JPH10337469A - Adsorptive porous sintered compact and its production - Google Patents

Adsorptive porous sintered compact and its production

Info

Publication number
JPH10337469A
JPH10337469A JP9165417A JP16541797A JPH10337469A JP H10337469 A JPH10337469 A JP H10337469A JP 9165417 A JP9165417 A JP 9165417A JP 16541797 A JP16541797 A JP 16541797A JP H10337469 A JPH10337469 A JP H10337469A
Authority
JP
Japan
Prior art keywords
adsorptive
muscovite
activated carbon
sintered body
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9165417A
Other languages
Japanese (ja)
Inventor
Kunio Kitajima
圀夫 北島
Toichiro Izawa
登一郎 井澤
Michio Takayanagi
岐夫 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTAKE SERAMU KK
OTAKE SERAMU KK
Original Assignee
OOTAKE SERAMU KK
OTAKE SERAMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTAKE SERAMU KK, OTAKE SERAMU KK filed Critical OOTAKE SERAMU KK
Priority to JP9165417A priority Critical patent/JPH10337469A/en
Publication of JPH10337469A publication Critical patent/JPH10337469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered compact having large porosity and excellent fluid permeability by sintering an activated carbon, other adsorbent, an antibacte rial agent or the like at a low temp. with each function left as it is. SOLUTION: The adsorptive porous sintered compact is obtained by firing a formed body containing the activated carbon, an adsorptive silicate, a hollow inorganic material, and a synthetic muscovite at 500-650 deg.C. The adsorptive silicate is at least one kind of kaolinite, montmorillonite, acid clay, diatom earth, sepiolite and zeolite. The synthetic muscovite is at least one kind of a fluorine muscovite or the raw material blended body, fluorine palagonite or the raw material blended body and as the antibacterial agent, at least one kind of zeolite, montmorillonite, swelling mica and calcium phosphate each carrying one of silver, copper or zinc is used. The hollow inorganic material can be at least one of shirasu balloon, silica balloon and glass balloon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は汚染物質の吸着除去
を図る多孔質焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous sintered body for removing contaminants by adsorption.

【0002】[0002]

【従来の技術】空気の浄化や廃水処理等から流体を大量
に浄化処理することが望まれ、従来から活性炭が有効に
利用されている。しかしながら、活性炭の形態は細かい
粉末か又は顆粒なのでカラムに充填した場合、流体の透
過抵抗が高く、効率的な処理が難しかった。また、特性
の面でも、活性炭は湿性ミスト類や水溶性脂肪酸等のよ
うな大きな粒子サイズのものに対して早期に破過する傾
向がある。さらに、流体中に細菌やバクテリアがある場
合、吸着して温存するのでかえって繁殖の場となる問題
点があった。
2. Description of the Related Art It is desired to purify a large amount of fluid from air purification and wastewater treatment, and activated carbon has been effectively used. However, since activated carbon is in the form of fine powder or granules, when packed in a column, it has a high fluid permeation resistance and is difficult to treat efficiently. In terms of properties, activated carbon also tends to break through earlier than large particles such as wet mist and water-soluble fatty acids. In addition, when bacteria and bacteria are present in the fluid, they are adsorbed and preserved.

【0003】こうした活性炭の問題点に対し、まず流体
の透過性の改善については、活性炭を流体透過性の良好
な成形体に造形し、また大きな粒子サイズのものの吸着
の改善には他の吸着材との併用で、さらに細菌類の繁殖
の防止には、抗菌材の添加が試みられている。
[0003] In order to improve the fluid permeability, activated carbon is formed into a molded product having good fluid permeability, and other adsorbents are used to improve the adsorption of particles having a large particle size. In addition, antimicrobial materials have been added to prevent the propagation of bacteria.

【0004】このような改善策のうち、成形体の製造に
ついては、高分子材料を結合材とする方法があるが、樹
脂分が活性炭に含浸して気孔を封じたり、或いは成形体
の気孔率を小さくするので好ましくない。そこで無機質
の粉末を結合材として焼結する方法が採られている。し
かしながら、現状の焼結法は、ガラス粒子や窯業鉱物を
用いていわゆる素焼き状態で活性炭及び添加物を焼結す
るので800゜C以上の加熱を必要としている。
Among such remedies, there is a method of producing a molded article by using a polymer material as a binder. However, the resin impregnates the activated carbon to seal the pores, or to reduce the porosity of the molded article. Is not preferred because Therefore, a method of sintering using an inorganic powder as a binder has been adopted. However, the current sintering method requires heating at 800 ° C. or more because activated carbon and additives are sintered in a so-called unfired state using glass particles and ceramic minerals.

【0005】また、この方法は高温でのガラス融着に依
存してするため焼結体の気孔率が小さくなり、また焼結
体に添加した抗菌性付与材、例えば、銀、銅、亜鉛等の
イオン担持物質が600゜C以上で焼き付け還元によっ
てイオン化機能を失うことから抗菌作用が期待できなく
なるのである。
In addition, this method depends on glass fusion at a high temperature, so that the porosity of the sintered body is reduced, and an antibacterial material added to the sintered body, for example, silver, copper, zinc, etc. Since the ion-bearing substance loses its ionizing function by baking reduction at 600 ° C. or higher, antibacterial action cannot be expected.

【0006】さらに近年、各種の微生物を粒状活性炭の
気孔に固定した生物活性炭が用いられて、アンモニヤ性
窒素や有機物を吸着生分解除去するものがある。しかし
ながら、前記同様生物活性炭も形態が細粒であるため流
体の透過性が小さく、またその重量により水中で沈積し
て接触面積が小さくなることから充分な効果が得られな
いのである。
[0006] In recent years, there has been known a type of bioactive carbon in which various microorganisms are fixed in pores of granular activated carbon to remove and biodegrade ammonia nitrogen and organic substances by adsorption. However, similarly to the above, the biological activated carbon is also in the form of fine granules, so that the fluid permeability is small, and because of its weight, it is deposited in water and the contact area becomes small, so that a sufficient effect cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、低温
度の焼結マトリックスにより、活性炭、他の吸着材や抗
菌剤等を、夫々の機能を保持した状態で焼結し、気孔率
が大きく、多様な形状で流体透過性の良好な焼結体及び
その製造方法を提供するものである。また、生物活性炭
では水中での浮揚力を付与できて充分な接触面積を確保
でき、吸着生分解除去を効果的にできる焼結体及びその
製造方法を提供するものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a low-temperature sintering matrix in which activated carbon, other adsorbents, antibacterial agents and the like are sintered while maintaining their respective functions, resulting in a large porosity. Another object of the present invention is to provide a sintered body having various shapes and good fluid permeability, and a method for manufacturing the same. Another object of the present invention is to provide a sintered body capable of imparting buoyancy in water, securing a sufficient contact area, and effectively removing biodegradation by adsorption, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】このため本発明の吸着性
多孔質焼結体は、活性炭及び/又は吸着性珪酸塩と、合
成白雲母質物とを含んで成るものである。なお、抗菌剤
や中空質無機物をふくんでもよい。また吸着性珪酸塩
は、カオリナイト、モンモリロナイト、酸性白土、珪藻
土、セピオライト、ゼオライトの少なくとも1種であれ
ばよく、合成白雲母質物は、フッ素マスコバイト又はそ
の原料配合物、或いはフッ素バラゴナイト又はその原料
配合物の少なくとも1種であればよい。さらに、抗菌剤
は、銀、銅又は亜鉛のいずれかを担持したゼオライト、
モンモリロナイト、膨潤性雲母、リン酸カルシウムの少
なくとも1種であればよく、中空質無機物は、シラスバ
ルーン、シリカバルーン、ガラスバルーンの少なくとも
1種であるればよい。
Accordingly, the adsorptive porous sintered body of the present invention comprises activated carbon and / or an adsorptive silicate and a synthetic muscovite. Note that an antibacterial agent or a hollow inorganic substance may be included. The adsorptive silicate may be at least one of kaolinite, montmorillonite, acid clay, diatomaceous earth, sepiolite, and zeolite, and synthetic muscovite is a mixture of fluorine muscovite or its raw material, or fluorine balagonite or its raw material It may be at least one of the blends. Further, the antimicrobial agent is a zeolite carrying either silver, copper or zinc,
At least one of montmorillonite, swellable mica, and calcium phosphate may be used, and the hollow inorganic substance may be at least one of shirasu balloon, silica balloon, and glass balloon.

【0009】また本発明の吸着性多孔質焼結体の製造方
法は、活性炭及び/又は吸着性珪酸塩と、中空質無機物
と、合成白雲母とを含んで成る成形体を、500〜65
0゜Cで焼成して焼結する方法である。なお、活性炭を
含んだ成形体の外周に、吸着性珪酸塩と合成白雲母質よ
り成る層を形成し、500〜650゜Cで焼結すること
で積層体の吸着性多孔質焼結体としてもよい。
Further, the method for producing an adsorptive porous sintered body of the present invention is characterized in that a molded article containing activated carbon and / or an adsorptive silicate, a hollow inorganic substance, and synthetic muscovite is provided in a range of 500 to 65.
This is a method of firing at 0 ° C and sintering. In addition, a layer made of adsorbent silicate and synthetic muscovite is formed on the outer periphery of the molded body containing activated carbon, and sintered at 500 to 650 ° C. to form an adsorbent porous sintered body of the laminate. Is also good.

【0010】ここで活性炭及び/又は吸着性珪酸塩を用
いるのは、それらが汚染物質や不純物の吸着除去に優れ
るためであり、セラミック基体となるものである。この
場合、活性炭単体、吸着性珪酸塩単体、及び活性炭と吸
着性珪酸塩との複合の3形態が実用できるのである。
The reason for using activated carbon and / or adsorptive silicate here is that they are excellent in adsorbing and removing contaminants and impurities, and serve as a ceramic substrate. In this case, three forms of activated carbon alone, adsorptive silicate alone, and composite of activated carbon and adsorptive silicate can be used.

【0011】活性炭は、400゜C以上の酸化焼成で酸
化消耗が始まり、また還元焼成でも800゜C以上で吸
着特性が劣化する。したがって、吸着性珪酸塩は活性炭
の性能を補完し、焼結マトリックスに参加しうる吸着材
として用いてもよく、活性炭と吸着性珪酸塩との複合使
用が最適である。
Activated carbon starts oxidatively depleted when oxidized and fired at 400 ° C. or more, and its adsorption characteristics deteriorate at 800 ° C. or more even when reduced and fired. Therefore, the adsorptive silicate complements the performance of activated carbon and may be used as an adsorbent that can participate in the sintering matrix, and the combined use of activated carbon and adsorptive silicate is optimal.

【0012】吸着性珪酸塩としては、カオリナイト、モ
ンモリロナイト、酸性白土、珪藻土、セピオライト、ゼ
オライトの少なくとも1種を用いればよい。このうちカ
オリナイト、モンモリロナイト、酸性白土等の層状珪酸
塩は600゜C付近より、結晶水を放出し、650゜C
以上で結晶崩壊が始まる。また、セピオライトは、55
0゜C以上で結晶水を放出し始め600゜C以上ではメ
タセピオライトになって細孔組織を失い、ステアタイト
に転移する。珪藻土は、650゜C以上で気孔率が著し
く低下する。
As the adsorptive silicate, at least one of kaolinite, montmorillonite, acid clay, diatomaceous earth, sepiolite and zeolite may be used. Among them, layered silicates such as kaolinite, montmorillonite, and acid clay release water of crystallization from around 600 ° C and 650 ° C.
Thus, the crystal collapse starts. Sepiolite is 55
At 0 ° C. or higher, water of crystallization starts to be released, and at 600 ° C. or higher, it becomes metasepiolite, loses its pore structure, and is transformed into steatite. Diatomaceous earth has a significantly reduced porosity above 650 ° C.

【0013】合成白雲母質物としては、フッ素マスコバ
イト又はその原料配合物、或いはフッ素バラゴナイト又
はその原料配合物の少なくとも1種を用いればよい。合
成白雲母には、フッ素マスコバイト[KAl2(AlS
310)F2]とフッ素パラゴナイト[NaAl2(AlSi
3O10)F2]の2種類がある。また、その組成に見合う原
料配合、例えば、カオリナイト[Al2Si2O5]、γ−
アルミナ、パイロフィライト[Al2Si4O10(OH)2]等と、
ケイフッ化カリウム(K2SiF6)、ケイフッ化ナトリウム
(Na2SiF6)、氷晶石(Na3AlF6)等のようなフッ化物を
用いて原料配合を行い加圧成型して加熱焼成する。その
焼成は550〜720゜Cで行われ、固相反応により5
00゜C付近より白雲母が析出し、同時に焼結が進行し
セラミック体となる。さらに、多数の鱗片が重なった状
態となることからその積層部に間隙が生じるため気孔と
なってセラミック体が多孔質となるのである。
As the synthetic muscovite, at least one of fluorine muscovite or a raw material blend thereof, or fluorine balagonite or a raw material blend thereof may be used. Fluorine muscovite [KAl 2 (AlS
i 3 O 10 ) F 2 ] and fluorinated paragonite [NaAl 2 (AlSi
3 O 10 ) F 2 ]. In addition, a raw material composition suitable for the composition, for example, kaolinite [Al2Si2O5], γ-
Alumina, pyrophyllite [Al 2 Si 4 O 10 (OH) 2 ], etc.
The raw materials are blended using fluorides such as potassium silicofluoride (K 2 SiF 6 ), sodium silicofluoride (Na 2 SiF 6 ), cryolite (Na 3 AlF 6 ), press-molded and heated and fired. . The calcination is carried out at 550-720 ° C.
At around 00 ° C., muscovite is precipitated, and at the same time, sintering proceeds to form a ceramic body. Further, since a large number of scales are superimposed on each other, a gap is generated in the laminated portion, so that pores are formed and the ceramic body becomes porous.

【0014】合成白雲母は天然白雲母[KAI2(AlSi3O10)
F2]と同一の結晶構造であり、(OH)基をFで置換したも
のである。(OH)基を持つ白雲母は、600゜C付近より
結晶水(OH)2を放出して分散するのに対して、F基を持
つ白雲母は500゜C付近より微量のフッ化物揮発によ
る焼結作用により焼結する特徴を有する。
Synthetic muscovite is natural muscovite [KAI 2 (AlSi 3 O 10 )
F 2 ], and the (OH) group is substituted with F. While muscovite having an (OH) group releases and disperses crystal water (OH) 2 from around 600 ° C, muscovite having an F group is due to volatilization of a small amount of fluoride from around 500 ° C. It has the characteristic of sintering by the sintering action.

【0015】抗菌剤としては、銀、銅又は亜鉛のいずれ
かを担持したゼオライト、モンモリロナイト、膨潤性雲
母、リン酸カルシウムの少なくとも1種を用いればよ
く、これらは良好な抗菌作用を果たすものである。な
お、ゼオライト、モンモリロナイト、膨潤性雲母、リン
酸カルシウムを用いるのは、夫々組成上金属イオンを化
学的に担持する機能をもっているからである。しかしな
がら、約600゜C以上ではそれらのイオンが担体と焼
結して金属化し抗菌作用を喪失するのである。このため
低温焼結が必要となる。
As the antibacterial agent, at least one of zeolite, montmorillonite, swellable mica, and calcium phosphate carrying any one of silver, copper and zinc may be used, and these exhibit a good antibacterial action. The reason for using zeolite, montmorillonite, swelling mica, and calcium phosphate is that each has a function of chemically supporting metal ions in composition. However, above about 600 ° C., those ions sinter and metallize with the carrier and lose their antimicrobial action. For this reason, low-temperature sintering is required.

【0016】中空質無機物としては、シラスバルーン、
シリカバルーン、ガラスバルーンの少なくとも1種を用
いればよい。これらの微粉末を5〜20重量部添加する
ことで水中での浮揚力を付与できるのである。これらの
バルーン材料は中空膜の破壊が550゜C以上で始まる
ので低温焼結が必要であり、合成白雲母質マトリックス
による焼結体により達成される。
As the hollow inorganic substance, a shirasu balloon,
At least one of a silica balloon and a glass balloon may be used. By adding 5 to 20 parts by weight of these fine powders, buoyancy in water can be imparted. These balloon materials require low temperature sintering since the breakdown of the hollow membrane begins above 550 ° C. and are achieved by sintering with a synthetic muscovite matrix.

【0017】したがって、活性炭及び/又は吸着性珪酸
塩と、合成白雲母と、必要により添加した中空質無機
物、抗菌剤とを含んで成る成形体を、低温の500〜6
50゜Cで焼成することにより、活性炭や吸着性珪酸塩
の吸着特性を保持できると共に、気孔率を大きくでき、
抗菌剤による抗菌作用及び中空質無機物による水中浮揚
作用を保持できる吸着性多孔質焼結体が得られるのであ
る。
Therefore, a molded article containing activated carbon and / or an adsorbent silicate, synthetic muscovite, and optionally added hollow inorganic substance and antibacterial agent is prepared at a low temperature of 500 to 6%.
By calcination at 50 ° C., it is possible to maintain the adsorption characteristics of activated carbon and adsorptive silicate and to increase the porosity,
Thus, an adsorptive porous sintered body that can maintain the antibacterial action of the antibacterial agent and the floating action in water of the hollow inorganic substance can be obtained.

【0018】[0018]

【発明の実施の形態】活性炭と合成白雲母質物との焼結
体の配合は、活性炭を60〜75重量%、合成白雲母質
粉末(フッ素マスコバイト又はフッ素パラゴナイト、或
いはこれらの原料配合物、220メッシュ下)を25〜
40重量%、必要に応じて抗菌剤の銀等の金属イオンを
担持したモンモリロナイト等を1〜3重量%がよい。ま
た、水中浮揚性を付与する場合には、シラスバルーンや
シリカバルーン等の中空質無機物粉末の少なくとも1種
を10〜20重量%配合してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION A sintered body of activated carbon and synthetic muscovite is compounded by adding 60 to 75% by weight of activated carbon, synthetic muscovite powder (fluorine muscovite or fluorine paragonite, or a mixture of these raw materials, 220 mesh below) 25 ~
It is preferably 40% by weight, and if necessary, 1 to 3% by weight of montmorillonite supporting a metal ion such as silver as an antibacterial agent. When imparting water buoyancy, at least one kind of hollow inorganic powder such as a shirasu balloon or a silica balloon may be blended in an amount of 10 to 20% by weight.

【0019】また、吸着性珪酸塩と合成白雲母質物との
焼結体の配合は、吸着性珪酸塩としてカオリナイト、モ
ンモリロナイト、酸性白土、珪藻土、セピオライト、ゼ
オライトの少なくとも1種又は数種を60〜80重量
%、合成白雲母質粉末(フッ素マスコバイト又はフッ素
パラゴナイト、或いはこれらの原料配合物、220メッ
シュ下)を20〜40重量%、必要に応じて抗菌剤の銀
等の金属イオンを担持したモンモリロナイト等を0〜3
重量%がよい。また、水中浮揚性を付与する場合には、
シラスバルーンやシリカバルーン等の中空質無機物粉末
の少なくとも1種を10〜20重量%配合してもよい。
The sintered body of the adsorptive silicate and the synthetic muscovite is blended with at least one or several of kaolinite, montmorillonite, acid clay, diatomaceous earth, sepiolite and zeolite as the adsorptive silicate. 20 to 40% by weight of synthetic muscovite powder (fluorine muscovite or fluorine paragonite, or a mixture of these materials, under 220 mesh), and if necessary, metal ions such as silver as an antibacterial agent Montmorillonite etc. from 0 to 3
% By weight is good. Also, when imparting underwater buoyancy,
At least one kind of hollow inorganic powder such as shirasu balloon and silica balloon may be blended in an amount of 10 to 20% by weight.

【0020】さらに、活性炭及び吸着性珪酸塩と、合成
白雲母質物との焼結体の配合は、活性炭50〜70重量
%、吸着性珪酸塩としてカオリナイト、モンモリロナイ
ト、酸性白土、珪藻土、セピオライト、ゼオライトの少
なくとも1種又は数種を20〜40重量%、合成白雲母
質粉末(フッ素マスコバイト又はフッ素パラゴナイト、
或いはこれらの原料配合物、220メッシュ下)を10
〜40重量%、必要に応じて抗菌剤の銀等の金属イオン
を担持したモンモリロナイト等を0〜3重量%がよい。
また、水中浮揚性を付与する場合には、シラスバルーン
やシリカバルーン等の中空質無機物粉末の少なくとも1
種を10〜20重量%配合してもよい。
Further, the sintered body of the activated carbon and the adsorbent silicate and the synthetic muscovite are blended in an amount of 50 to 70% by weight of the activated carbon and kaolinite, montmorillonite, acid clay, diatomaceous earth, sepiolite as the adsorbent silicate. 20 to 40% by weight of at least one or several zeolites, synthetic muscovite powder (fluorine muscovite or fluorine paragonite,
Alternatively, mix these raw materials, under 220 mesh) with 10
The content is preferably 40 to 40% by weight, and if necessary, 0 to 3% by weight of montmorillonite supporting a metal ion such as silver as an antibacterial agent.
When imparting water buoyancy, at least one hollow inorganic powder such as a shirasu balloon or a silica balloon may be used.
Seeds may be incorporated at 10-20% by weight.

【0021】なお、水中浮揚性を付与する場合として
は、要するに、前記した活性炭及び/又は吸着性珪酸塩
を40〜70重量%、前記した合成白雲母質粉末を10
〜30重量%と、シラスバルーンやシリカバルーン等の
中空質無機物粉末の少なくとも1種を10〜20重量%
を配合するのがよい。
In the case of imparting water buoyancy, the above-mentioned activated carbon and / or adsorptive silicate is used in an amount of 40 to 70% by weight, and the above-mentioned synthetic muscovite powder is used in an amount of 10 to 70% by weight.
And 30% by weight, and at least one kind of hollow inorganic powder such as shirasu balloon and silica balloon is 10 to 20% by weight.
Should be blended.

【0022】これらの配合物は、ミキサーで均質に混合
した後、水又は有機バインダーを加え混合し、水分1〜
3%の状態で型に充填し、加圧、押し出し、マルメライ
ザー成形等により成型する。この成型体を約100゜C
で約1時間乾燥した後、耐火物るつぼ中の炭素微粉に埋
設した状態で加熱炉に装入する。加熱は1時間当たり1
00〜150゜Cの昇温速度で加熱し、到達温度500
〜650゜Cで1〜2時間保持して焼結するのである。
These compositions are mixed homogeneously with a mixer, and then water or an organic binder is added and mixed to obtain a water content of 1 to 3.
It is filled in a mold in a state of 3%, and is molded by pressurizing, extruding, and mulling processing. Approximately 100 ° C
After drying for about 1 hour in a refractory crucible, it is charged into a heating furnace while being buried in the carbon fine powder in the refractory crucible. Heating 1 per hour
Heat at a heating rate of 00 to 150 ° C and reach an ultimate temperature of 500
The sintering is carried out at a temperature of 6650 ° C. for 1 to 2 hours.

【0023】活性炭を含んだ成形体の外周に、吸着性珪
酸塩と合成白雲母質より成る積層を形成して成る吸着性
多孔質焼結体は、皮膜層の配合として、前記したモンモ
リナイト等の吸着性珪酸塩を40〜70重量%、結合材
として合成白雲母20〜40重量%である。
The adsorptive porous sintered body formed by forming a laminate composed of an adsorptive silicate and a synthetic muscovite on the outer periphery of a molded body containing activated carbon is made of a mixture of the above-mentioned montmorillonite and the like as a composition of a coating layer. The adsorptive silicate is 40 to 70% by weight, and the binder is 20 to 40% by weight of synthetic muscovite.

【0024】内芯とする活性炭の造形体は、本発明によ
る焼結体以外を用いてもよく、また焼成していない成型
体を用いて同時に焼成させてもよい。外周皮膜の加工方
法は、プレス又は押し出し成型機による加工、又はマル
メライザーによる粉末被着や配合物のスラリーのディッ
ピング塗装等の方法が使用できる。
The shaped body of activated carbon used as the inner core may be other than the sintered body according to the present invention, or may be simultaneously fired using a non-fired molded body. As the processing method of the outer peripheral coating, a method such as processing by a press or an extrusion molding machine, powder coating by a marmellaizer, and dipping coating of a slurry of a compound can be used.

【0025】成型機による加工は、積層物の配合物を混
合し、水分約3%以下に調整し、成型用型内で活性炭成
型品を浮かしてセットし、外側部に配合物を押圧挿入す
る方法、或いは活性炭成型品が棒体であれば、同芯的な
押し出し成型により配合物を外装する。また、粉末付着
方式は、球形体に適し、常法のマルメライザードラムに
入れ、若干の加湿下で活性炭成型体を入れることで成型
体の外周に積層する。
In the processing by the molding machine, the composition of the laminate is mixed, the water content is adjusted to about 3% or less, the activated carbon molding is floated and set in a molding die, and the composition is pressed and inserted into the outer portion. If the method or the activated carbon molded product is a rod, the compound is packaged by concentric extrusion molding. In addition, the powder adhesion method is suitable for a spherical body, and is placed in a conventional malmerizer drum, and the activated carbon molded body is placed under slight humidification so as to be laminated on the outer periphery of the molded body.

【0026】さらに、チクソトロピーク法は、積層体配
合物を粘性液に調整し、この中に活性炭成型体を浸漬し
て外周に積層体層を付着させる方法である。粘性液は、
モンモリナイトゾル(固型分3%以下)と有機バインダ
ー(濃度2%以下)を混合して調整する。積層体の厚み
は1〜5mmで適宜設定すればよい。
Further, the thixotrope peak method is a method in which a laminate composition is adjusted to a viscous liquid, and an activated carbon molded body is immersed in the mixture to adhere a laminate layer to the outer periphery. The viscous liquid is
It is adjusted by mixing a montmorillonite sol (solid content 3% or less) and an organic binder (concentration 2% or less). The thickness of the laminate may be appropriately set at 1 to 5 mm.

【0027】外周皮膜を形成した成形体は、緩徐に乾燥
させた後、耐火物容器に入れ不活性雰囲気で加熱する。
加熱は毎時80〜150゜Cの昇温速度で行い、550
〜650゜Cで1〜2時間保持して焼結する。得られた
積層部の抗圧力は形状、寸法、組成によって異なるが、
少なくとも100Kg/cm2以上であり、気孔率は成型加
工品で40〜45%、粉末付着品で40〜50%、チク
ソトロピック塗装品で45〜60%である。なお、外周
積層皮膜の形状は問わず、球体被覆の他、平板上面での
平面被覆等でもよい。
The formed body having the outer peripheral film formed thereon is slowly dried, and then placed in a refractory container and heated in an inert atmosphere.
Heating is carried out at a heating rate of 80 to 150 ° C./hour and 550
Hold at 6650 ° C. for 1-2 hours and sinter. The coercive pressure of the obtained laminated part depends on the shape, size and composition,
The porosity is at least 100 kg / cm 2 or more, and the porosity is 40 to 45% for a molded product, 40 to 50% for a powder adhered product, and 45 to 60% for a thixotropic painted product. In addition, regardless of the shape of the outer peripheral laminated film, a planar coating on the upper surface of a flat plate or the like may be used instead of the spherical coating.

【0028】[0028]

【発明の効果】本発明多孔質焼結体の請求項1による
と、活性炭や吸着性珪酸塩により汚染物質等の吸着除去
性に優れると共に、大きな気孔率を保持できて流体透過
性の良好な焼結体となり、合成白雲母質物を含むことで
低温焼成できて容易に成形できるのである。また請求項
2では、良好な抗菌作用を保持でき、請求項3では、水
中での浮揚性によって良好な吸着除去性が図れ、請求項
4では、ミストの選択吸着及び炭素粉の飛散防止の効果
が大きい。さらに請求項5では、良好な吸着除去性を有
する焼結体が容易に得られ、請求項6では、低温焼成を
調整できて容易に得られ、請求項7では、抗菌剤の保持
が良好に図れ、請求項8では、焼結体への水中浮揚性を
容易に付与できるのである。
According to the first aspect of the porous sintered body of the present invention, the activated carbon or the adsorptive silicate is excellent in the ability to remove contaminants and the like, can maintain a large porosity, and has good fluid permeability. It becomes a sintered body and can be easily formed by firing at a low temperature by containing a synthetic muscovite substance. In claim 2, good antibacterial action can be maintained, in claim 3, good adsorption and removal properties can be achieved by buoyancy in water, and in claim 4, the effect of selective adsorption of mist and prevention of scattering of carbon powder. Is big. Further, in claim 5, a sintered body having good adsorption and removal properties can be easily obtained, in claim 6, low-temperature sintering can be adjusted and easily obtained, and in claim 7, the antibacterial agent can be easily retained. According to claim 8, it is possible to easily impart underwater buoyancy to the sintered body.

【0029】本発明の多孔質焼結体の製造方法の請求項
9よると、汚染物質等の吸着除去性に優れると共に、大
きな気孔率を保持できて流体透過性の良好な焼結体が低
温焼成で得られ、請求項10では、成形体の外周に汚染
物質等の吸着除去性に優れると共に、大きな気孔率を保
持できて流体透過性の良好な積層部が低温焼成で得られ
るのである。
According to the ninth aspect of the method for producing a porous sintered body of the present invention, a sintered body which is excellent in adsorption and removal of contaminants and the like, can maintain a large porosity, and has good fluid permeability can be produced at a low temperature. According to the tenth aspect of the present invention, a laminated portion which is excellent in adsorbing and removing contaminants and the like on the outer periphery of the molded body, can maintain a large porosity, and has good fluid permeability can be obtained by low-temperature firing.

【0030】[0030]

【実施例1〜6】(実施例1)粉末活性炭60重量%
と、合成白雲母質物としてフッ素マスコバイト[KAI2(A
lSi3O10)F2]37重量%と、銀イオン担持の抗菌剤3重
量%とを配合する。なお、フッ素マスコバイトは、カオ
リナイト(粘土学会標準品)を77.7重量%、ケイフッ化
カリウム(K2SiF6)を22.3重量%の配合成形体を620
゜Cで10時間焼成して合成した結晶焼結体を粉砕して
得た200メッシュ粉末を用いた。 (実施例2)粉末活性炭75重量%と、合成白雲母質物
として前記同様のフッ素マスコバイト[KAI2(AlSi3O10)
F2]24重量%と、抗菌剤1重量%とを配合する。 (実施例3)粉末活性炭65重量%と、合成白雲母質物
としてフッ素マスコバイトの合成用原料配合物32重量
%と、抗菌剤3重量%とを配合する。なお、フッ素マス
コバイトの合成用原料配合物は、カオリナイト77.7重量
%及びケイフッ化カリウム22.3重量%の混合粉末であ
る。 (実施例4)粉末活性炭60重量%と、合成白雲母質物
としてフッ素パラゴライト[NaAI2(AlSi3O10)F2]37
重量%と、抗菌剤3重量%とを配合する。なお、フッ素
パラゴライトは、パイロフィライト(粘土学会標準品、
関東化学株式会社製)77.4重量%とケイフッ化カリウム
[Na2SiF6、関東化学株式会社製]22.6重量%の配合成
形体を640゜Cで15時間焼成して得られた結晶焼結
体を粉砕した200メッシュ粉末を用いた。 (実施例5)粉末活性炭65重量%と、合成白雲母質物
としてフッ素パラゴライトの合成用原料配合物32重量
%と、抗菌剤3重量%とを配合する。なお、フッ素パラ
ゴライトの合成用原料配合物は、パイロフィライト77.4
重量%とケイフッ化カリウム22.6重量%配合の混合粉末
である。なお、粉末活性炭は、武田薬品工業株式会社
製、製品名PHC5を用い、また抗菌剤は、いずれも銀
イオンを担持したゼオライトを用いた。
Examples 1 to 6 (Example 1) 60% by weight of powdered activated carbon
And fluorinated muscovite [KAI 2 (A
lSi 3 O 10 ) F 2 ] and 3% by weight of an antibacterial agent carrying silver ions. The fluorinated muscovite was prepared by mixing 620 wt.% Of kaolinite (a standard product of the Clay Society of Japan) and 620 wt.% Of potassium silicofluoride (K 2 SiF 6 ).
A 200-mesh powder obtained by pulverizing a crystal sintered body synthesized by firing at ゜ C for 10 hours was used. (Example 2) 75% by weight of powdered activated carbon and the same fluorinated muscovite as synthetic muscovite [KAI 2 (AlSi 3 O 10 )]
F 2 ] 24% by weight and an antibacterial agent 1% by weight. (Example 3) 65% by weight of powdered activated carbon, 32% by weight of a raw material composition for synthesis of fluorine muscovite as a synthetic muscovite, and 3% by weight of an antibacterial agent are blended. The raw material composition for synthesizing fluorine muscovite is a mixed powder of 77.7% by weight of kaolinite and 22.3% by weight of potassium fluorosilicate. (Example 4) 60% by weight of powdered activated carbon and fluorine paragolite [NaAI 2 (AlSi 3 O 10 ) F 2 ] 37 as synthetic muscovite
% By weight and 3% by weight of the antibacterial agent. In addition, fluorinated paragolite is pyrophyllite (Clay Society of Japan standard,
A crystal sintered body obtained by calcining a molded product of 77.4% by weight of 77.4% by weight and potassium silicofluoride [Na 2 SiF 6 , 22.6% by weight of Kanto Chemical Co., Ltd.] at 640 ° C. for 15 hours is used. A crushed 200 mesh powder was used. (Example 5) 65% by weight of powdered activated carbon, 32% by weight of a raw material composition for synthesizing fluorine paragolite as a synthetic muscovite, and 3% by weight of an antibacterial agent are blended. The raw material composition for synthesis of fluorine paragolite was Pyrophyllite 77.4.
% Powder and 22.6% by weight of potassium silicofluoride. The powdered activated carbon used was PHC5 (trade name, manufactured by Takeda Pharmaceutical Co., Ltd.), and the antibacterial used was zeolite carrying silver ions.

【0031】各実施例共、配合物を約2時間混合した
後、PVA(10%水溶液)を配合物に対し固型分換算で
1重量部添加し、30Kg/cm2で紐状(3mmΦ)に押し出
し成型し、これを裁断して3mmΦ×2〜3mmの粒体とし
た。これを夫々各実施例の配合物粉末を入れたドラム式
マルメライザーに装入し、配合物粉末を付着させ肥大化
させて直径8mmΦの球体を成型する。この球体を乾燥器
で乾燥した後、ムライト質るつぼに入れ黒鉛粉末を充填
して空気と遮断した状態で電気炉に入れ加熱する。毎時
150゜Cの昇温速度で加熱し、実施例2は600゜
C、その他の実施例は550゜Cで2時間保持して焼結
体を得た。夫々焼結体のかさ比重、比表面積、高度を表
1に示す。
In each of the examples, after mixing the composition for about 2 hours, 1 part by weight of PVA (10% aqueous solution) was added to the composition in terms of solid content, and a string (30 mmΦ) was formed at 30 kg / cm 2. , And then cut into 3 mmΦ × 2 to 3 mm granules. Each of them is charged into a drum-type marmalizer containing the compound powder of each example, and the compound powder is adhered and enlarged to form a sphere having a diameter of 8 mmΦ. After the spheres are dried in a dryer, they are placed in a mullite crucible, filled with graphite powder, and heated in an electric furnace in a state of being cut off from air. The sintered body was heated at a heating rate of 150 ° C./hour, and kept at 600 ° C. in Example 2 and 550 ° C. in other Examples for 2 hours. Table 1 shows the bulk specific gravity, specific surface area, and altitude of each sintered body.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【実施例6〜11】実施例1〜5までと同じ活性炭粉
末、フッ素マスコバイト、フッ素マスコバイト合成用組
成物、フッ素パラゴナイト及びフッ素マスコバイト合成
用組成物を用い、他に、カオリナイト(粘土学会標準
品)、モンモリロナイト(國峯鉱業名、山形産)、酸性
白土(山形産、SiO2:60.1重量%、Al2O3:16.7重量
%)、セビオライト(水沢化学工業株式会社製)、珪藻
土(宮城産、SiO2:84重量%、Al2O3:3重量%、20〜
30μm)、ゼオライト(水沢化学工業株式会社製)、
抗菌剤として銀イオンを担持したゼオライト、シリカ
(100メッシュ下)、長石(K−長石、K2O:11.1重
量%、Na2O:3.6重量%、200メッシュ)、フッ化物
(Na2AlF6)を用いて表2のように配合し、実施例1〜
5までと同様に焼結した。夫々焼結体のかさ比重、比表
面積、高度を表2に示す。
Examples 6 to 11 Using the same activated carbon powder, fluorinated muscovite, fluorinated muscovite synthesizing composition, fluorinated paragonite and fluorinated muscovite synthesizing composition as in Examples 1 to 5, other than kaolinite (clay) Montmorillonite (Kunimine mining name, Yamagata product), acid clay (Yamagata product, SiO 2 : 60.1% by weight, Al 2 O 3 : 16.7% by weight), sebiolite (manufactured by Mizusawa Chemical Industry Co., Ltd.), diatomaceous earth (Miyagi produced, SiO 2: 84 wt%, Al 2 O 3: 3 wt%, 20 to
30 μm), zeolite (manufactured by Mizusawa Chemical Industry Co., Ltd.),
Zeolite carrying a silver ion as an antimicrobial agent, silica (100 mesh under), feldspar (K-feldspar, K 2 O: 11.1 wt%, Na 2 O: 3.6 wt%, 200 mesh), fluoride (Na 2 AlF 6 ) And blended as shown in Table 2, and
Sintering was performed in the same manner as before. Table 2 shows the bulk specific gravity, specific surface area, and altitude of each of the sintered bodies.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【実施例12〜17:別材で外周皮膜した吸着性多孔質
焼結体】外周皮膜を形成する実施例であり、その積層す
る外周皮膜原料の配合を実施例12〜17として表3に
示す。夫々原料をボールミルにより2時間混合し、夫々
実施例1〜5と同一の配合及び製造法で製作した径5mm
の球体をドラム式マルメライザーに装入し、実施例12
〜17の配合物粉末を霧と共に吹き込みながらドラムを
回転させて球体に付着させ肥大化させて直径9mmの積層
成形体を得る。この球体を乾燥器で乾燥した後、ムライ
ト質るつぼに入れ蓋をして空気を遮断した状態で電気炉
に入れ加熱する。毎時150゜Cの昇温速度で加熱し、
580゜Cで2時間保持して積層焼結体を得た。夫々外
周の皮膜層の焼結体のかさ比重、比表面積、高度を表3
に合わせて示す。
Examples 12 to 17: Adsorbent porous sintered body having outer peripheral film coated with another material This is an example of forming an outer peripheral film, and the blending of the outer peripheral film material to be laminated is shown in Table 3 as Examples 12 to 17. . Each raw material was mixed by a ball mill for 2 hours, and each was manufactured by the same blending and manufacturing method as in Examples 1 to 5 to a diameter of 5 mm.
Was charged into a drum-type marmalizer, and Example 12
While the compound powder of Nos. 1 to 17 is being blown together with a mist, the drum is rotated to adhere to the sphere and enlarge, thereby obtaining a laminated molded article having a diameter of 9 mm. After the spheres are dried in a drier, they are placed in a mullite crucible and heated in an electric furnace with the lid closed and the air shut off. Heat at a heating rate of 150 ° C per hour,
It was kept at 580 ° C. for 2 hours to obtain a laminated sintered body. Table 3 shows the bulk specific gravity, specific surface area and altitude of the sintered body of the outer coating layer.
Shown along with.

【0036】[0036]

【表3】 [Table 3]

【0037】なお、BETによる細孔分布測定及び電子顕
微鏡写真(SEM×10000倍)による観察によれば、実施例
12、実施例14及び実施例16の気孔性において、セ
ピオライト細孔は保たれており、粒子間の二次気孔径は
7000〜10000オングストロームに分布していた。また、
実施例13及び実施例15も珪酸塩の構造は保存されて
おり、粒子間気孔径は8000〜12000オングストロームに
分布していた。
According to the pore distribution measurement by BET and the observation by an electron micrograph (SEM × 10,000), sepiolite pores were retained in the porosity of Examples 12, 14 and 16. And the secondary pore size between the particles is
It was distributed in the range of 7000 to 10,000 angstroms. Also,
In Examples 13 and 15, the structure of the silicate was also preserved, and the interparticle pore size was distributed at 8000 to 12000 angstroms.

【0038】[0038]

【実施例18:水中浮揚性多孔質焼結体】実施例1〜5
までと同じ活性炭粉末60重量%、フッ素マスコバイト
合成用組成物25重量%を用い、これにシラスバルーン
(平均粒径50μm)15重量%を実施例1〜5と同様
に混合、芯材形成、マルメライザー成型し、温度500
゜Cで3時間焼結し、径8mmの球状焼結体を得た。これ
によると、かさ比重0.41、全気孔率65%、吸水率48
%で水に浸漬させても沈降しないで水中で浮遊していた
のである。
Embodiment 18: Underwater buoyant porous sintered body Examples 1 to 5
Activated carbon powder 60% by weight and a composition for synthesizing fluorine muscovite 25% by weight were used. Molded with marmellaizer, temperature 500
Sintering was performed at 球状 C for 3 hours to obtain a spherical sintered body having a diameter of 8 mm. According to this, bulk specific gravity 0.41, total porosity 65%, water absorption 48
Even if it was immersed in water, it did not settle and floated in water.

【0039】(実験例)実施例12及び実施例15を用
いて臭気成分とミストの混合水溶液により吸着テストを
行った。水100ml中に、アニリン1ml、ホルマリン
(80%)1ml、メチルエチルケトン1mlを分散させた
溶液を三角フラスコ(500ml)に入れた。この液中に
空気導入管を挿入し、液面上空間部から外部に出る流出
管を取り付け、空気導入管から空気を送り入れ、流出管
より各臭気成分の揮発湿性ガス(湿度70〜75%)を
放出させた。流出管の途中に実施例12及び実施例15
の積層多孔質焼結体(9mm球)を各20ケ装入したカラ
ムを取り付けて測定すると、両実施例とも流出ガスから
臭気が消失しており、湿度も約実施例12のもので20
%、実施例15のもので26%以下となっていた。
(Experimental Example) Using Examples 12 and 15, an adsorption test was conducted using a mixed aqueous solution of an odor component and a mist. A solution in which 1 ml of aniline, 1 ml of formalin (80%) and 1 ml of methyl ethyl ketone were dispersed in 100 ml of water was placed in an Erlenmeyer flask (500 ml). An air introduction pipe is inserted into this liquid, an outflow pipe that goes out of the space above the liquid surface to the outside is attached, air is sent in from the air introduction pipe, and volatile humid gas (humidity 70 to 75%) of each odor component is passed through the outflow pipe. ) Was released. Example 12 and Example 15 in the middle of the outflow pipe
When the measurement was carried out by attaching a column in which 20 pieces of the laminated porous sintered body (9 mm sphere) were mounted, the odor was eliminated from the effluent gas and the humidity was about 20 in both Examples.
% And 26% or less in Example 15.

【0040】流出管の途中に実施例12及び実施例15
の積層多孔質焼結体(9mm球)を各20ケ装入したカラ
ムを取り付けて測定すると、両実施例とも流出ガスから
臭気が消失しており、湿度も約実施例12のもので20
%、実施例15のもので26%以下となっていた。
Example 12 and Example 15 in the middle of the outflow pipe
When the measurement was carried out by attaching a column in which 20 pieces of the laminated porous sintered body (9 mm sphere) were mounted, the odor was eliminated from the effluent gas and the humidity was about 20 in both Examples.
% And 26% or less in Example 15.

【0041】また、カラム内の球体を取り出し、破砕し
て内芯活性端部と外周積層部に分けて測定したところ夫
々外周積層部に湿分を先行吸着すると共に、アニリン、
ホルマリンを一部吸着しており、内芯活性端部ではメチ
ルエトンが吸着されていた。
Further, the spheres in the column were taken out, crushed, and measured separately for the inner core active end portion and the outer peripheral laminated portion.
Formalin was partially adsorbed, and methyl ethone was adsorbed at the inner core active end.

【0042】さらに、実施例4及び実施例12の外周積
層部を1mm以下に粉砕してガラス皿(径70mm、深さ1
0mm)に採取し、ガラス皿1個につき大腸菌が104
105個のレベルで菌液を調整して添加した。25゜C
で3時間保持し、菌数測定用培地(SCDLP培地)でガラ
ス皿内の含有菌を洗い出して、この洗液を菌数測定培地
による平板培養法(37゜C、48時間)により生残菌
数を測定した。その結果、実施例4では1.2×102
以下であり、実施例12では0.9×102以下であっ
た。
Further, the outer peripheral laminated portion of Example 4 and Example 12 was crushed to 1 mm or less and crushed into a glass dish (diameter 70 mm, depth 1).
Were taken to 0mm), E. coli per one glass dish 10 4 ~
The bacterial solution was adjusted and added at 10 5 levels. 25 ゜ C
For 3 hours, and the bacteria contained in the glass dish are washed out with a culture medium for cell count (SCDLP medium). The number was measured. As a result, in Example 4, 1.2 × 10 2
In Example 12, the value was 0.9 × 10 2 or less.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 活性炭及び/又は吸着性珪酸塩と、合成
白雲母質物とを含んで成る吸着性多孔質焼結体。
1. An adsorptive porous sintered body comprising activated carbon and / or an adsorptive silicate and a synthetic muscovite substance.
【請求項2】 活性炭及び/又は吸着性珪酸塩と、抗菌
剤と、合成白雲母質物とを含んで成る吸着性多孔質焼結
体。
2. An adsorptive porous sintered body comprising activated carbon and / or an adsorptive silicate, an antibacterial agent, and a synthetic muscovite.
【請求項3】 活性炭及び/又は吸着性珪酸塩と、中空
質無機物と、合成白雲母とを含んで成る吸着性多孔質焼
結体。
3. An adsorptive porous sintered body comprising activated carbon and / or adsorptive silicate, a hollow inorganic substance, and synthetic muscovite.
【請求項4】 活性炭を含んだ成形体の外周に、吸着性
珪酸塩と合成白雲母質より成る積層を形成して成る吸着
性多孔質焼結体。
4. An adsorptive porous sintered body formed by forming a laminate comprising an adsorptive silicate and a synthetic muscovite on the outer periphery of a molded body containing activated carbon.
【請求項5】 吸着性珪酸塩が、カオリナイト、モンモ
リロナイト、酸性白土、珪藻土、セピオライト、ゼオラ
イトの少なくとも1種である請求項1又は請求項2又は
請求項3又は請求項4の吸着性多孔質焼結体。
5. The adsorptive porous material according to claim 1, wherein the adsorptive silicate is at least one of kaolinite, montmorillonite, acid clay, diatomaceous earth, sepiolite, and zeolite. Sintered body.
【請求項6】 合成白雲母質物が、フッ素マスコバイト
又はその原料配合物、或いはフッ素バラゴナイト又はそ
の原料配合物の少なくとも1種である請求項1又は請求
項2又は請求項3又は請求項4の吸着性多孔質焼結体。
6. The synthetic muscovite substance according to claim 1, wherein the synthetic muscovite is at least one of fluorine muscovite or a raw material blend thereof, or fluorine balagonite or a raw material blend thereof. Adsorbent porous sintered body.
【請求項7】 抗菌剤が、銀、銅又は亜鉛のいずれかを
担持したゼオライト、モンモリロナイト、膨潤性雲母、
リン酸カルシウムの少なくとも1種である請求項2の吸
着性多孔質焼結体。
7. An antibacterial agent comprising a zeolite, montmorillonite, swellable mica, carrying either silver, copper or zinc;
3. The adsorptive porous sintered body according to claim 2, which is at least one kind of calcium phosphate.
【請求項8】 中空質無機物が、シラスバルーン、シリ
カバルーン、ガラスバルーンの少なくとも1種である請
求項3の吸着性多孔質焼結体。
8. The adsorptive porous sintered body according to claim 3, wherein the hollow inorganic substance is at least one of a shirasu balloon, a silica balloon, and a glass balloon.
【請求項9】 活性炭及び/又は吸着性珪酸塩と、中空
質無機物と、合成白雲母とを含んで成る成形体を、50
0〜650゜Cで焼成して焼結することを特徴とする吸
着性多孔質焼結体の製造方法。
9. A molded article comprising activated carbon and / or adsorptive silicate, a hollow inorganic substance, and synthetic muscovite,
A method for producing an adsorptive porous sintered body, characterized by firing at 0 to 650 ° C and sintering.
【請求項10】 活性炭を含んだ成形体の外周に、吸着
性珪酸塩と合成白雲母質より成る層を形成し、500〜
650゜Cで焼成して焼結することを特徴とする吸着性
多孔質焼結体の製造方法。
10. A layer comprising an adsorptive silicate and synthetic muscovite is formed on the outer periphery of a molded body containing activated carbon,
A method for producing an adsorptive porous sintered body, characterized by firing at 650 ° C. and sintering.
JP9165417A 1997-06-05 1997-06-05 Adsorptive porous sintered compact and its production Pending JPH10337469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9165417A JPH10337469A (en) 1997-06-05 1997-06-05 Adsorptive porous sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9165417A JPH10337469A (en) 1997-06-05 1997-06-05 Adsorptive porous sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH10337469A true JPH10337469A (en) 1998-12-22

