JP4682521B2 - Variable speed control device for induction motor - Google Patents

Variable speed control device for induction motor Download PDF

Info

Publication number
JP4682521B2
JP4682521B2 JP2004051615A JP2004051615A JP4682521B2 JP 4682521 B2 JP4682521 B2 JP 4682521B2 JP 2004051615 A JP2004051615 A JP 2004051615A JP 2004051615 A JP2004051615 A JP 2004051615A JP 4682521 B2 JP4682521 B2 JP 4682521B2
Authority
JP
Japan
Prior art keywords
command value
induction motor
value
primary
variable speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004051615A
Other languages
Japanese (ja)
Other versions
JP2005102467A (en
Inventor
宏一 田島
新一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004051615A priority Critical patent/JP4682521B2/en
Publication of JP2005102467A publication Critical patent/JP2005102467A/en
Application granted granted Critical
Publication of JP4682521B2 publication Critical patent/JP4682521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

この発明は、可変電圧可変周波数の交流電力を出力する電力変換装置により駆動される誘導電動機の可変速制御装置に関する。   The present invention relates to a variable speed control device for an induction motor driven by a power converter that outputs AC power of variable voltage and variable frequency.

誘導電動機を所定の電圧,周波数の交流電力で可変速駆動するための可変速制御装置としては、例えば、下記特許文献1に記載されているように、前記電圧と周波数の比率が一定となるような可変電圧,可変周波数の交流電圧を前記誘導電動機に印加する方法(以下、V/f比一定制御方法とも称する)を用いたものと、誘導電動機に流れる電流を該電動機の磁束と同一方向の成分と該磁束に直交する成分とに分解して、これらの電流成分をそれぞれ独立に制御する、所謂、ベクトル制御方法を用いたものとがある。さらに、このベクトル制御方法には、下記特許文献2に記載されているように、誘導電動機の回転速度を前記可変速制御装置内部で推定演算することにより、例えば、パルスエンコーダなどのような誘導電動機の速度センサを不要にした速度センサレスベクトル制御方法がある。
特開2000−333500号公報 (第4頁、図1など) 特許第3152058号公報 (第4頁、図1など)
As a variable speed control device for driving an induction motor at a variable speed with AC power having a predetermined voltage and frequency, for example, as described in Patent Document 1 below, the ratio between the voltage and the frequency is constant. Using a method of applying an alternating voltage having a variable voltage and a variable frequency to the induction motor (hereinafter also referred to as a V / f ratio constant control method) and a current flowing through the induction motor in the same direction as the magnetic flux of the motor. There is a method using a so-called vector control method in which a component and a component orthogonal to the magnetic flux are decomposed and these current components are controlled independently. Further, in this vector control method, as described in Patent Document 2 below, an induction motor such as a pulse encoder is obtained by estimating and calculating the rotation speed of the induction motor inside the variable speed control device. There is a speed sensorless vector control method that eliminates the need for the speed sensor.
JP 2000-333500 A (Page 4, FIG. 1, etc.) Japanese Patent No. 3152058 (Page 4, FIG. 1 etc.)

上述の従来の誘導電動機の可変速制御装置における問題点を、図面を参照しつつ、以下に説明する。   Problems in the above-described conventional variable speed control device for an induction motor will be described below with reference to the drawings.

図7は、前記V/f比一定制御方法を用いた誘導電動機の可変速制御装置の回路構成図であり、1は後述の電圧指令値演算手段13が出力する一次電圧指令値ベクトルv1 *に従って各相の交流電圧を出力し、誘導電動機2に給電するインバータなどの電力変換装置、10は電力変換装置1を介して誘導電動機2を制御する可変速制御装置である。 FIG. 7 is a circuit configuration diagram of a variable speed control device for an induction motor using the V / f ratio constant control method. Reference numeral 1 denotes a primary voltage command value vector v 1 * output by a voltage command value calculation means 13 described later . A power converter 10 such as an inverter that outputs an alternating voltage of each phase and supplies power to the induction motor 2 is a variable speed control device that controls the induction motor 2 via the power converter 1.

この可変速制御装置10は誘導電動機2の一次周波数としての周波数指令値ω1 *を発生する周波数指令値発生手段11と、周波数指令値ω1 *が誘導電動機2の基底一次周波数までは該周波数指令値に比例した値を該電動機の一次電圧振幅指令値|v1 *|として出力し、それ以上の周波数指令値ω1 *では一定値を一次電圧振幅指令値|v1 *|として出力するV/f比演算手段12と、前記係数と周波数指令値ω1 *とから誘導電動機2の一次電圧指令値ベクトルv1 *を演算して出力する電圧指令値演算手段13とから構成されている。 The variable speed control device 10 includes a frequency command value generating means 11 for generating a frequency command value ω 1 * as a primary frequency of the induction motor 2, and the frequency command value ω 1 * up to the base primary frequency of the induction motor 2. primary voltage amplitude command value of said motor proportional value to the command value | v 1 * | outputted as, more frequency command value omega 1 * primary voltage amplitude command value a constant value at | outputted as | v 1 * V / f ratio calculation means 12 and voltage command value calculation means 13 for calculating and outputting the primary voltage command value vector v 1 * of the induction motor 2 from the coefficient and the frequency command value ω 1 * . .

図7に示した可変速制御装置10を用いて誘導電動機2を制御する際には、電力変換装置1が一次電圧指令値ベクトルv1 *に従った各相の交流電圧を出力するために行われるPWM演算に基づいたデッドタイムや、電力変換装置1を構成する半導体素子の順電圧降下分,スイッチング特性,スイッチングタイミングのばらつきなどに起因して、前記交流電圧の歪みが増大し、その結果、誘導電動機2にトルクリプルや回転むらが生ずるという問題点があった。 When the induction motor 2 is controlled using the variable speed control device 10 shown in FIG. 7, the power conversion device 1 is used to output the AC voltage of each phase according to the primary voltage command value vector v 1 *. The distortion of the AC voltage increases due to the dead time based on the PWM calculation, the forward voltage drop of the semiconductor elements constituting the power conversion device 1, the switching characteristics, the variation of the switching timing, and the like. There has been a problem that torque ripple and uneven rotation occur in the induction motor 2.

また図8は、前記速度センサレスベクトル制御方法を用いた誘導電動機の可変速制御装置の回路構成図であり、4は後述のベクトル回転器40が出力する三相交流の電圧指令値vU *,vV *,vW *に従って各相の交流電圧を出力し、誘導電動機2に給電するインバータなどの電力変換装置、5は誘導電動機2の各相の電流検出値iU ,iV ,iW を得るための電流検出器、30は電力変換装置4を介して誘導電動機2を制御する可変速制御装置である。 FIG. 8 is a circuit diagram of a variable speed control device for an induction motor using the speed sensorless vector control method. 4 is a three-phase AC voltage command value v U * , output from a vector rotator 40 described later. A power conversion device such as an inverter that outputs an AC voltage of each phase according to v V * and v W * and supplies power to the induction motor 2, 5 is a current detection value i U , i V , i W of each phase of the induction motor 2. A current detector 30 for obtaining a variable speed control device 30 controls the induction motor 2 via the power converter 4.

