JPH06182626A - High corrosion resisting surface finishing method - Google Patents

High corrosion resisting surface finishing method

Info

Publication number
JPH06182626A
JPH06182626A JP33694492A JP33694492A JPH06182626A JP H06182626 A JPH06182626 A JP H06182626A JP 33694492 A JP33694492 A JP 33694492A JP 33694492 A JP33694492 A JP 33694492A JP H06182626 A JPH06182626 A JP H06182626A
Authority
JP
Japan
Prior art keywords
electric discharge
discharge machining
alloy layer
alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33694492A
Other languages
Japanese (ja)
Inventor
Keiichi Urashiro
慶一 浦城
Yasuhisa Aono
泰久 青野
Masakiyo Izumitani
雅清 泉谷
Akira Fukai
昌 深井
Hideya Anzai
英哉 安斎
Yasushi Fukuzawa
康 福沢
Naotake Mori
尚武 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33694492A priority Critical patent/JPH06182626A/en
Publication of JPH06182626A publication Critical patent/JPH06182626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To provide a high corrosion resisting surface finishing method, by which a surface condition adjusting processing and formation of a discharge machining alloy layer can be performed simultaneously, taking an element having good corrosion resistance, an alloy having the element or a conductive ceramics as an electrode using a discharge machining method in order to improve the corrosion resistance and stress corrosion cracking resistance. CONSTITUTION:The surface of a member 2 to be processed formed by an iron (Fe) base alloy such as a carbon steel, a low-alloy steel, an austenitic stainless steel or a ferritic stainless steel, a nickel(Ni) base alloy or a cobalt(Co) base alloy is discharge-machined in oil 3 or water 3 using an electrode 1 having at least one high corrosion resisting element to remove the initial surface of the member and form an electric discharge machining alloy layer 7 excellent in corrosion resistance on the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽水炉内構造物あるい
は中性子照射を受ける構造物の表面に高耐食性合金層を
形成させる耐食性,耐応力腐食割れ性向上のための表面
改質処理技術に係り、特に軽水炉プラントの長寿命化に
寄与する高耐食性表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface modification treatment technique for improving the corrosion resistance and the stress corrosion cracking resistance of forming a highly corrosion resistant alloy layer on the surface of a light water reactor internal structure or a structure which is irradiated with neutrons. In particular, the present invention relates to a high corrosion resistant surface treatment method that contributes to extending the life of a light water reactor plant.

【0002】[0002]

【従来の技術】従来、環境により腐食損傷を受ける材料
表面の防食対策技術として、古くは塗料及び電気化学的
手法としてのメッキ法などが活用され、また近年、真空
雰囲気で行なう蒸着,化学蒸着,物理蒸着及びイオン注
入が適用されつつある。これら方法は主として材料表面
に単に耐食性金属皮膜を形成することにあり、材料との
密着性、耐食性を改善する膜を形成するという意味では
十分とは言えない。一方、材料表面を放電加工によって
表面処理する方法が提案されている。例えば、(I)特
開昭62−24916号や(II)特開平2−8311
9号等がある。また、材料表面を溶融して、材料の組成
と整合あるいは材料の表面部のみを高耐食化合金とする
TIGアークあるいはレーザ光を熱源としたTIGアー
ク法あるいはレーザ法などの技術が適用されつつある。
2. Description of the Related Art Conventionally, as a technique for preventing corrosion of a material surface which is corrosively damaged by the environment, a coating method and a plating method as an electrochemical method have been used for a long time. In recent years, vapor deposition performed in a vacuum atmosphere, chemical vapor deposition, Physical vapor deposition and ion implantation are being applied. These methods mainly consist in simply forming a corrosion-resistant metal film on the surface of the material, and are not sufficient in the sense of forming a film that improves the adhesion to the material and the corrosion resistance. On the other hand, a method of surface-treating the material surface by electric discharge machining has been proposed. For example, (I) JP-A-62-24916 and (II) JP-A-2-8311.
There are 9 and so on. Further, a technique such as a TIG arc method in which the surface of the material is melted to match the composition of the material or only the surface portion of the material is made a highly corrosion resistant alloy, or a TIG arc method or laser method using laser light as a heat source is being applied. .

【0003】[0003]

【発明が解決しようとする課題】腐食環境下にある、あ
るいはこの環境にさらされる恐れのある材料表面及び耐
食性の低下した材料表面の高耐食化にはいくつかの課題
がある。第1に処理表面の洗浄化の問題、第2に高耐食
性を表面に付与するための最適な方法の有無の問題が挙
げられる。処理表面の洗浄化は目的が耐食化とは異なる
手法、例えば機械加工,化学的,電気化学的手法を用い
て行なわれている。しかしながら、耐食性の低下した表
面あるいは腐食生成物に覆われている対象部位、例えば
軽水炉実機の炉内構造物の表面処理においては、放射線
環境下での作業という厳しい条件であるので、高耐食化
表面処理の前処理としての表面洗浄化と表面改質技術が
同時にできる手法が望まれている。また、通常の表面改
質においても表面形状に無関係でかつ除染されていない
表面を表面状態調整加工と高耐食化表面改質加工が同時
にできる技術は、産業上に対する役割が大きい。この課
題を満足させる技術として放電加工による表面処理方法
がある。放電加工に対する入熱は小さく、表面合金化過
程は電極と被表面改質加工物との間の微小放電により電
極及び被表面改質加工物を溶融気化し、また加工液の気
化に伴いその凝固物が被表面改質加工物表面に溶融され
ることにより進むことになる。多数回の重複放電により
表面は合金化されるが、1回の放電表面積及び入熱は小
さい、しかも、非加工域への影響が小さいので、材料の
表面処理方法としては優れている。
There are some problems in improving the corrosion resistance of a material surface which is under a corrosive environment or which may be exposed to this environment and a material surface whose corrosion resistance is lowered. The first is the problem of cleaning the treated surface, and the second is the problem of whether or not there is an optimum method for imparting high corrosion resistance to the surface. Cleaning of the treated surface is performed by a method whose purpose is different from corrosion resistance, such as machining, chemical or electrochemical methods. However, in the surface treatment of the surface with reduced corrosion resistance or the target part covered with corrosion products, for example, the surface treatment of the internal structure of a light water reactor actual equipment, it is a severe condition of working in a radiation environment. A method capable of simultaneously performing surface cleaning and surface modification technology as a pretreatment of the treatment is desired. In addition, even in ordinary surface modification, a technology capable of simultaneously performing a surface conditioning process and a high corrosion resistant surface modification process on a surface that is not decontaminated, regardless of the surface shape, has a great industrial role. As a technique for satisfying this problem, there is a surface treatment method by electric discharge machining. The heat input to the electric discharge machining is small, and the surface alloying process melts and vaporizes the electrode and the surface-modified workpiece by the minute discharge between the electrode and the surface-modified workpiece, and solidifies as the machining liquid vaporizes. The object is advanced by being melted on the surface of the surface-modified workpiece. The surface is alloyed by a large number of repeated discharges, but the discharge surface area and heat input at one time are small, and the effect on the non-processed area is small, so that it is an excellent surface treatment method for the material.

【0004】この放電加工による高耐食化表面改質方法
として、従来技術の欄の(I)及び(II)が提案され
ているが、(I)に開示された方法は、放電加工によっ
てシリコン(Si)等のアモルファス層又は微細結晶質
層を被表面改質加工物表面に形成しようというもので、
電極として導電性の銅表面にSi等の層を配設しなけれ
ばならない問題がある。また、(II)に開示された方
法は、放電加工液中に耐酸化性表面改質に寄与するSi
粉末を混入させ放電加工することによって、被表面改質
加工物表面にシリコン(Si)のアモルファス層又は微
細結晶質層を形成しようというものであり、放電加工液
に特殊な処理を施さなければならない問題がある。 ま
た、TIGアーク法あるいはレーザ法の技術を単独で適
用しようとすると、これらの表面溶融法は高入熱で加熱
した場合、表面処理部位周辺で材料の物性を変えてしま
う短所があった。
[0004] As a method for improving the surface of corrosion resistance by electric discharge machining, (I) and (II) in the section of the prior art have been proposed, but the method disclosed in (I) uses silicon ( Si) or other amorphous layer or fine crystalline layer is formed on the surface of the surface-modified workpiece,
There is a problem that a layer of Si or the like has to be provided on the surface of a conductive copper as an electrode. In addition, the method disclosed in (II) uses Si that contributes to oxidation resistant surface modification in an electric discharge machining fluid.
It is intended to form an amorphous layer of silicon (Si) or a fine crystalline layer on the surface of a surface-modified workpiece by mixing powder and performing electrical discharge machining, and a special treatment must be applied to the electrical discharge machining liquid. There's a problem. Further, when the technique of the TIG arc method or the laser method is applied independently, these surface melting methods have a drawback that they change the physical properties of the material around the surface treatment site when heated with a high heat input.

【0005】従って、本発明の目的は、軽水炉内構造物
あるいは中性子照射を受ける構造物の表面の耐食性、耐
応力腐食割れ性向上のために、放電加工法を用いて、耐
食性の良好な元素、あるいはこれらの元素を含有する合
金又は導電性セラミックスを電極とし、改質部材表面の
前処理としての表面状態調整処理と高耐食性を有する放
電加工合金層を形成する高耐食性表面処理方法を提供す
ることにある。
Therefore, an object of the present invention is to improve the corrosion resistance and stress corrosion cracking resistance of the surface of a light water reactor internal structure or a structure subjected to neutron irradiation by using an electric discharge machining method, and an element having good corrosion resistance, Alternatively, an alloy or conductive ceramics containing these elements is used as an electrode, and a high-corrosion-resistant surface treatment method for forming an electric discharge machining alloy layer having a surface condition adjusting treatment and high corrosion resistance as a pretreatment of the surface of the modified member is provided. It is in.

【0006】また、本発明の別の目的は、軽水炉内構造
物あるいは中性子照射を受ける構造物の表面を放電加工
法を用いて形成した放電加工合金層をさらにTIGアー
ク法あるいはレーザ法等の技術を適用して、耐食性に優
れる再溶融表面合金層を形成することのできる高耐食性
表面処理方法を提供することにある。
Another object of the present invention is to provide an electric discharge machined alloy layer formed on the surface of a structure in a light water reactor or a structure to be irradiated with neutrons by electric discharge machining, by a technique such as TIG arc method or laser method. Is applied to provide a highly corrosion resistant surface treatment method capable of forming a remelted surface alloy layer having excellent corrosion resistance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明による表面改質処理法として次のような方法
を用いる。即ち、炭素鋼,低合金鋼,オーステナイト系
ステンレス鋼若しくはフェライト系ステンレス鋼等の鉄
(Fe)基合金、ニッケル(Ni)基合金、又はコバル
ト(Co)基合金からなる軽水炉内構造物あるいは中性
子照射を受ける構造物の表面を、少なくとも一つの高耐
食性元素を有する電極を用い、油中あるいは水中にて、
放電加工処理し、前記部材の初期表面の除去とこの表面
に耐食性に優れた放電加工合金層を形成することを特徴
とする。
In order to achieve the above object, the following method is used as the surface modification treatment method according to the present invention. That is, a light water reactor internal structure or neutron irradiation made of iron (Fe) -based alloy such as carbon steel, low alloy steel, austenitic stainless steel or ferritic stainless steel, nickel (Ni) based alloy, or cobalt (Co) based alloy The surface of the structure receiving the, using an electrode having at least one high corrosion resistance element, in oil or water,
It is characterized in that it is subjected to electric discharge machining to remove the initial surface of the member and to form an electric discharge machine alloy layer excellent in corrosion resistance on this surface.

【0008】また、炭素鋼,低合金鋼,オーステナイト
系ステンレス鋼若しくはフェライト系ステンレス鋼等の
鉄(Fe)基合金、ニッケル(Ni)基合金、又はコバ
ルト(Co)基合金からなる軽水炉内構造物あるいは中
性子照射を受ける構造物の表面を、導電性セラミックス
電極を用いて、油中あるいは水中にて、放電加工処理
し、初期表面を除去すると同時に表面に被処理対象部材
の構成成分元素と電極成分元素とからなるアモルファス
層又は微細結晶質層、あるいはセラミックス粒子が分散
した層からなる放電加工合金層を形成することを特徴と
する。
Further, a light water reactor internal structure made of an iron (Fe) based alloy such as carbon steel, low alloy steel, austenitic stainless steel or ferritic stainless steel, nickel (Ni) based alloy, or cobalt (Co) based alloy. Alternatively, the surface of the structure to be irradiated with neutrons is subjected to electric discharge machining in oil or water using a conductive ceramics electrode to remove the initial surface and at the same time, the constituent elements and electrode components of the member to be treated on the surface. It is characterized by forming an amorphous layer or a fine crystalline layer made of an element, or an electric discharge machining alloy layer made of a layer in which ceramic particles are dispersed.

【0009】これら表面改質処理法において、放電加工
処理によって放電加工合金層を形成した後、レーザ光,
電子ビーム,又はTIGアーク等のエネルギーを照射し
て、放電加工合金層と被処理対象部材である軽水炉内構
造物あるいは中性子照射を受ける構造物の一部を再溶融
させた後、急冷凝固させて再溶融表面合金層を形成する
ことを特徴とする。
In these surface modification treatment methods, after the electric discharge machining alloy layer is formed by electric discharge machining,
After irradiating energy such as an electron beam or TIG arc to remelt a part of the electric discharge machining alloy layer and the structure inside the light water reactor which is the member to be processed or the structure to be irradiated with neutrons, it is rapidly cooled and solidified. It is characterized in that a remelted surface alloy layer is formed.

【0010】[0010]

【作用】この発明においては、電極と材料である被加工
金属の間で放電加工処理され、被加工金属表面に放電加
工合金層を形成する。表面合金化過程は電極と被加工金
属との間の微小放電により電極及び被加工金属表面を溶
融気化し、また加工液の気化に伴いその凝固物が被加工
金属表面に溶融し合金化されることにより進むことにな
る。多数回の重複放電により表面は合金化されるが、1
回の放電表面積及び放電加工に対する入熱は小さい、し
かも、非加工域への影響が小さいので、材料の表面処理
方法としては優れている。
In the present invention, the electric discharge machining is performed between the electrode and the metal to be machined, which is the material, and an electric discharge machine alloy layer is formed on the surface of the metal to be machined. In the surface alloying process, the electrode and the surface of the metal to be processed are melted and vaporized by the minute electric discharge between the electrode and the metal to be processed, and the solidified material is melted and alloyed with the vaporization of the processing liquid. It will move forward. The surface is alloyed by multiple overlapping discharges, but
It is excellent as a surface treatment method for materials because it has a small amount of heat input to the discharge surface area and the heat input to the electric discharge machining and has a small effect on the non-machined area.

【0011】この発明にあっては、電極と被加工金属と
の組合せが重要である。電極として高耐食性元素を有す
るものを用いると、被加工金属表面に高耐食性の放電加
工合金層を形成する。また、電極として導電性セラミッ
クスを用いると、被加工金属表面に金属の構成成分元素
と電極成分元素とからなるアモルファス層又は微細結晶
質層、あるいはセラミックス粒子が分散した層からなる
放電加工合金層を形成する。放電加工合金層の厚さは5
〜20μmが好ましい。
In the present invention, the combination of the electrode and the metal to be processed is important. When an electrode having a high corrosion resistance element is used as the electrode, a high corrosion resistance electric discharge machining alloy layer is formed on the surface of the metal to be processed. When conductive ceramics is used as the electrode, an amorphous layer or a fine crystalline layer composed of metal constituent elements and electrode constituent elements, or an electric discharge machining alloy layer composed of a layer in which ceramic particles are dispersed is formed on the surface of the metal to be processed. Form. Thickness of EDM alloy layer is 5
˜20 μm is preferred.

【0012】このようにして形成された放電加工合金層
をレーザ光,電子ビーム,又はTIGアーク等のエネル
ギーを照射して、放電加工合金層と被加工金属の一部を
再溶融させた後、急冷凝固させて再溶融表面合金層を形
成するので、表面処理部位周辺で材料の物性を大きく変
えることなく耐食性、耐応力腐食割れ性を向上させるこ
とができる。
The electric discharge machining alloy layer thus formed is irradiated with energy such as a laser beam, an electron beam, or a TIG arc to remelt the electric discharge machining alloy layer and a part of the metal to be machined. Since it is rapidly solidified to form the remelted surface alloy layer, it is possible to improve the corrosion resistance and the stress corrosion cracking resistance without significantly changing the physical properties of the material around the surface treatment site.

【0013】本発明は、炭素鋼,低合金鋼,フェライト
系ステンレス鋼若しくはオーステナイト系ステンレス鋼
等の鉄(Fe)基合金,ニッケル(Ni)基合金又はコ
バルト(Co)基合金の部材及びこれら合金部材から成
る軽水炉内溶接構造物の熱影響部及び溶融凝固部を含む
溶接部、あるいは中性子照射を受ける部分を有する炉内
構造物の表面を、高耐食性元素であるクロム(Cr),
ニッケル(Ni),チタン(Ti),ニオブ(Nb)及
びタンタル(Ta)の内いずれか一つあるいは二つ以上
の成分からなる、あるいはそれらを含んだ合金を電極と
して用い、油あるいは水の加工液中で放電加工処理し、
初期表面を除去すると同時に高耐食性を有する放電加工
合金層を形成せしめることによって、この部分の耐食
性、耐応力腐食割れ性を向上させるものである。
The present invention is a member of iron (Fe) -based alloy, nickel (Ni) -based alloy or cobalt (Co) -based alloy such as carbon steel, low alloy steel, ferritic stainless steel or austenitic stainless steel, and these alloys. The surface of the welded structure including the heat-affected zone and the melt-solidified zone of the light water reactor welded structure composed of the members, or the surface of the reactor interior structure having a portion to be irradiated with neutrons, has a high corrosion resistance element such as chromium (Cr)
Processing oil or water by using an alloy made of one or more of nickel (Ni), titanium (Ti), niobium (Nb) and tantalum (Ta) or an alloy containing them as an electrode. Electrical discharge machining in liquid,
By removing the initial surface and forming an electric discharge machining alloy layer having high corrosion resistance at the same time, the corrosion resistance and stress corrosion cracking resistance of this portion are improved.

【0014】本発明による部材の表面改質形成方法の原
理を図1を用いて説明する。図1は本発明による高耐食
性表面処理方法の放電加工処理の模式図である。油ある
いは水である加工液3の入った加工槽4の中に、被処理
対象材料である被加工金属2と電極1が入っている。被
加工金属2は、炭素鋼,低合金鋼,オーステナイト系ス
テンレス鋼,あるいはフェライト系ステンレス鋼等のF
e基合金、Ni基合金、又はCo基合金からなる部材で
あり、溶接部または溶接熱影響などを受けた部分であ
る。電極1はCr,Ni,Fe,Ti,Nb及びTaの
内いずれか一つあるいは二つ以上の成分からなる、ある
いはそれらを含んだ合金を用いる。この電極1にパルス
電流を流して放電5させることにより電極1の一部及び
被加工金属2の表面部が溶融・気化されて初期表面が除
去され、また加工液3の気化に伴いその溶融合金粒6が
被加工金属2の表面に冷却凝固して放電加工合金層7が
形成される。放電加工合金層7は高耐食性の合金元素を
含み、かつ急冷凝固による均一な層であるので酸化皮膜
は極めて安定であり、耐食性あるいは耐応力腐食割れ性
の向上が達成せられる。
The principle of the surface modification forming method of the member according to the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of an electric discharge machining process of a highly corrosion resistant surface treatment method according to the present invention. A metal 2 to be processed, which is a material to be processed, and an electrode 1 are contained in a processing tank 4 containing a processing liquid 3 which is oil or water. The metal 2 to be processed is F such as carbon steel, low alloy steel, austenitic stainless steel, or ferritic stainless steel.
It is a member made of an e-based alloy, a Ni-based alloy, or a Co-based alloy, and is a welded portion or a portion affected by welding heat. The electrode 1 is made of any one of Cr, Ni, Fe, Ti, Nb and Ta, or an alloy containing two or more of them. By applying a pulse current to the electrode 1 to cause electric discharge 5, a part of the electrode 1 and the surface part of the metal 2 to be processed are melted and vaporized to remove the initial surface, and the molten alloy is vaporized with the machining liquid 3. The particles 6 are cooled and solidified on the surface of the metal 2 to be processed to form the electric discharge machining alloy layer 7. Since the electric discharge machining alloy layer 7 contains a highly corrosion-resistant alloy element and is a uniform layer formed by rapid solidification, the oxide film is extremely stable, and the corrosion resistance or the stress corrosion cracking resistance can be improved.

