JP2592253B2 - Manufacturing method of glass-coated thermistor - Google Patents

Manufacturing method of glass-coated thermistor

Info

Publication number
JP2592253B2
JP2592253B2 JP15825087A JP15825087A JP2592253B2 JP 2592253 B2 JP2592253 B2 JP 2592253B2 JP 15825087 A JP15825087 A JP 15825087A JP 15825087 A JP15825087 A JP 15825087A JP 2592253 B2 JP2592253 B2 JP 2592253B2
Authority
JP
Japan
Prior art keywords
glass
thermistor
coated
manufacturing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15825087A
Other languages
Japanese (ja)
Other versions
JPS642302A (en
JPH012302A (en
Inventor
葆 三浦
修司 櫻井
光昭 蛯名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OIZUMI SEISAKUSHO KK
Original Assignee
OIZUMI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OIZUMI SEISAKUSHO KK filed Critical OIZUMI SEISAKUSHO KK
Priority to JP15825087A priority Critical patent/JP2592253B2/en
Publication of JPS642302A publication Critical patent/JPS642302A/en
Publication of JPH012302A publication Critical patent/JPH012302A/en
Application granted granted Critical
Publication of JP2592253B2 publication Critical patent/JP2592253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラスコートサーミスタの製造方法に関す
る。
The present invention relates to a method for manufacturing a glass-coated thermistor.

〔従来の技術〕[Conventional technology]

サーミスタは金属酸化物粉末を出発原料とし、これら
を混合、成形後、焼結させたもので、ビード形やディス
ク形等、種々の形状のものが用いられている。これらの
うち、1mm程度ないしはそれ以下の非常に小形の素子の
外装にガラスが使用されたサーミスタは安定度、耐熱
性、応答性及び信頼性等の点で樹脂被覆のものよりも優
れているため、近年水分や蒸気の多い環境、耐熱性を必
要とする計測や、給湯器、電子レンジ、冷蔵庫或いはエ
アコン等の機器の温度制御用センサーとして多用されて
いる。
The thermistor is made of a metal oxide powder as a starting material, which is mixed, molded, and then sintered, and has various shapes such as a bead shape and a disk shape. Of these, thermistors in which glass is used for the exterior of very small elements of about 1 mm or less are superior to resin-coated ones in terms of stability, heat resistance, responsiveness and reliability. In recent years, it has been widely used as a sensor for measurement in an environment with a lot of moisture or steam, heat resistance, and temperature control of equipment such as a water heater, a microwave oven, a refrigerator or an air conditioner.

従来ガラスコートサーミスタの製法は種々知られてい
るが、その内の代表的な例を以下に説明する。
Conventionally, various methods for producing a glass-coated thermistor are known, and a typical example thereof will be described below.

第1の例は第3図(a)に見られるように、平行に張
られた白金線2,2′上に金属酸化物微粉末とバインダ及
び溶剤からなるペースト状混合物を付着させて球状素子
1とし、これを乾燥した後1,300℃前後の温度で焼結す
ると、白金線2,2′を電極とした素子1が出来上がる。
この白金線2,2′に目的に応じて、ジュメット線又はニ
ッケル線からなるリード線3,3′が熔接され、素子1は
ガラス5にて被覆される。
In the first example, as shown in FIG. 3 (a), a paste-like mixture consisting of a metal oxide fine powder, a binder and a solvent is adhered onto platinum wires 2, 2 'stretched in parallel to form a spherical element. After drying and sintering at a temperature of about 1,300 ° C., an element 1 having platinum wires 2, 2 ′ as electrodes is completed.
Depending on the purpose, lead wires 3, 3 'made of dumet wire or nickel wire are welded to the platinum wires 2, 2' according to the purpose, and the element 1 is covered with glass 5.

