JP2577619B2 - Method and apparatus for descaling alloy steel strip - Google Patents

Method and apparatus for descaling alloy steel strip

Info

Publication number
JP2577619B2
JP2577619B2 JP63218388A JP21838888A JP2577619B2 JP 2577619 B2 JP2577619 B2 JP 2577619B2 JP 63218388 A JP63218388 A JP 63218388A JP 21838888 A JP21838888 A JP 21838888A JP 2577619 B2 JP2577619 B2 JP 2577619B2
Authority
JP
Japan
Prior art keywords
steel strip
pickling
electrolysis
descaling
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63218388A
Other languages
Japanese (ja)
Other versions
JPH0270100A (en
Inventor
一生 桜井
宏二 後藤
昭正 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63218388A priority Critical patent/JP2577619B2/en
Publication of JPH0270100A publication Critical patent/JPH0270100A/en
Application granted granted Critical
Publication of JP2577619B2 publication Critical patent/JP2577619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スケール除去に使用される薬液の管理及び
その廃液処理が簡単であり、スケール除去能力が大きく
てラインスピードを高速化しても追従可能であり、ライ
ンで発生する廃液やスラツジについて環境汚染などの公
害上の問題も無く、そして何よりも最終製品の表面にピ
ツト等を発生させず品質を良好にさせる少なくともニツ
ケル及び/又はクロムを含有する合金鉄鋼帯の脱スケー
ル方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is easy to manage a chemical solution used for scale removal and to treat a waste liquid thereof, has a large scale removal capability, and follows even if the line speed is increased. It is possible, and there is no pollution problem such as environmental pollution for waste liquid and sludge generated in the line. Above all, it contains at least nickel and / or chromium which does not generate pits etc. on the surface of the final product and improves the quality. The present invention relates to a method and an apparatus for descaling an alloy steel strip.

〔従来の技術〕[Conventional technology]

少なくともニツケル及び/又はクロムを含有する合金
鉄鋼帯の代表的なものと言えるJIS G 4306「熱間圧延ス
テンレス鋼帯」に規定される熱間圧延ステンレス鋼帯製
品は、一般に熱間圧延されたステンレス鋼帯を素材とし
てこれを焼鈍などを含む熱処理,酸洗又はこの酸洗に準
じる処理を施すために一連のライン化された焼鈍酸洗工
程を通板されて製造されている。そして、この焼鈍酸洗
工程を経て製造された熱間圧延ステンレス鋼帯を剪断し
てJIS G 4304「熱間圧延ステンレス鋼板」に規定される
熱間圧延ステンレス鋼板製品が製造されている。
Hot-rolled stainless steel strip products specified in JIS G 4306 "Hot-rolled stainless steel strip", which can be said to be representative of at least nickel and / or chromium-containing alloy steel strips, are generally hot-rolled stainless steel strips. It is manufactured by passing a steel strip through a series of lined annealing and pickling steps in order to perform a heat treatment including annealing, pickling or a treatment similar to this pickling. Then, a hot-rolled stainless steel strip specified in JIS G 4304 “Hot-rolled stainless steel sheet” is manufactured by shearing the hot-rolled stainless steel strip manufactured through the annealing and pickling step.

また、JIS G 4307「冷間圧延ステンレス鋼帯」に規定
されるNo.2D,No.2B,No.3,No.4,BA等の各種表面仕上の冷
間圧延ステンレス鋼帯製品は、前記焼鈍酸洗工程を経て
製造された熱間圧延ステンレス鋼帯を素材とし、これを
それぞれライン化された冷間圧延工程,焼鈍酸洗工程を
必要に応じて繰り返し通板し、しかもこれらの工程間に
あつて素材表面の残存スケールや地疵を除去するために
必要に応じてライン化された中間研磨工程に通板され、
更に調質圧延工程,剪断や裁断処理等がなされる精整工
程を経て製造されている。そして、このようにして製造
された冷間圧延ステンレス鋼帯を剪断してJIS G 4305
「冷間圧延ステンレス鋼板」に規定される冷間圧延ステ
ンレス鋼板製品が製造されているのである。
Further, the cold-rolled stainless steel strip products having various surface finishes such as No. 2D, No. 2B, No. 3, No. 4, BA specified in JIS G 4307 `` Cold rolled stainless steel strip '' The hot-rolled stainless steel strip produced through the annealing and pickling process is used as a material, and the strips are repeatedly passed through a cold rolling process and an annealing and pickling process, each of which is lined up, as necessary. In order to remove residual scale and flaws on the surface of the material, it is passed through a lined intermediate polishing process as necessary,
Further, it is manufactured through a temper rolling step and a refining step in which shearing, cutting, and the like are performed. Then, the cold-rolled stainless steel strip thus manufactured is sheared to JIS G 4305.
A cold-rolled stainless steel sheet product specified in “Cold-rolled stainless steel sheet” is being manufactured.

以上に述べた如く、ステンレス鋼帯製品及び同鋼板製
品等の合金鉄の製品は、熱間圧延,この熱間圧延後の焼
鈍を含む熱処理及び冷間圧延により加工硬化された素材
の軟化焼鈍等が施されるので、程度の差こそあれその都
度その素材表面に主としてFeやCrなどの酸化物から成る
スケールが生成する。この素材表面に生成したスケール
を完全に除去して各工程を推進しないと良好な表面品質
の最終製品を得ることが出来ないので、その都度脱スケ
ール処理が施されるのである。
As described above, ferroalloy products such as stainless steel strip products and steel plate products are manufactured by hot rolling, heat treatment including annealing after the hot rolling, and softening and annealing of the work hardened by cold rolling. Therefore, a scale mainly composed of an oxide such as Fe or Cr is formed on the surface of the material each time to a greater or lesser degree. Unless the scale formed on the surface of the material is completely removed and the respective steps are carried out, a final product having good surface quality cannot be obtained, so that a descaling treatment is performed each time.

しかしながら、合金鉄鋼帯、特にステンレス鋼帯等の
素材表面に生成するスケールは、一般に緻密なために非
常に除去困難である。そこでこの合金鉄鋼帯の素材表面
に生成するスケールの脱スケールに関して、従来から種
々な脱スケール方法が実施されたり提案されたりしてい
る。
However, scale formed on the surface of a material such as an alloyed steel strip, particularly a stainless steel strip, is generally very difficult to remove because of its denseness. Therefore, various descaling methods have been conventionally implemented or proposed for descaling of the scale generated on the material surface of the steel alloy strip.

先ず、古くから最も基本的で且つ広く実施されてきた
処理方法は、硫酸,硝酸,塩酸,弗酸又はこれらを混合
した混酸薬液で処理して脱スケールを行い、均一で適度
の不動態化処理を施す酸洗処理であつた。しかしなが
ら、この酸洗処理のみによる処理方法では、合金鉄鋼帯
を高速処理して生産性を向上せしめ尚且つ完全な脱スケ
ール処理を行い、最終製品として表面品質の良好なもの
を得るという要求に対応し切れなくなり、この酸洗処理
の前に、機械的,化学的又はこれらを組合せた前処理が
併用されるようになつてきたのである。その機械的前処
理としては、酸洗処理に先立つてシヨツトブラストやス
ケールブレーカーなどによつてスケール層に亀裂を生じ
させて酸洗処理での脱スケールを容易にする処理方法で
あるが、これらの機械的前処理にあつては合金鉄鋼帯の
素地に圧痕を残したり加工硬化を起こさせたりする欠点
を有していた。
First, the most basic and widely practiced treatment method since ancient times is to perform descaling by treating with sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid or a mixed acid chemical solution obtained by mixing them, and a uniform and appropriate passivation treatment is performed. And pickling treatment. However, this treatment method using only the pickling treatment responds to the requirement that the steel alloy strip be processed at high speed to improve the productivity and to perform the complete descaling treatment to obtain a final product with good surface quality. Therefore, before the pickling treatment, a pretreatment mechanically, chemically, or a combination thereof is used. The mechanical pretreatment is a treatment method that facilitates descaling in the pickling treatment by causing cracks in the scale layer by a shot blast or a scale breaker prior to the pickling treatment. However, the mechanical pretreatment of (1) has a drawback in that indentations are left on the base material of the alloy steel strip or work hardening occurs.

また、従来より行われているNa2SO4を電解質とする水
溶液中での電解や溶融苛性アルカリ処理等の化学的前処
理によつて一部の成分を変質させてスケールの組成や素
地との結合力を弱める方法も実施されているが、スケー
ル量の比較的少ない冷間圧延材にあつては効果がある
が、スケール量の多い熱間圧延材に対しては効果は少な
かつた。
In addition, some components are altered by conventional chemical pretreatment such as electrolysis in an aqueous solution using Na 2 SO 4 as an electrolyte or molten caustic treatment, and the composition of the scale and the balance with the base are changed. Although a method of weakening the bonding force has been practiced, it is effective for a cold-rolled material having a relatively small amount of scale, but less effective for a hot-rolled material having a large amount of scale.

一方、合金鉄鋼帯、特にステンレス鋼帯の生産性向上
のために圧延,焼鈍と共に、従来より表面品質を尚一層
良好なものにしつつ、脱スケールを高速化して高能率に
実施することが要求され、そのためスケール除去能力の
大きい脱スケール方法の開発が望まれるようになつてき
た。しかしながら、化学的前処理として中性塩であるNa
2SO4の水溶液中で陽極電解を行う場合に、この前処理方
法は冷間圧延材に対しては効果は大きいが、熱間圧延材
に対しては元来それ程大きな効果はなく、またCr+6イオ
ンを溶出させるのでその廃液処理が公害防止止甚だ厄介
であつた。従つてNa2SO4水溶液中での電解による前処理
では熱間圧延材に対しては高速化し難い上、熱間,冷間
いずれの圧延材に対しても高速化した場合はそれだけCr
+6イオン溶出量が増して電解液の老化を早めると共にそ
の処理が一層厄介となる欠点があつた。
On the other hand, in order to improve the productivity of alloy steel strips, particularly stainless steel strips, it is required to perform descaling at high speed and with high efficiency while rolling and annealing to improve the surface quality even more than before. Therefore, it has been desired to develop a descaling method having a large scale removing ability. However, as a chemical pretreatment, the neutral salt Na
When performing anodic electrolysis in a 2 SO 4 solution, this pretreatment method is effect is significant for cold rolled material is not very effective so originally for hot-rolled, also Cr Since the +6 ions are eluted, the treatment of the waste liquid is troublesome to prevent pollution. Therefore, in the pretreatment by electrolysis in an aqueous solution of Na 2 SO 4, it is difficult to increase the speed for hot-rolled materials, and when the speed is increased for both hot and cold-rolled materials,
There is a disadvantage that the elution amount of +6 ions is increased to accelerate the aging of the electrolytic solution and the treatment becomes more troublesome.

また、化学的前処理の他の方法として溶融苛性アルカ
リ処理を行う場合は、溶融苛性アルカリが高粘性である
ことから高速化によつて液持出し量が大きくなり、ワイ
ピング装置によつても速度に追従して液持出し量の増加
を防止することが困難でコスト高となる欠点があつた。
そして上記の如く高速化することが困難である前処理を
弱体化してその弱体化分を強化するために酸濃度及び液
温を上げて酸洗を行う場合には酸洗液の老化が早まる結
果、酸濃度管理,追酸,廃液処理等にかかる労力,費用
が多大のものとなる欠点があつた。また酸洗の代わりに
NaCl等を電解質とする水溶液中で陽極電解を行つてもそ
れが脱スケールの主体となる程に強く行う場合はステン
レス鋼帯にピツトを発生させ易い欠点があつた。このよ
うに丁寧に低速で行つてこそ良い結果を得る脱スケール
とその高速化とは、上記の如く従来両立し難いものであ
つた。
In addition, when performing molten caustic treatment as another method of chemical pretreatment, the molten caustic has a high viscosity, so that the amount of liquid taken out increases due to high speed, and the speed is also reduced by the wiping device. There is a drawback that it is difficult to follow up to prevent an increase in the amount of liquid taken out, resulting in an increase in cost.
When the pickling is carried out by increasing the acid concentration and the liquid temperature in order to weaken the pretreatment which is difficult to increase the speed as described above and to strengthen the weakened portion, the aging of the pickling solution is accelerated. However, there is a disadvantage that the labor and cost for controlling the acid concentration, adding acid, treating waste liquid, and the like are great. Also instead of pickling
Even if anodic electrolysis is carried out in an aqueous solution containing NaCl or the like as an electrolyte, if the anodic electrolysis is performed so strongly that descaling is mainly performed, pits are easily generated in the stainless steel strip. As described above, the descaling and the speeding-up, in which a good result can be obtained only by carefully performing at a low speed, have been difficult to achieve.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

そこで本発明は、上記従来技術の欠点がなくスケール
除去能力が大きく従つて高速化が可能でしかも廃液処理
の問題が少なく、また合金鉄鋼帯にピツトを発生させる
ことなく、更に表面を品質良好にさせる合金鉄鋼帯の脱
スケール方法及び装置を提供することを課題とする。
Therefore, the present invention has the disadvantages of the prior art described above, has a large scale removal capability, can be operated at a high speed, has little problem of waste liquid treatment, and does not generate pits on the alloy steel strip, and has a better surface quality. An object of the present invention is to provide a method and an apparatus for descaling an alloyed steel strip to be made.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等はかかる課題を解決すべく鋭意検討の結
果、最終の処理としてはスケール直下の金属素地をも積
極的に除去して表面をきれいにする利点を有する硫弗酸
と硝弗酸とのいずれかによる酸洗処理を採用し、その前
処理として50〜200g/lのNaClを主成分としこれにNaC1
mol/l当りHNO3又はFeCl3を0.4〜1.0mol/l添加した水溶
液から成る電解液中で且つ所定範囲の液温と電流密度の
下で所定時間以上陽極電解処理することにより、この前
処理の段階でCr+6イオンの発生やピツトの発生がなく且
つ大部分のスケールが除去され、その結果最終処理であ
る酸洗処理の負担が軽減されて高速化が可能となると共
にスケール直下の金属素地まで除去されて表面品質の優
れた合金鉄鋼帯が得られることを究明して本発明を完成
したのである。
The inventors of the present invention have conducted intensive studies to solve such problems, and as a final treatment, there has been an advantage of using sulfuric hydrofluoric acid and nitric hydrofluoric acid, which have the advantage of actively removing the metal base just below the scale and cleaning the surface. Either pickling treatment is adopted, and 50-200 g / l of NaCl as the main component
By anodic electrolysis treatment for a predetermined time or more and under a predetermined range of the liquid temperature and the current density mol / l per HNO 3 or FeCl 3 in an electrolytic solution comprising an aqueous solution prepared by adding 0.4~1.0mol / l, this pretreatment In this stage, there is no generation of Cr + 6 ions or pits, and most of the scale is removed.As a result, the load of the final pickling process is reduced, and the speed can be increased. The present invention was completed by investigating that an alloy steel strip having excellent surface quality can be obtained by removing even the base material.

〔構成の説明〕[Description of configuration]

本発明において適用できる合金鉄鋼帯は、少なくとも
ニツケル及び/又はクロムを含有する合金鉄鋼帯であ
り、熱間圧延材,冷間圧延材のいずれの合金鉄鋼帯であ
つても良い。
The alloy steel strip applicable to the present invention is an alloy steel strip containing at least nickel and / or chromium, and may be any of a hot-rolled material and a cold-rolled material.

前処理として用いる電解液としては、50〜200g/lのNa
Clを主成分としこれにNaC1mol/l当りHNO3又はFeCl3
0.4〜1.0mol/l添加した水溶液から成る電解液であり、
この電解液のNaClの濃度が50g/l未満であると電解液の
導電性が低下して電流効率が下がると共に第6図に示す
ように処理減量が少なくなるためであり、一方NaClの濃
度は高い程好ましいが最高を200g/lとした理由はNaClの
水への溶解度を考慮したためである。またHNO3又はFeCl
3を添加する理由は合金鉄鋼帯表面のピツト発生を抑制
するためであり、HNO3又はFeCl3の添加量としてはNaCl
の濃度1mol/l当り0.4〜1.0mol/lの範囲とする必要があ
る。すなわち、NaC1mol/l当り0.4mol/lより少ないと
ピツト発生の抑制効果が低下するようになり、NaC1mo
l/l当り1.0mol/lより多くしてもピツト発生の抑制効果
に変化なく不経済となるのである。また、電解液温度は
20℃〜80℃とする必要がある。すなわち、電解液温度は
高い方が脱スケール能力が大となり且つ供給電力が下が
ると共に、第9図に示すように導電率(単位:mS/cm=10
3/Ω・cm)が上がるため電解効率が向上する。しか
し、電解液温度が80℃を超えると水の蒸発量が急に増加
することから、電解液濃度が変化(高くなる)して脱ス
ケール能力や電解効率が低下し、また濃度管理も煩雑に
なる。一方、低い方の液温は常温(20℃)でも差し支え
ないが、あまり低いと脱スケール能力が低下するのであ
る。更にまた、電流密度は5A/dm2より小さいと脱スケー
ル効果が小さくなり、一方30A/dm2より大きいと電流密
度不均一による電解模様が発生し易くなることから、5
〜30A/dm2の範囲とする必要がある。また、電解処理時
間は後述する実施例からも明らかなように40秒以上が必
要で、これは40秒未満ではスケールが残ったり、後処理
である酸洗処理変質部を完全に除去できない場合が生じ
るからである。
As an electrolytic solution used as a pretreatment, 50 to 200 g / l of Na
HNO 3 or FeCl 3 per mole of NaC
An electrolyte comprising an aqueous solution added with 0.4 to 1.0 mol / l,
If the concentration of NaCl in the electrolytic solution is less than 50 g / l, the conductivity of the electrolytic solution decreases, the current efficiency decreases, and the treatment loss decreases as shown in FIG. 6, while the NaCl concentration is The higher the value, the better, but the reason why the maximum is set to 200 g / l is because the solubility of NaCl in water is taken into consideration. HNO 3 or FeCl
The reason for adding 3 is to suppress the generation of pits on the surface of the alloy steel strip, and the amount of HNO 3 or FeCl 3 added is NaCl.
Must be in the range of 0.4 to 1.0 mol / l per 1 mol / l concentration. That is, if it is less than 0.4 mol / l per 1 mol / l of NaC, the effect of suppressing the generation of pits is reduced, and
Even if the amount is more than 1.0 mol / l per 1 / l, the effect of suppressing pitting is not changed and the economy becomes uneconomical. The electrolyte temperature is
It must be between 20 ° C and 80 ° C. That is, the higher the electrolyte temperature, the greater the descaling ability and the lower the supplied power, and the conductivity (unit: mS / cm = 10 as shown in FIG. 9).
3 / Ω · cm), which improves the electrolytic efficiency. However, when the temperature of the electrolyte exceeds 80 ° C, the amount of evaporation of water suddenly increases, so that the concentration of the electrolyte changes (increases) and the descaling ability and the electrolytic efficiency decrease, and the concentration management becomes complicated. Become. On the other hand, the lower liquid temperature may be room temperature (20 ° C.), but if it is too low, the descaling ability is reduced. Furthermore, when the current density is smaller than 5 A / dm 2, the descaling effect is reduced, while when the current density is larger than 30 A / dm 2, an electrolytic pattern due to non-uniform current density is likely to be generated.
There is a need to be in the range of ~30A / dm 2. In addition, the electrolytic treatment time is required to be 40 seconds or more, as is apparent from the examples described later. If the electrolytic treatment time is less than 40 seconds, the scale may remain or it may not be possible to completely remove the altered part of the pickling treatment as a post-treatment. This is because it occurs.

次に本発明方法において前記前処理の後に行う酸洗処
理に使用する酸としては、スケール層直下の変質層まで
も除去するために硫弗酸と硝弗酸とのいずれかを使用す
るのであり、硝弗酸酸洗液ではHF濃度5〜50g/l,HNO3
度50〜100g/l適当であり、硫弗酸酸洗液ではHF濃度5〜
50g/l,H2SO4濃度150〜250g/lが適当であり、上記範囲中
でもHF濃度が高い方が好ましい。
Next, in the method of the present invention, as the acid used for the pickling treatment performed after the pretreatment, either sulfuric hydrofluoric acid or nitric hydrofluoric acid is used in order to remove even the altered layer immediately below the scale layer. , HF concentration in the nitric-hydrofluoric acid acid washings 5 to 50 g / l, a HNO 3 concentration 50 to 100 g / l appropriate, HF concentration 5 in硫弗acid acid washings
50 g / l, is suitably H 2 SO 4 concentration 150 to 250 g / l, the higher HF concentration in the above range is preferred.

一般に硝弗酸酸洗液か硫弗酸酸洗液かのいずれか一方
を使用する場合,及びいずれをも使用して2段の酸洗を
行う場合の後段で使用するものとしては、表面の仕上り
状態及び不働態化処理の観点から硝弗酸酸洗液を好まし
くは液温50〜70℃で使用するのが良い。このように前段
に硫弗酸を、後段に硝弗酸を使用する2段の酸洗をSUS
304,SUS 430等に適用する場合、硝弗酸による上記効果
の他に、先に使用する硫弗酸酸洗液の液温を70〜90℃と
して酸洗すれば硫弗酸による脱スケール及びエツチング
効果が加わつて大変良い結果が得られる。第1表は熱間
圧延ステンレス鋼帯(SUS 304,SUS 430)を硝弗酸,硫
酸,硫弗酸各単独使用の酸洗液で処理したときの減量を
調べた結果である。
In general, when using either the nitric hydrofluoric acid pickling solution or the sulfuric hydrofluoric acid pickling solution, and when performing the two-stage pickling using either of them, the surface used for the subsequent stage is as follows. The nitric hydrofluoric acid pickling solution is preferably used at a liquid temperature of 50 to 70 ° C. from the viewpoint of the finished state and the passivation treatment. Thus, the two-stage pickling using sulfuric hydrofluoric acid in the first stage and nitric hydrofluoric acid in the second stage is SUS
When applied to 304, SUS 430, etc., in addition to the above-mentioned effect by nitric hydrofluoric acid, descaling by sulfuric hydrofluoric acid and acid pickling with the liquid temperature of the sulfuric hydrofluoric acid pickling solution previously used at 70-90 ° C Very good results can be obtained by adding the etching effect. Table 1 shows the results obtained by examining the weight loss when hot-rolled stainless steel strips (SUS 304, SUS 430) were treated with a pickling solution using nitric hydrofluoric acid, sulfuric acid and hydrofluoric acid alone.

第1表から硫弗酸酸洗液が前段の酸洗液として特に優
れていることが判る。冷間圧延材についても同様な結果
が得られる。H2SO4単独使用の酸洗液による前段酸洗処
理は、SUS 304の場合は減量が大きいがスマツトを生じ
させることがあるため行わない方が好ましく、SUS 430
の場合は実施しても良い。なお、第1表において、実験
用供試材は全てスケールブレーカーによる機械的前処理
を施したものである。
From Table 1, it can be seen that the sulfuric hydrofluoric acid pickling solution is particularly excellent as the preceding pickling solution. Similar results are obtained for cold rolled materials. The pre-stage pickling treatment using the pickling solution using H 2 SO 4 alone is preferably not performed because SUS 304 has a large weight loss but may cause sumat.
In the case of, it may be carried out. In Table 1, all test specimens were subjected to mechanical pretreatment using a scale breaker.

次に、本発明方法を実施するための装置を図面によつ
て詳細に説明する。
Next, an apparatus for carrying out the method of the present invention will be described in detail with reference to the drawings.

第1図は本発明方法を実施するための装置の1例の概
略図、第2図は第1図の電解液槽の拡大平面図、第3図
は本発明方法を実施するための装置の他の例の概略図、
第4図は第3図の電解液槽の拡大平面図、第5図は本発
明方法を実施するための装置の更に他の例の概略図であ
る。
FIG. 1 is a schematic view of an example of an apparatus for carrying out the method of the present invention, FIG. 2 is an enlarged plan view of the electrolytic solution tank of FIG. 1, and FIG. 3 is an apparatus for carrying out the method of the present invention. Schematic diagram of another example,
FIG. 4 is an enlarged plan view of the electrolytic solution tank of FIG. 3, and FIG. 5 is a schematic view of still another example of an apparatus for carrying out the method of the present invention.

図面中、第1図及び第2図において、1は焼鈍炉と冷
却装置(図示なし)によつて熱処理を受けた少なくとも
ニツケル及び/又はクロムを含有する合金鉄鋼帯、2は
NaCl水溶液を主成分としこれに所定量のHNO3又はFeCl3
を添加した水溶液から成る電解液、3は電解液2が建浴
されている電解液槽、4は電解液槽3内に設けられた陽
極板、5は同じく電解液槽3内に設けられた陰極板、6
は電解用直流電源、7は硝弗酸と硫弗酸とのいずれかか
ら成る酸洗液8が建浴されている酸洗槽、9は送板ロー
ル、10は浸漬ロール、11はブラツシユロール、12はブラ
ツシユロール11のバツクアツプロール、13は洗浄ノズル
である。また第3図及び第4図において、14は硫酸,硝
酸の如き導電性液15が建浴された導電性液槽、16は導電
性液槽14内に設けられた耐酸性を有する陽極板、17は一
枚の電極板から成る陰極板である。また18は電解用直流
電源6と切替え用スイツチ19を介して、電解液槽3内の
陰極板17と導電性液槽14内の陽極板16(第3図の場合)
又は電解液槽3内の陰極板5と後述する通電ロール21
(第5図の場合)に接続可能に配設されている電解用直
流電源6とは別の小容量の印加電圧用の直流電源であ
り、第4図において20はガス抜き用孔である。更に第5
図において、21は電解液槽3と酸洗槽7との間に設けら
れていて陽極となる通電ロールである。
In the drawings, in FIGS. 1 and 2, reference numeral 1 denotes an alloy steel strip containing at least nickel and / or chromium which has been heat-treated by an annealing furnace and a cooling device (not shown).
NaCl aqueous solution as a main component and a predetermined amount of HNO 3 or FeCl 3
An electrolytic solution composed of an aqueous solution to which is added 3 is an electrolytic bath in which the electrolytic solution 2 is built, 4 is an anode plate provided in the electrolytic bath 3, and 5 is also provided in the electrolytic bath 3. Cathode plate, 6
Is a DC power supply for electrolysis, 7 is an acid pickling tank in which an acid pickling solution 8 made of either nitric hydrofluoric acid or sulfuric hydrofluoric acid is built, 9 is a feeding plate roll, 10 is a dipping roll, and 11 is a brush. A roll, 12 is a backup roll of the brush roll 11, and 13 is a washing nozzle. 3 and 4, reference numeral 14 denotes a conductive liquid tank in which a conductive liquid 15 such as sulfuric acid or nitric acid is placed, 16 denotes an anode plate having acid resistance provided in the conductive liquid tank 14, Reference numeral 17 denotes a cathode plate composed of one electrode plate. Reference numeral 18 denotes a cathode plate 17 in the electrolyte bath 3 and an anode plate 16 in the conductive bath 14 via the switching switch 19 and the switching power supply 19 (in the case of FIG. 3).
Alternatively, the cathode plate 5 in the electrolytic solution tank 3 and an energizing roll 21 described later
(In the case of FIG. 5) is a DC power supply for application of a small capacity, which is different from the DC power supply 6 for electrolysis, which is connectably disposed in FIG. 5, and in FIG. 4, reference numeral 20 denotes a gas vent hole. And the fifth
In the drawing, reference numeral 21 denotes an energizing roll provided between the electrolytic solution tank 3 and the pickling tank 7 and serving as an anode.

以上のような構成より成る本発明に係る合金鉄鋼帯の
脱スケール装置は、基本的には次に詳述するように3つ
の装置がある。第1の装置は第1図及び第2図に、第2
の装置は第3図及び第4図に、第3の装置は第5図にそ
れぞれ示してある。
The descaling device for the steel alloy strip according to the present invention having the above-described configuration basically includes three devices as described in detail below. The first device is shown in FIGS.
This device is shown in FIGS. 3 and 4, and the third device is shown in FIG.

先ず第1の装置は、第1図及び第2図に示すように、
陽極板4と陰極板5とが共に電解液槽3内部に設けられ
ており、この電解液槽3の後に酸洗槽7,7が配設されて
いる装置であり、この装置における陽極板4としては白
金,ルテニウム酸化物,鉛酸化物のいずれか1種が適用
され、陰極板5としては白金や、陽極板4に比べてイオ
ン化傾向において卑な金属であるチタン,オーステナイ
ト系ステンレス鋼のいずれか1種が適用される。中でも
陽極板4は白金,陰極板5はチタンが特に好適である。
このような第1の装置において、焼鈍炉,冷却装置(図
示なし)によつて熱処理を受けた合金鉄鋼帯1は、先ず
送板ロール9を経てNaCl水溶液を主成分としこれに所定
量のHNO3又はFeCl3を添加した水溶液から成る電解液2
が建浴された電解液槽3へ送板され、前後の浸漬ロール
10,10にて電解液2中に浸漬された状態で通過され、こ
こでNaCl水溶液を主成分としこれに所定量のHNO3又はFe
Cl3を添加した水溶液から成る電解液による溶解作用及
び陽極電解作用を受けて合金鉄鋼帯1の表面のスケール
の大部分が電解液2中に溶解除去される。そして大部分
のスケールが溶解除去された合金鉄鋼帯1は、電解液槽
3の後に設けられている送板ロール9を経てブラツシユ
ロール11とバツクアツプロール12との間を通過し、この
際に陽極電解によつて金属素地との結合力が弱まつてい
るが未だ付着残存しているスケールの大半が除去され
る。次に、合金鉄鋼帯1は送板ロール9を経て、次の1
槽目の酸洗槽7内に送板され、前後の浸漬ロール10,10
によつて浸漬された状態で通過され、その間に僅かに残
存しているスケールの全部が溶解されると共にスケール
層の直下に存在する金属素地の金属素地まで溶解され
る。更に合金鉄鋼帯1は、2槽目の酸洗槽7を通過する
間に再度スケール層直下の金属素地が溶解されて仕上げ
される。しかる後に合金鉄鋼帯1は、送板ロール9を経
てブラツシユロール11とバツクアツプロール12との間を
通過せしめられ、合金鉄鋼帯1の表面に付着している金
属や結合力が弱い状態で残存している金属素地がきれい
に除去される。
First, as shown in FIG. 1 and FIG.
The anode plate 4 and the cathode plate 5 are both provided inside the electrolytic solution tank 3, and the pickling tanks 7, 7 are disposed after the electrolytic solution tank 3. Any one of platinum, ruthenium oxide, and lead oxide is applied. As the cathode plate 5, any one of platinum, titanium, which is a metal having a lower ionization tendency than the anode plate 4, and austenitic stainless steel is used. Or one type is applied. Among them, platinum is particularly preferable for the anode plate 4 and titanium is preferable for the cathode plate 5.
In such a first apparatus, an alloy steel strip 1 which has been heat-treated by an annealing furnace and a cooling device (not shown) is first passed through a feed roll 9 and contains a NaCl aqueous solution as a main component and a predetermined amount of HNO3. Electrolyte solution 2 consisting of 3 or FeCl 3 added aqueous solution
Is sent to the electrolyte bath 3 where the bath is built, and the immersion rolls before and after
At 10 and 10, it is passed in a state of being immersed in the electrolytic solution 2, where it contains a predetermined amount of HNO 3 or Fe
Most of the scale on the surface of the alloy steel strip 1 is dissolved and removed in the electrolytic solution 2 by the dissolving action and the anodic electrolytic action of the electrolytic solution composed of the aqueous solution to which Cl 3 is added. The alloy steel strip 1 from which most of the scale has been dissolved and removed passes between the brush roll 11 and the back-up roll 12 via the feed roll 9 provided after the electrolytic solution tank 3, and at this time, Although the bonding strength with the metal substrate is weakened by the anodic electrolysis, most of the scale still attached and removed is removed. Next, the alloy steel strip 1 passes through the sheet feeding roll 9 and
The plate is fed into the pickling tank 7 of the tank and the front and rear immersion rolls 10,10
As a result, all of the scale remaining slightly during this time is dissolved, and at the same time, the metal base of the metal base immediately below the scale layer is melted. Further, the alloy steel strip 1 is finished by melting the metal base immediately below the scale layer again while passing through the second pickling tank 7. Thereafter, the alloy steel strip 1 is passed between the brush roll 11 and the back-up roll 12 via the feed roll 9 so that the metal adhered to the surface of the alloy steel strip 1 and the bonding force are weak. The remaining metal substrate is removed cleanly.

第2の装置は、第3図及び第4図に示すように、陰極
板17とその前後に浸漬ロール10,10とが設けられている
電解液槽3の前に硫酸,硝酸の如き導電性液15が建浴さ
れた導電性液槽14が配設されており、且つこの導電性液
槽14内に耐酸性を有する陽極板16とその前後に浸漬ロー
ル10,10が設けられており、また電解液槽3の後に酸洗
槽7,7が配設されており、更に耐酸性を有する陽極板16
と陰極板17とに切替え用スイツチ19を介して電解用直流
電源6とこの電解用直流電源6とは別の小容量の印加電
圧用の直流電源18とのいずれかが接続可能に配設されて
いる装置である。以上のような第2の装置においては、
通常の状態では切替え用スイツチ19を介して陽極板16と
陰極板17とに電解用直流電源6が接続されているので、
合金鉄鋼帯1は送板ロール9及び前後の浸漬ロール10,1
0によつて導電性液15が建浴された導電性液槽14内の陽
極板16の間を非接触状態で送板される。この際、合金鉄
鋼帯1は陽極板16の作用を受けて陰極に帯電し、この時
に陽極板16からは酸素ガスが発生する。一方、陰極に帯
電した合金鉄鋼帯1からは水素ガスが発生する。そし
て、この水素ガスの作用で一部の結合力の弱いスケール
が除去されるようになる。その結果、次のNaCl水溶液を
主成分としこれに所定量のHNO3又はFeCl3を添加した水
溶液から成る電解液2での陽極電解処理の効果がより大
きくなるのである。
As shown in FIGS. 3 and 4, the second apparatus is provided with a conductive plate such as sulfuric acid or nitric acid in front of the electrolytic solution tank 3 in which the cathode plate 17 and the immersion rolls 10 and 10 are provided before and after the cathode plate. A conductive liquid tank 14 in which a liquid 15 is bathed is provided, and an anode plate 16 having acid resistance in the conductive liquid tank 14 and immersion rolls 10 and 10 are provided before and after the anode plate 16, Further, pickling tanks 7, 7 are provided after the electrolytic solution tank 3, and an acid-resistant anode plate 16 is further provided.
And a cathode plate 17 through which a DC power supply 6 for electrolysis and a DC power supply 18 for applying a small voltage different from the DC power supply 6 for electrolysis are provided so as to be connectable via a switch 19 for switching. Device. In the second device as described above,
In a normal state, the DC power supply 6 for electrolysis is connected to the anode plate 16 and the cathode plate 17 via the switch 19 for switching.
The alloy steel strip 1 is composed of a feed roll 9 and front and rear immersion rolls 10,1.
According to 0, the conductive liquid 15 is sent in a non-contact state between the anode plates 16 in the conductive liquid tank 14 in which the bath is built. At this time, the alloy steel strip 1 is charged to the cathode by the action of the anode plate 16, and oxygen gas is generated from the anode plate 16 at this time. On the other hand, hydrogen gas is generated from the alloy steel strip 1 charged on the cathode. Then, by the action of the hydrogen gas, a part of the scale having a weak bonding force is removed. As a result, the effect of the anodic electrolysis treatment with the electrolytic solution 2 consisting of the following aqueous solution of NaCl as a main component and a predetermined amount of HNO 3 or FeCl 3 added thereto is further enhanced.

なお、電解液槽3に設けられる陰極板17は、第4図に
示すように一枚の連続した電極電解面積の大きい電極板
を用いると、脱スケール効果が更に向上するようになり
且つ一つの電解液槽3内に陽極と陰極とが混在しないこ
とから電極間での迷走電流がなく、電解電流効率が向上
するようになる。また、それぞれの素材として陽極板16
は白金,陰極板17はチタンが前述した理由と同様に塩素
ガスの発生量が少なく寿命も延長するためより好適であ
るが、比較的安価なステンレス鋼も使用でき、その場合
はコスト面で有利である。
When the cathode plate 17 provided in the electrolytic solution tank 3 is a single electrode plate having a large electrode electrolysis area as shown in FIG. 4, the descaling effect is further improved and one cathode plate is provided. Since the anode and the cathode are not mixed in the electrolytic solution tank 3, there is no stray current between the electrodes, and the electrolytic current efficiency is improved. In addition, the anode plate 16
Platinum is the most suitable for the cathode plate 17 because titanium produces a small amount of chlorine gas and prolongs the life, as described above. However, relatively inexpensive stainless steel can be used, in which case it is advantageous in terms of cost. It is.

更に、例えば電解用直流電源6の故障や定期修理など
の理由で電解用直流電源6からの給電を停止しなければ
ならない必要性が生じた場合には、陽極板16と陰極板17
との間には陽極板16と陰極板17とを構成する金属の電位
差に基づいて陰極板17→電解液2→合金鉄鋼帯1→導電
性液15→陽極板16という経路で即ち電解用直流電源6よ
り給電している状態とは逆方向に微弱ではあるが電流が
流れて陽極板16が陰極にまた陰極板17が陽極になるた
め、陽極板16がルテニウム酸化物や鉛酸化物の如き酸化
物である場合にはその酸化物が還元溶解されて陽極の寸
法が変化することになり、また陰極板17が陽極電解によ
り溶解されることになる。しかしながら、陽極板16と陰
極板17とに切替え用スイツチ19を介して電解用直流電源
6とこの電解用直流電源6とは別の小容量の印加電圧用
の直流電源18とのいずれかが接続可能に配設されている
と、電解用直流電源6からの給電を停止しなければなら
ない必要性が生じた場合に切替え用スイツチ19を介して
電解用直流電源6とは別の小容量の印加電圧用の直流電
源18を陽極板16と陰極板17とに接続して陽極板16から陰
極板17へ微弱電流を流して陽極板16が陰極となり且つ陰
極板17が陽極となることを防止できるので、陽極板16を
構成する酸化物が還元溶解されて陽極の寸法が変化した
り陰極板17が陽極電解により溶解されたりすることを防
止できると共に、このような微弱電流でも導電性液槽14
内においても或る程度の脱スケールが起るため次の電解
液槽3での脱スケール作用の助長につながるのである。
Further, when it is necessary to stop the power supply from the electrolytic DC power supply 6 due to, for example, failure of the electrolytic DC power supply 6 or regular repair, the anode plate 16 and the cathode plate 17 are required.
Between the anode plate 16 and the cathode plate 17 based on the potential difference between the metals constituting the cathode plate 17 → the electrolytic solution 2 → the alloy steel strip 1 → the conductive liquid 15 → the anode plate 16, that is, the direct current for electrolysis. The current flows through the anode plate 16 as a cathode and the cathode plate 17 as an anode, although weakly in the opposite direction to the state where power is supplied from the power supply 6, so that the anode plate 16 is made of ruthenium oxide or lead oxide. When it is an oxide, the oxide is reduced and dissolved to change the size of the anode, and the cathode plate 17 is dissolved by anodic electrolysis. However, either the DC power supply 6 for electrolysis or the DC power supply 18 for application of a small capacity other than the DC power supply 6 for electrolysis is connected to the anode plate 16 and the cathode plate 17 via the switch 19 for switching. When the power supply from the DC power source for electrolysis 6 needs to be stopped, a small capacity different from that for the DC power source for electrolysis 6 is applied via the switching switch 19 when it is necessary to stop the power supply from the DC power source for electrolysis 6. A DC power supply 18 for voltage is connected to the anode plate 16 and the cathode plate 17 so that a weak current flows from the anode plate 16 to the cathode plate 17 to prevent the anode plate 16 from becoming a cathode and the cathode plate 17 from becoming an anode. Therefore, it is possible to prevent the oxide constituting the anode plate 16 from being reduced and dissolved to change the dimensions of the anode and to prevent the cathode plate 17 from being dissolved by anodic electrolysis.
In this case, a certain degree of descaling occurs, which leads to the promotion of the descaling action in the next electrolytic solution tank 3.

第3の装置は、第5図に示すように、NaCl水溶液を主
成分としこれに所定量のHNO3又はFeCl3を添加した水溶
液から成る電解液2が建浴されており且つ陰極板5が設
けられている電解液槽3と酸洗槽7,7との間に陽極とな
る通電ロール21が設けられており、この通電ロール21と
陰極板5とに電解用直流電源6が接続されている装置で
ある。尚、この第3の装置においても第2の装置のよう
に陰極板5と通電ロール21とに切替え用スイツチ19を介
して電解用直流電源6とこの電解用直流電源6とは別の
小容量の印加電圧用の直流電源18とのいずれかが接続可
能に配設されていることが、例えば電解用直流電源6の
故障や定期修理などの理由で電解用直流電源6からの給
電を停止しなければならない必要性が生じた場合に、陰
極板5と通電ロール21との間にはをそれぞれ構成する金
属の電位差に基づいて、即ち陰極板5→電解液2→合金
鉄鋼帯1→通電ロール21という経路で即ち電解用直流電
源6より給電している状態とは逆方向に微弱ではあるが
電流が流れて陰極板17が陽極になるため、陰極板17が陽
極電解により溶解されることになる。しかしながら、陰
極板5と通電ロール21とに切替え用スイツチ19を介して
電解用直流電源6とこの電解用直流電源6とは別の小容
量の印加電圧用の直流電源18とのいずれかが接続可能に
配設されていると、電解用直流電源6からの給電を停止
しなければならない必要性が生じた場合に切替え用スイ
ツチ19を介して電解用直流電源6とは別の小容量の印加
電圧用の直流電源18を陰極板5と通電ロール21とに接続
して通電ロール21から陰極板5へ微弱電流を流して陰極
板5が陽極となることを防止できるので、陰極板5が陽
極電解により溶解されたりすることを防止できるのであ
る。以上のような第3の装置においては、通常の状態で
は切替え用スイツチ19を介して通電ロール21と陰極板5
とに電解用直流電源6が接続された状態で、合金鉄鋼帯
1は送板ロール9,浸漬ロール10,10を介して電解液槽3
に送板され、陰極板5の間を非接触状態で送板される。
この時、通電ロール21が陽極となり、これに合金鉄鋼帯
1が接触することによつて合金鉄鋼帯1自体が直接陽極
となる。また電解液槽3中の陰極板5との間に電解用直
流電源6より供電される。そして、この装置において
は、通電ロール21は電解液槽3の後に配設されているこ
とが重要である。すなわち、スケールの導電性が低いた
めに、スケールを有したままの合金鉄鋼帯1に直接通電
するとスパークが発生し易くなる。従つて、NaCl水溶液
を主成分としこれに所定量のHNO3又はFeCl3を添加した
水溶液から成る電解液2中での電解処理によつて、スケ
ールのほとんどを除去した後に直接通電することが重要
となつてくるのである。また、通電ロール21はブライド
ル方式であつて且つロール表面は粗い方がより確実な供
電が可能となる。
As shown in FIG. 5, the third apparatus has an electrolytic solution 2 composed of an aqueous solution containing a NaCl aqueous solution as a main component and a predetermined amount of HNO 3 or FeCl 3 added thereto. A current-carrying roll 21 serving as an anode is provided between the provided electrolytic solution tank 3 and the pickling tanks 7, 7, and a DC power supply 6 for electrolysis is connected to the current-carrying roll 21 and the cathode plate 5. Device. In the third apparatus, as in the second apparatus, a DC power supply 6 for electrolysis and a small capacity different from the DC power supply 6 for electrolysis are provided via a switch 19 for switching between a cathode plate 5 and a current-carrying roll 21. Is connected so that the power supply from the electrolytic DC power supply 6 is stopped due to, for example, a failure or periodic repair of the electrolytic DC power supply 6. When the necessity arises, the potential difference between the metal constituting the cathode plate 5 and the energizing roll 21 between the cathode plate 5 and the energizing roll 21, that is, the cathode plate 5 → the electrolytic solution 2 → the alloy steel strip 1 → the energizing roll Although a weak current flows in the direction of 21, that is, in the opposite direction to the state where power is supplied from the DC power supply 6 for electrolysis, the current flows and the cathode plate 17 becomes an anode, so that the cathode plate 17 is melted by anodic electrolysis. Become. However, either the electrolysis DC power source 6 or the DC power source 18 for applying a small voltage different from the electrolysis DC power source 6 is connected to the cathode plate 5 and the energizing roll 21 via the switching switch 19. When the power supply from the DC power source for electrolysis 6 needs to be stopped, a small capacity different from that for the DC power source for electrolysis 6 is applied via the switching switch 19 when it is necessary to stop the power supply from the DC power source for electrolysis 6. A voltage DC power supply 18 is connected to the cathode plate 5 and the energizing roll 21 to prevent a weak current from flowing from the energizing roll 21 to the cathode plate 5 to prevent the cathode plate 5 from becoming an anode. It can be prevented from being dissolved by electrolysis. In the third apparatus as described above, in a normal state, the energizing roll 21 and the cathode plate 5 are switched via the switching switch 19.
With the DC power supply for electrolysis 6 connected to the steel strip, the alloy steel strip 1 is fed through the feed roll 9 and the immersion rolls 10 and 10 into the electrolyte bath 3.
And is sent between the cathode plates 5 in a non-contact state.
At this time, the current-carrying roll 21 serves as an anode, and when the alloy steel strip 1 comes into contact with the anode, the alloy steel strip 1 itself directly serves as an anode. In addition, power is supplied from a DC power supply 6 for electrolysis between the electrolytic solution tank 3 and the cathode plate 5. In this apparatus, it is important that the energizing roll 21 is disposed after the electrolytic solution tank 3. That is, since the conductivity of the scale is low, a spark is easily generated when the current is directly applied to the alloy steel strip 1 having the scale. Therefore, it is important to conduct electricity directly after removing most of the scale by electrolytic treatment in an electrolytic solution 2 composed of an aqueous solution of NaCl as a main component and a predetermined amount of HNO 3 or FeCl 3 added thereto. It comes with. Further, the energizing roll 21 is of a bridle type, and the more rough the roll surface, the more reliable power supply becomes possible.

以上のように、通電ロール21を用いて直接通電するこ
とは、電解効率が大きく、又脱スケール効果も優れてい
るため最も好ましい装置である。そして、このような好
ましい通電ロール21の採用を可能にしたのは、NaCl水溶
液を主成分としこれに所定量のHNO3又はFeCl3を添加し
た水溶液から成る電解液を用いて電解処理することによ
つて、前処理段階でスケールのほとんどを除去可能にな
つたことによるのである。
As described above, direct energization using the energizing roll 21 is the most preferable apparatus because of high electrolysis efficiency and excellent descaling effect. The reason why such a preferable energizing roll 21 can be adopted is that an electrolytic treatment is performed using an electrolytic solution composed of an aqueous solution of NaCl as a main component and a predetermined amount of HNO 3 or FeCl 3 added thereto. Therefore, most of the scale can be removed in the pretreatment stage.

〔作用〕[Action]

上述のように本発明方法は最終処理である酸洗処理の
前処理において、50〜200g/lのNaCl水溶液を主成分とし
これにHNO3又はFeCl3をNaClの濃度の0.4〜1.0mol/l添加
した水溶液から成る電解液中で合金鉄鋼帯1を陽極電解
処理することによつて、合金鉄鋼帯1のスケールの大部
分を除去すると共にピツトの発生を抑制し、引き続く硫
弗酸と硝弗酸とのいずれかの酸洗液による酸洗処理にお
いて残存スケールの除去とスケール直下の金属素地を積
極的に除去するものである。
The present invention method as described above in the process before the pickling treatment is the final process, 50 to 200 g / l as a main component in which HNO 3 or FeCl 3 and NaCl aqueous solution having a concentration of NaCl of 0.4~1.0mol / l By subjecting the steel alloy strip 1 to anodic electrolysis in an electrolytic solution comprising the added aqueous solution, most of the scale of the steel alloy strip 1 is removed, the generation of pits is suppressed, and the subsequent hydrofluoric acid and nitrous oxide are removed. In the pickling treatment with any of the pickling solutions with acid, the residual scale is removed and the metal base immediately below the scale is positively removed.

上述の前処理における脱スケールの反応式を合金鉄鋼
帯1の鉄分を代表として示すと次の通りとなる。なお、
NaCl単独とNaClにHNO3又はFeCl3を添加した場合との反
応の差異を明確にするためにNaCl単独の反応式も示し
た。
The reaction formula for descaling in the above pretreatment is as follows when the iron content of the alloy steel strip 1 is represented as a representative. In addition,
In order to clarify the difference in the reaction between NaCl alone and the case where HNO 3 or FeCl 3 is added to NaCl, the reaction formula of NaCl alone is also shown.

〈NaCl単独〉 Fe+2NaCl+2H2O→Fe(OH)2↓+2NaCl+H2↑(陰極) 〈NaCl+HNO3〉 Fe+2NaCl+2HNO3+2H2O →Fe(NO3)2+2NaCl+2H2O+H2↑(陰極) 〈NaCl+FeCl3〉 Fe+2NaCl+2FeCl3+2H2O →3FeCl2+2NaCl+2H2↑(陰極)+O2↑(陽極) 以上の反応式よりNaCl単独の場合はスケールの主成分
である鉄は水酸化物となりスラツジ化するが、HNO3又は
FeCl3を添加することにより鉄はイオン化して溶解す
る。また、NaClはいずれの場合にあつても中性塩独特の
自己再生作用を示し、消耗されない。このHNO3,FeCl3
のピツト抑制作用についての詳細は不明であるが、第2
表に示す如くH2SO4,HCl,H3PO4の如き還元性の酸では効
果がないこと、更にH2O2の如き酸化剤でも効果がないこ
と、逆にHNO3,FeCl3の如き酸化作用を有する酸で効果
があることから推定すると、狭い範囲での電気化学的作
用と考えられる。
<NaCl alone> Fe + 2NaCl + 2H 2 O → Fe (OH) 2 ↓ + 2NaCl + H 2 ↑ ( cathode) <NaCl + HNO 3> Fe + 2NaCl + 2HNO 3 + 2H 2 O → Fe (NO 3) 2 + 2NaCl + 2H 2 O + H 2 ↑ ( cathode) <NaCl + FeCl 3> Fe + 2NaCl + 2FeCl 3 + 2H 2 O → 3FeCl 2 + 2NaCl + 2H 2 ↑ ( cathode) + O 2 ↑ Although in the case of NaCl alone than the reaction formula above (anode) iron is the main component of scale to sludge reduction becomes a hydroxide, HNO 3 or
Iron is ionized and dissolved by adding FeCl 3 . In any case, NaCl exhibits a self-renewal action unique to neutral salts and is not consumed. This HNO 3 , FeCl 3
Details of the pit suppression effect of
As shown in the table, reducing acids such as H 2 SO 4 , HCl and H 3 PO 4 have no effect, and oxidizing agents such as H 2 O 2 have no effect. Conversely, HNO 3 and FeCl 3 From the fact that the acid having an oxidizing effect is effective, it is considered that the electrochemical effect is in a narrow range.

以上のように本発明においては、処理においてNaCl水
溶液によつて大部分のスケールが除去されると共にHNO3
又はFeCl3の添加によつてピツトの発生が抑制されて次
の酸洗処理では僅かな残存スケールを仕上げ用として除
去するだけで良くなり、従来の種々な脱スケール方法と
違つて酸洗処理における脱スケール負荷が大幅に軽減さ
れて合金鉄鋼帯1の金属素地のエツチング作用が強ま
り、表面品質の優れた製品となるのである。
As described above, in the present invention, most of the scale is removed by the NaCl aqueous solution during the treatment, and HNO 3
Alternatively, the addition of FeCl 3 suppresses the generation of pits, and in the next pickling treatment, it is sufficient to remove only a small amount of residual scale for finishing. The descaling load is greatly reduced, the etching action of the metal base of the alloy steel strip 1 is enhanced, and a product having excellent surface quality is obtained.

また、電解液がNaCl水溶液を主成分としこれにNaC1
mol/l当りHNO3又はFeCl3を0.4〜1.0mol/l添加して成る
電解液であるために、Cr+6イオンの発生が無いため電解
液槽3より排出される廃液中のCr+6イオンの処理が不要
となると共にその水溶液中で陽極電解処理すると合金鉄
鋼帯1の金属素地のエツチング作用(脱スケール能力)
が大きいため、ラインスピードが高速化されても追従可
能となるのである。更に酸洗処理時には、酸洗液中のス
ケールの堆積が少なくなるため、酸洗液の寿命も延長さ
れて長時間の高いエツチング作用が維持されると同時
に、酸洗液管理や廃液処理の簡素化が可能となるのであ
る。
The electrolyte is mainly composed of an aqueous solution of NaCl,
The mol / l per HNO 3 or FeCl 3 for an electrolytic solution formed by adding 0.4~1.0mol / l, Cr +6 of liquid waste generated in Cr +6 ions are discharged from the electrolytic solution tank 3 for free The ion treatment becomes unnecessary and the anodic electrolytic treatment in the aqueous solution causes the etching action of the metal base of the alloy steel strip 1 (descaling ability).
Is large, so that even if the line speed is increased, it is possible to follow. Furthermore, during the pickling process, the scale of the pickling solution is reduced, so that the service life of the pickling solution is extended and a long and high etching action is maintained. It becomes possible.

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例により具体的に説明
する。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

焼鈍工程を経て走行してくる熱間圧延ステンレス鋼帯
(板厚3.8mmのSUS 304,板厚3.6mmのSUS 430)と板厚4.0
mmの42%Ni合金を一旦コイルに巻き取り、第1図に示す
工程によるり種々な送板速度で、つまり電解時間及び酸
洗時間を種々に変えて脱スケールを行つた(実験例1〜
3,比較例1〜3)。電解液としては、Na2SO4,NaClとHNO
3の水溶液を使用し、電解条件は既存の電解設備最大能
力で行つた。これらの電解液条件及び電解条件を第3表
に示す。引き続く2段の酸洗処理に使用した酸液として
は前段の酸液にはH2SO4濃度が228g/lでHF濃度が10g/lの
硫弗酸酸洗液を液温75℃で使用し、後段の酸液にはHNO3
濃度が70g/lでHF濃度が40g/lの硝弗酸酸洗液を液温60℃
で使用した。この実験に使用した電解槽2,酸洗槽7及び
8における鉄合金帯の浸漬長はいずれも同じであるから
前段,後段の各酸洗処理時間は電解時間と同じであり、
それ以外の酸洗処理の条件は各実験に共通であるから第
3表に示すことは省略した。
Hot rolled stainless steel strip (SUS 304 with a thickness of 3.8 mm, SUS 430 with a thickness of 3.6 mm) traveling through the annealing process and a thickness of 4.0
mm of 42% Ni alloy was once wound into a coil, and descaling was performed at various feeding speeds, that is, by changing the electrolysis time and the pickling time variously according to the process shown in FIG.
3, Comparative Examples 1-3). As the electrolyte, Na 2 SO 4 , NaCl and HNO
Using the aqueous solution of 3 , the electrolysis conditions were carried out at the maximum capacity of the existing electrolysis equipment. Table 3 shows these electrolytic solution conditions and electrolytic conditions. As the acid solution used in the subsequent two-stage pickling treatment, a sulfuric hydrofluoric acid pickling solution having an H 2 SO 4 concentration of 228 g / l and an HF concentration of 10 g / l was used at the temperature of 75 ° C. HNO 3
A nitric hydrofluoric acid pickling solution with a concentration of 70 g / l and an HF concentration of 40 g / l at a temperature of 60 ° C
Used in. Since the immersion lengths of the iron alloy strips in the electrolytic bath 2 and the pickling baths 7 and 8 used in this experiment were the same, each of the preceding and subsequent pickling treatment times was the same as the electrolysis time.
The other conditions of the pickling treatment are common to each experiment, and therefore are not shown in Table 3.

上記脱スケールの実験において、陽極電解(処理
1),前段の酸洗(処理2),後段の酸洗(処理3)の
各処理後の減量(mg/dm2)を測定すると共にそれらを合
計し、各処理段階での脱スケール能力及び工程全体の脱
スケール能力を表わした。この減量の測定方法は、各処
理工程前後において、約10cm角のサンプルを採取し、高
精度天秤にてその重量を計測し単位面積当たりの重量差
を以つて減量とした。また、工程終了時に目視によりス
ケール残存の有無を観察した。変質層残存の有無につい
ては前記減量調査時に採取したサンプルを使用して、電
子顕微鏡(倍率2000倍)にて観察した。更にピツト発生
の有無確認も同じく電子顕微鏡にて観察した。なお、電
解液中でのCr+6イオンの発生有無の確認はビーカーテス
トで確認済みのため本実験では行わなかつた。
In the descaling experiment described above, the weight loss (mg / dm 2 ) after each of the anodic electrolysis (treatment 1), the former pickling (treatment 2), and the latter pickling (treatment 3) was measured, and these were summed. The descaling capacity at each treatment stage and the descaling capacity of the entire process are shown. In the method of measuring the weight loss, a sample of about 10 cm square was collected before and after each treatment step, and the weight was measured with a high-precision balance, and the weight difference per unit area was used as the weight loss. At the end of the process, the presence or absence of scale residue was visually observed. The presence or absence of the deteriorated layer was observed with an electron microscope (2,000-fold magnification) using a sample collected at the time of the above-mentioned weight loss investigation. Further, the presence or absence of pits was also observed with an electron microscope. Note that the presence or absence of generation of Cr +6 ions in the electrolytic solution was not performed in this experiment because it was confirmed by a beaker test.

また、冷間圧延材に対しても同様な実験を行つた(実
験例4〜6,比較例4〜6)。実験材は板厚1.0mmのSUS 3
04,板厚1.0mmのSUS 430,板厚1.0mmの42%Ni合金を使用
した。但し、冷間圧延材にあつては脱スケールは熱間圧
延材に比較すれば容易であることから前記前段の酸洗は
省略し、後段の酸洗は肌荒れを防ぐため熱間圧延材の場
合よりその条件を緩和し、HNO3濃度が70g/l,HF濃度が5g
/lの硝弗酸酸洗液を液温60℃で使用した。また、42%Ni
合金の冷間圧延材は通常焼鈍酸洗ラインを通板せずに光
輝焼鈍ラインを通板することから酸洗処理は行わず、本
発明の前処理効果の確認のみに留めた。
Similar experiments were also performed on cold-rolled materials (Experimental Examples 4 to 6, Comparative Examples 4 to 6). The experimental material is SUS 3 with a thickness of 1.0 mm.
04, 1.0mm thick SUS 430, 1.0mm thick 42% Ni alloy was used. However, in the case of cold-rolled material, descaling is easier than that of hot-rolled material, so the pickling in the former stage is omitted, and the pickling in the latter stage is for hot-rolled material in order to prevent roughening of the surface. More relaxed conditions, HNO 3 concentration 70g / l, HF concentration 5g
/ l nitric hydrofluoric acid pickling solution was used at a liquid temperature of 60 ° C. Also, 42% Ni
Since the cold-rolled material of the alloy normally passes through the bright annealing line without passing through the annealing pickling line, no pickling treatment was performed, and only the pretreatment effect of the present invention was confirmed.

この第3表より、比較例として示したルツナー法(Na
2SO4を電解質とする水溶液中での電解処理法)に比べて
本発明方法に基づく前処理がその能力面からも優れてい
ることが判る(実験例中におけるスケール残及び変質部
が共に無のものが本発明方法に該当する)。なお、冷間
圧延材にあつては、表面変質部残存の確認を行つていな
いのは、冷間圧延材にあつては、変質部の存在か熱間圧
延材の如く明瞭でないためである。
From Table 3, it can be seen that the Rutzner method (Na
It can be seen that the pretreatment based on the method of the present invention is also superior in terms of its ability as compared with the electrolytic treatment method in an aqueous solution using 2 SO 4 as an electrolyte (both scale residues and altered portions in the experimental examples are both eliminated). Correspond to the method of the present invention). It should be noted that the reason for confirming the existence of the deteriorated surface in the cold-rolled material is that the presence of the deteriorated portion in the cold-rolled material is not as clear as in the hot-rolled material. .

〔発明の効果〕 以上詳述した如き本発明に係る合金鉄鋼帯の脱スケー
ル方法及び装置は、以下に列挙するような種々の利点を
有しており、その工業的価値は非常に大きなものがあ
る。
[Effects of the Invention] The method and apparatus for descaling an alloy steel strip according to the present invention as described in detail above have various advantages as listed below, and their industrial value is very large. is there.

1.前処理によつて大部分のスケールが短時間で除去され
ることから、酸洗槽における脱スケール負荷が軽減され
ることになり、酸洗液の寿命も延び脱スケール能力が安
定した。従つて、酸洗液の濃度管理及び追酸に要する労
力,費用も軽減されると同時に脱スケールの高速化が可
能となつた。
1. Since most of the scale was removed in a short time by the pretreatment, the descaling load in the pickling tank was reduced, the life of the pickling solution was extended, and the descaling ability was stabilized. Accordingly, the labor and cost required for controlling the concentration of the pickling solution and for adding acid are reduced, and the descaling can be sped up.

2.熱間圧延材,冷間圧延材のいずれであつても同じライ
ンを兼用して充分な脱スケール能力が得られるようにな
つたことから、生産能力の向上が図られた。
2. For both hot-rolled and cold-rolled materials, the same line was also used, and sufficient descaling capability was obtained, so the production capacity was improved.

3.前処理として、50〜200g/lのNaCl水溶液を主成分と
し、これに一定量のHNO3又はFeCl3を添加した電解液を
使用した陽極電解を採用したことで、電解槽より排出さ
れる廃液中のCr+6イオンの処理費用が軽減され、また合
金鉄鋼帯の表面にピツトの発生がなくその表面品質が向
上した。
3. As a pretreatment, a main component of NaCl aqueous solution 50 to 200 g / l, this by adopting the anodic electrolysis using a fixed amount of HNO 3 or FeCl 3 electrolytic liquid containing, discharged from the electrolytic cell The cost of treating Cr + 6 ions in the waste liquid was reduced, and the surface quality of the alloy steel strip was improved without pits.

4.前処理が充分な脱スケール能力を有ししかも溶融塩の
如く粘性が高くないために、液持出しが少ないことから
コスト的にも優れている。
4. The pre-treatment has sufficient descaling ability and is not so viscous as molten salt, so it is excellent in cost because there is little liquid removal.

5.前処理にて大部分のスケール除去が可能となつたこと
から、酸洗処理においては残存するスケールの除去が確
実に実施されると同時に、スケール直下の金属素地をも
溶解することになるので、脱スケールが不充分であるこ
とに起因する合金鉄鋼帯の表面欠陥である肌荒れや光沢
むらが減少できて、最終製品の表面品質が大幅に向上す
る。
5. Since most of the scale can be removed in the pretreatment, the removal of the remaining scale is surely performed in the pickling treatment, and at the same time, the metal base immediately below the scale is dissolved. Therefore, it is possible to reduce surface roughness and uneven luster, which are surface defects of the alloy steel strip due to insufficient descaling, and to greatly improve the surface quality of the final product.

6.本発明方法を実施するときの設備面に関しては、電解
槽及び酸洗槽のいずれも従来のものをそのまま使用する
ことができるから、殆んど設備改造を要せず、しかも脱
スケール能力の向上が図れた。
6. Regarding the equipment when carrying out the method of the present invention, since both the electrolytic cell and the pickling tank can be used as they are, almost no equipment modification is required, and the descaling ability is hardly required. Was improved.

7.本発明装置に関しては、陰極板が設けられている電解
液槽の前に陽極板が設けられている導電性液槽を配設し
た構成とした場合には、導電性液槽において合金鉄鋼帯
に予備的な脱スケール作用を生じせしめるため、次の電
解液槽における脱スケールをより増大せしめる効果を奏
するようになつた。
7. With regard to the device of the present invention, when the conductive liquid tank provided with the anode plate is disposed in front of the electrolytic cell provided with the cathode plate, the alloy liquid steel is used in the conductive liquid tank. In order to cause a preliminary descaling action in the band, an effect of further increasing descaling in the next electrolytic solution tank was achieved.

8.電解液槽の後に陽極と成る通電ロールを設けて合金鉄
鋼帯に直接給電する構成とした場合には、電解効率及び
脱スケールをより向上せしめることが可能となつた。
8. When a current-carrying roll serving as an anode was provided after the electrolyte bath to supply power directly to the steel alloy strip, the electrolysis efficiency and descaling could be further improved.

9.切替え用スイツチを介してメインの電解用直流電源と
この電解用直流電源とは別の小容量の印加電圧用の直流
電源とのいずれかが接続可能に配設されている構成とし
た場合には、メインの電解用直流電源から給電できない
場合でも電極が保護されるようになつて電極の寿命が延
長されるようになつた。
9. When a configuration is adopted in which either the main DC power supply for electrolysis or a DC power supply for a small applied voltage different from this DC power supply for electrolysis is connected via the switching switch Thus, even when power cannot be supplied from the main DC power supply for electrolysis, the electrodes are protected and the life of the electrodes is extended.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法を実施するための装置の1例の工程
図、第2図は第1図の電解液槽の拡大平面図、第3図は
本発明方法を実施するための装置の他の例の工程図、第
4図は第3図の電解液槽の拡大平面図、第5図は本発明
方法を実施するための装置の更に他の例の工程図、第6
図〜第8図は各要因における脱スケール能力を合金鉄鋼
帯の減量で表したグラフであり、第6図はNaCl濃度,第
7図はHNO3濃度,第8図は電解電流密度と合金鉄鋼帯の
減量との関係をそれぞれ示すグラフである。また第9図
は本発明における電解液の濃度と導電率との関係を液温
別に示したグラフ、第10図〜第12図は本発明によらない
電解液の濃度と導電率との関係を液温別に示したグラフ
であり、第10図はNa2SO4濃度,第11図はNaCl濃度,第12
図はHNO3濃度における導電率をそれぞれ示すグラフであ
る。 図面中 1……合金鉄鋼帯 2……電解液 3……電解液槽 4……陽極板 5……陰極板 6……電解用直流電源 7……酸洗液 8……酸洗槽 9……送板ロール 10……浸漬ロール 11……ブラツシユロール 12……バツクアツプロール 13……洗浄ノズル 14……導電性液 15……導電性液槽 16……耐酸性を有する陽極板 17……耐酸性を有する陰極板 18……印加電圧用の直流電源 19……切替え用スイツチ 20……ガス抜き用孔 21……通電ロール
FIG. 1 is a process diagram of an example of an apparatus for carrying out the method of the present invention, FIG. 2 is an enlarged plan view of the electrolytic solution tank of FIG. 1, and FIG. 3 is an apparatus for carrying out the method of the present invention. FIG. 4 is an enlarged plan view of the electrolytic solution tank of FIG. 3, FIG. 5 is a process diagram of still another example of the apparatus for carrying out the method of the present invention, and FIG.
Figure ~ FIG. 8 is a graph showing the descaling capability of each factor in loss of alloy steel strip, Figure 6 is NaCl concentrations, Figure 7 is HNO 3 concentration, FIG. 8 is the electrolysis current density and alloy steel It is a graph which shows the relationship with the weight reduction of a belt, respectively. FIG. 9 is a graph showing the relationship between the concentration of the electrolytic solution and the conductivity in the present invention at different liquid temperatures, and FIGS. 10 to 12 show the relationship between the concentration of the electrolytic solution and the conductivity not according to the present invention. FIG. 10 is a graph showing the results for different liquid temperatures. FIG. 10 shows the Na 2 SO 4 concentration, FIG. 11 shows the NaCl concentration, and FIG.
The figure is a graph showing the conductivity at each HNO 3 concentration. In the drawings 1 ... alloy steel strip 2 ... electrolyte 3 ... electrolyte tank 4 ... anode plate 5 ... cathode plate 6 ... DC power supply for electrolysis 7 ... pickling solution 8 ... pickling tank 9 ... … Sheet roll 10… Immersion roll 11… Brush roll 12… Back-up roll 13… Wash nozzle 14… Conducting liquid 15… Conducting liquid tank 16… Anode plate 17 having acid resistance … Cathode plate with acid resistance 18… DC power supply for applied voltage 19… Switch for switching 20… Hole for degassing 21… Electrification roll

フロントページの続き (56)参考文献 特開 昭62−60900(JP,A) 特開 昭63−161194(JP,A) 特開 昭49−67836(JP,A) 特開 昭63−216999(JP,A) 特開 平2−54787(JP,A)Continuation of the front page (56) References JP-A-62-60900 (JP, A) JP-A-63-161194 (JP, A) JP-A-49-67836 (JP, A) JP-A-63-216999 (JP, A) , A) JP-A-2-54787 (JP, A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくともニツケル及び/又はクロムを含
有する合金鉄鋼帯を50〜200g/lのNaClを主成分としこれ
にNaC1mol/l当りHNO3又はFeCl3を0.4〜1.0mol/l添加
した水溶液から成る電解液中で液温を20〜80℃、電流密
度を5〜30A/dm2の条件下で合金鉄鋼帯を陽極として40
秒以上電解処理を行い、しかる後に硫弗酸と硝弗酸との
いずれかにより酸洗処理してスケール直下の金属素地ま
で除去することを特徴とする合金鉄鋼帯の脱スケール方
法。
1. A least nickel and / or an aqueous solution of a NaC1mol / l per HNO 3 or FeCl 3 alloy steel strip as a main component of NaCl 50 to 200 g / l to contain added 0.4~1.0Mol / l chromium Under the conditions of a liquid temperature of 20 to 80 ° C. and a current density of 5 to 30 A / dm 2 in an electrolytic solution comprising
A method for descaling an alloy steel strip, comprising performing an electrolytic treatment for at least two seconds, and then pickling with either sulfuric hydrofluoric acid or nitric hydrofluoric acid to remove the metal base immediately below the scale.
【請求項2】硫弗酸としてH2SO4の濃度が150〜250g/lで
HF濃度が5〜50g/lのものを液温70〜90℃で使用する請
求項1に記載の合金鉄鋼帯の脱スケール方法。
2. The concentration of H 2 SO 4 as sulfuric hydrofluoric acid is 150 to 250 g / l.
2. The descaling method for an alloy steel strip according to claim 1, wherein the one having an HF concentration of 5 to 50 g / l is used at a liquid temperature of 70 to 90C.
【請求項3】硝弗酸としてHNO3の濃度が50〜100g/lでHF
濃度が5〜50g/lのものを液温50〜70℃で使用する請求
項1に記載の合金鉄鋼帯の脱スケール方法。
3. An HF solution having a nitric hydrofluoric acid concentration of HNO 3 of 50 to 100 g / l.
The method for descaling an alloyed steel strip according to claim 1, wherein a solution having a concentration of 5 to 50 g / l is used at a liquid temperature of 50 to 70 ° C.
【請求項4】白金,ルテニウム酸化物,鉛酸化物のいず
れか1種から成る陽極板と白金,チタン,オーステナイ
ト系ステンレス鋼のいずれか1種から成る陰極板とが共
に50〜200g/lのNaClを主成分としこれにNaC1mol/l当
りHNO3又はFeCl3を0.4〜1.0mol/l添加した水溶液から成
る電解液が建浴されている電解液槽内部に設けられてお
り、該電解液槽の後に硫弗酸と硝弗酸とのいずれかが建
浴されている酸洗処理槽が配設されていること特徴とす
る合金鉄鋼帯の脱スケール装置。
4. An anode plate made of any one of platinum, ruthenium oxide and lead oxide and a cathode plate made of any one of platinum, titanium and austenitic stainless steel both have an amount of 50 to 200 g / l. NaCl main component and is provided with NaC1mol / l per HNO 3 or FeCl 3 inside the electrolyte bath electrolyte comprising an aqueous solution prepared by adding 0.4~1.0mol / l are initial make-up to the, electrolyte solution tank A descaling apparatus for an alloy steel strip, characterized in that a pickling treatment tank in which either sulfuric hydrofluoric acid or nitric hydrofluoric acid is built is disposed after the pickling bath.
【請求項5】50〜200g/lのNaClを主成分としこれにNaC
1mol/l当りHNO3又はFeCl3を0.4〜1.0mol/l添加した水
溶液から成る電解液が建浴されており陰極板が設けられ
ている電解液槽の前に導電性液が建浴されており陽極板
が設けられている導電性液槽が配設されており、また電
解液槽の後に硫弗酸と硝弗酸とのいずれかが建浴されて
いる酸洗処理槽が配設されており、前記陰極板と陽極板
とに電解用直流電源が接続されていることを特徴とする
合金鉄鋼帯の脱スケール装置。
5. A method according to claim 5, wherein the main component is 50 to 200 g / l of NaCl.
An electrolytic solution consisting of an aqueous solution containing 0.4 to 1.0 mol / l of HNO 3 or FeCl 3 added per mol / l is bathed, and a conductive liquid is bathed in front of an electrolytic bath provided with a cathode plate. A conductive liquid tank provided with a cage anode plate is provided, and an acid pickling treatment tank in which either sulfuric hydrofluoric acid or nitric hydrofluoric acid is built is provided after the electrolytic cell. A descaling device for an alloy steel strip, wherein a DC power supply for electrolysis is connected to the cathode plate and the anode plate.
【請求項6】電解液槽内の陰極板と導電性液槽内の陽極
板とに、切替え用スイツチを介して電解用直流電源と該
電解用直流電源とは別の小容量の印加電圧用の直流電源
とのいずれかが接続可能に配設されている請求項5に記
載の合金鉄鋼帯の脱スケール装置。
6. A DC power source for electrolysis and a small-capacity applied voltage different from the DC power source for electrolysis via a switching switch between a cathode plate in the electrolyte bath and an anode plate in the conductive bath. The descaling device for an alloy steel strip according to claim 5, wherein any one of the DC power supplies is connected to the DC power supply.
【請求項7】50〜200g/lのNaClを主成分としこれにNaC
1mol/l当りHNO3又はFeCl3を0.4〜1.0mol/l添加した水
溶液から成る電解液が建浴されており陰極板が配設され
た電解液槽と硫弗酸と硝弗酸とのいずれかが建浴されて
いる酸洗処理槽との間に陽極となる通電ロールが設けら
れており、該通電ロールと前記陰極板とに電解用直流電
源が接続されていることを特徴とする合金鉄鋼帯の脱ス
ケール装置。
7. A composition comprising 50 to 200 g / l of NaCl as a main component and NaC
Any of a 1 mol / l per HNO 3 or FeCl 3 to 0.4~1.0mol / l added electrolyte solution bath cathode plate is disposed an electrolyte comprising an aqueous solution are vatting and硫弗acid and nitric-hydrofluoric acid An alloy is characterized in that a current-carrying roll serving as an anode is provided between the pickling tank in which the bath is built, and a direct-current power supply for electrolysis is connected to the current-carrying roll and the cathode plate. Descaler for steel strip.
【請求項8】通電ロールと陰極板とに、切替え用スイツ
チを介して電解用直流電源と該電解用直流電源とは別の
小容量の印加電圧用の直流電源とのいずれかが接続可能
に配設されている請求項7に記載の合金鉄鋼帯の脱スケ
ール装置。
8. A DC power source for electrolysis and a DC power source for a small applied voltage different from the DC power source for electrolysis can be connected to the energizing roll and the cathode plate via a switching switch. The descaling device for an alloy steel strip according to claim 7, which is provided.
JP63218388A 1988-09-02 1988-09-02 Method and apparatus for descaling alloy steel strip Expired - Lifetime JP2577619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218388A JP2577619B2 (en) 1988-09-02 1988-09-02 Method and apparatus for descaling alloy steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218388A JP2577619B2 (en) 1988-09-02 1988-09-02 Method and apparatus for descaling alloy steel strip

Publications (2)

Publication Number Publication Date
JPH0270100A JPH0270100A (en) 1990-03-08
JP2577619B2 true JP2577619B2 (en) 1997-02-05

Family

ID=16719124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218388A Expired - Lifetime JP2577619B2 (en) 1988-09-02 1988-09-02 Method and apparatus for descaling alloy steel strip

Country Status (1)

Country Link
JP (1) JP2577619B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089900A (en) * 2001-09-17 2003-03-28 Daido Steel Co Ltd Method of descaling metallic strip
JP6696448B2 (en) * 2016-09-12 2020-05-20 Jfeスチール株式会社 Steel sheet electrolytic cleaning device, continuous annealing equipment, and steel sheet manufacturing method
CN110528058A (en) * 2019-08-29 2019-12-03 浦项(张家港)不锈钢股份有限公司 A kind of 254SMo stainless steel surface pit defect ameliorative way
CN115558935B (en) * 2022-10-18 2024-05-03 山西太钢不锈钢股份有限公司 Annealing and pickling method for surface overburning of hot rolled austenitic stainless steel strip steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086429A (en) * 1973-12-07 1975-07-11
JPS5959899A (en) * 1982-09-29 1984-04-05 Kawasaki Steel Corp Method for electrolytic descaling of stainless steel strip
JPS6260900A (en) * 1985-09-09 1987-03-17 Shoji Shimada Method for descaling stainless steel material
JPS63161944A (en) * 1986-12-26 1988-07-05 横河メディカルシステム株式会社 X-ray tomographic imaging apparatus

Also Published As

Publication number Publication date
JPH0270100A (en) 1990-03-08

Similar Documents

Publication Publication Date Title
JP5768141B2 (en) Eco-friendly high-speed pickling process for producing low chromium ferritic stainless steel cold rolled steel sheets with excellent surface quality
US5472579A (en) Hot-rolled steel strip manufacturing and descaling method and apparatus
EP0972862A2 (en) Method for forming a phosphate film on steel wires and apparatus used therefor
EP1307609B1 (en) Continuous electrolytic pickling method for metallic products using alternate current supplied cells
JP5897717B2 (en) Pickling of stainless steel in an oxidative electrolytic acid bath
JPH04337094A (en) High-speed pickling method for steel type metal
JP6031606B2 (en) High speed pickling process for producing austenitic stainless cold rolled steel sheet
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
JPH0827600A (en) Descaling method and device for stainless steel strip
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JP4352190B2 (en) Descaling method of titanium material
JP2517353B2 (en) Descaling method for stainless steel strip
JP3004390B2 (en) High-speed descaling and surface modification method and apparatus for hot-rolled alloy steel strip
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP3112257B2 (en) Method for electrolytic descaling of Ni annealed plate or Ni alloy annealed plate
JP4804657B2 (en) A descaling method for austenitic stainless steel cold-rolled annealed steel sheets
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
JP2965423B2 (en) Pickling of ferritic stainless steel sheet containing high Cr
JP3269444B2 (en) Titanium descaling method and continuous annealing descaling device
JPH1161500A (en) Descaling of stainless steel strip and heat resistant steel strip
JPH108298A (en) Method for descaling hot rolled steel strip and equipment therefor
JPH0711080B2 (en) High-speed electrolytic melting method for steel metal
KR20000011280A (en) Process and a plant for producing an electrolytically coated, hot-rolled strip
JPH10152800A (en) Method for descaling steel strip