この可変速制御装置30は誘導電動機2の速度指令値ωr *を発生する速度指令値発生手段31と、この速度指令値ω r * と後述の速度推定手段41で導出された誘導電動機2の速度推定値ωr #との偏差を零にする調節演算を行い、この演算結果を誘導電動機2のq軸成分の一次電流指令値i1q * として出力する速度調節器32と、磁束指令値発生手段33が出力する誘導電動機2の2次磁束指令値φ2 *に基づいた誘導電動機2のd軸成分の一次電流指令値i1d * を出力する電流指令値演算手段34と、誘導電動機2の一次電流指令値i1q * と一次電流指令値i1d * とから誘導電動機2のすべり周波数ωs を演算するすべり周波数演算手段35と、このすべり周波数ωs と前記速度推定値ωr #とを加算し、この加算値を誘導電動機2の一次周波数指令値ω1 *として出力する加算演算器36と、一次周波数指令値ω1 *を積分演算して得られる位相角指令値θ* を出力する積分手段37と、電流検出器5で得られた電流検出値iU ,iV ,iW を位相角指令値θ* に基づいた座標変換を行い、誘導電動機2のd軸成分の一次電流検出値i1dとq軸成分の一次電流検出値i1qとを得るベクトル回転器38と、前記一次電流指令値i1q * および一次電流指令値i1d * と、前記一次電流検出値i1dおよび一次電流検出値i1qとの偏差を零にする調節演算を行い、これらの演算結果を誘導電動機2のd軸成分の一次電圧指令値v1d * およびq軸成分の一次電圧指令値v1q * として出力する電流調節手段39と、誘導電動機2の一次電圧指令値v1d * と一次電圧指令値v1q * とを位相角指令値θ* に基づく座標変換を行い、電力変換装置4への三相交流の電圧指令値vU *,vV *,vW *を得るベクトル回転器40と、前記一次電圧指令値v1d * と一次電圧指令値v1q * と一次電流検出値i1dと一次電流検出値i1qとに基づいて誘導電動機2の速度推定値ωr #を導出する速度推定手段41とから構成されている。 The variable speed control device 30 includes a speed command value generating means 31 that generates a speed command value ω r * of the induction motor 2, and the speed command value ω r * and the speed estimation means 41 described later. An adjustment calculation is performed to make the deviation from the estimated speed value ω r # zero, and the calculation result is output as a primary current command value i 1q * of the q-axis component of the induction motor 2, and a magnetic flux command value is generated. Current command value calculation means 34 for outputting a primary current command value i 1d * of the d-axis component of the induction motor 2 based on the secondary magnetic flux command value φ 2 * of the induction motor 2 output by the means 33; A slip frequency calculating means 35 for calculating the slip frequency ω s of the induction motor 2 from the primary current command value i 1q * and the primary current command value i 1d *, and the slip frequency ω s and the estimated speed value ω r # The addition value is added to the primary frequency command value of the induction motor 2. omega 1 * and adders 36 and output as an integration means 37 for outputting a phase angle command value obtained by the integral calculation of the primary frequency command value ω 1 * θ *, the current detection obtained by the current detector 5 The values i U , i V , i W are subjected to coordinate conversion based on the phase angle command value θ * , and the primary current detection value i 1d of the d-axis component of the induction motor 2 and the primary current detection value i 1q of the q-axis component The vector rotator 38 for obtaining the primary current command value i 1q * and the primary current command value i 1d *, and the adjustment calculation for making the deviation between the primary current detection value i 1d and the primary current detection value i 1q zero. The current adjusting means 39 for outputting these calculation results as the primary voltage command value v 1d * and the primary voltage command value v 1q * of the d-axis component of the induction motor 2, and the primary voltage command of the induction motor 2 the coordinate transformation based an values v 1d * and the primary voltage command value v 1q * phase angle command value theta * There, the voltage command value v U * of the three-phase AC to the power converter 4, v V *, v a vector rotator 40 to obtain a W *, the primary voltage command value v 1d * and the primary voltage command value v 1q * Speed estimation means 41 for deriving a speed estimation value ω r # of the induction motor 2 based on the primary current detection value i 1d and the primary current detection value i 1q .

図8に示した可変速制御装置30を用いて誘導電動機2を制御すれば、電流調節手段39などによって、上述の図7で示した可変速制御装置10で問題となった電力変換装置1が出力する交流電圧の歪みが抑制され、その結果、誘導電動機2にトルクリプルや回転むらも軽減されるが、速度調節器32,すべり周波数演算手段35,速度推定手段41など演算量が多く、この可変速制御装置30には高価な演算機能を具備する必要があった。   When the induction motor 2 is controlled using the variable speed control device 30 shown in FIG. 8, the power conversion device 1 that has become a problem in the variable speed control device 10 shown in FIG. The distortion of the output AC voltage is suppressed. As a result, torque ripple and rotation unevenness are reduced in the induction motor 2, but the amount of calculation such as the speed regulator 32, the slip frequency calculating means 35, and the speed estimating means 41 is large. The shift control device 30 had to have an expensive calculation function.

さらに図9は、上述の図8で示した可変速制御装置30に対する問題点であった制御量をより少なくするために、単に電流制御を行う回路構成図である。   Further, FIG. 9 is a circuit configuration diagram in which current control is simply performed in order to reduce the amount of control that has been a problem with the variable speed control device 30 shown in FIG. 8 described above.

この可変速制御装置42では磁束指令値発生手段33,電流指令値演算手段34,積分手段37,ベクトル回転器38,電流調節手段39,ベクトル回転器40の他に、誘導電動機2の一次周波数としての周波数指令値ω1 *を発生する周波数指令値発生手段43が設けられている。 In this variable speed control device 42, in addition to the magnetic flux command value generating means 33, the current command value calculating means 34, the integrating means 37, the vector rotator 38, the current adjusting means 39, and the vector rotator 40, as the primary frequency of the induction motor 2. The frequency command value generating means 43 for generating the frequency command value ω 1 * is provided.

図9に示した可変速制御装置42を用いて誘導電動機2を制御する際には、誘導電動機2が出力するトルクが大きい状態で、制御不能に陥る恐れがあった。   When the induction motor 2 is controlled using the variable speed control device 42 shown in FIG. 9, there is a possibility that the control may be impossible due to a large torque output from the induction motor 2.

この発明の目的は、上記問題点を解消しつつ、より少ない演算量で誘導電動機のトルクリプルや回転むらを抑制できる誘導電動機の可変速制御装置を提供することにある。   An object of the present invention is to provide a variable speed control device for an induction motor that can suppress torque ripple and rotation unevenness of the induction motor with a smaller amount of computation while eliminating the above-described problems.

前記課題を解決すため、請求項1の発明は、可変電圧可変周波数の交流電力を出力する電力変換装置により駆動される誘導電動機の可変速制御装置において、
前記誘導電動機の一次周波数指令値と一次電圧指令値と一次電流検出値とに基づいて、該電動機のトルク演算値を演算するトルク演算手段と、
二次磁束指令値から前記誘導電動機のd軸成分の第1の一次電流指令値を演算する第1電流指令値演算手段と、
前記トルク演算値から前記誘導電動機のq軸成分の第2の一次電流指令値を演算する第2電流指令値演算手段と、
前記一次周波数指令値を積分演算した位相角指令値を求める積分手段と、
前記一次電流検出値を前記位相角指令値に基づいて回転座標上の直交する2軸成分に変換する第1のベクトル回転器と、
前記第1の一次電流指令値および第2の一次電流指令値と回転座標上の直交する2軸成分に変換された前記一次電流検出値との偏差を零にする調節演算を行い、これらの演算結果に基づく値を回転座標上の直交する2軸成分の一次電圧指令値として出力する電流調節手段と、
回転座標上の直交する2軸成分の前記一次電圧指令値を三相交流の電圧指令値に変換する第2のベクトル回転器とからなることを特徴とする。
In order to solve the above-mentioned problems, the invention of claim 1 is directed to a variable speed control device for an induction motor driven by a power converter that outputs AC power of variable voltage and variable frequency.
Torque calculation means for calculating a torque calculation value of the electric motor based on a primary frequency command value, a primary voltage command value, and a primary current detection value of the induction motor;
First current command value calculating means for calculating a first primary current command value of a d-axis component of the induction motor from a secondary magnetic flux command value ;
Second current command value calculation means for calculating a second primary current command value of the q-axis component of the induction motor from the torque calculation value;
Integrating means for obtaining a phase angle command value obtained by integrating the primary frequency command value;
A first vector rotator that converts the primary current detection value into a two-axis component orthogonal to rotation coordinates based on the phase angle command value;
An adjustment calculation is performed to make a deviation between the first primary current command value and the second primary current command value and the detected primary current value converted into the two-axis components orthogonal to each other on the rotation coordinate, and these calculations are performed. Current adjusting means for outputting a value based on the result as a primary voltage command value of two orthogonal axes on the rotation coordinate;
Characterized by comprising the primary voltage command value orthogonal biaxial components on the rotating coordinate and a second vector rotator for converting the voltage command values of the three-phase AC.

また請求項2の発明は、可変電圧可変周波数の交流電力を出力する電力変換装置により駆動される誘導電動機の可変速制御装置において、
前記誘導電動機の一次周波数指令値と一次電圧指令値と一次電流検出値とに基づいて、該電動機のトルク演算値を演算するトルク演算手段と、
二次磁束指令値から前記誘導電動機のd軸成分の第1の一次電流指令値を演算する第1電流指令値演算手段と、
前記トルク演算値から前記誘導電動機のq軸成分の第2の一次電流指令値を演算する第2電流指令値演算手段と、
前記一次周波数指令値を積分演算した位相角指令値を求める積分手段と、
前記第1の一次電流指令値および第2の一次電流指令値を前記位相角指令値に基づいて静止座標上の直交する2軸成分に変換する第3のベクトル回転器と、
前記一次電流検出値を静止座標上の直交する2軸成分に変換する3相/2相変換器と、
前記第1の一次電流指令値および第2の一次電流指令値と静止座標上の直交する2軸成分に変換された前記一次電流検出値との偏差を零にする調節演算を行い、これらの演算結果に基づく値を静止座標上の直交する2軸成分の一次電圧指令値として出力する電流調節手段と、
静止座標上の直交する2軸成分の前記一次電圧指令値を三相交流の電圧指令値に変換する2相/3相変換器とからなることを特徴とする。
According to a second aspect of the present invention, there is provided a variable speed control device for an induction motor driven by a power converter that outputs AC power having a variable voltage and a variable frequency.
Torque calculation means for calculating a torque calculation value of the electric motor based on a primary frequency command value, a primary voltage command value, and a primary current detection value of the induction motor;
First current command value calculating means for calculating a first primary current command value of a d-axis component of the induction motor from a secondary magnetic flux command value ;
Second current command value calculation means for calculating a second primary current command value of the q-axis component of the induction motor from the torque calculation value;
Integrating means for obtaining a phase angle command value obtained by integrating the primary frequency command value;
A third vector rotator for converting the first primary current command value and the second primary current command value into orthogonal biaxial components on stationary coordinates based on the phase angle command value;
A three-phase / two-phase converter that converts the primary current detection value into two orthogonal axes on a stationary coordinate;
An adjustment calculation is performed to make a deviation between the first primary current command value and the second primary current command value and the detected primary current value converted into the two-axis components orthogonal to each other on a stationary coordinate zero. Current adjusting means for outputting a value based on the result as a primary voltage command value of two orthogonal axes on a stationary coordinate;
It comprises a two-phase / three-phase converter that converts the primary voltage command value of two orthogonal axis components on a stationary coordinate into a three-phase AC voltage command value.

請求項3の発明は、可可変電圧可変周波数の交流電力を出力する電力変換装置により駆動される誘導電動機の可変速制御装置において、
前記誘導電動機の一次周波数指令値と一次電圧指令値と一次電流検出値とに基づいて、該電動機のトルク演算値を演算するトルク演算手段と、
二次磁束指令値から前記誘導電動機のd軸成分の第1の一次電流指令値を演算する第1電流指令値演算手段と、
前記トルク演算値から前記誘導電動機のq軸成分の第2の一次電流指令値を演算する第2電流指令値演算手段と、
前記一次周波数指令値を積分演算した位相角指令値を求める積分手段と、
前記第1の一次電流指令値および第2の一次電流指令値を前記位相角指令値に基づいて三相の電流指令値に変換する第4のベクトル回転器と、
前記三相の電流指令値と前記一次電流検出値との偏差を零にする調節演算を行い、これらの演算結果に基づく値を三相の電圧指令値として出力する電流調節手段とからなることを特徴とする。
The invention of claim 3 is a variable speed control device for an induction motor driven by a power converter that outputs AC power having a variable voltage and variable frequency.
Torque calculation means for calculating a torque calculation value of the electric motor based on a primary frequency command value, a primary voltage command value, and a primary current detection value of the induction motor;
First current command value calculating means for calculating a first primary current command value of a d-axis component of the induction motor from a secondary magnetic flux command value ;
Second current command value calculation means for calculating a second primary current command value of the q-axis component of the induction motor from the torque calculation value;
Integrating means for obtaining a phase angle command value obtained by integrating the primary frequency command value;
A fourth vector rotator for converting the first primary current command value and the second primary current command value into a three-phase current command value based on the phase angle command value;
A current adjusting means for performing an adjustment calculation for making a deviation between the three-phase current command value and the detected primary current value zero, and outputting a value based on the calculation result as a three-phase voltage command value. Features.

請求項4の発明は、請求項1ないし請求項3のいずれか1項に記載の誘導電動機の可変速制御装置において、前記トルク演算手段は、 前記誘導電動機の有効電力演算値に基づいて該電動機のトルク演算値を演算することを特徴とする。According to a fourth aspect of the present invention, in the variable speed control device for an induction motor according to any one of the first to third aspects, the torque calculation unit is configured to output the motor based on an active power calculation value of the induction motor. The torque calculation value is calculated.

請求項5の発明は、請求項4の発明において、前記誘導電動機を無負荷状態で運転し、この状態で得られる有効電力演算値を記憶し、この記憶値と該誘導電動機が通常運転時に得られる有効電力演算値とに基づいて、前記トルク演算値を演算することを特徴とする。According to a fifth aspect of the present invention, in the fourth aspect of the invention, the induction motor is operated in a no-load state, and an active power calculation value obtained in this state is stored. The stored value and the induction motor are obtained during normal operation. The torque calculation value is calculated based on the calculated effective power value.

請求項1〜3の発明の可変速制御装置によれば、誘導電動機のトルク演算値に基づいた電流指令値に追従するように該電動機の電流を制御するため、従来のV/f比一定制御方法と比較して、電力変換装置のPWM演算に基づいたデッドタイムや、電力変換装置を構成する半導体素子の順電圧降下分,スイッチング特性,スイッチングタイミングのばらつきなどに起因する出力交流電圧の歪みが減少し、従って、誘導電動機にトルクリプルや回転むらを抑制することができる。また、このとき、従来のベクトル制御方法に比して、演算量を少ない回路構成にできるため、安価な可変速制御装置で具現できる。さらに、誘導電動機のトルク演算値に基づいた電流指令値で該電動機を制御するため、誘導電動機が出力するトルクが大きい状態でも、該電動機を安定に制御することができる。 According to the variable speed control device of the first to third aspects of the present invention, since the current of the motor is controlled so as to follow the current command value based on the torque calculation value of the induction motor, the conventional constant V / f ratio control is performed. Compared with the method, the dead time based on the PWM calculation of the power converter, the distortion of the output AC voltage due to the forward voltage drop of the semiconductor elements constituting the power converter, switching characteristics, variation in switching timing, etc. Therefore, torque ripple and rotation unevenness can be suppressed in the induction motor. At this time, the circuit configuration can be reduced with respect to the amount of calculation compared to the conventional vector control method, so that it can be implemented with an inexpensive variable speed control device. Furthermore, since the electric motor is controlled with a current command value based on the torque calculation value of the induction motor, the electric motor can be stably controlled even when the torque output from the induction motor is large.

また、請求項4および5の発明の可変速制御装置によれば、誘導電動機のトルク演算値をより少ない演算量で導出することができる。   In addition, according to the variable speed control apparatus of the inventions of claims 4 and 5, the torque calculation value of the induction motor can be derived with a smaller calculation amount.

図1は、この発明の第1の実施例を示す誘導電動機の可変速制御装置の回路構成図であり、この図において、図7に示した従来例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 1 is a circuit diagram of a variable speed control device for an induction motor according to a first embodiment of the present invention. In this figure, components having the same functions as those of the conventional configuration shown in FIG. The description is omitted here.

すなわち、図1に示した可変速制御装置15は、周波数指令値発生手段11が出力する誘導電動機2の一次周波数指令値ω1 *と電流検出器3で得られる誘導電動機2の一次電流検出値i1 と後述の電流調節手段19が出力する誘導電動機2の一次電圧指令値ベクトルv1 *とに基づいて、誘導電動機2のトルク演算値τ# を求めるトルク演算手段16と、このトルク演算値τ# と磁束指令値発生手段17が出力する誘導電動機2の2次磁束指令値φ2 *とから誘導電動機2の一次電流指令値i1 *を導出する電流指令値演算手段18と、この一次電流指令値i1 *と前記一次電流検出値i1 との偏差を零にする調節演算を行い、この演算結果と前記一次周波数指令値ω1 *とに基づいた誘導電動機2の一次電圧指令値ベクトルv1 *とを出力する電流調節手段19とから構成されている。 That is, the variable speed control device 15 shown in FIG. 1 uses the primary frequency command value ω 1 * of the induction motor 2 output from the frequency command value generating means 11 and the primary current detection value of the induction motor 2 obtained by the current detector 3. Based on i 1 and a primary voltage command value vector v 1 * of the induction motor 2 output from the current adjusting means 19 described later, a torque calculation means 16 for obtaining a torque calculation value τ # of the induction motor 2, and this torque calculation value Current command value calculation means 18 for deriving the primary current command value i 1 * of the induction motor 2 from τ # and the secondary magnetic flux command value φ 2 * of the induction motor 2 output from the magnetic flux command value generation means 17, and this primary An adjustment calculation is performed to make the deviation between the current command value i 1 * and the primary current detection value i 1 zero, and the primary voltage command value of the induction motor 2 based on the calculation result and the primary frequency command value ω 1 *. Current adjuster that outputs vector v 1 * And the stage 19.

