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
US5541096A (en) Photocatalyst and process for purifying water with same
JP2613179B2 (en) Photocatalyst and water purification method using the same
JP3275032B2 (en) Environmental purification material and method for producing the same
US20030006199A1 (en) Antimicrobial filtration
CN103384645A (en) Methods for removing contaminants from aqueous solutions using photoelectrocatalytic oxidization
US6051246A (en) Antimicrobial composition supported on a honeycomb-shaped substrate
JPH10249210A (en) Photocatalyst, its manufacture and applications
JP4853800B1 (en) A water purification method using a powder ion-exchange resin-containing adsorbent as a filtration layer.
JP2001136862A (en) Water tank having sidewall with photocatalytic film
JPH0847687A (en) Water purifier
JP4052549B2 (en) Photocatalyst based on granulated artificial lightweight aggregate, production method thereof and use thereof
JP2002253973A (en) Photocatalytic body and manufacturing method thereof and application thereof
JP6566573B2 (en) Environmental improvement method and apparatus for aquarium fish tank
JP3720079B2 (en) Water treatment agent and method for producing the same
GB2359301A (en) Photocatalytic treatment of water
JP2001179108A (en) High strength photocatalyst, method of producing the same and use of the photocatalyst
JP3889106B2 (en) Water treatment sheet material and method for producing the same
CN107509674A (en) A kind of intelligent plant metaplasia produces cultivation equipment
JPH0724451A (en) Method for purifying water in aquatic organism breeding area
JP2021000585A (en) Water purification material and water purification method using the same
JP2001190166A (en) Method for culturing or cultivating and system therefor
JP3563492B2 (en) Water treatment agent for fish farming and method for producing the same
JPH1156163A (en) Member in water tank for raising living being
JP3638032B2 (en) Antibacterial action enhancement method
JPH0778A (en) Cleaning device for feeding water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees