JP2594917B2 - Power converter control device - Google Patents

Power converter control device

Info

Publication number
JP2594917B2
JP2594917B2 JP61201455A JP20145586A JP2594917B2 JP 2594917 B2 JP2594917 B2 JP 2594917B2 JP 61201455 A JP61201455 A JP 61201455A JP 20145586 A JP20145586 A JP 20145586A JP 2594917 B2 JP2594917 B2 JP 2594917B2
Authority
JP
Japan
Prior art keywords
phase
current
sine wave
reference sine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61201455A
Other languages
Japanese (ja)
Other versions
JPS6359768A (en
Inventor
清隆 小林
潤一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61201455A priority Critical patent/JP2594917B2/en
Publication of JPS6359768A publication Critical patent/JPS6359768A/en
Application granted granted Critical
Publication of JP2594917B2 publication Critical patent/JP2594917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、サイクロコンバータなどの電力変換装置に
より可変速駆動される交流機をベクトル制御装置にて駆
動させる為に、所望の周波数を位相遅れなく電動機に供
給するための電力変換装置の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of driving a variable-speed AC machine driven by a power converter such as a cycloconverter by a vector control device so that a desired frequency is phase-lagged. The present invention relates to a control device for a power conversion device for supplying a motor to a motor.

〔従来の技術〕[Conventional technology]

サイクロコンバータによる交流可変速駆動システムに
おいて、最近循環電流方式サイクロコンバータ等により
出力周波数を向上させ、高速回転機への適用拡大が種々
検討されている。その際、電流位相のずれを補償するこ
とは例えば特公昭59−23195号公報で公知である。ま
た、近年のマイクロプロセツサ技術の急速な進歩によ
り、前記駆動システムの制御演算をデイジタル計算機に
より行なわせた方が、従来のアナログ回路より安価な制
御装置を提供出来るようになつてきた。
In an AC variable-speed drive system using a cycloconverter, recently, the output frequency has been improved by a circulating current type cycloconverter or the like, and various applications to high-speed rotating machines have been studied. Compensating for the current phase shift at that time is known, for example, from Japanese Patent Publication No. 59-23195. Further, due to the rapid progress of microprocessor technology in recent years, it has become possible to provide a controller which is more inexpensive than a conventional analog circuit by performing a control operation of the drive system by a digital computer.

しかし、その結果制御系がアナログ的な連続系から、
サンプル値制御系に変る為、サンプル値制御特有の問題
が発生してきた。特に、後述のように高い周波数まで制
御を行なおうとすると、サンプリング時間を無視出来な
くなつてくる。
However, as a result, the control system changed from an analog continuous system to
Because of the change to the sample value control system, problems specific to sample value control have arisen. In particular, if control is to be performed up to a high frequency as described later, the sampling time cannot be ignored.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来、サイクロコンバータの出力周波数を上げ、モー
タの回転数を上げる場合、特公昭59−23195に示すごと
く、電流制御系の応答遅れによる悪影響を補償する制御
方法に関しては、提案されている。しかしながら、これ
ら従来方法は、連続系での考えでしか配慮されておら
ず、制御装置にデイジタル計算機を用いて、サンプル値
制御を行なつた場合、指令信号の伝達遅れ、サンプル値
の検出遅れによる応答遅れ等に対しては、何ら考慮され
ていない。本発明の目的は、電流制御系の応答遅れとサ
ンプル値制御による応答遅れを補償し精度良く制御でき
る電力変換装置の制御装置を提供することにある。
Conventionally, when increasing the output frequency of a cycloconverter and increasing the rotational speed of a motor, a control method for compensating for an adverse effect due to a response delay of a current control system has been proposed as shown in Japanese Patent Publication No. 59-23195. However, these conventional methods are considered only in the concept of a continuous system, and when a sample value control is performed using a digital computer as a control device, a transmission delay of a command signal and a detection delay of a sample value are caused. No consideration is given to response delay and the like. SUMMARY OF THE INVENTION It is an object of the present invention to provide a control device for a power conversion device capable of compensating for a response delay of a current control system and a response delay due to sample value control, and performing accurate control.

〔問題点を解決するための手段〕[Means for solving the problem]

交流信号の制御をサンプル値制御にて行なつた場合、
サンプル値制御特有の問題である指令の伝達遅れ、検出
値の遅れなどは、交流量の位相遅れとなることに着目
し、本発明においては、制御系の基準交流指令に対し
て、位相遅れを補償すべく、あらかじめ位相を与えるよ
うにした指令用の基準正弦波発生器と検出用の基準正弦
波発生器をもうけ、それぞれの正弦波信号の位相を最適
に調整できるようにしたことを特徴とする。本発明によ
れば、制御系の応答遅れを補償することにより達成され
る。
If the AC signal is controlled by sample value control,
Focusing on the fact that the command transmission delay and the detection value delay, which are problems specific to sample value control, are phase delays of the AC amount. In order to compensate, a reference sine wave generator for command and a reference sine wave generator for detection are provided in advance so that the phase of each sine wave signal can be adjusted optimally. I do. According to the present invention, this is achieved by compensating for the response delay of the control system.

〔作用〕[Action]

本発明では、第1及び第2の複数台の正弦波発生器を
設けて、個別に位相角θを調整出来るようにし、前記第
1の正弦波発生器である指令用基準正弦波発生器は、制
御系の基準正弦波に対して、位相を適正に調整(進み)
することにより、直流電流指令から交流の実電流を流そ
うとする交流の電圧指令までの間に発生する伝達遅れを
補正することができる。又、前記第2の正弦波発生器で
ある検出用基準正弦波発生器も同じ様に、位相を適正に
調整(遅れ)することによりサンプル値の検出遅れを補
正することができる。以上の様な働きにより、制御対象
と制御系の位相を合わせ応答をよくすることが出来る。
In the present invention, the first and second plural sine wave generators are provided so that the phase angle θ can be adjusted individually, and the command reference sine wave generator, which is the first sine wave generator, , Adjust the phase properly for the reference sine wave of the control system (advance)
By doing so, it is possible to correct the transmission delay that occurs between the DC current command and the AC voltage command that causes the actual AC current to flow. Similarly, the detection reference sine wave generator as the second sine wave generator can correct the sample value detection delay by appropriately adjusting (delaying) the phase. With the above operation, the phase of the control target and the phase of the control system can be matched to improve the response.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第
1図は、サイクロコンバータ1にて、図示していない商
用周波の三相交流電源を可変電圧可変周波の電源に変換
し、負荷である三相誘導電動機2に供給するように構成
された装置において、前記誘導電動機2に正弦波状の交
流電流を流すための制御回路の例を示したものである。
なお、サイクロコンバータ1は、逆並列接続された一対
のサイリスタコンバータから成る正逆変換器を三相交流
の各相ごとに設けた回路にて構成されている。サイクロ
コンバータ1の出力電圧は、各相ごとに設けた位相制御
回路3,4,5から与えられるゲートパルス信号にて可変さ
れる。一方、制御回路は、誘導電動機2の各相交流電流
を制御する交流電流制御回路6,7,8、3相の正弦波指令
を出力する2相/3相変換回路9、本発明となる基準正弦
波発生器20、誘導電動機の一次電流を回転磁界と同方向
成分(励磁電流成分Id)と直交成分(トルク電流成分
Iq)に分離して検出する3相/2相変換回路11より構成さ
れている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a device configured to convert a commercial frequency three-phase AC power source (not shown) into a variable voltage variable frequency power source by a cycloconverter 1 and supply the power to a three-phase induction motor 2 as a load. 1 shows an example of a control circuit for causing a sinusoidal alternating current to flow through the induction motor 2.
The cycloconverter 1 is configured by a circuit provided with a forward / reverse converter composed of a pair of thyristor converters connected in antiparallel for each phase of three-phase alternating current. The output voltage of the cycloconverter 1 is varied by gate pulse signals provided from phase control circuits 3, 4, and 5 provided for each phase. On the other hand, the control circuit is an AC current control circuit 6, 7, 8, which controls the AC current of each phase of the induction motor 2, a two-phase / three-phase conversion circuit 9, which outputs a three-phase sine wave command, The sine wave generator 20 converts the primary current of the induction motor into a component in the same direction as the rotating magnetic field (excitation current component I d ) and a component in quadrature (torque current component).
It comprises a three-phase / two-phase conversion circuit 11 for detecting separately in Iq ).

誘導電動機を直流電動機と同様に可変速制御させる方
法として、ベクトル制御方法があることは良く知られて
いる。このベクトル制御とは、誘導機の一次電流を回転
磁界と同方向成分(励磁電流成分Id)と直交成分(トル
ク電流成分Iq)に分離し、一次電流の大きさを、IdとIq
の大きさにて制御し、回転磁界に対する電流の位相をIq
/Idの比に応じたすべり周波数を与えることにより制御
する方法である。第1図は、前述のベクトル制御を行な
うために、図示していない別の回路より励磁電流指令Id
とトルク電流指令Iq が2相/3相変換回路9に入力さ
れ、一次電流の周波数指令ω が基準正弦波発生器20
に入力される。基準正弦波発生器20にて、たがいに90゜
位相差をもつ2相正弦波信号sin(ω t+θ),co
s(ω t+θ)が作られ、その出力は2相/3相変
換回路9に入力される。2相/3相変換回路9では、
(1),(2)式に示されるベクトル演算を行ない各相
の交流電流指令iu ,iv ,iw を出力する。
It is well known that there is a vector control method as a method of controlling an induction motor at a variable speed similarly to a DC motor. This vector control separates the primary current of the induction machine into a component in the same direction (excitation current component I d ) and a quadrature component (torque current component I q ) with the rotating magnetic field, and determines the magnitude of the primary current as I d and I d q
And the phase of the current with respect to the rotating magnetic field is I q
/ Is a method of controlling by giving a slip frequency corresponding to the ratio of I d. FIG. 1 shows an excitation current command I d from another circuit (not shown) for performing the above-described vector control.
* And the torque current command I q * are input to the two-phase / three-phase conversion circuit 9, and the primary current frequency command ω 1 * is used as the reference sine wave generator 20.
Is input to In the reference sine wave generator 20, a two-phase sine wave signal sin (ω 1 * t + θ 1 ), co
s (ω 1 * t + θ 1 ) is generated, and the output is input to the two-phase / three-phase conversion circuit 9. In the 2-phase / 3-phase conversion circuit 9,
The vector operation shown in the equations (1) and (2) is performed to output the AC current commands i u * , i v * , i w * of each phase.

交流電流制御回路6,7,8には、前記各相交流電流指令i
u ,iv ,iw と電流検出器12にて検出された交流電流
帰還量との偏差が入力され、その出力信号は、各相変換
器の出力電圧に応じた制御信号eu ,ev ,ew が出力さ
れる。また、交流電流制御系の応答遅れによる制御誤差
を補償する目的で、3相/2相変換回路11が設けられてお
り、この回路には、交流電流帰還量(iu,iv,iw)が入力
され、(1),(2)式のθをθに置き換えた逆演
算にて、Id,Iq信号が検出される。なお前記Id,Iq信号と
指令値であるId ,Iq の偏差が、電流制御系の応答遅
れによる制御誤差であり、この制御系の応答遅れは、図
示されていない別の回路にて補償されるものとする。
The AC current control circuits 6, 7, 8 include the above-described AC current command i for each phase.
The deviation between u * , iv * , iw * and the amount of alternating current feedback detected by the current detector 12 is input, and the output signal is a control signal e u corresponding to the output voltage of each phase converter. * , Ev * , ew * are output. Further, a three-phase / two-phase conversion circuit 11 is provided for the purpose of compensating for a control error due to a response delay of the AC current control system, and this circuit includes an AC current feedback amount (i u , i v , i w ) Is input, and the I d and I q signals are detected by the inverse operation in which θ 1 in the equations (1) and (2) is replaced with θ 2 . Note the I d, which is a command value I q signal I d *, I q * deviation is a control error due to the response delay of the current control system, response delay of the control system, the alternative not shown It shall be compensated by the circuit.

以上述べた制御演算をデイジタル計算機にて行なわせ
た場合、第2図に示すような構成となる。第2図の15は
デイジタル計算機を示し、他の回路は、第1図の同一番
号に示すものと同じである。第2図において、図示しな
い別の回路より励磁電流指令Id ,トルク電流指令
Iq ,1次周波数指令ω が計算機15にデイジタルのデ
ータとして入力され、前述の制御演算を所定時間毎に実
施し、演算結果は、各相電圧指令eu ,ev ,ew とし
て、各相位相制御回路3,4,5に入力される。その動作を
第3図にてさらに説明する。第3図(1)は、U相電圧
指令eu とU相交流電流iuの動作波形を示し、同図
(2)はデイジタル計算機15が所定のサンプリング時間
毎に演算を開始するタイミングを示し、同図(3)は、
前記タイミングに応じて、計算機15が演算している時間
をタイムチヤートとして示している。今、時刻t1にて指
令値であるId ,Iq ,ω のデータと、帰還量であ
るiu ,iv ,iw のデータを計算機15が取込み、時刻t2
にて、演算が終了し、その結果として電圧指令eu ,ev
,ew が出力される。以後同様の動作がくり返され
る。第3図(1)の実線で示すe′ は、演算遅れな
しに瞬時で所定の電圧指令を出力した場合を示し、これ
はアナログ制御系で構成した電圧指令波形に相当する。
その場合に流れる交流電流を実線のi′に示す。これ
に対して、時刻t2だけ遅れたタイミングにて、電圧指令
eu が出力される為、実際には、点線で示されるeu
電圧指令波形となり、実際に流れる交流電流も点線で示
すiuの波形となる。これは、サンプル値制御により、本
来の位相に対して、位相角θだけ遅れた電流が流れる
ことを示している。この位相遅れは、定常的には、前述
の電流制御系の応答遅れによる制御誤差と同様、特公昭
59−23195に示されるような考え方の補償回路を構成す
れば、補正されるかもしれないが、過度的には、補償回
路の遅れのため補正出来ないと言う欠点がある。
When the above-described control operation is performed by a digital computer, the configuration is as shown in FIG. 2 shows a digital computer, and other circuits are the same as those shown in FIG. In FIG. 2, the excitation current command I d * and the torque current command are output from another circuit (not shown).
I q * and the primary frequency command ω 1 * are input to the computer 15 as digital data, and the above-described control calculations are performed at predetermined time intervals. The calculation results are expressed by the phase voltage commands e u * , e v * , This is input to each phase control circuit 3, 4, 5 as e w * . The operation will be further described with reference to FIG. FIG. 3 (1) shows the operation waveforms of the U-phase voltage command e u * and the U-phase AC current i u , and FIG. 3 (2) shows the timing at which the digital computer 15 starts the calculation at every predetermined sampling time. FIG.
The time calculated by the computer 15 according to the timing is shown as a time chart. Now, I d * is a command value at time t 1, I q *, and ω 1 * of data, which is the amount of feedback i u *, i v *, i w * of data the computer 15 uptake, time t 2
, The calculation is completed, and as a result, the voltage commands e u * , ev
* , E w * is output. Thereafter, the same operation is repeated. E'u * shown by a solid line in FIG. 3 (1) indicates a case where a predetermined voltage command is output instantaneously without any operation delay, and this corresponds to a voltage command waveform formed by an analog control system.
Shows the alternating current flowing in case the solid line i 'u. On the other hand, only time t 2 at a delayed timing, voltage directive
Since e u * is output, the voltage command waveform of e u * indicated by the dotted line is actually obtained, and the AC current actually flowing also becomes the waveform of i u indicated by the dotted line. This is the sample value control, with respect to the original phase, indicating that current flows delayed by a phase angle theta 1. Normally, this phase delay is similar to the control error due to the response delay of the current control system described above.
If a compensating circuit having the concept shown in 59-23195 is constructed, it may be corrected, but there is a disadvantage that it cannot be corrected excessively due to the delay of the compensating circuit.

本発明では、前記サンプル値制御による位相遅れ角θ
を、あらかじめ基準正弦波指令をθだけ進めること
により本来の電流位相にて交流電流が流れるようにする
ものである。即ち第3図(1)点線のeu を実線のe′
のタイミングまで進めることにより本来の交流電流
位相(実線のi′のタイミング)にしようと言うもの
である。また、指令と同様に、帰還量の検出にも、位相
遅れがある為、検出側にも指令側と同様に検出位相を調
整出来るように、基準正弦波発生回路を指令側と検出側
に分離したところに本発明の特徴がある。その具体的回
路構成を第4図に示す。第4図は、本発明の特徴とする
回路で第1図に示す基準正弦波発生器20の内部構成を示
したものである。周波数指令ω の入力信号を積分回
路21にて積分し、fω tの信号を出力し、指令側位
相調整信号θと検出側位相調整信号θが入力され、
別々の加算器22にて、fω t信号とθあるいはθ
が加算され、別々の2相正弦波出力回路23に入力され
る。指令用2相正弦波出力回路はsin(ω t+
θ),cos(ω t+θ)の2相信号を出力し、検
出用2相正弦波出力回路は、sin(ω t+θ),co
s(ω t+θ)の2相信号を出力する。
In the present invention, the phase delay angle θ by the sample value control is
1 is to advance the reference sine wave command by θ 1 in advance so that an alternating current flows at the original current phase. That is, the dotted line eu * is replaced by the solid line e 'in FIG.
It is intended to say that trying to the original of the alternating current phase (timing of the solid line of i 'u) by advancing to the timing of u *. Also, like the command, there is a phase delay in the detection of the feedback amount, so the reference sine wave generation circuit is separated into the command side and the detection side so that the detection side can adjust the detection phase in the same way as the command side. Thus, there is a feature of the present invention. The specific circuit configuration is shown in FIG. FIG. 4 shows the internal structure of the reference sine wave generator 20 shown in FIG. 1, which is a circuit characteristic of the present invention. The input signal of the frequency command ω 1 * is integrated by the integration circuit 21 to output a signal of fω 1 * t, and the command side phase adjustment signal θ 1 and the detection side phase adjustment signal θ 2 are input,
In a separate adder 22, the fω 1 * t signal and θ 1 or θ
2 are added and input to separate two-phase sine wave output circuits 23. Two-phase sine wave output circuit for a directive sin (ω 1 * t +
θ 1 ) and cos (ω 1 * t + θ 1 ), and a two-phase sine wave output circuit for detection is sin (ω 1 * t + θ 2 ), co
Output a two-phase signal of s (ω 1 * t + θ 2 ).

第5図に電流検出のベクトル図を示す。 FIG. 5 shows a vector diagram of current detection.

第5図(a)は、交流電流の検出遅れが無い場合、交
流電流(Iα,Iβ)を回転磁界と同方向成分(励磁電流
成分Id)と直行成分(トルク電流成分Iq)にベクトル逆
演算したベクトル図を示す。
FIG. 5 (a) shows that when there is no detection delay of the AC current, the AC current (I α , I β ) has the same direction component (excitation current component I d ) and the direct component (torque current component I q ) as the rotating magnetic field. Shows a vector diagram obtained by performing a vector inverse operation.

第5図(b)は、検出遅れによる位相遅れθを含ん
だ交流電流(Iα,Iβ)を同様にベクトル逆演算したベ
クトル図を示す。これより、回転磁界と同方向成分(励
磁電流成分Id)と直行成分(トルク電流成分Iq)は大き
さ(スカラー量)が正確でなくなる。
FIG. 5 (b) is a vector diagram obtained by similarly performing a vector inverse operation on the AC current (I α , I β ) including the phase delay θ 2 due to the detection delay. As a result, the magnitude (scalar amount) of the component in the same direction (excitation current component I d ) and the orthogonal component (torque current component I q ) of the rotating magnetic field becomes inaccurate.

第5図(c)は、本発明の位相調整による、ベクトル
図を示す。交流電流(Iα,Iβ)の位相をθ進ませる
のではなく、ベクトル逆演算の基準となる回転磁界の位
相をθ遅らせることにより回転磁界と同方向成分(励
磁電流成分Id)と直行成分(トルク電流成分Iq)の大き
さ(スカラー量)を正確に検出することが出来る。
FIG. 5 (c) shows a vector diagram according to the phase adjustment of the present invention. Rather than advancing the phase of the alternating current (I α , I β ) by θ 2 , the phase of the rotating magnetic field, which is the basis of the vector inversion operation, is delayed by θ 2, so that the component in the same direction as the rotating magnetic field (excitation current component I d ) And the magnitude (scalar amount) of the direct component (torque current component I q ) can be accurately detected.

〔発明の効果〕〔The invention's effect〕

本発明によれば、制御装置の基準正弦波位相に対し
て、指令用基準正弦波信号の位相,検出用基準正弦波信
号の位相をそれぞれ最適にすることにより、制御装置の
位相と制御対象の位相のずれを補正して、不安定要素を
取り除き、制御装置の性能を上げる効果がある。
According to the present invention, the phase of the control device and the phase of the control target are optimized by optimizing the phase of the command reference sine wave signal and the phase of the detection reference sine wave signal with respect to the reference sine wave phase of the control device. This has the effect of correcting the phase shift, removing unstable elements, and improving the performance of the control device.

【図面の簡単な説明】 第1図は、本発明の一実施例の回路図、第2図,第3図
は、サンプル制御時の動作説明図、第4図は、位相補正
の詳細ブロック図、第5図は電流検出の説明用ベクトル
図である。 20……基準正弦波発生器、21……積分器、22……加算
器、23……2相正弦波出力、θ……指令用位相補正
角、θ……検出用位相補正角、ω ……一次周波数
指令。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of one embodiment of the present invention, FIG. 2 and FIG. 3 are explanatory diagrams of an operation at the time of sample control, and FIG. 4 is a detailed block diagram of phase correction. FIG. 5 is an explanatory vector diagram of the current detection. 20: Reference sine wave generator, 21: Integrator, 22: Adder, 23: 2-phase sine wave output, θ 1: Command phase correction angle, θ 2: Detection phase correction angle, ω 1 * : Primary frequency command.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘導電動機に可変電圧可変周波数の交流を
供給する電力変換装置と、前記電力変換装置の出力電流
を検出する電流検出手段と、90度位相差の2相の基準正
弦波信号をサンプル値制御に基づく制御応答遅れを補正
する指令用位相補正角だけ位相調整した第1の基準正弦
波信号および前記2相の基準正弦波信号をサンプル値制
御に基づく検出遅れを補正する検出用位相補正角だけ位
相調整した第2の基準正弦波信号を発生する基準正弦波
信号発生手段と、前記誘導電動機の1次電流のトルク電
流成分と励磁電流成分の指令信号と前記第1の基準正弦
波信号との演算により前記電力変換装置の電流指令信号
を求める第1のベクトル演算手段と、前記電流指令信号
に基づいて前記電力変換装置の出力電流を制御する電流
制御手段と、前記電流検出手段で検出した電流値と前記
第2の基準正弦波信号との演算により前記誘導電動機の
1次電流のトルク電流成分と励磁電流成分を求める第2
のベクトル演算手段とを具備し、前記基準正弦波信号発
生手段は前記第1と第2の基準正弦波信号の位相補正角
をそれぞれ個別に調整できるようにしたことを特徴とす
る電力変換装置の制御装置。
1. A power converter for supplying an alternating current having a variable voltage and a variable frequency to an induction motor, current detecting means for detecting an output current of the power converter, and a two-phase reference sine wave signal having a phase difference of 90 degrees. A detection phase for correcting a detection delay based on sample value control of the first reference sine wave signal and the two-phase reference sine wave signal whose phases are adjusted by a command phase correction angle for correcting a control response delay based on sample value control Reference sine wave signal generating means for generating a second reference sine wave signal whose phase has been adjusted by a correction angle, a command signal of a torque current component and an exciting current component of a primary current of the induction motor, and the first reference sine wave A first vector calculating unit that obtains a current command signal of the power converter by calculating a signal and a current control unit that controls an output current of the power converter based on the current command signal; Second determining a torque current component and the exciting current component of the primary current of the induction motor by the operation of said second reference sine wave signal the current value detected by the flow detecting means
Wherein said reference sine wave signal generating means is capable of individually adjusting the phase correction angles of said first and second reference sine wave signals. Control device.
JP61201455A 1986-08-29 1986-08-29 Power converter control device Expired - Lifetime JP2594917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201455A JP2594917B2 (en) 1986-08-29 1986-08-29 Power converter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201455A JP2594917B2 (en) 1986-08-29 1986-08-29 Power converter control device

Publications (2)

Publication Number Publication Date
JPS6359768A JPS6359768A (en) 1988-03-15
JP2594917B2 true JP2594917B2 (en) 1997-03-26

Family

ID=16441374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201455A Expired - Lifetime JP2594917B2 (en) 1986-08-29 1986-08-29 Power converter control device

Country Status (1)

Country Link
JP (1) JP2594917B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017886A1 (en) * 1990-05-18 1991-11-28 E.I. Du Pont De Nemours And Company Multilayer heat shrinkable polymeric film containing recycle polymer
JPH06270248A (en) * 1993-03-23 1994-09-27 Showa Denko Kk Stretched film for food packing and production thereof
CA2463076A1 (en) * 2001-10-17 2003-04-24 Avery Dennison Corporation Multilayered shrink films and articles encapsulated therewith
US20090068486A1 (en) * 2004-12-23 2009-03-12 Blackwell Christopher J Heat shrink films and articles encapsulated therein

Also Published As

Publication number Publication date
JPS6359768A (en) 1988-03-15

Similar Documents

Publication Publication Date Title
US6462491B1 (en) Position sensorless motor control apparatus
JP3152058B2 (en) Variable speed control device for induction motor
JPH08182398A (en) Driving device for permanent magnet-type synchronous motor
JP6424772B2 (en) Control device of AC rotating electric machine
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP4529113B2 (en) Voltage source inverter and control method thereof
US20210281205A1 (en) Driving device, driving system, and method of driving electric motor
JP2594917B2 (en) Power converter control device
US4264853A (en) Commutatorless motor device
JPH06335277A (en) Ac motor controller
JP3053121B2 (en) Control method of induction motor
JPH05300785A (en) Controller for synchronous motor
JP7272026B2 (en) Inverter device
JP2644750B2 (en) Control method of voltage source inverter
US7053584B2 (en) Motor driving device
JP3425438B2 (en) Induction motor drive
JPH0884500A (en) Speed sensorless vector controller for induction motor
JP2004208370A (en) Current controller for motor
JPH0870598A (en) Sensorless vector control apparatus for induction motor speed
US11456689B2 (en) Driving device, driving system, and method of driving electric motor
JPH08191600A (en) Device for controlling inverter current
JP4682521B2 (en) Variable speed control device for induction motor
JP3007989B2 (en) Driving device for stepping motor
JP2585526B2 (en) Induction machine control device
JPH0521999Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term