【0015】本発明が適用される被加工金属材料として
は、一般炭素鋼,低合金鋼,オーステナイト系ステンレ
ス鋼の場合、重量でCrを12〜20%及びNiを8〜
30%含むもの,フェライト系ステンレス鋼の場合、重
量でCrを12〜18%及びNiを2%未満含むもの,
あるいはNi基合金の場合、重量でCrを15〜23
%,Feを2.5〜37%及びMoを0〜16%含むも
の等がある。
In the case of general carbon steel, low alloy steel, and austenitic stainless steel as the metal material to be processed to which the present invention is applied, Cr is 12 to 20% by weight and Ni is 8 to 8% by weight.
Containing 30%, in the case of ferritic stainless steel, containing 12 to 18% Cr and less than 2% Ni by weight,
Alternatively, in the case of a Ni-based alloy, Cr is 15 to 23 by weight.
%, Fe of 2.5 to 37% and Mo of 0 to 16%.

【0016】電極材料として、高耐食性のステンレス
鋼,Ni基合金成分であるNi,Cr元素あるいはそれ
らを組成とする合金が高耐食性の放電加工合金層7形成
には好ましい。特に、Ni,Cr元素あるいはそれらを
含む合金を用いると、炭素鋼,低合金鋼表面の高耐食化
に対しては、表面のNi,Crの高濃度化のために、及
びフェライト系ステンレス鋼のNi含有高耐食化のため
にも好適である。
As the electrode material, stainless steel having high corrosion resistance, Ni and Cr elements which are Ni-based alloy components, or alloys containing them are preferable for forming the highly corrosion-resistant electric discharge machining alloy layer 7. In particular, when Ni or Cr elements or alloys containing them are used, the surface of carbon steel or low alloy steel is made to have high corrosion resistance, the surface of Ni or Cr is made to have a high concentration, and the surface of ferritic stainless steel is It is also suitable for high corrosion resistance containing Ni.

【0017】Ti,Nb又はTaを電極材料あるいは合
金電極の成分として用いることの意義は、加工液中すな
わち油中の炭素や窒素また水中の酸素が単体として急冷
凝固して放電加工合金層へ混入して材質劣化を引き起こ
すことを防止し、Ti,Nb又はTaの化合物として放
電加工合金層へ固着化させることにある。炭素,酸素あ
るいは窒素の十分な固着化のためには、炭素鋼,低合金
鋼,ステンレス鋼等のFe基合金,Ni基合金又はCo
基合金の全ての部材に対して、その表面にTi,Nb又
はTaの濃度が2%程度までの含有量の放電加工合金層
7を設けるようにするのが好ましい。
The significance of using Ti, Nb or Ta as an electrode material or a component of an alloy electrode is that carbon or nitrogen in the working fluid, that is, oil or oxygen in the water is rapidly solidified as a simple substance and mixed into the electric discharge machining alloy layer. Then, the deterioration of the material is prevented, and the compound is fixed to the electric discharge machining alloy layer as a compound of Ti, Nb or Ta. For sufficient fixation of carbon, oxygen or nitrogen, Fe-based alloy such as carbon steel, low alloy steel, stainless steel, Ni-based alloy or Co
It is preferable that the electric discharge machining alloy layer 7 having a Ti, Nb or Ta concentration of up to about 2% is provided on the surface of all the members of the base alloy.

【0018】本発明によって得られる耐食性,耐応力腐
食割れ性を向上した被加工金属の改質表面は、放電加工
処理によって形成された放電加工合金層7であって、電
極として使用されるCr,Ni,Ti,Nb及びTaの
いずれか一つあるいは二つ以上の合金の組成と加工液組
成を含有する合金組織である。この放電加工合金層7の
厚さは、放電加工電流に依存するが、より平坦な面状態
を与え、加工部周辺の母材(被加工金属2)表面に過度
の熱影響を与えないためには、炭素鋼,低合金鋼,ステ
ンレス鋼,Ni基合金の全てに対して5〜500μmの
範囲にあることが好ましい。
The modified surface of the metal to be machined, which has improved corrosion resistance and stress corrosion cracking resistance obtained by the present invention, is an electric discharge machined alloy layer 7 formed by electric discharge machining, and is used as an electrode for Cr, It is an alloy structure containing the composition of one or more alloys of Ni, Ti, Nb and Ta and the composition of the working fluid. The thickness of this electric discharge machining alloy layer 7 depends on the electric discharge machining current, but in order to give a flatter surface state and not to exert an excessive thermal influence on the surface of the base material (metal 2 to be processed) around the machining portion. Is preferably in the range of 5 to 500 μm with respect to all of carbon steel, low alloy steel, stainless steel and Ni-based alloy.

【0019】放電加工処理後、急冷凝固により得られる
放電加工合金層7中のCr,Ni濃度は、表面改質に伴
う耐食性,耐応力腐食割れ性向上のためには、母材(被
加工金属2)の濃度程度、また、母材組成との連結を維
持するためには過度の濃度上昇は避けるのが好ましい。
特にCrの濃度においては高濃度化によるσ相形成のた
め靭性低下を生じるため、これを防止するためにも上限
が必要である。従って、放電加工合金層7中のCr,N
i量はオーステナイト系ステンレス鋼に対しては母材に
おけるそれぞれの濃度の0.85〜1.3倍好ましくは
1.1〜1.3倍、フェライト系ステンレス鋼に対しては
Crが母材のCr濃度の0.83〜1.5倍好ましくは
1.0〜1.3倍、Ni添加に関してはNi量がSUS
304成分となる8%程度またはそれ以上が好ましい。
Ni基合金に対してはCr量が母材のCr濃度の0.8
3〜1.5倍好ましくは1.1〜1.5倍となるのがよ
い。炭素鋼又は低合金鋼では表面層である放電加工合金
層7をSUS304又は316オーステナイト系ステン
レス鋼組成にするために、放電加工合金層7中の重量で
Cr濃度が17〜19%及びNi濃度が13%以下、あ
るいはCr濃度が9〜12%のものが好ましい。
After the electric discharge machining treatment, the Cr and Ni concentrations in the electric discharge machined alloy layer 7 obtained by rapid solidification are determined by the base material (metal to be processed) in order to improve the corrosion resistance and the stress corrosion cracking resistance accompanying the surface modification. It is preferable to avoid an excessive increase in concentration in order to maintain the degree of concentration of 2) and the connection with the base material composition.
Particularly in the Cr concentration, the toughness is lowered due to the formation of the σ phase due to the increase in the Cr concentration, and therefore an upper limit is necessary to prevent this. Therefore, Cr, N in the electric discharge machining alloy layer 7
The amount of i is 0.85 to 1.3 times, preferably 1.1 to 1.3 times the respective concentrations in the base metal for austenitic stainless steel, and Cr is the base metal for ferritic stainless steel. The Cr concentration is 0.83 to 1.5 times, preferably 1.0 to 1.3 times, and the amount of Ni is SUS.
It is preferably about 8% or more, which is 304 components.
For Ni-based alloys, the Cr content is 0.8 of the Cr concentration of the base metal.
It is 3 to 1.5 times, preferably 1.1 to 1.5 times. In order to make the ED304 or 316 austenitic stainless steel composition of the electric discharge machining alloy layer 7 which is a surface layer in the carbon steel or the low alloy steel, the Cr concentration is 17 to 19% and the Ni concentration is 17% by weight in the weight of the electric discharge machining alloy layer 7. It is preferably 13% or less, or having a Cr concentration of 9 to 12%.

【0020】さらにCr,Ni,Fe,Ti,Nb及び
Taなどの元素からなる放電加工合金層7は耐食性の極
めて良好なアモルファス層も得られる。また微細結晶質
である場合にも急冷凝固による準安定で均一な層となり
耐食性は良好である。
Further, the electric discharge machining alloy layer 7 made of elements such as Cr, Ni, Fe, Ti, Nb and Ta can also provide an amorphous layer having excellent corrosion resistance. Further, even in the case of fine crystalline, it becomes a metastable and uniform layer due to rapid solidification and has good corrosion resistance.

【0021】これまでは、Cr,Ni,Fe,Ti,N
b及びTaの内のいずれか一つあるいは二つ以上の成分
からなる、あるいはそれらを含んだ合金を電極として用
いる例で説明してきたが、電極材料として、硼化チタン
(TiB2),窒化チタン(TiN)含有サイアロン(S
ialon)又は炭化珪素(SiC)等の導電性を有するセ
ラミックス電極を用いることもできる。この導電性セラ
ミックス電極を用い、油あるいは水の加工液中で放電加
工し、初期表面を除去すると同時に被処理材料である被
加工金属の表面に金属の成分元素と電極成分元素とから
なるアモルファス層又は微細結晶層、あるいはセラミッ
クス粒子を分散した層を形成せしめることができる。
放電加工による表面処理では、加工液中で放電させて被
加工金属表面近傍と電極の一部を溶融させ、被加工金属
表面にその成分元素と電極成分元素とからなる急冷凝固
された放電加工合金層7を形成させる処理である。鋼,
ステンレス,インコネル等を被加工金属とし、電極材料
として上記のものを用いて、油あるいは水からなる加工
液中で放電した場合、初期表面を除去すると同時にF
e,Cr,Ni及びC等からなる被加工金属成分と原子
拡散を抑制するB,Si及びC等の電極成分からなる急
冷凝固された放電加工合金層7が表面に形成される。成
分範囲及び放電エネルギーの制御により冷却速度が増加
する場合にはアモルファス層が形成される。 上記合金
層が酸化皮膜が安定なアモルファス組織である場合、表
面処理部の耐食性は著しく向上する。また、上記合金層
がアモルファス化されない場合でも、腐食環境下におい
て形成される酸化皮膜が安定な微細結晶質の急冷組織か
らなる表面処理部の耐食性は非処理材と較べて大きく向
上する。また、合金層が十分な機械的強度も合わせて有
する場合には耐応力腐食割れ性も向上する。 さらに、
上記合金層が充分な硬度を有するアモルファス組織であ
る場合、あるいはアモルファス化されない場合でも、充
分な硬度を有する微細結晶質の急冷組織、あるいはセラ
ミックス粒子が分散する急冷組織となる表面処理部の耐
摩耗性は非処理材と較べて著しく向上する。
So far, Cr, Ni, Fe, Ti, N
Although an example of using an alloy containing one or more of b and Ta or containing them as an electrode has been described, titanium boride (TiB 2 ) and titanium nitride are used as electrode materials. (TiN) -containing sialon (S
It is also possible to use a ceramic electrode having conductivity such as ialon) or silicon carbide (SiC). Using this conductive ceramics electrode, an electric discharge machining is carried out in a working fluid of oil or water to remove the initial surface and at the same time, an amorphous layer composed of metal constituent elements and electrode constituent elements on the surface of the metal to be processed which is the material to be processed. Alternatively, a fine crystal layer or a layer in which ceramic particles are dispersed can be formed.
In the surface treatment by electric discharge machining, the electric discharge machining alloy is formed by discharging in a machining liquid to melt the vicinity of the surface of the metal to be processed and a part of the electrode, and then the rapidly solidified electric discharge alloy consisting of its constituent elements and electrode element elements. This is a process for forming the layer 7. steel,
When stainless steel, Inconel, or the like is used as the metal to be processed and the above-mentioned materials are used as the electrode material, and discharge is performed in a processing liquid consisting of oil or water, the initial surface is removed and F
A rapidly solidified electric discharge machining alloy layer 7 is formed on the surface, which is composed of a metal component to be machined such as e, Cr, Ni and C and an electrode component such as B, Si and C that suppresses atomic diffusion. An amorphous layer is formed when the cooling rate is increased by controlling the component range and the discharge energy. When the alloy layer has an amorphous structure with a stable oxide film, the corrosion resistance of the surface-treated portion is significantly improved. Even when the alloy layer is not amorphized, the corrosion resistance of the surface-treated portion having a stable microcrystalline quenching structure of the oxide film formed in a corrosive environment is significantly improved as compared with the non-treated material. Further, when the alloy layer also has sufficient mechanical strength, the stress corrosion cracking resistance is improved. further,
Even if the alloy layer has an amorphous structure having sufficient hardness, or even if it is not made amorphous, abrasion of the surface treated portion becomes a fine crystalline quenching structure having sufficient hardness or a quenching structure in which ceramic particles are dispersed. The properties are significantly improved compared to the untreated material.

【0022】このように放電加工処理によって形成した
放電加工合金層7と被加工金属2との密着性が不十分で
ある場合、あるいは放電加工合金層7の表面に割れ等の
欠陥がある場合、放電加工合金層7を形成した後にレー
ザ光,電子ビーム,又はTIGアーク等のエネルギー9
を照射して放電加工合金層7及び被加工金属2の一部を
再溶融して欠陥を消失し、かつ被加工金属2と密着した
再溶融表面合金層10を形成することができる。この層
は自己冷却による急冷凝固層であるので、密着性に優
れ、かつ上記のアモルファス層、あるいは均一な微細結
晶質層を再び形成することができる。よって、この再溶
融表面合金層10を形成した部分の耐食性,耐応力腐食
割れ性を向上させることができる。
When the electric discharge machining alloy layer 7 thus formed by the electric discharge machining and the metal 2 to be machined have insufficient adhesion, or when the surface of the electric discharge machining alloy layer 7 has defects such as cracks, After forming the electric discharge machining alloy layer 7, energy 9 such as laser light, electron beam, or TIG arc
The remelted surface alloy layer 10 can be formed by irradiating the above-mentioned material and remelting a part of the electric discharge machining alloy layer 7 and the metal 2 to be processed to eliminate defects and being in close contact with the metal 2 to be processed. Since this layer is a rapidly solidified layer by self-cooling, the above-mentioned amorphous layer or uniform fine crystalline layer having excellent adhesion can be formed again. Therefore, the corrosion resistance and stress corrosion cracking resistance of the portion where the remelted surface alloy layer 10 is formed can be improved.

【0023】本発明は軽水炉炉内構造物である中性子束
計測ハウジング,シュラウド,シュラウドサポート,上
部格子板,炉芯支持板表面及び溶接部において耐食性,
耐応力腐食割れ性の劣化した部分に、油あるいは水の加
工液中で放電加工して、酸化皮膜の付着している初期表
面を除去すると同時に高耐食性を有する放電加工合金層
7、又は再溶融表面合金層10を形成せしめることによ
って、この部分の耐食性,耐応力腐食割れ性を向上さ
せ、軽水炉プラントを長寿命化させるものである。ま
た、沸騰水型軽水炉プラントの稼働温度は約288℃で
あるので、上記のアモルファス層の結晶化あるいは微細
結晶質急冷組織の時効変化の際などに耐食性,耐摩耗性
に影響を及ぼすほどの組織変化は生じず、軽水炉炉内構
造物の特性は大きく向上し、軽水炉プラントの経年的な
耐食性、対応力腐食割れ性の劣化の防止に大きな効果が
ある。
The present invention provides corrosion resistance on the neutron flux measurement housing, the shroud, the shroud support, the upper lattice plate, the surface of the core support plate, and the welded portion which are the internal structures of the light water reactor,
The part where the stress corrosion cracking resistance has deteriorated is subjected to electrical discharge machining in a working fluid of oil or water to remove the initial surface where the oxide film is attached, and at the same time, the electrical discharge machining alloy layer 7 having high corrosion resistance, or remelting. By forming the surface alloy layer 10, the corrosion resistance and the stress corrosion cracking resistance of this portion are improved and the life of the light water reactor plant is extended. In addition, since the operating temperature of the boiling water type light water reactor plant is about 288 ° C., the structure is such that corrosion resistance and wear resistance are affected when the above-mentioned amorphous layer is crystallized or the microcrystalline rapid cooling structure is aged. No change occurs, the characteristics of the internal structure of the light water reactor are greatly improved, and there is a great effect in preventing the deterioration of the corrosion resistance and the corresponding corrosion cracking resistance of the light water reactor plant over time.

【0024】[0024]

【実施例】【Example】

(実施例1)図1は放電加工処理による高耐食性を有す
る放電加工合金化層7を形成する装置の断面図である。
油からなる加工液3の中に電極1と被加工金属2との間
に放電加工処理をするものである。本実施例では、被加
工金属2としてSUS304ステンレス鋼を用い、電極
1としてCr電極を用いて放電加工した結果、約5μm
厚さの均一な放電加工合金層7を形成し、極めて良好な
耐食性が得られている。また同様に、被加工金属2とし
てSUS304ステンレス鋼を用い、電極1としてTi
電極を用いて放電加工した時に形成される放電加工合金
層7についても厚さが約5μmであり、Cr電極の場合
と同様に極めて良好な耐食性が得られている。これらの
放電加工条件は電極極性,電流,パルス時間,休止時
間,加工時間をパラメータとし、表1のように設定した
ものである。
(Embodiment 1) FIG. 1 is a sectional view of an apparatus for forming an electric discharge machining alloyed layer 7 having high corrosion resistance by electric discharge machining.
An electric discharge machining process is performed between an electrode 1 and a metal 2 to be processed in a machining liquid 3 made of oil. In this example, SUS304 stainless steel was used as the metal 2 to be processed, and a Cr electrode was used as the electrode 1, and as a result of electrical discharge machining, the result was about 5 μm.
By forming the electric discharge machining alloy layer 7 having a uniform thickness, excellent corrosion resistance is obtained. Similarly, SUS304 stainless steel is used as the metal 2 to be processed, and Ti is used as the electrode 1.
The electric discharge machined alloy layer 7 formed when electric discharge machining is performed using electrodes also has a thickness of about 5 μm, and extremely good corrosion resistance is obtained as in the case of the Cr electrode. These electric discharge machining conditions are set as shown in Table 1 using the electrode polarity, current, pulse time, pause time, and machining time as parameters.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例2)図2は放電加工処理により形
成した放電加工合金層7を含む表面部をレーザ光,電子
ビーム,又はTIGアーク等のエネルギー9を照射して
放電加工層7及び被加工金属2の一部を再溶融し、自己
冷却による急冷凝固によって再溶融表面合金層10を形
成させる場合の模式図である。放電加工合金層7と被加
工金属2との密着性が不十分である場合、あるいは放電
加工合金層7の表面に割れ等の欠陥がある場合に、加工
トーチ8よりレーザ光,電子ビーム,又はTIGアーク
等のエネルギー9を照射して放電加工合金層7及び被加
工金属2の一部を再溶融して欠陥を消失し、かつ被加工
金属2と密着した再溶融表面合金層10を形成すること
ができる。この層は自己冷却による急冷凝固層であるの
で放電加工合金層7と同様の良好な耐食性,耐応力腐食
割れ性を有する。
(Embodiment 2) FIG. 2 shows that the surface portion including the electric discharge machining alloy layer 7 formed by electric discharge machining is irradiated with energy 9 such as a laser beam, an electron beam, or a TIG arc, and the electric discharge machining layer 7 and the object to be coated. It is a schematic diagram in the case of remelting a part of the processed metal 2 and forming the remelted surface alloy layer 10 by rapid solidification by self-cooling. When the adhesion between the electric discharge machining alloy layer 7 and the metal 2 to be machined is insufficient, or when the surface of the electric discharge machining alloy layer 7 has a defect such as a crack, a laser beam, an electron beam, or Energy 9 such as TIG arc is irradiated to remelt part of the electric discharge machining alloy layer 7 and the metal 2 to be processed to eliminate defects and form a remelted surface alloy layer 10 in close contact with the metal 2 to be processed. be able to. Since this layer is a rapidly solidified layer by self-cooling, it has the same good corrosion resistance and stress corrosion cracking resistance as the electric discharge machining alloy layer 7.

【0027】(実施例3)図3は本発明の応用例とし
て、軽水炉の中性子計測ハウジングのような管状構造物
の内面における耐食性あるいは耐応力腐食割れ性の向上
を目的として実機への放電加工処理をする場合の模式図
である。管状構造物である被加工金属2が圧力容器など
の他の構造物14と溶接された際に、溶接部15の熱影
響によって炉水等の腐食環境に接する管内面が鋭敏化し
た場合、被加工金属2の応力腐食割れ特性が劣化する。
そのような部位表面に対して、実施例1で示したような
放電加工処理によって、放電加工合金層7を形成するこ
とができる。垂直駆動系ロッド13の先端に保持された
回転駆動系部材12に取付けられた放電加工セル11を
垂直と回転方向への駆動によって移動させて、放電加工
合金層7がこの劣化した部位表面に形成されるように放
電加工を繰り返えす。放電加工セル11には実施例1で
示した電極1が配設されており、この電極1と管内面で
ある被加工金属2の隙間を適切に維持しながら炉水を加
工液3として放電加工する。これによって、管内面の劣
化した領域の表面を実施例1で示した耐食性あるいは耐
応力腐食割れ性の良好な放電加工合金層7に改質する。
(Embodiment 3) FIG. 3 shows, as an application example of the present invention, an electric discharge machining treatment to an actual machine for the purpose of improving the corrosion resistance or the stress corrosion cracking resistance on the inner surface of a tubular structure such as a neutron measurement housing of a light water reactor. It is a schematic diagram in the case of performing. When the metal 2 to be processed, which is a tubular structure, is welded to another structure 14 such as a pressure vessel, when the inner surface of the pipe contacting a corrosive environment such as reactor water becomes sensitive due to the thermal effect of the welded portion 15, The stress corrosion cracking property of the processed metal 2 deteriorates.
The electric discharge machining alloy layer 7 can be formed on the surface of such a portion by the electric discharge machining treatment as shown in the first embodiment. The EDM cell 11 attached to the rotary drive system member 12 held at the tip of the vertical drive system rod 13 is moved by driving in the vertical and rotational directions to form an EDM alloy layer 7 on the surface of this deteriorated portion. The electric discharge machining is repeated as described above. The electrode 1 shown in the first embodiment is arranged in the electric discharge machining cell 11, and the electric discharge machining is performed by using the reactor water as the machining liquid 3 while appropriately maintaining the gap between the electrode 1 and the metal 2 to be processed which is the inner surface of the pipe. To do. As a result, the surface of the deteriorated region of the inner surface of the pipe is modified into the electric discharge machining alloy layer 7 having good corrosion resistance or stress corrosion cracking resistance as shown in Example 1.

【0028】(実施例4)図4は本発明の応用例とし
て、軽水炉内のシュラウドのような非管状構造物の耐食
性あるいは耐応力腐食割れ性の向上を目的として実機へ
の放電加工処理をする場合の模式図である。非管状構造
物である被加工金属2の溶接部15の熱影響によって炉
水等の腐食環境に接する構造物が鋭敏化した場合、その
部分の応力腐食割れ特性が劣化する。そのような部位表
面に対して、実施例1に示したような放電加工処理によ
って、放電加工合金層7を形成することができる。ロボ
ットアーム16の先端に取り付けた放電加工セル11を
ロボットアーム16によって移動させて、放電加工合金
層7がこの劣化した部位表面に形成されるように放電加
工を繰り返えす。放電加工セル11には実施例1で示し
た電極1が配設されており、この電極1と被加工金属2
の隙間を適切に維持しながら炉水を加工液3として放電
加工する。これによって、構造物の劣化した領域の表面
を実施例1で示した耐食性あるいは耐応力腐食割れ性の
良好な放電加工合金層7に改質する。
(Embodiment 4) FIG. 4 is an application example of the present invention, in which electric discharge machining is applied to an actual machine for the purpose of improving the corrosion resistance or stress corrosion cracking resistance of a non-tubular structure such as a shroud in a light water reactor. It is a schematic diagram in a case. When a structure in contact with a corrosive environment such as reactor water is sensitized by the heat effect of the welded portion 15 of the metal 2 to be processed, which is a non-tubular structure, the stress corrosion cracking property of that portion deteriorates. The electric discharge machining alloy layer 7 can be formed on the surface of such a portion by the electric discharge machining treatment as shown in the first embodiment. The electric discharge machining cell 11 attached to the tip of the robot arm 16 is moved by the robot arm 16, and the electric discharge machining is repeated so that the electric discharge machining alloy layer 7 is formed on the surface of the deteriorated portion. The electric discharge machining cell 11 is provided with the electrode 1 shown in the first embodiment.
The electric discharge machining is performed by using the reactor water as the machining fluid 3 while properly maintaining the gap. As a result, the surface of the deteriorated region of the structure is modified into the electrical discharge machined alloy layer 7 having good corrosion resistance or stress corrosion cracking resistance as shown in Example 1.

【0029】なお、実施例3又は4において、放電加工
層7と被加工金属2との密着性が不十分である場合、あ
るいは放電加工合金層7の表面に割れ等の欠陥がある場
合には、実施例2に示すようにレーザ光,電子ビーム,
又はTIGアーク等のエネルギー9を照射して放電加工
合金層7及び被加工金属2の一部を再溶融して欠陥を消
失し、かつ被加工金属2と密着した再溶融表面合金層1
0を形成することができる。この層は自己冷却による急
冷凝固層であるので放電加工合金層7と同様の良好な耐
食性,耐応力腐食割れ性を有する。
In Example 3 or 4, when the electric discharge machining layer 7 and the metal 2 to be machined have insufficient adhesion or when the surface of the electric discharge machining alloy layer 7 has defects such as cracks. , A laser beam, an electron beam,
Alternatively, a remelted surface alloy layer 1 which is irradiated with energy 9 such as a TIG arc to remelt part of the electric discharge machining alloy layer 7 and the metal 2 to be processed to eliminate defects and which is in close contact with the metal 2 to be processed
0 can be formed. Since this layer is a rapidly solidified layer by self-cooling, it has the same good corrosion resistance and stress corrosion cracking resistance as the electric discharge machining alloy layer 7.

【0030】(実施例5)実施例1と同様に被加工金属
2とTiB2,TiN含有サイアロン(Sialon),あるいは
SiC等の導電性セラミックス電極1を、電極1と被加工
金属2の間の距離が適正になるように設置し、表2の条
件で放電加工する。電極1の一部が放電5のエネルギー
によって溶融し、溶融合金粒6となって、同じく放電5
のエネルギーによって溶融した被加工金属2の表面部に
混入し、放電を止めた後、被加工金属2の表面部に金属
成分元素と電極成分元素とからなる放電加工合金層7を
形成する。
(Embodiment 5) As in Embodiment 1, the metal to be processed 2 and the conductive ceramics electrode 1 such as TiB 2 , TiN-containing Sialon or SiC is placed between the electrode 1 and the metal 2 to be processed. It is installed so that the distance is appropriate, and electric discharge machining is performed under the conditions shown in Table 2. Part of the electrode 1 is melted by the energy of the discharge 5 and becomes molten alloy particles 6, and the discharge 5
After being mixed into the surface portion of the metal to be processed 2 melted by the energy of 1 to stop the discharge, the electric discharge machining alloy layer 7 made of a metal component element and an electrode component element is formed on the surface portion of the metal 2 to be processed.

【0031】[0031]

【表2】 [Table 2]

【0032】上記放電加工合金層7の酸化皮膜が安定な
アモルファス組織である場合、表面処理部の耐酸性,耐
食性は著しく向上し、合金層7が十分な機械的強度も併
せて有する場合には耐応力腐食割れ性も向上する。ま
た、上記合金層7がアモルファス化されない場合でも、
酸化皮膜が安定な微細結晶質の急冷組織から構成されて
いるか、あるいはセラミックス粒子が分散する急冷組織
から構成されておれば、表面処理部の耐酸性,耐食性は
非処理材と較べて大きく向上し、合金層7が十分な機械
的強度も合わせて有する場合には耐応力腐食割れ性も向
上する。 サイアロン(Sialon)電極を用いた放電加工に
よって形成された放電加工合金層7の腐食試験後の断面
のSEM写真の結果、被加工金属2の表面に約5μm厚
さの均一な放電加工合金層7が形成されており、王水に
30分間浸漬させた後でも腐食損傷をいささかも受けて
いないことがわかった。またTiB2電極を用いた放電
加工によって形成された放電加工合金層7の腐食試験後
の断面のSEM写真の結果でも、被加工金属2の表面に
同様の厚さの均一な放電加工合金層7が形成されてお
り、王水に30分間浸漬させた後でも腐食損傷をいささ
かも受けてないことがわかった。
When the oxide film of the electric discharge machining alloy layer 7 has a stable amorphous structure, the acid resistance and corrosion resistance of the surface-treated portion are remarkably improved, and when the alloy layer 7 also has sufficient mechanical strength. Stress corrosion cracking resistance is also improved. Further, even when the alloy layer 7 is not amorphized,
If the oxide film is composed of a stable, microcrystalline, quenched structure or a structure in which ceramic particles are dispersed, the acid and corrosion resistance of the surface-treated part will be greatly improved compared to the untreated material. When the alloy layer 7 also has sufficient mechanical strength, the stress corrosion cracking resistance is improved. As a result of the SEM photograph of the cross section of the electric discharge machined alloy layer 7 formed by electric discharge machining using a Sialon electrode after the corrosion test, a uniform electric discharge machined alloy layer 7 having a thickness of about 5 μm was formed on the surface of the metal 2 to be processed. It was found that no corrosion damage was observed even after immersion in aqua regia for 30 minutes. In addition, the result of the SEM photograph of the section of the electric discharge machined alloy layer 7 formed by electric discharge machining using the TiB 2 electrode after the corrosion test also shows that the surface of the metal 2 to be machined has a uniform electric discharge machined alloy layer 7 of the same thickness. It was found that no corrosion damage was observed even after immersion in aqua regia for 30 minutes.

【0033】(実施例6)図2に示すものと同様に、放
電加工合金層7と被加工金属2との密着性が不十分であ
る場合、あるいは放電加工合金層7の表面に割れ等の欠
陥がある場合には、被加工金属2の表面にセラミックス
電極を用いて放電加工処理により形成した放電加工合金
層7を加工トーチ8よりレーザ光,電子ビーム,又はT
IGアーク等のエネルギー9を照射して放電加工合金層
7及び被加工金属2の一部を再溶融して欠陥を消失し、
自己冷却による急冷凝固した再溶融表面合金層10を形
成することができる。この層10は自己冷却による急冷
凝固層であるので上記のアモルファス層、あるいは均一
な微細結晶質層を再び形成させることができる。
(Embodiment 6) Similar to that shown in FIG. 2, when the electric discharge machining alloy layer 7 and the metal 2 to be machined have insufficient adhesion, or the surface of the electric discharge machining alloy layer 7 is cracked or the like. When there is a defect, an electric discharge machining alloy layer 7 formed by electric discharge machining using a ceramic electrode on the surface of the metal 2 to be processed is processed by a machining torch 8 with a laser beam, an electron beam, or a T beam.
By irradiating energy 9 such as IG arc, the electric discharge machining alloy layer 7 and a part of the metal 2 to be processed are remelted to eliminate defects,
The remelted surface alloy layer 10 that is rapidly solidified by self-cooling can be formed. Since this layer 10 is a rapidly solidified layer by self-cooling, the above-mentioned amorphous layer or uniform fine crystalline layer can be formed again.

【0034】(実施例7)図3に示す本発明の応用例と
して、導電性セラミックス電極を用いて放電加工合金層
7を形成するものである。軽水炉の中性子束計測ハウジ
ングのような管状構造物の内面における耐食性あるいは
耐応力腐食割れ性の向上を目的とする。管状構造物であ
る被加工金属2が圧力容器などの他の構造物14と溶接
された際に、溶接部15の熱影響によって炉水等の腐食
環境に接する管内面が鋭敏化した場合、部材の応力腐食
割れ特性が劣化する。その様な部位表面に対して、放電
加工によって、実施例5で示したような、アモルファス
組織、微細結晶質、あるいはセラミックス粒子が分散す
る急冷組織からなる放電加工合金層7を形成することが
できる。放電加工セル11を垂直と回転方向に駆動させ
て、放電加工合金層7が劣化した部位表面に形成される
ように放電加工を繰り返えす。このようにして、管内面
の劣化した領域の表面を実施例5で示した耐食性あるい
は耐応力腐清割れ性の良好なアルモファス組織、微細結
晶質組織、あるいはセラミックス粒子が分散する急冷組
織からなる放電加工合金層7に改質する。
(Embodiment 7) As an application example of the present invention shown in FIG. 3, an electric discharge machining alloy layer 7 is formed using a conductive ceramic electrode. The purpose is to improve the corrosion resistance or stress corrosion cracking resistance on the inner surface of a tubular structure such as a neutron flux measurement housing of a light water reactor. When the metal 2 to be processed, which is a tubular structure, is welded to another structure 14 such as a pressure vessel, when the inner surface of the pipe contacting a corrosive environment such as reactor water becomes sensitive due to the thermal effect of the welded portion 15, The stress corrosion cracking characteristics of are deteriorated. By performing electric discharge machining on the surface of such a portion, an electric discharge machined alloy layer 7 having an amorphous structure, a fine crystalline structure, or a quenched structure in which ceramic particles are dispersed can be formed as shown in Example 5. . The electric discharge machining cell 11 is driven in the vertical and rotational directions, and the electric discharge machining is repeated so that the electric discharge machining alloy layer 7 is formed on the surface of the deteriorated portion. Thus, the surface of the deteriorated region on the inner surface of the tube is formed of an alumophus structure having a good corrosion resistance or a stress decay cracking resistance, a fine crystalline structure, or a rapidly cooling structure in which ceramic particles are dispersed as shown in Example 5. The work alloy layer 7 is modified.

【0035】プラントの経年劣化によって耐摩耗性の劣
化した構造物の表面に対しても上記と同様の加工によっ
て耐摩耗性の良好なアルモファス組織、微細結晶質組
織、あるいはセラミックス粒子が分散する急冷組織から
なる放電加工合金層7を形成することができる。
Even on the surface of the structure whose wear resistance has deteriorated due to aging of the plant, by the same processing as described above, an alumofus structure, a fine crystalline structure, or a rapidly cooled structure in which ceramic particles are dispersed is obtained. It is possible to form the electric discharge machining alloy layer 7 made of.

【0036】沸騰水型軽水炉プラントの稼働温度は約2
88℃であるので、上記のアモルファス層の結晶化ある
いは微細結晶質の急冷組織の時効変化などの際に耐食
性,耐応力腐食割れ性及び耐摩耗性に影響を及ぼすほど
の組織変化は生じない。よって、炉内構造物の上記特性
は大きく向上し、軽水炉プラントの経年劣化の防止に大
きな効果がある。
The operating temperature of the boiling water reactor is about 2
Since the temperature is 88 ° C., when the amorphous layer is crystallized or the microcrystalline quenching structure is changed by aging, the structure does not change enough to affect the corrosion resistance, the stress corrosion cracking resistance and the wear resistance. Therefore, the above-mentioned characteristics of the reactor internal structure are greatly improved, and there is a great effect in preventing aged deterioration of the light water reactor plant.

【0037】(実施例8)図4に示す本発明の応用例と
して、実施例5に示す方法よって、軽水炉のシュラウ
ド,シュラウドサポート,上部格子板,及び炉芯支持板
のような非管状構造物の表面における耐食性あるいは耐
応力腐食割れ性の向上を目的とする例を示す。非管状構
造物である被加工金属2の溶接部15の熱影響によって
炉水等の腐食環境に接する構造物が鋭敏化した場合、あ
るいは中性子照射の影響によって構造物の応力腐食割れ
特性が劣化した場合には、そのような部位表面に対し
て、実施例5で示したような放電加工によって、アモル
ファス組織、微細結晶質組織、あるいはセラミックス粒
子が分散する急冷組織からなる放電加工合金層7を形成
することができる。ロボットアーム16の先端に取り付
けた放電加工セル11をロボットアーム16によって移
動させて、放電加工合金層7がこの部位表面に形成され
るように放電加工を繰り返す。このようにして、構造物
の劣化した領域の表面を実施例5で示した耐食性あるい
は耐応力腐食割れ性の良好なアモルファス組織、微細結
晶質組織、あるいはセラミックス粒子が分散する急冷組
織からなる放電加工合金層7に改質する。
(Embodiment 8) As an application example of the present invention shown in FIG. 4, a non-tubular structure such as a shroud, a shroud support, an upper grid plate, and a core support plate of a light water reactor is manufactured by the method shown in Embodiment 5. An example for the purpose of improving the corrosion resistance or the stress corrosion cracking resistance on the surface of the is shown. When the structure in contact with the corrosive environment such as reactor water is sensitized by the thermal effect of the welded portion 15 of the metal 2 to be processed, which is a non-tubular structure, or the effect of neutron irradiation deteriorates the stress corrosion cracking property of the structure. In this case, the electric discharge machining alloy layer 7 having an amorphous structure, a fine crystalline structure, or a quenched structure in which ceramic particles are dispersed is formed on the surface of such a portion by the electric discharge machining as shown in Example 5. can do. The electric discharge machining cell 11 attached to the tip of the robot arm 16 is moved by the robot arm 16, and the electric discharge machining is repeated so that the electric discharge machining alloy layer 7 is formed on the surface of this portion. In this way, the surface of the deteriorated region of the structure is subjected to electrical discharge machining, which has an amorphous structure, a fine crystalline structure, or a quenched structure in which ceramic particles are dispersed, which has good corrosion resistance or stress corrosion cracking resistance as shown in Example 5. The alloy layer 7 is modified.

【0038】また、プラントの経年劣化によって耐摩耗
性の劣化した構造物の表面に対しても上記と同様の加工
によって耐摩耗性の良好なアモルファス組織、微細結晶
質組織、あるいはセラミックス粒子が分散する急冷組織
からなる放電加工合金層7を形成することができる。
Further, even on the surface of the structure whose wear resistance has deteriorated due to aging of the plant, an amorphous structure, a fine crystalline structure or ceramic particles having good wear resistance are dispersed by the same processing as above. It is possible to form the electric discharge machining alloy layer 7 having a quenched structure.

【0039】なお、実施例7又は8において、放電加工
合金層7と被加工金属2との密着性が不十分である場
合、あるいは放電加工合金層7の表面に割れ等の欠陥が
ある場合には、実施例6に示すようにして再溶融表面合
金層10を形成してもよい。
In Example 7 or 8, when the adhesion between the electric discharge machining alloy layer 7 and the metal 2 to be processed is insufficient, or when the surface of the electric discharge machining alloy layer 7 has a defect such as a crack. May form the remelted surface alloy layer 10 as shown in Example 6.

【0040】[0040]

【発明の効果】本発明によれば金属材料表面に耐食性,
耐摩耗性等の極めて優れた合金層を付与することができ
るので、このような特性を要求される材料や部品の性質
向上に大きな効果がある。また、軽水炉炉内構造物に対
する合金層形成化によって表面改質が可能であり、炉内
構造物の耐食性,耐応力腐食割れ性、及び耐摩耗性を向
上させることができるので、軽水炉の事故防止あるいは
長寿命化に大きな効果がある。
According to the present invention, the metal material surface has corrosion resistance,
Since an alloy layer having extremely excellent wear resistance and the like can be provided, it has a great effect on improving the properties of materials and parts that require such characteristics. In addition, surface modification is possible by forming an alloy layer on the internal structure of a light water reactor, which can improve the corrosion resistance, stress corrosion cracking resistance, and wear resistance of the internal structure of the light water reactor. Alternatively, it has a great effect on extending the life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による耐食性表面処理方法を実施する装
置の模式図を示す。
FIG. 1 shows a schematic view of an apparatus for carrying out a corrosion resistant surface treatment method according to the present invention.

【図2】本発明による耐食性表面処理方法により形成し
た放電加工合金層を再溶融し、自己冷却による急冷凝固
した再溶融表面合金層を形成する模式図を示す。
FIG. 2 shows a schematic diagram of remelting an electric discharge machining alloy layer formed by a corrosion resistant surface treatment method according to the present invention to form a remelted surface alloy layer that is rapidly solidified by self-cooling.

【図3】本発明の応用例として、軽水炉の中性子束計測
ハウジングのような管状構造物の内面における耐食性あ
るいは耐応力腐食割れ性の向上を目的として実機へ放電
加工処理をする場合の模式図を示す。
[FIG. 3] As an application example of the present invention, a schematic diagram in the case of performing electrical discharge machining on an actual machine for the purpose of improving corrosion resistance or stress corrosion cracking resistance on the inner surface of a tubular structure such as a neutron flux measurement housing of a light water reactor Show.

