JP2581561B2 - Manufacturing method of nuclear fuel reprocessing plant - Google Patents

Manufacturing method of nuclear fuel reprocessing plant

Info

Publication number
JP2581561B2
JP2581561B2 JP18445587A JP18445587A JP2581561B2 JP 2581561 B2 JP2581561 B2 JP 2581561B2 JP 18445587 A JP18445587 A JP 18445587A JP 18445587 A JP18445587 A JP 18445587A JP 2581561 B2 JP2581561 B2 JP 2581561B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
weld
manufacturing
nitric acid
fuel reprocessing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18445587A
Other languages
Japanese (ja)
Other versions
JPS6428598A (en
Inventor
寿美 ▲吉▼田
常信 横須賀
紀舟 細井
治郎 国谷
康夫 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18445587A priority Critical patent/JP2581561B2/en
Publication of JPS6428598A publication Critical patent/JPS6428598A/en
Application granted granted Critical
Publication of JP2581561B2 publication Critical patent/JP2581561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子燃料再処理プラント用溶接部に係り、特
に硝酸腐食感受性の小さいオーステナイト鋼溶接部を有
する前記プラントの製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a weld for a nuclear fuel reprocessing plant, and more particularly to a method for manufacturing an austenitic steel weld having a small susceptibility to nitric acid corrosion.

〔従来の技術〕[Conventional technology]

原子燃料再処理プラントの製造方法は、原子燃料資源
を有効に利用し、かつい有害な放射性物質を分離貯蔵す
る上で不可欠なシステムである。現在実用化されている
このプラントは、次の工程を含んで構成されている。
使用済燃料棒の細断、硝酸溶液による燃料の溶解、
溶液からのUおよびPuの抽出,分離、U燃料およびPu
燃料の精製、からなる主工程と、上記およびより回
収される硝酸溶液を再生し、上記へ還流させる酸回収
工程()、さらに各工程から生じる放射性廃液を濃縮
し、冷却貯蔵する工程()とを含んでいる。
The manufacturing method of a nuclear fuel reprocessing plant is an essential system for effectively utilizing nuclear fuel resources and separating and storing harmful radioactive materials. This plant, which is currently in practical use, includes the following steps.
Shredded spent fuel rods, dissolution of fuel with nitric acid solution,
Extraction and separation of U and Pu from solution, U fuel and Pu
A main step of refining the fuel, a step of recovering the nitric acid solution recovered from the above and from the above, and an acid recovering step of refluxing to the above (), and a step of concentrating the radioactive liquid waste generated from each step and storing it in a cooled state (). Contains.

上記〜の工程に含まれる反応、貯蔵容器、配管等
のプラント構造部材の多くは、プロセス媒体である各種
濃度および各種温度の硝酸溶液に接するため、従来プラ
ントにおいても耐硝酸腐食性を考慮した材料の選定およ
び設計がなされてきている(動燃技報No.55.1985.9)。
特に、材料としてはCrおよびNiを多く含有し、かつ低C
化とNb添加により安定化を図つた25Cr−20Ni系ステンレ
ス鋼や高Si化により重金属イオンを含む硝酸溶液中での
耐粒界腐食性を高めた17Cr−14Ni−4Si系ステンレス鋼
あるいはZrやTi合金などが上記部材として有力視されて
いる。
Many of the plant structural members such as the reactions, storage vessels, and pipes included in the above-mentioned steps are in contact with nitric acid solutions having various concentrations and various temperatures as a process medium. Has been selected and designed (Dynamic Fuel Technical Report No. 55.1985.9).
In particular, the material contains a large amount of Cr and Ni and has a low C content.
25Cr-20Ni stainless steel stabilized by addition of Nb and Nb, or 17Cr-14Ni-4Si stainless steel or Zr or Ti, which has enhanced intergranular corrosion resistance in nitric acid solution containing heavy metal ions by increasing Si Alloys and the like are considered promising as the above members.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

原子燃料再処理プラントの多くの工程材料は、強いγ
線の照射雰囲気にさらされている。硝酸溶液中の腐食に
対するγ線照射の影響については現在のところ充分解明
されていない。一般的に、耐硝酸腐食性が低いといわれ
ている溶接部に対しては特にγ線照射の影響が懸念され
る。溶接部が凝固組織を有しており、この凝固組織は、
凝固過程で不純物元素(P.S等)の偏析が生じやすい。
不純物元素が偏析した領域は、対硝酸腐食性が劣化する
といわれており、このために均一な金属組織を有する母
材と比較して溶接部の耐食性が低いと考えられている。
Many process materials in nuclear fuel reprocessing plants have strong γ
Exposure to line irradiation atmosphere. The effect of gamma irradiation on corrosion in nitric acid solutions has not been fully elucidated at present. Generally, there is a concern that the effect of γ-ray irradiation may be particularly exerted on welds that are said to have low nitric acid corrosion resistance. The weld has a solidification structure, which is
Segregation of impurity elements (such as PS) is likely to occur during the solidification process.
It is said that the region where the impurity element is segregated deteriorates the corrosion resistance to nitric acid. Therefore, it is considered that the corrosion resistance of the welded portion is lower than that of the base metal having a uniform metal structure.

本発明の目的は、原子燃料再処理プラントにおいて強
いγ線照射下における硝酸腐食に対し、特に溶接部材の
腐食損傷の恐れを低減させた原子燃料再処理プラントの
製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a nuclear fuel reprocessing plant in which the risk of corrosion damage to a welded member, particularly against nitric acid corrosion under strong gamma irradiation in a nuclear fuel reprocessing plant, is reduced.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明は、オーステナイト
鋼溶接部を有する原子燃料再処理プラント機器の前記溶
接部の溶着金属及び熱影響部表面に、Ti,Zr,Hf,V,Nb,Ta
からなる群の少なくとも1種からなる金属皮膜を形成し
た後、高温水蒸気雰囲気中にて加熱し前記金属皮膜を構
成する金属の酸化物からなる層を形成させることを特徴
とする原子燃料再処理プラントの製造方法である。
In order to achieve the above object, the present invention provides a method for manufacturing a nuclear fuel reprocessing plant having an austenitic steel weld, wherein the weld metal and the heat-affected zone surface of the weld are Ti, Zr, Hf, V, Nb, and Ta.
Forming a metal film made of at least one member of the group consisting of: and then heating in a high-temperature steam atmosphere to form a layer made of a metal oxide constituting the metal film. It is a manufacturing method of.

〔作用〕[Action]

上記本発明によれば、オーステナイト鋼の溶接部の溶
接部の溶着金属及び熱影響部表面に、Ti,Zr等の金属皮
膜を形成した後、高温水蒸気雰囲気中にて加熱し前記金
属皮膜を構成する金属の酸化物からなる層を形成させる
方法により、低硝酸腐食性の高い元素の酸化物皮膜が形
成されているために、酸化物皮膜の組織は緻密であり保
護皮膜として作用する。したがつて、耐硝酸腐食性が向
上するものである。
According to the present invention, after forming a metal film such as Ti or Zr on the surface of the weld metal and the heat-affected zone of the welded portion of the austenitic steel weld, the metal film is formed by heating in a high-temperature steam atmosphere. Since the oxide film of the element having low nitric acid corrosion is formed by the method of forming a layer made of a metal oxide to be formed, the structure of the oxide film is dense and functions as a protective film. Therefore, the nitric acid corrosion resistance is improved.

本願発明において、酸化物皮膜を形成する方法には次
のものがある。Ti,Zi,Hf,V,Nb,Taの少なくとも1種を照
射,めつき,CVD,PVD,スパツタの方法で、オーステナイ
ト鋼溶接部表面に形成する。表面に形成されたこれら皮
膜を高温水蒸気雰囲気中で処理すると、表面に酸化物皮
膜を形成できる。更にこれら元素の合金化合物を表面に
形成した後酸化物を形成するための処理をおこなつても
よい。
In the present invention, there are the following methods for forming an oxide film. At least one of Ti, Zi, Hf, V, Nb, and Ta is formed on the austenitic steel weld surface by irradiation, plating, CVD, PVD, or spattering. When these films formed on the surface are treated in a high-temperature steam atmosphere, an oxide film can be formed on the surface. Further, after forming an alloy compound of these elements on the surface, a treatment for forming an oxide may be performed.

酸化物皮膜がさらされる厚さとしては10μm〜100μ
mが好ましい。10μm未満では、耐硝酸腐食性が劣る。
一方、100μmを越えると皮膜それ事態の強度が低下す
る。
The thickness to which the oxide film is exposed is 10 μm to 100 μm
m is preferred. If it is less than 10 μm, the nitric acid corrosion resistance is poor.
On the other hand, when the thickness exceeds 100 μm, the strength of the film itself decreases.

〔実施例〕〔Example〕

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

(比較例) 次の第1表に使用した供試材の化学成分を示す。Comparative Example The following Table 1 shows the chemical components of the test materials used.

供試材A,BおよびCはそれぞれSUS304,304Lおよび316L
相当材である。これらの供試材はいずれも1050℃、30
分、水冷の溶体処理をおこなつた。供試材Aのみは、そ
の後500℃、24時間の加熱処理を施した。これらの供試
材において、供試材A,Bには308L相当の溶接棒で、また
供試材Cには316L相当の溶接棒を用いてTIG溶接をおこ
ない溶接継手を作成した。溶接棒はφ1.6で、溶接電流8
0〜140Aで6パスで溶接された。この溶接継手を二つの
グループに分けた。一つのグループは溶接のままの状態
であり、もう一つのグループは溶接領域にTi,Zr,Ta,Mo
を溶射して表面層(60μm)を形成した。なお、溶射と
してはプラズマ法によるものであるが、溶射にはこのほ
か線材法,アーク法,粉末法等がある。
Specimens A, B and C are SUS304, 304L and 316L respectively
It is a considerable material. Each of these test materials was 1050 ° C, 30
Then, a water-cooled solution treatment was performed. Only the test material A was subjected to a heat treatment at 500 ° C. for 24 hours. In these test materials, TIG welding was performed using 308L welding rods for the test materials A and B, and 316L welding rods for the test material C to prepare welded joints. The welding rod is φ1.6 and the welding current is 8
Welded in 6 passes at 0-140A. The welded joint was divided into two groups. One group is in the as-welded state, and the other group is Ti, Zr, Ta, Mo
Was sprayed to form a surface layer (60 μm). The thermal spraying is performed by a plasma method, and other thermal spraying methods include a wire method, an arc method, and a powder method.

これらの継手より10W×60L×2.0tmmの溶接部を含む試
験片を切り出して、腐食試験に供した。
From these joints, test pieces including a welded portion of 10 W × 60 L × 2.0 tmm were cut out and subjected to a corrosion test.

腐食試験は、5規定硝酸溶液中にCo60線源によりγ線
を照射しながら約1000時間浸漬した。腐食試験終了後、
試験片に生じた溶接部における浸食深さを測定した。そ
の結果を第2表に示す。
In the corrosion test, the sample was immersed in a 5 N nitric acid solution for about 1000 hours while irradiating γ rays with a Co 60 radiation source. After the corrosion test,
The erosion depth in the weld generated on the test piece was measured. Table 2 shows the results.

従来法の試験片(溶接のまま)では、供試材B,Cにお
いて100〜500μmの浸食深さがみられ、特に供試材Aで
は500μmを超える浸食が観察された。
In the test pieces of the conventional method (as welded), erosion depths of 100 to 500 μm were observed in the test materials B and C, and erosion exceeding 500 μm was particularly observed in the test material A.

一方、表面層を形成した比較例の試験片では、IV Aと
V A族のTi,zr,Taの場合はいずれも50μm以下の浸食深
さであつたが、それが限界であった。尚、IV A族のMoの
場合は、浸食深さ50〜500μmであつた。
On the other hand, in the test piece of the comparative example in which the surface layer was formed, IV A and
In the case of Ti, zr, and Ta of the VA group, the erosion depth was less than 50 μm, but this was the limit. In the case of Mo of Group IVA, the erosion depth was 50 to 500 μm.

(実施例) 第1図(A)に本発明に係る溶接部材の断面図を示
す。溶着金属2と熱影響部3を含んだ領域4を充分覆う
範囲に表面層5を形成する。この表面層5はTi,Zr層等
に後述する高温水蒸気雰囲気中での加熱処理をしてそれ
ら金属の酸化物層を形成したものである。このようにし
て形成された酸化物皮膜であるため、耐硝酸腐食性が向
上するものである。なお、第1図(B)に表面層が形成
されていない従来の溶接部材を示す。母材1の溶接部4
において、硝酸による浸食が生じるものである。
(Example) FIG. 1 (A) is a cross-sectional view of a welding member according to the present invention. The surface layer 5 is formed in a range that sufficiently covers the region 4 including the weld metal 2 and the heat-affected zone 3. The surface layer 5 is obtained by subjecting a Ti, Zr layer or the like to a heat treatment in a high-temperature steam atmosphere described later to form an oxide layer of these metals. Since the oxide film is formed as described above, the nitric acid corrosion resistance is improved. FIG. 1B shows a conventional welding member having no surface layer. Welded part 4 of base material 1
In this case, erosion by nitric acid occurs.