第2の方法としては第3図(b)に見られるように、
金型に2本の白金線2,2′を平行に張設し、該金型に同
上ペーストを圧入し、これによって白金線2,2′に1体
形成された素子1を乾燥した後、1,000〜1,300℃の温度
で焼結する。この白金線2,2′にジュメット線等のリー
ド線3,3′を熔接し、ガラス5により素子1が被覆され
る(特開昭54−12443号)。
As a second method, as shown in FIG. 3 (b),
Two platinum wires 2,2 'are stretched in parallel in a mold, and the paste is pressed into the mold to dry the element 1 formed on the platinum wires 2,2'. Sinter at a temperature of 1,000-1,300 ° C. A lead wire 3, 3 'such as a dumet wire is welded to the platinum wire 2, 2', and the element 1 is covered with a glass 5 (Japanese Patent Laid-Open No. 54-12443).

第3の方法としては第3図(c)に見られるように電
極4,4′が設けられたサーミスタ素子1の一辺の寸法に
合せて平板状に成形したリード線3,3′をその一端をサ
ーミスタ素子1の電極面にスポット熔接し、それにガラ
スコート5を施す(実願昭58−76966号)例がある。
As a third method, as shown in FIG. 3 (c), one end of a lead wire 3, 3 'formed into a plate shape according to the size of one side of the thermistor element 1 provided with the electrodes 4, 4' is provided. Is spot-welded to the electrode surface of the thermistor element 1 and a glass coat 5 is applied thereto (Japanese Utility Model Application No. 58-76966).

このようなガラスコートサーミスタのガラス被覆に
は、第4図(a)に示すように内径がビード素子1の寸
法よりもやや大きく、適当な寸法に裁断されたガラス管
5aを素子1上に通し、これを加熱炉で加熱熔融させて第
4図(b)のように封入するのが一般的な方法であっ
た。
As shown in FIG. 4 (a), the glass coating of such a glass-coated thermistor has a slightly larger inner diameter than that of the bead element 1 and is cut into an appropriate size.
It was a general method that 5a was passed over the element 1, which was heated and melted in a heating furnace and sealed as shown in FIG. 4 (b).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、上記方法によるときには作業性等の点から
ガラス管に或る程度の肉厚を必要とし、通常は肉厚は0.
3〜0.5mmのものが用いられるが、この肉厚では素子1や
白金線2,2′と、ガラス5との間に気泡が含まれ易く、
特に素子1の辺部付近に気泡を含みやすく、熱時定数が
比較的大きいという欠点を有すると共に、作業性におい
て、ガラス管の位置決めが面倒であり、振動やショック
によって位置がずれた状態で封入されることがある。ま
たガラス熔融温度が高温になるとガラスが変形して外観
不良となり、逆に余り熔融温度が低いと、気密性に欠け
るため、僅かな条件の変動で歩留りが悪くなるという欠
点を有している。
By the way, when using the above method, a certain thickness is required for the glass tube from the viewpoint of workability and the like, and the thickness is usually 0.
With a thickness of 3 to 0.5 mm, bubbles are easily contained between the element 1 or the platinum wires 2, 2 'and the glass 5 with this thickness.
In particular, it has the drawbacks that air bubbles are likely to be contained near the sides of the element 1 and the thermal time constant is relatively large. In addition, in terms of workability, the positioning of the glass tube is troublesome, and the position is misaligned due to vibration or shock. May be done. In addition, when the glass melting temperature is high, the glass is deformed and the appearance becomes poor. On the contrary, when the melting temperature is too low, airtightness is lacking, so that there is a disadvantage that the yield is deteriorated due to a slight change in conditions.

その他の例としては、第5図のように粉末ガラスにバ
インダーと溶剤を混合してガラスペーストを造り、これ
を素子1とリード線3,3′の基部とを覆うように塗布
し、乾燥後、加熱炉で熔融してガラス5内に封入する方
法がある。この方法はガラス被覆法としては簡便な方法
で、素子1の形状や大きさには関係なく、素子の形状な
りに被覆でき、ガラス膜の厚さもガラスペーストの粘度
を調整することによって或る程度は自由度を有するとい
う利点を持っている。
As another example, as shown in FIG. 5, a glass paste is prepared by mixing a binder and a solvent with powdered glass, and the glass paste is applied so as to cover the element 1 and the bases of the lead wires 3, 3 '. Then, there is a method of melting in a heating furnace and enclosing in the glass 5. This method is a simple method as a glass coating method, and can be coated in the shape of the element irrespective of the shape and size of the element 1, and the thickness of the glass film is adjusted to some extent by adjusting the viscosity of the glass paste. Has the advantage of having a degree of freedom.