図1に示したトルク演算手段16では、先ず、誘導電動機2の一次電圧指令値ベクトルv1 *と該電動機の一次電流検出値i1 とを一次周波数指令値ω1 *を積分演算して得られる位相角指令値θ* に基づく回転座標上のd軸成分の一次電圧指令値v1d * および一次電流検出値i1dとq軸成分の一次電圧指令値v1q * および一次電流検出値i1qとに分解し、その後、下記数1式の演算を行い誘導電動機2のトルク演算値τ# を得ている。
[数1]
τ# =(3/2)p(1/ω1 *
×{v1d *・i1d+v1q *・i1q−R1(i1d 2+i1q 2)}
ここで、pは誘導電動機2の極対数、R1 は誘導電動機2のT−1型等価回路における一次抵抗である。
In the torque calculation means 16 shown in FIG. 1, first, the primary voltage command value vector v 1 * of the induction motor 2 and the primary current detection value i 1 of the motor are obtained by integrating the primary frequency command value ω 1 *. Primary voltage command value v 1d * and primary current detection value i 1d and primary voltage command value v 1q * and primary current detection value i 1q of the d-axis component on the rotation coordinate based on the phase angle command value θ * After that, the following equation 1 is calculated to obtain the torque calculation value τ # of the induction motor 2.
[Equation 1]
τ # = (3/2) p (1 / ω 1 * )
× {v 1d * · i 1d + v 1q * · i 1q −R 1 (i 1d 2 + i 1q 2 )}
Here, p is the number of pole pairs of the induction motor 2, and R 1 is the primary resistance in the T-1 type equivalent circuit of the induction motor 2.

また、電流指令値演算手段18では二次磁束指令値φ2 *に対応した一定値とトルク演算値τ# に比例した値とに基づいて誘導電動機2の一次電流指令値i1 *を得ている。 The current command value calculation means 18 obtains the primary current command value i 1 * of the induction motor 2 based on a constant value corresponding to the secondary magnetic flux command value φ 2 * and a value proportional to the torque calculation value τ #. Yes.

すなわち、上述の可変速制御装置15によれば、誘導電動機2のトルク演算値τ# と二次磁束指令値φ2 *とに基づいた一次電流電流指令値i1 *に追従するように該電動機の一次電流を制御するため、従来のV/f比一定制御方法と比較して、電力変換装置1のPWM演算に基づくデッドタイムや、電力変換装置1を構成する半導体素子の順電圧降下分,スイッチング特性,スイッチングタイミングのばらつきなどに起因する出力交流電圧の歪みが減少し、従って、誘導電動機2にトルクリプルや回転むらを抑制することができる。また、このとき、従来のベクトル制御方法に比して、演算量を少ない回路構成にできるため、安価な可変速制御装置で具現できる。さらに、誘導電動機2のトルク演算値τ# に基づいた電流指令値i1 *で該電動機を制御するため、誘導電動機2が出力するトルクが大きい状態でも、該電動機を安定に制御することができる。 That is, according to the variable speed control device 15 described above, the electric motor 2 follows the primary current / current command value i 1 * based on the torque calculation value τ # of the induction motor 2 and the secondary magnetic flux command value φ 2 *. Compared with the conventional constant V / f ratio control method, the dead time based on the PWM calculation of the power conversion device 1, the forward voltage drop of the semiconductor elements constituting the power conversion device 1, Distortion of the output AC voltage due to variations in switching characteristics, switching timing, and the like is reduced, and therefore torque ripple and rotation unevenness can be suppressed in the induction motor 2. At this time, the circuit configuration can be reduced with respect to the amount of calculation compared to the conventional vector control method, so that it can be implemented with an inexpensive variable speed control device. Furthermore, since the electric motor is controlled by the current command value i 1 * based on the torque calculation value τ # of the induction motor 2, the electric motor can be stably controlled even when the torque output from the induction motor 2 is large. .

図2は、この発明の第2の実施例を示す誘導電動機の可変速制御装置の回路構成図であり、この図において、図1に示した実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 2 is a circuit diagram of a variable speed control device for an induction motor according to a second embodiment of the present invention. In this figure, components having the same functions as those in the embodiment shown in FIG. The description is omitted here.

すなわち、図2に示した可変速制御装置21は、図1に示した可変速制御装置15における電流指令値演算手段18と電流調節手段19に代えて、第1電流指令値演算手段22と第2電流指令値演算手段23と電流調節手段24とを備えている。   That is, the variable speed control device 21 shown in FIG. 2 replaces the current command value calculation means 18 and the current adjustment means 19 in the variable speed control device 15 shown in FIG. Two current command value calculating means 23 and current adjusting means 24 are provided.

この第1電流指令値演算手段22では二次磁束指令値φ2 *に対応した一定の値を誘導電動機2のd軸成分の一次電流指令値i1d * として出力し、また、第2電流指令値演算手段23ではトルク演算値τ# に比例した値を誘導電動機2のq軸成分の一次電流指令値i1q * として出力している。さらに電流調節手段24では前記一次電流指令値i1d * および一次電流指令値i1q * と、一次周波数指令値ω1 *を積分演算して得られる位相角指令値θ* に基づく回転座標上のd軸成分の一次電流検出値i1dおよびq軸成分の一次電流検出値i1qとの偏差が零になる調節演算を行い、これらの演算結果を誘導電動機2の一次電圧指令値ベクトルv1 *として出力している。 The first current command value calculation means 22 outputs a constant value corresponding to the secondary magnetic flux command value φ 2 * as the primary current command value i 1d * of the d-axis component of the induction motor 2, and the second current command The value calculation means 23 outputs a value proportional to the torque calculation value τ # as the primary current command value i 1q * of the q-axis component of the induction motor 2. Further, the current adjusting means 24 is on a rotational coordinate based on the phase angle command value θ * obtained by integrating the primary current command value i 1d *, the primary current command value i 1q *, and the primary frequency command value ω 1 * . Adjustment calculation is performed such that the deviation between the primary current detection value i 1d of the d- axis component and the primary current detection value i 1q of the q-axis component becomes zero, and these calculation results are used as the primary voltage command value vector v 1 * of the induction motor 2 . As output.

すなわち、上述の可変速制御装置21によれば、誘導電動機2のトルク演算値τ# に基づいた該電動機のq軸成分の電流指令値i1q * に追従するように該電動機の電流を制御するため、従来のV/f比一定制御方法と比較して、電力変換装置1のPWM演算に基づくデッドタイムや、電力変換装置1を構成する半導体素子の順電圧降下分,スイッチング特性,スイッチングタイミングのばらつきなどに起因する出力交流電圧の歪みが減少し、従って、誘導電動機にトルクリプルや回転むらを抑制することができる。また、このとき、従来のベクトル制御方法に比して、演算量を少ない回路構成にできるため、安価な可変速制御装置で具現できる。さらに、誘導電動機のトルク演算値に基づいた電流指令値で該電動機を制御するため、誘導電動機が出力するトルクが大きい状態でも、該電動機を安定に制御することができる。 That is, according to the variable speed control device 21 described above, the current of the motor is controlled so as to follow the current command value i 1q * of the q-axis component of the motor based on the torque calculation value τ # of the induction motor 2. Therefore, compared with the conventional V / f ratio constant control method, the dead time based on the PWM calculation of the power conversion device 1, the forward voltage drop of the semiconductor elements constituting the power conversion device 1, the switching characteristics, and the switching timing The distortion of the output AC voltage due to variations and the like is reduced, and therefore torque ripple and rotation unevenness can be suppressed in the induction motor. At this time, the circuit configuration can be reduced with respect to the amount of calculation compared to the conventional vector control method, so that it can be implemented with an inexpensive variable speed control device. Furthermore, since the electric motor is controlled with a current command value based on the torque calculation value of the induction motor, the electric motor can be stably controlled even when the torque output from the induction motor is large.

図3は、この発明の第3の実施例を示す誘導電動機の可変速制御装置の回路構成図であり、この図において、図8,図9に示した従来例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 3 is a circuit diagram of a variable speed control device for an induction motor according to a third embodiment of the present invention. In this figure, the same function as that of the conventional configuration shown in FIGS. Are denoted by the same reference numerals, and the description thereof is omitted here.

すなわち、図3に示した可変速制御装置45には磁束指令値発生手段33,積分手段37,ベクトル回転器38,電流調節手段39,ベクトル回転器40,周波数指令値発生手段43の他に、第1電流指令値演算手段46と第2電流指令値演算手段47とトルク演算手段48とを備えている。   That is, the variable speed control device 45 shown in FIG. 3 includes the magnetic flux command value generating means 33, the integrating means 37, the vector rotator 38, the current adjusting means 39, the vector rotator 40, and the frequency command value generating means 43, First current command value calculating means 46, second current command value calculating means 47, and torque calculating means 48 are provided.

この第1電流指令値演算手段46では磁束指令値発生手段33が出力する誘導電動機2の二次磁束指令値φ2 *に対応した一定の値を誘導電動機2のd軸成分の一次電流指令値i1d * として出力し、また、第2電流指令値演算手段47では後述のトルク演算手段41が出力するトルク演算値τ# に比例した値を誘導電動機2のq軸成分の一次電流指令値i1q * として出力している。さらに、トルク演算手段48では周波数指令値発生手段43が出力する誘導電動機2の一次周波数指令値ω1 *と、誘導電動機2のd軸成分の一次電圧指令値v1d * および一次電流検出値i1dと、該電動機のq軸成分の一次電圧指令値v1q * および一次電流検出値i1qとから、前記数1式の演算に従った誘導電動機2のトルク演算値τ# を得ている。 In this first current command value calculating means 46, a constant value corresponding to the secondary magnetic flux command value φ 2 * of the induction motor 2 output from the magnetic flux command value generating means 33 is set to a primary current command value of the d-axis component of the induction motor 2. The first current command value i is output as i 1d * , and the second current command value calculation means 47 outputs a value proportional to a torque calculation value τ # output from a torque calculation means 41 described later to a primary current command value i of the q-axis component of the induction motor 2. Output as 1q * . Further, in the torque calculation means 48, the primary frequency command value ω 1 * of the induction motor 2 output from the frequency command value generation means 43, the primary voltage command value v 1d * of the d-axis component of the induction motor 2 and the primary current detection value i. The torque calculation value τ # of the induction motor 2 is obtained from 1d , the primary voltage command value v 1q * of the q-axis component of the electric motor, and the primary current detection value i 1q according to the calculation of the equation (1).

すなわち、上述の可変速制御装置45によれば、誘導電動機2のトルク演算値τ# に基づいた該電動機のq軸成分の電流指令値i1q * に追従するように該電動機の電流を制御するため、従来のV/f比一定制御方法と比較して、電力変換装置4のPWM演算に基づくデッドタイムや、電力変換装置4を構成する半導体素子の順電圧降下分,スイッチング特性,スイッチングタイミングのばらつきなどに起因する出力交流電圧の歪みが減少し、従って、誘導電動機にトルクリプルや回転むらを抑制することができる。また、このとき、従来のベクトル制御方法に比して、演算量を少ない回路構成にできるため、安価な可変速制御装置で具現できる。さらに、誘導電動機のトルク演算値に基づいた電流指令値で該電動機を制御するため、誘導電動機が出力するトルクが大きい状態でも、該電動機を安定に制御することができる。 That is, according to the variable speed control device 45 described above, the current of the motor is controlled so as to follow the current command value i 1q * of the q-axis component of the motor based on the torque calculation value τ # of the induction motor 2. Therefore, compared with the conventional V / f ratio constant control method, the dead time based on the PWM calculation of the power conversion device 4, the forward voltage drop of the semiconductor elements constituting the power conversion device 4, the switching characteristics, and the switching timing The distortion of the output AC voltage due to variations and the like is reduced, and therefore torque ripple and rotation unevenness can be suppressed in the induction motor. At this time, the circuit configuration can be reduced with respect to the amount of calculation compared to the conventional vector control method, so that it can be implemented with an inexpensive variable speed control device. Furthermore, since the electric motor is controlled with a current command value based on the torque calculation value of the induction motor, the electric motor can be stably controlled even when the torque output from the induction motor is large.

図4は、この発明の第4の実施例を示す誘導電動機の可変速制御装置の回路構成図であり、この図において、図3に示した実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 4 is a circuit diagram of a variable speed control device for an induction motor according to a fourth embodiment of the present invention. In this figure, components having the same functions as those of the embodiment shown in FIG. The description is omitted here.

すなわち、図4に示した可変速制御装置50には磁束指令値発生手段33,積分手段37,周波数指令値発生手段43,第1電流指令値演算手段46,第2電流指令値演算手段47の他に、ベクトル回転器51と3相/2相変換器52と電流調節手段53とトルク演算手段54と2相/3相変換器55とを備えている。   That is, the variable speed control device 50 shown in FIG. 4 includes magnetic flux command value generation means 33, integration means 37, frequency command value generation means 43, first current command value calculation means 46, and second current command value calculation means 47. In addition, a vector rotator 51, a three-phase / two-phase converter 52, a current adjusting unit 53, a torque calculating unit 54, and a two-phase / three-phase converter 55 are provided.

この可変速制御装置50が図3に示した可変速制御装置45と異なる点は、可変速制御装置45では回転座標上の直交するd−q軸に分解したd軸成分,q軸成分それぞれの制御量に基づいて誘導電動機2を可変速制御しているのに対して、可変速制御装置50では静止座標上の直交するα−β軸に分解したα軸成分,β軸成分それぞれの制御量に基づいて誘導電動機2を可変速制御していることである。このとき、トルク演算手段54では、先ず、直交するα−β軸上の制御量としてのvα* ,vβ* ,iα,iβそれぞれを直交するd−q軸上の制御量としてのv1d * ,v1q * ,i1d,i1qそれぞれに分解し、その後、前記数1式の演算に従った誘導電動機2のトルク演算値τ# を得ている。 The variable speed control device 50 is different from the variable speed control device 45 shown in FIG. 3 in that the variable speed control device 45 has a d-axis component and a q-axis component that are decomposed into orthogonal dq axes on rotation coordinates. In contrast to the variable speed control of the induction motor 2 based on the control amount, the variable speed control device 50 controls each of the α axis component and β axis component which are decomposed into orthogonal α-β axes on a stationary coordinate. The induction motor 2 is subjected to variable speed control based on the above. At this time, in the torque calculation means 54, first, vα * , vβ * , iα, iβ as control amounts on orthogonal α-β axes are respectively represented as v 1d * , as control amounts on orthogonal dq axes. Each is divided into v 1q * , i 1d , and i 1q , and then the torque calculation value τ # of the induction motor 2 is obtained according to the calculation of the above equation (1).

図5は、この発明の第5の実施例を示す誘導電動機の可変速制御装置の回路構成図であり、この図において、図3に示した実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 5 is a circuit diagram of a variable speed control device for an induction motor according to a fifth embodiment of the present invention. In this figure, components having the same functions as those in the embodiment shown in FIG. The description is omitted here.

図5に示した可変速制御装置57には磁束指令値発生手段33,積分手段37,周波数指令値発生手段43,第1電流指令値演算手段46,第2電流指令値演算手段47の他に、ベクトル回転器58と電流調節手段59とトルク演算手段60とを備えている。   In addition to the magnetic flux command value generating means 33, the integrating means 37, the frequency command value generating means 43, the first current command value calculating means 46, and the second current command value calculating means 47, the variable speed control device 57 shown in FIG. The vector rotator 58, the current adjusting means 59, and the torque calculating means 60 are provided.

この可変速制御装置57が図3に示した可変速制御装置45と異なる点は、可変速制御装置45では回転座標上の直交するd−q軸に分解したd軸成分,q軸成分それぞれの制御量に基づいて誘導電動機2を可変速制御しているのに対して、可変速制御装置57では三相交流としてのU相,V相,W相に分解したそれぞれの制御量に基づいて誘導電動機2を可変速制御していることである。このとき、トルク演算手段60では、先ず、U相,V相,W相の制御量としてのvU *,vV *,vW *,iU ,iV ,iW それぞれを直交するd−q軸上の制御量としてのv1d * ,v1q * ,i1d,i1qそれぞれに分解し、その後、前記数1式の演算に従った誘導電動機2のトルク演算値τ# を得ている。 The variable speed control device 57 is different from the variable speed control device 45 shown in FIG. 3 in that the variable speed control device 45 has a d-axis component and a q-axis component that are decomposed into orthogonal dq axes on rotation coordinates. While the induction motor 2 is controlled at a variable speed based on the control amount, the variable speed control device 57 performs induction based on the control amounts decomposed into the U phase, the V phase, and the W phase as three-phase alternating current. That is, the motor 2 is controlled at a variable speed. At this time, in the torque calculation means 60, first, v U * , v V * , v W * , i U , i V , and i W as control amounts of the U phase, V phase, and W phase are orthogonally crossed d−. It is decomposed into v 1d * , v 1q * , i 1d , and i 1q as control quantities on the q axis, and then a torque calculation value τ # of the induction motor 2 is obtained according to the calculation of the above equation (1). .

図6は、この発明の第6の実施例を示す誘導電動機の可変速制御装置の回路構成図であり、この図において、図1に示した実施例構成および図7に示した従来例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 6 is a circuit diagram of a variable speed control device for an induction motor according to a sixth embodiment of the present invention. In this figure, the configuration of the embodiment shown in FIG. 1 and the configuration of the conventional example shown in FIG. Components having the same function are denoted by the same reference numerals, and description thereof is omitted here.

すなわち、図6に示した可変速制御装置26は周波数指令値発生手段11,V/f演算手段12,電圧指令値演算手段13,トルク演算手段16,磁束指令値発生手段17,電流指令値演算手段18,電流調節手段19の他に、切替信号発生手段27と切替手段28とを備えている。   That is, the variable speed control device 26 shown in FIG. 6 includes frequency command value generation means 11, V / f calculation means 12, voltage command value calculation means 13, torque calculation means 16, magnetic flux command value generation means 17, current command value calculation. In addition to the means 18 and the current adjusting means 19, a switching signal generating means 27 and a switching means 28 are provided.

図6の回路構成からも明らかなように、可変速制御装置26では図1に示した可変速制御装置15の制御機能と、図7に示した可変速制御装置10の制御機能とを、新たに備えた切替信号発生手段27と切替手段28とにより、切り替えて誘導電動機2を可変速制御している。   As is clear from the circuit configuration of FIG. 6, the variable speed control device 26 has newly added the control function of the variable speed control device 15 shown in FIG. 1 and the control function of the variable speed control device 10 shown in FIG. The induction motor 2 is subjected to variable speed control by switching by means of the switching signal generating means 27 and the switching means 28 provided in FIG.

すなわち、切替信号発生手段27では周波数指令値発生手段11からの誘導電動機2の一次周波数指令値ω1 *とトルク演算手段16からのトルク演算値τ# とから、誘導電動機2が低速領域、且つ、軽低負荷の状態のときには切替手段28の出力を電流調節手段19側出力とし、該電動機の状態が前記以外のときには切替手段28の出力を電圧指令値演算手段13側出力とする切替信号を発するように動作する。 That is, in the switching signal generation means 27, the induction motor 2 is in the low speed region from the primary frequency command value ω 1 * of the induction motor 2 from the frequency command value generation means 11 and the torque calculation value τ # from the torque calculation means 16. In the light and low load state, the output of the switching means 28 is the current adjusting means 19 side output, and when the state of the motor is other than the above, the switching signal that the output of the switching means 28 is the voltage command value calculating means 13 side output Operates to emit.

この可変速制御装置26によれば、誘導電動機2の速度や負荷の状態により、トルク演算値τ# に基づいた電流指令値で誘導電動機2を制御する方法と、従来のV/f比一定制御方法とを切り替えて誘導電動機2を可変速制御するため、より演算量の少ない回路構成で、低速・軽負荷時のトルクリプルや回転むらを軽減でき、且つ、誘導電動機2が重負荷時に、その電気定数の変動に起因するトルク演算値τ# の推定誤差の増大に影響されない可変速制御装置を提供することができる。 According to this variable speed control device 26, the method of controlling the induction motor 2 with the current command value based on the torque calculation value τ # according to the speed and load state of the induction motor 2, and the conventional constant V / f ratio control Since the induction motor 2 is controlled at a variable speed by switching the method, torque ripple and rotation unevenness at low speed and light load can be reduced with a circuit configuration with a smaller amount of calculation, and the electric power of the induction motor 2 can be reduced when the load is heavy. It is possible to provide a variable speed control device that is not affected by an increase in the estimation error of the torque calculation value τ # caused by the constant fluctuation.

図10は、この発明の第7の実施例を示す誘導電動機の可変速制御装置の回路構成図であり、この図において、図1に示した実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 10 is a circuit diagram of a variable speed control device for an induction motor according to a seventh embodiment of the present invention. In this figure, components having the same functions as those in the embodiment shown in FIG. The description is omitted here.

すなわち、図10に示した可変速制御装置61では、図1に示した可変速制御装置15におけるトルク演算手段16に代えて、トルク演算手段62またはトルク演算手段63のいずれかを備えている。   That is, the variable speed control device 61 shown in FIG. 10 includes either a torque calculation means 62 or a torque calculation means 63 instead of the torque calculation means 16 in the variable speed control device 15 shown in FIG.

図11はトルク演算手段62の詳細回路構成図であり、有効電力演算手段62aと、無負荷有効電力設定手段62bと、加算演算手段62cと、除算演算手段62dとから構成されている。このトルク演算手段62での演算動作を以下に説明する。   FIG. 11 is a detailed circuit configuration diagram of the torque calculation means 62, which comprises an active power calculation means 62a, a no-load active power setting means 62b, an addition calculation means 62c, and a division calculation means 62d. The calculation operation in the torque calculation means 62 will be described below.

有効電力演算手段62aでは、先ず、誘導電動機2の一次電圧指令値ベクトルv1 *と該電動機の一次電流検出値i1 とを一次周波数指令値ω1 *を積分演算して得られる位相角指令値θ* に基づく回転座標上のd軸成分の一次電圧指令値v1d * および一次電流検出値i1dとq軸成分の一次電圧指令値v1q * および一次電流検出値i1qとに分解し、その後、下記数2式の演算を行い誘導電動機2の有効電力演算値P# を得ている。
[数2]
# =3・(v1d *・i1d+v1q *・i1q
無負荷有効電力設定手段62bでは、実験などにより誘導電動機2が無負荷運転時に発生する有効電力値を計測し、この計測値をP0 *として設定,出力する。
In the active power calculation means 62a, first, a phase angle command obtained by integrating the primary frequency command value ω 1 * of the primary voltage command value vector v 1 * of the induction motor 2 and the primary current detection value i 1 of the motor. The primary voltage command value v 1d * and primary current detection value i 1d of the d-axis component on the rotation coordinate based on the value θ * are decomposed into the primary voltage command value v 1q * and primary current detection value i 1q of the q-axis component. Thereafter, the calculation of the following formula 2 is performed to obtain the active power calculation value P # of the induction motor 2.
[Equation 2]
P # = 3 · (v 1d * · i 1d + v 1q * · i 1q )
The no-load active power setting means 62b measures an active power value generated by the induction motor 2 during no-load operation by experiments or the like, and sets and outputs this measured value as P 0 * .

従って、除算演算手段62dの演算結果である誘導電動機2のトルク演算値τ##は、下記数3式で表される。
[数3]
τ##=(P#−P0 *)/ω1 *
また、図12はトルク演算手段63の詳細回路構成図であり、このトルク演算手段63が図11に示したトルク演算手段62と異なる点は、無負荷有効電力設定手段62bに代えて無負荷有効電力記憶手段63aを備えていることである。
Therefore, the torque calculation value τ ## of the induction motor 2 that is the calculation result of the division calculation means 62d is expressed by the following equation (3).
[Equation 3]
τ ## = (P # -P 0 *) / ω 1 *
FIG. 12 is a detailed circuit configuration diagram of the torque calculation means 63. The torque calculation means 63 is different from the torque calculation means 62 shown in FIG. 11 in that the no-load active power setting means 62b is replaced with a no-load active power setting means 62b. The power storage means 63a is provided.

すなわち、トルク演算手段63を用いた可変速制御装置61では、予め誘導電動機2を無負荷状態で試験運転を行い、このときに有効電力演算手段62aで演算された有効電力値を無負荷有効電力記憶手段63aに取り込んで記憶し、この記憶値をP0 *として、誘導電動機2の通常運転時に出力するようにしているので、誘導電動機2の無負荷運転時の有効電力値をより適切に設定することが可能である。 That is, in the variable speed control device 61 using the torque calculation means 63, the induction motor 2 is preliminarily tested in a no-load state, and the active power value calculated by the active power calculation means 62a at this time is used as the no-load active power. Since the stored value is taken in and stored in the storage means 63a and this stored value is set as P 0 * and is output during normal operation of the induction motor 2, the active power value during no-load operation of the induction motor 2 is set more appropriately. Is possible.

従って、可変速制御装置61によれば、誘導電動機2のトルク演算値τ##と二次磁束指令値φ2 *とに基づいた一次電流電流指令値i1 *に追従するように該電動機の一次電流を制御するため、従来のV/f比一定制御方法と比較して、電力変換装置1のPWM演算に基づいたデッドタイムや、電力変換装置1を構成する半導体素子の順電圧降下分,スイッチング特性,スイッチングタイミングのばらつきなどに起因する出力交流電圧の歪みが減少し、従って、誘導電動機2にトルクリプルや回転むらを抑制することができる。 Therefore, according to the variable speed control device 61, the motor of the induction motor 2 is tracked so as to follow the primary current / current command value i 1 * based on the torque calculation value τ ## of the induction motor 2 and the secondary magnetic flux command value φ 2 * . Compared with the conventional V / f ratio constant control method for controlling the primary current, the dead time based on the PWM calculation of the power conversion device 1, the forward voltage drop of the semiconductor elements constituting the power conversion device 1, Distortion of the output AC voltage due to variations in switching characteristics, switching timing, and the like is reduced, and therefore torque ripple and rotation unevenness can be suppressed in the induction motor 2.

さらに、誘導電動機2のトルク演算値τ##に基づいた電流指令値i1 *で該電動機を制御するため、誘導電動機2が出力するトルクが大きい状態でも、該電動機を安定に制御することができる。 Further, since the electric motor is controlled with the current command value i 1 * based on the torque calculation value τ ## of the induction motor 2, the electric motor can be stably controlled even when the torque output from the induction motor 2 is large. it can.

図13は、この発明の第8の実施例を示す誘導電動機の可変速制御装置の回路構成図であり、この図において、図6に示した実施例構成と同一機能を有するものには同一符号を付して、ここではその説明を省略する。   FIG. 13 is a circuit diagram of a variable speed control device for an induction motor according to an eighth embodiment of the present invention. In this figure, components having the same functions as those in the embodiment shown in FIG. The description is omitted here.

すなわち、図13に示した可変速制御装置64では、図6に示した可変速制御装置26におけるトルク演算手段16に代えて、トルク演算手段62またはトルク演算手段63のいずれかを備えている。   That is, the variable speed control device 64 shown in FIG. 13 includes either the torque calculation means 62 or the torque calculation means 63 in place of the torque calculation means 16 in the variable speed control device 26 shown in FIG.

この可変速制御装置64によれば、誘導電動機2の速度や負荷の状態により、トルク演算値τ##に基づいた電流指令値で誘導電動機2を制御する方法と、従来のV/f比一定制御方法とを切り替えて誘導電動機2を可変速制御するため、より演算量の少ない回路構成で、低速・軽負荷時のトルクリプルや回転むらを軽減でき、且つ、誘導電動機2が重負荷時に、その電気定数の変動に起因するトルク演算値τ##の推定誤差の増大に影響されない可変速制御装置を提供することができる。 According to the variable speed control device 64, the method of controlling the induction motor 2 with the current command value based on the torque calculation value τ ## according to the speed and load state of the induction motor 2, and the conventional constant V / f ratio. Since the induction motor 2 is controlled at a variable speed by switching the control method, torque ripple and rotation unevenness at low speed and light load can be reduced with a circuit configuration with less calculation amount, and when the induction motor 2 is heavy loaded, It is possible to provide a variable speed control device that is not affected by an increase in the estimation error of the torque calculation value τ ## resulting from the fluctuation of the electrical constant.

特に、トルク演算手段63を用いた可変速制御装置64では、予め誘導電動機2を無負荷状態で試験運転を行い、このときに有効電力演算手段62aで演算された有効電力値を無負荷有効電力記憶手段63aに取り込んで記憶し、この記憶値をP0 *として、誘導電動機2の通常運転時に出力するようにしているので、誘導電動機2の無負荷運転時の有効電力値をより適切に設定することが可能である。 In particular, in the variable speed control device 64 using the torque calculation means 63, the induction motor 2 is previously tested in a no-load state, and the active power value calculated by the active power calculation means 62a at this time is used as the no-load active power. Since the stored value is taken in and stored in the storage means 63a and this stored value is set as P 0 * and is output during normal operation of the induction motor 2, the active power value during no-load operation of the induction motor 2 is set more appropriately. Is possible.

この発明の第1の実施例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows 1st Example of this invention この発明の第2の実施例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows the 2nd Example of this invention この発明の第3の実施例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows the 3rd Example of this invention この発明の第4の実施例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows the 4th Example of this invention この発明の第5の実施例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows the 5th Example of this invention この発明の第6の実施例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows the 6th Example of this invention 従来例を示す誘導電動機の可変速制御装置の回路構成図Circuit diagram of variable speed control device for induction motor showing conventional example 図7とは別の従来例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows the prior art example different from FIG. 図7,8とは別の従来例を示す誘導電動機の可変速制御装置の回路構成図FIG. 7 is a circuit configuration diagram of a variable speed control device for an induction motor showing a conventional example different from FIGS. この発明の第7の実施例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows the 7th Example of this invention 図10の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図10の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. この発明の第8の実施例を示す誘導電動機の可変速制御装置の回路構成図The circuit block diagram of the variable speed control apparatus of the induction motor which shows the 8th Example of this invention

1…電力変換装置、2…誘導電動機、3…電流検出器、4…電力変換装置、5…電流検出器、10…可変速制御装置、11…周波数指令値発生手段、12…V/f比演算手段、13…電圧指令値演算手段、15…可変速制御装置、16…トルク演算手段、17…磁束指令値発生手段、18…電流指令値演算手段、19…電流調節手段、21…可変速制御装置、22…第1電流指令値演算手段、23…第2電流指令値演算手段、24…電流調節手段、26…可変速制御装置、27…切替信号発生手段、29…切替手段、30…可変速制御装置、31…速度指令値発生手段、32…速度調節器、33…磁束指令値発生手段、34…電流指令値演算手段、35…すべり周波数演算手段、36…加算演算器、37…積分手段、38…ベクトル回転器、39…電流調節手段、40…ベクトル回転器、41…速度推定手段、42…可変速制御装置、43…周波数指令値発生手段、45…可変速制御装置、46…第1電流指令値演算手段、47…第2電流指令値演算手段、48…トルク演算手段、50…可変速制御装置、51…ベクトル回転器、52…3相/2相変換器、53…電流調節手段、54…トルク演算手段、55…2相/3相変換器、57…可変速制御装置、58…ベクトル回転器、59…電流調節手段、60…トルク演算手段、61…可変速制御装置、62,63…トルク演算手段、64…可変速制御装置。
DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Induction motor, 3 ... Current detector, 4 ... Power converter device, 5 ... Current detector, 10 ... Variable speed control device, 11 ... Frequency command value generation means, 12 ... V / f ratio Calculation means, 13 ... Voltage command value calculation means, 15 ... Variable speed control device, 16 ... Torque calculation means, 17 ... Magnetic flux command value generation means, 18 ... Current command value calculation means, 19 ... Current adjustment means, 21 ... Variable speed Control device, 22 ... first current command value calculating means, 23 ... second current command value calculating means, 24 ... current adjusting means, 26 ... variable speed control device, 27 ... switching signal generating means, 29 ... switching means, 30 ... Variable speed control device, 31 ... speed command value generating means, 32 ... speed regulator, 33 ... magnetic flux command value generating means, 34 ... current command value calculating means, 35 ... slip frequency calculating means, 36 ... addition calculator, 37 ... Integration means, 38 ... vector rotator, DESCRIPTION OF SYMBOLS 9 ... Current adjustment means, 40 ... Vector rotator, 41 ... Speed estimation means, 42 ... Variable speed control apparatus, 43 ... Frequency command value generation means, 45 ... Variable speed control apparatus, 46 ... First current command value calculation means, 47 ... second current command value calculating means, 48 ... torque calculating means, 50 ... variable speed control device, 51 ... vector rotator, 52 ... three-phase / two-phase converter, 53 ... current adjusting means, 54 ... torque calculating means , 55 ... 2-phase / 3-phase converter, 57 ... variable speed controller, 58 ... vector rotator, 59 ... current adjusting means, 60 ... torque calculating means, 61 ... variable speed control apparatus, 62, 63 ... torque calculating means 64 ... Variable speed control device.

Claims (5)

可変電圧可変周波数の交流電力を出力する電力変換装置により駆動される誘導電動機の可変速制御装置において、
前記誘導電動機の一次周波数指令値と一次電圧指令値と一次電流検出値とに基づいて、該電動機のトルク演算値を演算するトルク演算手段と、
二次磁束指令値から前記誘導電動機のd軸成分の第1の一次電流指令値を演算する第1電流指令値演算手段と、
前記トルク演算値から前記誘導電動機のq軸成分の第2の一次電流指令値を演算する第2電流指令値演算手段と、
前記一次周波数指令値を積分演算した位相角指令値を求める積分手段と、
前記一次電流検出値を前記位相角指令値に基づいて回転座標上の直交する2軸成分に変換する第1のベクトル回転器と、
前記第1の一次電流指令値および第2の一次電流指令値と回転座標上の直交する2軸成分に変換された前記一次電流検出値との偏差を零にする調節演算を行い、これらの演算結果に基づく値を回転座標上の直交する2軸成分の一次電圧指令値として出力する電流調節手段と、
回転座標上の直交する2軸成分の前記一次電圧指令値を三相交流の電圧指令値に変換する第2のベクトル回転器とからなることを特徴とする誘導電動機の可変速制御装置。
In a variable speed control device for an induction motor driven by a power converter that outputs AC power of variable voltage and variable frequency,
Torque calculation means for calculating a torque calculation value of the electric motor based on a primary frequency command value, a primary voltage command value, and a primary current detection value of the induction motor;
First current command value calculating means for calculating a first primary current command value of a d-axis component of the induction motor from a secondary magnetic flux command value ;
Second current command value calculation means for calculating a second primary current command value of the q-axis component of the induction motor from the torque calculation value;
Integrating means for obtaining a phase angle command value obtained by integrating the primary frequency command value;
A first vector rotator that converts the primary current detection value into a two-axis component orthogonal to rotation coordinates based on the phase angle command value;
An adjustment calculation is performed to make a deviation between the first primary current command value and the second primary current command value and the detected primary current value converted into the two-axis components orthogonal to each other on the rotation coordinate, and these calculations are performed. Current adjusting means for outputting a value based on the result as a primary voltage command value of two orthogonal axes on the rotation coordinate;
Variable speed control for an induction motor characterized by comprising the primary voltage command value orthogonal biaxial components on the rotating coordinate and a second vector rotator for converting the voltage command values of the three-phase AC.
可変電圧可変周波数の交流電力を出力する電力変換装置により駆動される誘導電動機の可変速制御装置において、
前記誘導電動機の一次周波数指令値と一次電圧指令値と一次電流検出値とに基づいて、該電動機のトルク演算値を演算するトルク演算手段と、
二次磁束指令値から前記誘導電動機のd軸成分の第1の一次電流指令値を演算する第1電流指令値演算手段と、
前記トルク演算値から前記誘導電動機のq軸成分の第2の一次電流指令値を演算する第2電流指令値演算手段と、
前記一次周波数指令値を積分演算した位相角指令値を求める積分手段と、
前記第1の一次電流指令値および第2の一次電流指令値を前記位相角指令値に基づいて静止座標上の直交する2軸成分に変換する第3のベクトル回転器と、
前記一次電流検出値を静止座標上の直交する2軸成分に変換する3相/2相変換器と、
前記第1の一次電流指令値および第2の一次電流指令値と静止座標上の直交する2軸成分に変換された前記一次電流検出値との偏差を零にする調節演算を行い、これらの演算結果に基づく値を静止座標上の直交する2軸成分の一次電圧指令値として出力する電流調節手段と、
静止座標上の直交する2軸成分の前記一次電圧指令値を三相交流の電圧指令値に変換する2相/3相変換器とからなることを特徴とする誘導電動機の可変速制御装置。
In a variable speed control device for an induction motor driven by a power converter that outputs AC power of variable voltage and variable frequency,
Torque calculation means for calculating a torque calculation value of the electric motor based on a primary frequency command value, a primary voltage command value, and a primary current detection value of the induction motor;
First current command value calculating means for calculating a first primary current command value of a d-axis component of the induction motor from a secondary magnetic flux command value ;
Second current command value calculation means for calculating a second primary current command value of the q-axis component of the induction motor from the torque calculation value;
Integrating means for obtaining a phase angle command value obtained by integrating the primary frequency command value;
A third vector rotator for converting the first primary current command value and the second primary current command value into orthogonal biaxial components on stationary coordinates based on the phase angle command value;
A three-phase / two-phase converter that converts the primary current detection value into two orthogonal axes on a stationary coordinate;
An adjustment calculation is performed to make a deviation between the first primary current command value and the second primary current command value and the detected primary current value converted into the two-axis components orthogonal to each other on a stationary coordinate zero. Current adjusting means for outputting a value based on the result as a primary voltage command value of two orthogonal axes on a stationary coordinate;
A variable speed control device for an induction motor comprising a two-phase / three-phase converter for converting the primary voltage command value of two orthogonal axis components on a stationary coordinate into a voltage command value of a three-phase alternating current.
可変電圧可変周波数の交流電力を出力する電力変換装置により駆動される誘導電動機の可変速制御装置において、
前記誘導電動機の一次周波数指令値と一次電圧指令値と一次電流検出値とに基づいて、該電動機のトルク演算値を演算するトルク演算手段と、
二次磁束指令値から前記誘導電動機のd軸成分の第1の一次電流指令値を演算する第1電流指令値演算手段と、
前記トルク演算値から前記誘導電動機のq軸成分の第2の一次電流指令値を演算する第2電流指令値演算手段と、
前記一次周波数指令値を積分演算した位相角指令値を求める積分手段と、
前記第1の一次電流指令値および第2の一次電流指令値を前記位相角指令値に基づいて三相の電流指令値に変換する第4のベクトル回転器と、
前記三相の電流指令値と前記一次電流検出値との偏差を零にする調節演算を行い、これらの演算結果に基づく値を三相の電圧指令値として出力する電流調節手段とからなることを特徴とする誘導電動機の可変速制御装置。
In a variable speed control device for an induction motor driven by a power converter that outputs AC power of variable voltage and variable frequency,
Torque calculation means for calculating a torque calculation value of the electric motor based on a primary frequency command value, a primary voltage command value, and a primary current detection value of the induction motor;
First current command value calculating means for calculating a first primary current command value of a d-axis component of the induction motor from a secondary magnetic flux command value ;
Second current command value calculation means for calculating a second primary current command value of the q-axis component of the induction motor from the torque calculation value;
Integrating means for obtaining a phase angle command value obtained by integrating the primary frequency command value;
A fourth vector rotator for converting the first primary current command value and the second primary current command value into a three-phase current command value based on the phase angle command value;
A current adjusting means for performing an adjustment calculation for making a deviation between the three-phase current command value and the detected primary current value zero, and outputting a value based on the calculation result as a three-phase voltage command value. A variable speed control device for an induction motor as a feature.
請求項1ないし請求項3のいずれか1項に記載の誘導電動機の可変速制御装置において、
前記トルク演算手段は、前記誘導電動機の有効電力演算値に基づいて該電動機のトルク演算値を演算することを特徴とする誘導電動機の可変速制御装置。
The variable speed control device for an induction motor according to any one of claims 1 to 3,
The variable speed control device for an induction motor, wherein the torque calculation means calculates a torque calculation value of the motor based on an active power calculation value of the induction motor.
請求項4に記載の誘導電動機の可変速制御装置において、
前記誘導電動機を無負荷状態で運転し、この状態で得られる有効電力演算値を記憶し、この記憶値と該誘導電動機が通常運転時に得られる有効電力演算値とに基づいて、前記トルク演算値を演算することを特徴とする誘導電動機の可変速制御装置。
In the variable speed control device for an induction motor according to claim 4,
The induction motor is operated in a no-load state, an active power calculation value obtained in this state is stored, and the torque calculation value is based on the stored value and an active power calculation value obtained during normal operation of the induction motor. A variable speed control device for an induction motor, characterized in that
JP2004051615A 2003-09-03 2004-02-26 Variable speed control device for induction motor Expired - Lifetime JP4682521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051615A JP4682521B2 (en) 2003-09-03 2004-02-26 Variable speed control device for induction motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003311146 2003-09-03
JP2004051615A JP4682521B2 (en) 2003-09-03 2004-02-26 Variable speed control device for induction motor

Publications (2)

Publication Number Publication Date
JP2005102467A JP2005102467A (en) 2005-04-14
JP4682521B2 true JP4682521B2 (en) 2011-05-11

Family

ID=34467558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051615A Expired - Lifetime JP4682521B2 (en) 2003-09-03 2004-02-26 Variable speed control device for induction motor

Country Status (1)

Country Link
JP (1) JP4682521B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268267A (en) 2008-04-25 2009-11-12 Sanyo Electric Co Ltd Motor controller and generator controller
JP5407964B2 (en) * 2009-03-23 2014-02-05 Dic株式会社 Method for producing resin solution for printing ink varnish

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287494A (en) * 1999-03-30 2000-10-13 Fuji Electric Co Ltd Controller of synchronous motor
JP2001028892A (en) * 1999-07-13 2001-01-30 Toyota Motor Corp Torque detector and driving controller for ac motor
JP2003102196A (en) * 2001-09-21 2003-04-04 Fuji Electric Co Ltd Induction motor control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108500A (en) * 1996-09-27 1998-04-24 Railway Technical Res Inst Controller for ac three-phase motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287494A (en) * 1999-03-30 2000-10-13 Fuji Electric Co Ltd Controller of synchronous motor
JP2001028892A (en) * 1999-07-13 2001-01-30 Toyota Motor Corp Torque detector and driving controller for ac motor
JP2003102196A (en) * 2001-09-21 2003-04-04 Fuji Electric Co Ltd Induction motor control method

Also Published As

Publication number Publication date
JP2005102467A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US9136785B2 (en) Motor control system to compensate for torque ripple
US6771039B2 (en) Motor control apparatus and method
US8829831B2 (en) Parameter estimating apparatus for permanent magnet synchronous motor driving system
US6344725B2 (en) Method and apparatus for controlling a synchronous motor
US8285451B2 (en) Method and apparatus for controlling electric power steering system
US9143081B2 (en) Motor control system having bandwidth compensation
US20100259207A1 (en) Control apparatus of alternating-current motor
US8044622B2 (en) Sensorless control apparatus of synchronous motor
JP4263582B2 (en) Brushless motor control device
US10804831B2 (en) Control apparatus for alternating-current rotary electric machine
JP2007159368A (en) Control unit of motor drive system
JP2003134898A (en) Sensorless controller and control method for synchronous generator
US10171019B1 (en) Controller for power converter
US10763769B2 (en) Controller for power convertor and motor driving system
JP4760118B2 (en) Electric motor control device
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP5576039B2 (en) Synchronous motor controller
JP4529113B2 (en) Voltage source inverter and control method thereof
JP3054521B2 (en) Induction motor control device
JP4682521B2 (en) Variable speed control device for induction motor
JP7251424B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP2005160199A (en) Apparatus and method for controlling three-phase ac motor
JP3425438B2 (en) Induction motor drive
JP2010063311A (en) Controller for rotary machine
JP6680104B2 (en) Motor control device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4682521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250