本実施例における腐食試験後の溶接部の表面組織(供
試材C)を顕微鏡写真によつて観察した。その結果、溶
接部に表面層が形成されない従来法の場合は、溶接部が
浸食されている様子が観察される。一方、表面にZr層が
形成されたものでは、腐食の程度が低いことが判つた。
The surface structure (test material C) of the welded portion after the corrosion test in this example was observed with a micrograph. As a result, in the case of the conventional method in which the surface layer is not formed on the weld, it is observed that the weld is eroded. On the other hand, it was found that in the case where the Zr layer was formed on the surface, the degree of corrosion was low.

上記比較例で用いられた試験片のうち、部材表面にT
i,Zr,Taの層が形成された試験片の半数について、約300
℃の水蒸気中にさらす処理をおこなつた。この処理によ
り部材表面のTi,Zr,Ta層の極く表面近傍に酸化皮膜が形
成された。これらの全酸化処理を施した試験片を比較例
と同様な条件で腐食試験をおこなつた。
Of the test pieces used in the above comparative example, T
About 300% of the test pieces with i, Zr, Ta layers
The film was exposed to steam at ℃. By this treatment, an oxide film was formed in the vicinity of the surface of the Ti, Zr, and Ta layers on the member surface. Corrosion tests were performed on the test pieces subjected to these total oxidation treatments under the same conditions as in the comparative example.

腐食試験後に測定した溶接部の浸食深さの結果を第3
表に示す。
The results of the erosion depth of the weld measured after the corrosion test
It is shown in the table.

前酸化処理を施した溶接部の浸食深さは、この処理を
しないものと比較して小さいことが判つた。すなわち、
前酸化処理により表面に形成した酸化皮膜(それぞれTi
O2,ZrO2,Ta2O5と推定される)は著しく高い耐硝酸腐食
性を有しており、硝酸に体する防食効果の大きいことが
判つた。
It was found that the erosion depth of the welds subjected to the pre-oxidation treatment was smaller than that without the treatment. That is,
The oxide film formed on the surface by the pre-oxidation treatment (each Ti
O 2 , ZrO 2 , and Ta 2 O 5 ) have remarkably high resistance to nitric acid corrosion, and have a large anticorrosive effect against nitric acid.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に係る原子燃料再処理プラ
ントの製造方法によれば、オーステナイト鋼溶接部の溶
着金属及び熱影響部表面に、Ti,Zr等の金属皮膜を形成
した後、高温水蒸気雰囲気中にて加熱し前記金属皮膜を
構成する金属の酸化物からなる層を形成させるので、著
しく溶接部材の耐硝酸腐食性が向上する。したがつて、
原子燃料再処理プラントの信頼性を高めかつ高寿命化を
図れる効果を奏する。
As described above, according to the method for manufacturing a nuclear fuel reprocessing plant according to the present invention, a metal film such as Ti or Zr is formed on the surface of a weld metal and a heat-affected zone of an austenitic steel weld, and then a high-temperature steam atmosphere is formed. Since it is heated in the inside to form a layer made of a metal oxide constituting the metal film, the resistance of the welded member to nitric acid corrosion is remarkably improved. Therefore,
This has the effect of increasing the reliability and extending the life of the nuclear fuel reprocessing plant.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A)は本発明の一実施例を示すオーステナイト
鋼溶接部材の断面図、第1図(B)は酸化物表面層が形
成されていない従来のオーステナイト鋼溶接部材の断面
図である。
FIG. 1 (A) is a sectional view of an austenitic steel welded member showing one embodiment of the present invention, and FIG. 1 (B) is a sectional view of a conventional austenitic steel welded member having no oxide surface layer formed thereon. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 国谷 治郎 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 広瀬 康夫 茨城県日立市幸町3丁目1番1号 株式 会社日立製作所日立工場内 (56)参考文献 特開 昭61−223594(JP,A) 特開 昭60−245790(JP,A) 特開 昭51−137098(JP,A) 特開 昭58−184593(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jiro Kuniya 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Yasuo Hirose 3-1-1 Sachicho, Hitachi City, Ibaraki Co. (56) References JP-A-61-223594 (JP, A) JP-A-60-245790 (JP, A) JP-A-51-137098 (JP, A) JP-A-58-184593 ( JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】オーステナイト鋼溶接部を有する原子燃料
再処理プラント機器の前記溶接部の溶着金属及び熱影響
部表面に、Ti,Zr,Hf,V,Nb,Taからなる群の少なくとも1
種からなる金属皮膜を形成した後、高温水蒸気雰囲気中
にて加熱し前記金属皮膜を構成する金属の酸化物からな
る層を形成させることを特徴とする原子燃料再処理プラ
ントの製造方法。
The present invention relates to a nuclear fuel reprocessing plant having an austenitic steel weld, wherein at least one of the group consisting of Ti, Zr, Hf, V, Nb, and Ta is provided on the surface of the weld metal and the heat-affected zone of the weld.
A method for manufacturing a nuclear fuel reprocessing plant, comprising: forming a metal film made of a seed, and then heating in a high-temperature steam atmosphere to form a layer made of a metal oxide constituting the metal film.
JP18445587A 1987-07-23 1987-07-23 Manufacturing method of nuclear fuel reprocessing plant Expired - Lifetime JP2581561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18445587A JP2581561B2 (en) 1987-07-23 1987-07-23 Manufacturing method of nuclear fuel reprocessing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18445587A JP2581561B2 (en) 1987-07-23 1987-07-23 Manufacturing method of nuclear fuel reprocessing plant