然し乍ら、この方法によってもガラス封入されたビー
ド形サーミスタは、被覆されたガラスに微細な気泡を多
数含むと共に、被覆ガラスの厚みが不均一となり易いた
めに、熱時定数がバラツキ、外観が悪くなる。更に気泡
を除くには再度気泡が抜ける程度の粘度にガラスを軟化
させその温度で30分程度アニールする方法もあるが、工
数がかかるという欠点を有している。
However, the bead-type thermistor encapsulated in the glass by this method also contains a large number of fine air bubbles in the coated glass and the thickness of the coated glass tends to be non-uniform, so that the thermal time constant varies and the appearance deteriorates. . Further, there is a method of removing the air bubbles by softening the glass to such a degree that the air bubbles can be removed again and annealing the glass at that temperature for about 30 minutes.

本発明の目的は上記ガラスコートサーミスタの欠点を
解消したビード形サーミスタの製造方法を提供すること
にある。
An object of the present invention is to provide a method of manufacturing a bead-type thermistor that eliminates the above-mentioned disadvantages of the glass-coated thermistor.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は素体と、ガラスに封着可能な金属リード線か
らなる本体を、熔融ガラス中に浸漬して該本体にガラス
を被覆することを特徴とするガラスコートサーミスタの
製造方法である。
The present invention is a method for producing a glass-coated thermistor, which comprises immersing a main body composed of a base body and a metal lead wire sealable with glass in molten glass to coat the main body with glass.

〔実施例〕〔Example〕

以下に本発明の実施例を図によって説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明実施の一具体例を示した装置の断面図
である。10は第3図(a)と同様に平行に張られた2本
の白金線2,2′に金属酸化物微粉末とバインダ及び溶剤
からなるペースト状混合物を付着させて球状素子1を形
成したサーミスタ、11は磁器製坩堝である。その外周に
は加熱ヒータ12が設けられ、その上部には予熱用ヒータ
13が施されている。更にその外周は放熱を防ぐために、
ガラスウールや石綿等による防熱体14で十分に囲われ
る。
FIG. 1 is a sectional view of an apparatus showing one embodiment of the present invention. Reference numeral 10 shows a spherical element 1 formed by adhering a paste mixture of a metal oxide fine powder, a binder and a solvent to two platinum wires 2, 2 'stretched in parallel in the same manner as in FIG. 3 (a). The thermistor 11 is a porcelain crucible. A heater 12 is provided on the outer periphery, and a heater for preheating is provided above the heater 12.
13 are given. In order to prevent heat radiation,
It is sufficiently surrounded by a heat insulator 14 made of glass wool or asbestos.

この坩堝11中に破砕されたガラス、又は粉末ガラスを
入れ、加熱ヒータ12を加熱してガラスを溶かし、熔融ガ
ラス15を造る。
Crushed glass or powdered glass is put into the crucible 11, and the heater 12 is heated to melt the glass, thereby producing a molten glass 15.

実施例において、坩堝11中にサーミスタ10を降下さ
せ、先ず予熱用ヒータ13の正面位置で5〜7秒間保持し
てサーミスタ10を予熱する。これはサーミスタ10中に含
まれた空気を放出すると共に、熱衝撃による微細亀裂な
どの欠陥の発生を防止するために行うもので、予熱温度
は熔融ガラス温度よりも200℃以上低いと効果は薄れ
る。
In the embodiment, the thermistor 10 is lowered into the crucible 11, and is first held at the front position of the preheating heater 13 for 5 to 7 seconds to preheat the thermistor 10. This is to release the air contained in the thermistor 10 and to prevent the occurrence of defects such as fine cracks due to thermal shock.The effect is weakened if the preheating temperature is 200 ° C or more lower than the molten glass temperature .

次に予熱されたサーミスタ10を降下させて、熔融ガラ
ス15中に所望被覆寸法の深さまで浸漬した後、除々にサ
ーミスタ10を引き上げ、更に予熱ヒータ13の位置で引き
上げ速度を落して通過させる。
Next, the preheated thermistor 10 is lowered and immersed in the molten glass 15 to a depth of a desired coating size. Then, the thermistor 10 is gradually raised, and further passed through the position of the preheater 13 at a reduced lifting speed.