【図4】本発明の応用例として、軽水炉のシュラウドの
ような非管状構造物の表面における耐食性あるいは耐応
力腐食割れ性の向上を目的として実機へ放電加工処理を
する場合の模式図を示す。
FIG. 4 is a schematic diagram showing, as an application example of the present invention, a case where an electric discharge machining process is applied to an actual machine for the purpose of improving corrosion resistance or stress corrosion cracking resistance on the surface of a non-tubular structure such as a shroud of a light water reactor.

【符号の説明】[Explanation of symbols]

1 電極 2 被加工金属 3 加工液 4 加工槽 5 放電 6 溶融合金粒 7 放電加工合金層 8 加工トーチ 9 エネルギービーム 10 再溶融表面合金層 11 放電加工セル 12 回転駆動系部材 13 垂直駆動系ロッド 14 軽水炉圧力容器などの構造物 15 溶接部 16 ロボットアーム DESCRIPTION OF SYMBOLS 1 electrode 2 metal to be processed 3 machining fluid 4 machining tank 5 discharge 6 molten alloy particles 7 electrical discharge machining alloy layer 8 machining torch 9 energy beam 10 remelting surface alloy layer 11 electrical discharge machining cell 12 rotary drive system member 13 vertical drive system rod 14 Structures such as light water reactor pressure vessel 15 Welded portion 16 Robot arm

───────────────────────────────────────────────────── フロントページの続き (72)発明者 泉谷 雅清 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 深井 昌 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 安斎 英哉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 福沢 康 新潟県長岡市深沢1769番地の1 (72)発明者 毛利 尚武 愛知県名古屋市天白区八事石坂661番地 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masayoshi Izumiya 7-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Masa Fukai 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Incorporated company Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Hideya Anzai 1-1-1 Omika-cho, Hitachi City, Ibaraki Prefecture Incorporated Hitachi Ltd. Hitachi Research Institute (72) Inventor Yasushi Fukuzawa Fukasawa Nagaoka City, Niigata Prefecture 1 of 1769 (72) Inventor Naotake Mori 661 Yagoto Ishizaka Tenpaku-ku Nagoya City Aichi Prefecture

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 炭素鋼,低合金鋼,オーステナイト系ス
テンレス鋼若しくはフェライト系ステンレス鋼等の鉄
(Fe)基合金、ニッケル(Ni)基合金、又はコバル
ト(Co)基合金からなる部材の軽水炉内構造物あるい
は中性子照射を受ける前記部材からなる構造物の表面
を、高耐食性元素を有する電極を用い、油中あるいは水
中にて、放電加工処理し、前記部材の初期表面の除去と
この表面に耐食性に優れた放電加工合金層を形成するこ
とを特徴とする高耐食性表面処理方法。
1. A light water reactor of a member made of an iron (Fe) based alloy such as carbon steel, low alloy steel, austenitic stainless steel or ferritic stainless steel, nickel (Ni) based alloy, or cobalt (Co) based alloy. The surface of the structure or the structure consisting of the member to be irradiated with neutrons is subjected to electric discharge machining in oil or water using an electrode having a high corrosion resistance element, and the initial surface of the member is removed and the surface is resistant to corrosion. A highly corrosion-resistant surface treatment method, which comprises forming an electric discharge machining alloy layer excellent in heat resistance.
【請求項2】 請求項1において、前記軽水炉炉内構造
物として中性子束計測ハウジング,シュラウド,シュラ
ウドサポート,上部格子板,炉芯支持板表面等の溶接
部、熱影響部、あるいは中性子照射を受ける部分である
ことを特徴とする高耐食性表面処理方法。
2. The neutron flux measurement housing, shroud, shroud support, upper lattice plate, surface of a core support plate, etc., welded portion, heat-affected zone, or neutron irradiation is received as the internal structure of the light water reactor according to claim 1. A high-corrosion-resistant surface treatment method, characterized in that it is a part.
【請求項3】 請求項1又は2において、高耐食性元素
を有する電極として、クロム(Cr)、ニッケル(N
i)、鉄(Fe)、チタン(Ti)、ニオブ(Nb)及
びタンタル(Ta)の内いずれか一つあるいは二つ以上
の成分からなる金属、あるいはそれらを含んだ合金を用
い、放電加工合金層として、Cr,Ni,Fe,Ti,
Nb及びTaの内いずれか一つあるいは二つ以上の成分
を含有する合金層を形成することを特徴とする高耐食性
表面処理方法。
3. The electrode according to claim 1 or 2, wherein the electrode having a high corrosion resistance element is chromium (Cr) or nickel (N).
i), iron (Fe), titanium (Ti), niobium (Nb) and tantalum (Ta), a metal composed of one or more components, or an alloy containing them. As layers, Cr, Ni, Fe, Ti,
A surface treatment method with high corrosion resistance, which comprises forming an alloy layer containing one or more components of Nb and Ta.
【請求項4】 請求項1乃至3のいずれかにおいて、放
電加工合金層の厚さとして、被処理対象部材の表面に5
〜500μmの範囲の合金層を形成することを特徴とす
る高耐食性表面処理方法。
4. The electric discharge machining alloy layer according to claim 1, which has a thickness of 5 on the surface of the member to be treated.
A method for high-corrosion-resistant surface treatment, which comprises forming an alloy layer in the range of ˜500 μm.
【請求項5】 請求項3において、前記部材がオーステ
ナイト系ステンレス鋼の場合、その表面に重量でCr,
Ni濃度が母材のそれぞれの濃度の0.85〜1.3倍の
範囲であり、かつ、加工液中の炭素,酸素及び窒素原子
をTi,NbあるいはTaで固定したそれらの化合物及
び2%以下の固溶Ti,NbあるいはTaを含有し、厚
さが5〜500μmの範囲の放電加工合金層を形成する
ことを特徴とする高耐食性表面処理方法。
5. The material according to claim 3, wherein when the member is austenitic stainless steel, the surface thereof contains Cr,
Ni concentration is in the range of 0.85 to 1.3 times each concentration of the base material, and those compounds in which carbon, oxygen and nitrogen atoms in the working fluid are fixed by Ti, Nb or Ta and 2% A method for high-corrosion-resistant surface treatment, which comprises forming an electric discharge machining alloy layer containing the following solid solution Ti, Nb or Ta and having a thickness in the range of 5 to 500 μm.
【請求項6】 請求項3において、前記部材が重量でC
rを12〜18%及びNiを2%以下含むフェライト系
ステンレス鋼の場合、その表面に重量でCr濃度が母材
の濃度の0.83〜1.3倍の範囲、あるいはそのCr濃
度に加えてNi濃度が8%以上の範囲であり、かつ、加
工液中の炭素,酸素及び窒素原子をTi,Nbあるいは
Taで固定したそれらの化合物及び2%以下の固溶T
i,NbあるいはTaを含有し、厚さが5〜500μm
の範囲であり、フェライト相あるいはNi含有のγ相の
いずれかの放電加工合金層を形成することを特徴とする
高耐食性表面処理方法。
6. The member according to claim 3, wherein the member is C by weight.
In the case of ferritic stainless steel containing r of 12 to 18% and Ni of 2% or less, the Cr concentration on the surface thereof is in the range of 0.83 to 1.3 times the concentration of the base metal, or in addition to the Cr concentration. And the Ni concentration is in the range of 8% or more, and those compounds in which carbon, oxygen and nitrogen atoms in the working fluid are fixed by Ti, Nb or Ta and solid solution T of 2% or less.
Contains i, Nb or Ta and has a thickness of 5 to 500 μm
And a surface treatment method with high corrosion resistance, which comprises forming an electric discharge machining alloy layer of either a ferrite phase or a γ phase containing Ni.
【請求項7】 請求項3において、前記部材が重量でC
rを15〜23%,Feを2.5〜37%,及びMoを
16%以下含むNi基合金の場合、その表面に重量でC
r,Ni濃度が母材のそれぞれの濃度の0.83〜1.5
倍の範囲であり、かつ、加工液中の炭素,酸素及び窒素
原子をTi,NbあるいはTaで固定したそれらの化合
物及び2%以下の固溶Ti,NbあるいはTaを含有
し、厚さが5〜500μmの範囲であり、γ単相あるい
はγとγ´の混相のいずれかの放電加工合金層を形成す
ることを特徴とする高耐食性表面処理方法。
7. The member according to claim 3, wherein the member is C by weight.
In the case of a Ni-based alloy containing 15 to 23% r, 2.5 to 37% Fe, and 16% or less Mo, the surface of the Ni-based alloy contains C by weight.
r and Ni concentrations are 0.83 to 1.5 of the respective concentrations of the base material.
It is in the double range and contains those compounds in which the carbon, oxygen and nitrogen atoms in the working fluid are fixed with Ti, Nb or Ta, and contains 2% or less of solid solution Ti, Nb or Ta, and has a thickness of 5 To 500 μm, and a high corrosion resistance surface treatment method is characterized by forming an electrical discharge machined alloy layer of either γ single phase or mixed phase of γ and γ ′.
【請求項8】 請求項3において、前記部材が炭素鋼又
は低合金鋼の場合、その表面に重量でCr濃度が9%〜
12%、あるいはCr濃度が17%〜19%及びNi濃
度が13%以下の範囲であり、かつ、加工液中の炭素,
酸素及び窒素原子をTi,NbあるいはTaで固定した
それらの化合物及び2%以下の固溶Ti,Nbあるいは
Taを含有し、厚さが5〜500μmの範囲の放電加工
合金層を形成することを特徴とする高耐食性表面処理方
法。
8. The carbon material according to claim 3, wherein when the member is carbon steel or low alloy steel, the surface thereof has a Cr concentration of 9% to 9% by weight.
12%, or a Cr concentration of 17% to 19% and a Ni concentration of 13% or less, and carbon in the working liquid,
Forming an electric discharge machine alloy layer containing those compounds in which oxygen and nitrogen atoms are fixed by Ti, Nb or Ta and solid solution Ti, Nb or Ta of 2% or less and having a thickness of 5 to 500 μm. Features a method of surface treatment with high corrosion resistance.
【請求項9】 炭素鋼,低合金鋼,オーステナイト系ス
テンレス鋼若しくはフェライト系ステンレス鋼等の鉄
(Fe)基合金、ニッケル(Ni)基合金、又はコバル
ト(Co)基合金からなる部材の軽水炉内構造物あるい
は中性子照射を受ける前記部材からなる構造物の表面
を、導電性セラミックス電極を用いて、油中あるいは水
中にて、放電加工処理し、初期表面を除去すると同時に
表面に前記部材の構成成分元素と電極成分元素とからな
るアモルファス層又は微細結晶質層、あるいはセラミッ
クス粒子が分散した層からなる放電加工合金層を形成す
ることを特徴とする高耐食性表面処理方法。
9. A light water reactor in which a member made of iron (Fe) -based alloy such as carbon steel, low alloy steel, austenitic stainless steel or ferritic stainless steel, nickel (Ni) based alloy or cobalt (Co) based alloy is used. The surface of the structure or the structure consisting of the member to be irradiated with neutrons is subjected to electric discharge machining in oil or water using a conductive ceramic electrode to remove the initial surface and at the same time the constituent components of the member on the surface. A method for high-corrosion-resistant surface treatment, which comprises forming an amorphous layer or a fine crystalline layer composed of an element and an electrode component element, or an electric discharge machining alloy layer composed of a layer in which ceramic particles are dispersed.
【請求項10】 請求項9において、前記部材が軽水炉
炉内構造物である中性子束計測ハウジング,シュラウ
ド,シュラウドサポート,上部格子板,炉芯支持板表面
等の溶接部、熱影響部、あるいは中性子照射を受ける部
分であることを特徴とする高耐食性表面処理方法。
10. The welded portion of the neutron flux measurement housing, the shroud, the shroud support, the upper lattice plate, the core support plate surface, etc., in which the member is an internal structure of a light water reactor, a heat-affected zone, or neutrons. A method for surface treatment with high corrosion resistance, characterized in that it is a portion to be irradiated.
【請求項11】 請求項9又は10において、導電性セ
ラミックス電極として、硼化チタン(TiB2)、窒化
チタン(TiN)含有のサイアロン(Sialon)あるいは
炭化珪素(SiC)を用いることを特徴とする高耐食性
表面処理方法。
11. The conductive ceramic electrode according to claim 9, wherein titanium boride (TiB 2 ), titanium nitride (TiN) -containing sialon (Sialon) or silicon carbide (SiC) is used. High corrosion resistance surface treatment method.
【請求項12】 請求項1乃至11のいずれかにおい
て、放電加工処理によって放電加工合金層を形成した
後、レーザ光,電子ビーム,又はTIGアーク等のエネ
ルギーを照射して、放電加工合金層と被処理対象部材で
ある被加工金属の一部を再溶融させた後、急冷凝固させ
て再溶融表面合金層を形成することを特徴とする高耐食
性表面処理方法。
12. The electric discharge machining alloy layer according to claim 1, wherein after the electric discharge machining alloy layer is formed by an electric discharge machining treatment, energy such as a laser beam, an electron beam or a TIG arc is irradiated to form the electric discharge machining alloy layer. A method for high-corrosion-resistant surface treatment, which comprises remelting a part of a metal to be processed, which is a member to be processed, followed by rapid solidification to form a remelted surface alloy layer.
JP33694492A 1992-12-17 1992-12-17 High corrosion resisting surface finishing method Pending JPH06182626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33694492A JPH06182626A (en) 1992-12-17 1992-12-17 High corrosion resisting surface finishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33694492A JPH06182626A (en) 1992-12-17 1992-12-17 High corrosion resisting surface finishing method