Publications (2)

Publication Number Publication Date
JPS6428598A JPS6428598A (en) 1989-01-31
JP2581561B2 true JP2581561B2 (en) 1997-02-12

Family

ID=16153450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18445587A Expired - Lifetime JP2581561B2 (en) 1987-07-23 1987-07-23 Manufacturing method of nuclear fuel reprocessing plant

Country Status (1)

Country Link
JP (1) JP2581561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186430A (en) * 2015-03-27 2016-10-27 日立Geニュークリア・エナジー株式会社 Corrosion prevention method and manufacturing method of reactor structure member and reactor structure member
JP6588356B2 (en) * 2016-02-09 2019-10-09 日立Geニュークリア・エナジー株式会社 Reactor structural member manufacturing method and anticorrosion method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046392B2 (en) * 1975-05-10 1985-10-15 メタルゲゼルシヤフト、アクチエンゲゼルシヤフト Reprocessing equipment
JPS60245790A (en) * 1984-05-22 1985-12-05 Toshiba Corp Member for equipment for reprocessing nuclear fuel
JPS61223594A (en) * 1985-03-29 1986-10-04 三菱重工業株式会社 Tower tank for reprocessing nuclear fuel

Also Published As

Publication number Publication date
JPS6428598A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
KR101305778B1 (en) Austenite-based weld material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for grain boundary corrosion using same
Cheng et al. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance
Vilchez et al. The effect of laser surface melting of stainless steel grade AISI 316L welded joint on its corrosion performance in molten Solar Salt
SE444368B (en) PROCEDURE FOR THE MANUFACTURING OF A NUCLEAR FUEL CONTAINER FOR USE IN NUCLEAR RIFT REACTORS AND CONTAINERS MANUFACTURED AS PROCEDURED
JPH06182626A (en) High corrosion resisting surface finishing method
JP2581561B2 (en) Manufacturing method of nuclear fuel reprocessing plant
Kou Welding metallurgy and weldability of high strength aluminum alloys
Soma et al. Growth behavior of surface oxide layer on SUS316L stainless steel at the early stage of exposure to 288 C water
Takeuchi et al. Controls of chromium and third element contents in nickel-base alloys for corrosion resistant alloys in hot HNO3–HF mixtures
JP2652035B2 (en) Corrosion protection in highly corrosive liquids
JPH0480357B2 (en)
JP2724041B2 (en) Surface modification method of metal member and method of manufacturing various products
Polovov et al. Corrosion of metallic materials in the molten FLiNaK
RU2621745C2 (en) Method of producing casing of chemical industry apparatus resistant to concentrated acids, from titanium sheets with internal anti-corrosion coating
Elkins Compatibility of uranium carbide fuels with cladding materials
Kumar et al. Microstructural and Corrosion Behavior of Thin Sheet of Stainless Steel-Grade Super Duplex 2507 by Gas Tungsten Arc Welding
JPH0519091A (en) Member for nuclear fuel reprocessing plant
Karthikeyan et al. Weldability and microstructural variations in weldments of Ti-5Ta-1.8 Nb alloy
Nandakumar et al. Effect of Microstructure of 304L SS and Thermal Aging of 304L SS Weld on the Corrosion Behavior in Simulated High Level Waste
Izui et al. High temperature joint properties with palladium alloys for SUS316L and Inconel 600
Harrison SNAP-8 refractory boiler development-Corrosion of oxygen contaminated tantalum in NaK
Hashimoto Welding of zirconium
Semchyshen et al. ARC-CAST MOLYBDENUM-AND TUNGSTEN-BASE ALLOYS (1960-1961)
Prasad et al. Application of Stainless Steels in Nuclear Technology
Turner et al. Joining of uranium alloys