このようにしてガラス被覆された第2図に示すガラス
コートサーミスタ10は、サーミスタ10の周辺に均一に、
且つ薄くガラス5が被覆されると共に、ガラス中には気
泡が含まれず、もし気泡が含まれた場合でも極く微細な
気泡がせいぜい2〜3個発生する程度で、その性状に影
響するほどのものではない。第1図中16は熱電対、17は
温度計を示している。
The glass-coated thermistor 10 shown in FIG. 2 coated with glass in this manner is uniformly formed around the thermistor 10.
In addition, the glass 5 is coated thinly and contains no bubbles in the glass. Even if bubbles are contained, only a few fine bubbles are generated at most, and the properties of the glass are affected. Not something. In FIG. 1, reference numeral 16 denotes a thermocouple, and 17 denotes a thermometer.

この熔融ガラス15は勿論、サーミスタの熱膨張係数に
マッチした材質を用いることが必要であり、熔融ガラス
の温度は、ガラスの融点温度よりも100〜150℃高いこと
が好ましい。
As a matter of course, it is necessary to use a material that matches the coefficient of thermal expansion of the thermistor, and the temperature of the molten glass is preferably 100 to 150 ° C. higher than the melting point of the glass.

ここでガラス温度が余り低いと、サーミスタ10の先端
のガラスの切れが悪く涙滴の形状を呈し、余りガラス温
度が高いと熔融ガラスが風化状態となり、被覆されたガ
ラスが失透してしまう。
Here, if the glass temperature is too low, the glass at the tip of the thermistor 10 is poorly cut and exhibits a teardrop shape. If the glass temperature is too high, the molten glass is in a weathered state, and the coated glass is devitrified.

本発明による製造方法でガラス被覆されたガラスコー
トサーミスタと、従来製法でガラス被覆されたガラスコ
ートサーミスタをそれぞれ200個製作して比較してみる
と、表1に示されるように本発明法によるものは明らか
に熱時定数が小さく、気泡もなく、且つ外観形状歩留り
も従来品に比べて優れたものであるといえる。尚、ガラ
ス厚みは表値以下にすることも容易であるが、絶縁性や
機械的強度からこの程度の寸法が望ましい。
The glass-coated thermistor coated with glass by the manufacturing method of the present invention and the glass-coated thermistor coated with glass by the conventional manufacturing method were each manufactured 200 and compared. Can clearly be said to have a smaller thermal time constant, no bubbles, and a better appearance shape yield than conventional products. In addition, it is easy to make the glass thickness equal to or less than the table value, but such a size is desirable from the viewpoint of insulation and mechanical strength.

実施例では非常に簡単な装置で以て製造を行ったが、
サーミスタの自動送りとし、更に予熱部及びアニーリン
グ部をガラス熔融部と別個に設けて自動ライン化を図る
ことによって、完全自動化することが容易であり、従来
法に較べて生産性を向上できる。
In the example, the production was performed with a very simple device,
The automatic feed of the thermistor, and furthermore, the preheating section and the annealing section are provided separately from the glass melting section and the automatic line is achieved, so that it is possible to easily perform the full automation, and the productivity can be improved as compared with the conventional method.

ガラス厚(a−a)は第2図,第4図(b),第5図
に示す。
The glass thickness (aa) is shown in FIGS. 2, 4 (b) and 5.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によるときには量産性に優れ、熱
時定数が小さく、信頼性の高いビード形サーミスタを製
造できる効果を有するものである。
As described above, according to the present invention, a bead-type thermistor having excellent mass productivity, a small thermal time constant, and high reliability can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法に用いる装置の一例を示す断面図、
第2図は本発明方法により製造したガラスコートサーミ
スタの形状を示す図、第3図(a)〜(c)は従来法に
よるガラスコートサーミスタの形状を示す図、第4図
(a),(b)は従来法によるガラス被覆の一例を工程
順に示す図、第5図は被覆の他の例を示すサーミスタの
形状を示す図である。 1……球状素子、2,2′……白金線 3,3′……リード線,10……サーミスタ 11……坩堝、12……加熱ヒータ 13……予熱用ヒータ、15……熔融ガラス
FIG. 1 is a sectional view showing an example of an apparatus used in the method of the present invention,
FIG. 2 is a diagram showing a shape of a glass-coated thermistor manufactured by the method of the present invention, FIGS. 3 (a) to 3 (c) are diagrams showing a shape of a glass-coated thermistor according to a conventional method, and FIGS. b) is a diagram showing an example of a glass coating according to a conventional method in the order of steps, and FIG. 5 is a diagram showing the shape of a thermistor showing another example of the coating. 1 ... Spherical element, 2,2 '... Platinum wire 3,3' ... Lead wire, 10 ... Thermistor 11 ... Crucible, 12 ... Heating heater 13 ... Heating heater, 15 ... Molten glass