Publications (1)

Publication Number Publication Date
JPH06182626A true JPH06182626A (en) 1994-07-05

Family

ID=18304069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33694492A Pending JPH06182626A (en) 1992-12-17 1992-12-17 High corrosion resisting surface finishing method

Country Status (1)

Country Link
JP (1) JPH06182626A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919829A (en) * 1995-07-04 1997-01-21 Mitsubishi Electric Corp Method and device for surface processing by electric discharge machining
WO2000006330A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die for drawing/extruding and method for treating surface of die for drawing/extruding
WO2000006331A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Press die and method for treating surface of press die
WO2000006332A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die and surface treating method for die
US6086684A (en) * 1997-06-04 2000-07-11 Japan Science And Technology Corporation Electric discharge surface treating method and apparatus
WO2001024961A1 (en) * 1999-09-30 2001-04-12 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treating and production method thereof and discharge surface treating method
WO2001051240A1 (en) * 2000-01-11 2001-07-19 Mitsubishi Denki Kabushiki Kaisha Power supply for discharge surface treatment and discharge surface treatment method
US6314778B1 (en) 1998-03-18 2001-11-13 Mitsubishi Denki Kabushiki Kaisha Rolling die and surface processing method for rolling die
US6617544B1 (en) 2000-05-19 2003-09-09 Mitsubishi Denki Kabushiki Kaisha Control apparatus for a three-dimensional laser working machine and three-dimensional laser working machine
US6821579B2 (en) 1998-11-13 2004-11-23 Mitsubishi Denki Kabushiki Kaisha Surface treatment method using electric discharge, and an electrode for the surface treatment method
JP2007016285A (en) * 2005-07-08 2007-01-25 Mitsubishi Electric Corp Film forming method and method for producing work having formed film
US7537808B2 (en) * 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
CN103920945A (en) * 2014-04-01 2014-07-16 北京冶科纳米科技有限公司 Electric discharge wire cutting method for niobium pentoxide target material blank
US9187831B2 (en) 2002-09-24 2015-11-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919829A (en) * 1995-07-04 1997-01-21 Mitsubishi Electric Corp Method and device for surface processing by electric discharge machining
US6086684A (en) * 1997-06-04 2000-07-11 Japan Science And Technology Corporation Electric discharge surface treating method and apparatus
US6314778B1 (en) 1998-03-18 2001-11-13 Mitsubishi Denki Kabushiki Kaisha Rolling die and surface processing method for rolling die
WO2000006330A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die for drawing/extruding and method for treating surface of die for drawing/extruding
WO2000006331A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Press die and method for treating surface of press die
WO2000006332A1 (en) * 1998-07-31 2000-02-10 Mitsubishi Denki Kabushiki Kaisha Die and surface treating method for die
DE19883017B4 (en) * 1998-11-13 2007-09-27 Mitsubishi Denki K.K. Discharge surface treating method comprises generating a pulsating discharge between an object to be surface treated and a discharge electrode containing a corrosion resistant material, e.g. chromium, in a working fluid
US6821579B2 (en) 1998-11-13 2004-11-23 Mitsubishi Denki Kabushiki Kaisha Surface treatment method using electric discharge, and an electrode for the surface treatment method
WO2001024961A1 (en) * 1999-09-30 2001-04-12 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treating and production method thereof and discharge surface treating method
WO2001051240A1 (en) * 2000-01-11 2001-07-19 Mitsubishi Denki Kabushiki Kaisha Power supply for discharge surface treatment and discharge surface treatment method
US6501232B1 (en) 2000-01-11 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Electric power unit for electric discharge surface treatment and method of electric discharge surface treatment
US6617544B1 (en) 2000-05-19 2003-09-09 Mitsubishi Denki Kabushiki Kaisha Control apparatus for a three-dimensional laser working machine and three-dimensional laser working machine
US7537808B2 (en) * 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US8377339B2 (en) 2002-07-30 2013-02-19 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
US9187831B2 (en) 2002-09-24 2015-11-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
JP2007016285A (en) * 2005-07-08 2007-01-25 Mitsubishi Electric Corp Film forming method and method for producing work having formed film
CN103920945A (en) * 2014-04-01 2014-07-16 北京冶科纳米科技有限公司 Electric discharge wire cutting method for niobium pentoxide target material blank

Similar Documents

Publication Publication Date Title
JPH06182626A (en) High corrosion resisting surface finishing method
Nabhani et al. Corrosion study of laser cladded Ti-6Al-4V alloy in different corrosive environments
Sathiya et al. Microstructural characteristics on bead on plate welding of AISI 904 L super austenitic stainless steel using gas metal arc welding process
Yu et al. Effects of post-weld heat treatment on microstructure and mechanical properties of laser welds in GH3535 superalloy
Wahid et al. Corrosion of weldments
Zhao et al. The effect of Ni201 transition layer on the corrosion, wear and synergetic cavitation erosion-corrosion behavior of CMT-Monel K500 coating
Guo et al. Influence of process parameters on surface properties and corrosion resistasnce of Inconel 625 coating prepared by laser cladding
Pütz et al. Microstructure and corrosion behavior of functionally graded wire arc additive manufactured steel combinations
Tiziani et al. Laser stellite coatings on austenitic stainless steels
RU2418074C1 (en) Procedure for strengthening items out of metal materials for production of nano structured surface layers
SL et al. Microstructual study of the dissimilar joints of alloy 690 and SUS 304L stainless steel
Singh et al. Electrochemical corrosion behavior and microstructural characteristics of electron beam welded UNS S32205 duplex stainless steel
Gregori et al. Welding and deposition of nickel superalloys 718, waspaloy and single crystal alloy CMSX-10
Taheri et al. Investigation of melting rate in welding of IN738 Nickel-based superalloy by Nd: YAG pulsed-laser method
Chu et al. Microstructure and Corrosion Behavior of Ni-Cr-Mo Nickel-based Alloy Weld
Kaul et al. A novel pre-weld laser surface treatment for enhanced inter-granular corrosion resistance of austenitic stainless steel weldment
JPH09314337A (en) Method for welding al or al-si alloy coated stainless steel sheet without welded crack
Suthar et al. Optimization of GTAW process parameters for deposition of nickel-based hardfacing alloy using Taguchi method
Yebaji et al. Effect of post-welding treatment on corrosion behavior of laser and gas tungsten arc-welded (Fe50Mn30Co10Cr10) 99C1 interstitial high-entropy alloy
Greeff The influence of welding parameters on the sensitisation behaviour of 3CR12
Valer Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys
Bansal et al. Influence of heat treatment on microstructure and mechanical properties of Inconel-625 clad deposited on mild steel
Siggs Laser and electron beam treatments for corrosion protection of friction stir welds in aerospace alloys
Suthar et al. A review on application of nickel base hardfacing alloys in sodium-cooled fast reactor
Patil et al. Al2O3 and TiO2 flux enabling activated tungsten inert gas welding of 304 austenitic stainless steel plates