Family

ID=15812031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9165417A Pending JPH10337469A (en) 1997-06-05 1997-06-05 Adsorptive porous sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH10337469A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062710A1 (en) * 2001-02-07 2002-08-15 Bmt Bio Mineral Technologies Ab Filter equipment and process for the treatment of waste water containing inorganic, organic pollution and/or pathogens
JP2006160692A (en) * 2004-12-09 2006-06-22 Masayoshi Mori Method for producing antimicrobial agent and antimicrobial agent
KR100895867B1 (en) 2007-11-28 2009-04-30 (주)동화라이징 Method for preparing of porous sintered bodies
WO2009157681A3 (en) * 2008-06-24 2010-03-11 Lumilite Co., Ltd. Water quality improvement composition containing eco-friendly active natural minerals and method of manufacturing the same
JP2016010749A (en) * 2014-06-27 2016-01-21 株式会社タカギ Method for producing molded adsorbent, molded adsorbent and water purifier using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446210A (en) * 1977-09-21 1979-04-12 Osaka Sanso Kougiyou Kk Method of making halffburnt body comprising active carbon* zeolite blended mixture
JPS62155935A (en) * 1985-12-28 1987-07-10 Topy Ind Ltd Deodorant
JPS63147858A (en) * 1986-07-28 1988-06-20 オオタケセラム株式会社 Active inorganic material and manufacture
JPH01278408A (en) * 1988-04-28 1989-11-08 Matsushita Electric Ind Co Ltd Bacteriostatic activated carbon
JPH03208870A (en) * 1990-01-09 1991-09-12 Oriental Sangyo Kk Production of porous ceramic body
JPH04108537A (en) * 1990-08-27 1992-04-09 Babcock Hitachi Kk Preparation of catalyst carrier and catalyst
JPH05345703A (en) * 1992-06-12 1993-12-27 Taihei Kagaku Sangyo Kk Antibacterial activated carbon
JPH07148434A (en) * 1993-07-12 1995-06-13 Ishihara Sangyo Kaisha Ltd Photocatalyst and water cleaning method using the same
JPH0970806A (en) * 1995-09-04 1997-03-18 Sekisui Chem Co Ltd Manufacture of inorganic cured body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446210A (en) * 1977-09-21 1979-04-12 Osaka Sanso Kougiyou Kk Method of making halffburnt body comprising active carbon* zeolite blended mixture
JPS62155935A (en) * 1985-12-28 1987-07-10 Topy Ind Ltd Deodorant
JPS63147858A (en) * 1986-07-28 1988-06-20 オオタケセラム株式会社 Active inorganic material and manufacture
JPH01278408A (en) * 1988-04-28 1989-11-08 Matsushita Electric Ind Co Ltd Bacteriostatic activated carbon
JPH03208870A (en) * 1990-01-09 1991-09-12 Oriental Sangyo Kk Production of porous ceramic body
JPH04108537A (en) * 1990-08-27 1992-04-09 Babcock Hitachi Kk Preparation of catalyst carrier and catalyst
JPH05345703A (en) * 1992-06-12 1993-12-27 Taihei Kagaku Sangyo Kk Antibacterial activated carbon
JPH07148434A (en) * 1993-07-12 1995-06-13 Ishihara Sangyo Kaisha Ltd Photocatalyst and water cleaning method using the same
JPH0970806A (en) * 1995-09-04 1997-03-18 Sekisui Chem Co Ltd Manufacture of inorganic cured body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062710A1 (en) * 2001-02-07 2002-08-15 Bmt Bio Mineral Technologies Ab Filter equipment and process for the treatment of waste water containing inorganic, organic pollution and/or pathogens
JP2006160692A (en) * 2004-12-09 2006-06-22 Masayoshi Mori Method for producing antimicrobial agent and antimicrobial agent
KR100895867B1 (en) 2007-11-28 2009-04-30 (주)동화라이징 Method for preparing of porous sintered bodies
WO2009157681A3 (en) * 2008-06-24 2010-03-11 Lumilite Co., Ltd. Water quality improvement composition containing eco-friendly active natural minerals and method of manufacturing the same
JP2016010749A (en) * 2014-06-27 2016-01-21 株式会社タカギ Method for producing molded adsorbent, molded adsorbent and water purifier using the same

Similar Documents

Publication Publication Date Title
CN102285816A (en) Tourmaline integral honeycomb ceramic and preparation method thereof
JP2005015276A (en) Ceramic fired body and antibacterial ceramic and microorganism immobilization support using the same
JPH10337469A (en) Adsorptive porous sintered compact and its production
US3116131A (en) Method and materials for disposing of radioactive waste
CN110668606B (en) Composite active carbon filter element and preparation method thereof
JPH08310881A (en) Porous sintered body and its production
KR101111536B1 (en) Manufacturing method of heavy metal adsorbent
JPH10258228A (en) Granular sintered body and its manufacture
JPH08141589A (en) Ceramics porous element and treatment of waste water using the same
JP2007063085A (en) Calcium carbonate composition
CN106396628A (en) Spherical sepiolite lightweight through-hole ceramsite with air purifying functions
KR101227802B1 (en) Porous ceramic media for microbes by sawdust and method of manufacturing the same
CN106431463A (en) Light cylindrical attapulgite through-hole ceramsite with air purification function
JPH11322469A (en) Production of porous tourmaline ceramics
JPS5969146A (en) Production of filter-like adsorbent using powdery activated carbon as raw material
KR100481973B1 (en) Organic and Inorganic Hybrid Media for Microbe Immobilization and Its Producing Method
JP2008074648A (en) Method for producing porous material
CN106431284A (en) Spherical zeolite light through-hole ceramsite with air purification function
JPH07330527A (en) Antimicrobial ceramic
CN106631149A (en) Gravel-shaped light ceramsite with air purification function and volcaniclastic rock
CN113398884B (en) Floating adsorbent and proportioning and metering method thereof
JP2003103285A (en) Water cleaning porous body
JPH10211428A (en) Adsorptive ceramic
KR20240042702A (en) A method for manufacturing an absorbent for phosphorus removal based on granular red mud and its absorbent
JPH0375256A (en) Functional ceramics and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425