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】素子と、ガラスに封着可能な金属リード線
からなる本体を、熔融ガラス中に浸漬して該本体にガラ
スを被覆することを特徴とするガラスコートサーミスタ
の製造方法。
1. A method of manufacturing a glass-coated thermistor, comprising: immersing a main body comprising an element and a metal lead wire sealable to glass into molten glass to coat the main body with glass.
JP15825087A 1987-06-25 1987-06-25 Manufacturing method of glass-coated thermistor Expired - Lifetime JP2592253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15825087A JP2592253B2 (en) 1987-06-25 1987-06-25 Manufacturing method of glass-coated thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15825087A JP2592253B2 (en) 1987-06-25 1987-06-25 Manufacturing method of glass-coated thermistor

Publications (3)

Publication Number Publication Date
JPS642302A JPS642302A (en) 1989-01-06
JPH012302A JPH012302A (en) 1989-01-06
JP2592253B2 true JP2592253B2 (en) 1997-03-19

Family

ID=15667528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15825087A Expired - Lifetime JP2592253B2 (en) 1987-06-25 1987-06-25 Manufacturing method of glass-coated thermistor

Country Status (1)

Country Link
JP (1) JP2592253B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543339A (en) * 2011-12-30 2012-07-04 电子科技大学 Packaging method of wire-wound resistor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304718B2 (en) * 2010-04-26 2013-10-02 株式会社デンソー Temperature sensor
JP2016029357A (en) 2014-07-24 2016-03-03 株式会社デンソー Temperature sensor
JPWO2020203352A1 (en) 2019-03-29 2020-10-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543339A (en) * 2011-12-30 2012-07-04 电子科技大学 Packaging method of wire-wound resistor

Also Published As

Publication number Publication date
JPS642302A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
JPH0324041B2 (en)
JP2592253B2 (en) Manufacturing method of glass-coated thermistor
JPS6038802B2 (en) Electrical resistors and their manufacture
JPH012302A (en) Manufacturing method of glass coated thermistor
US3919682A (en) Electrical resistor with a polycrystalline ceramic cover and a process for its manufacture
US10132667B2 (en) Method of manufacturing an element sensitive to a physical parameter of a flow of fluid and corresponding sensitive element
JP2715138B2 (en) Low expansion heat resistant crystallized glass sealing material
JPH02120624A (en) Production of detection element
JP4090767B2 (en) Heat-generating material mainly composed of MoSi2 having a low oxygen diffusible glassy coating
JPH0332005B2 (en)
US2346955A (en) Thermistor
JPS63138255A (en) Sheet type glass electrode
JP3396452B2 (en) Thermocouple protection tube and method of manufacturing the same
KR100475213B1 (en) High Reliability Chip-in-Glass Type NTC Thermistor and fabricating method therefor
JPS6134236B2 (en)
JPS5837675B2 (en) Menhatsnetsutaino Seizouhouhou
JPS63194310A (en) Glass sealed thermistor
JPH0517834Y2 (en)
SU967975A1 (en) Glass
JPS6369202A (en) Manufacture of thermistor
JPH02307201A (en) Glass-sealed thermistor and manufacture thereof
JPS589061B2 (en) Glass Compound Niyor Fuushihouhou
JPS5921517Y2 (en) Sea heater
JPH01187802A (en) Manufacture of thermistor
JPH0616465Y2 (en) Ceramic heater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11