JPH0270100A - Method and apparatus for descaling ferro alloy strip - Google Patents

Method and apparatus for descaling ferro alloy strip

Info

Publication number
JPH0270100A
JPH0270100A JP21838888A JP21838888A JPH0270100A JP H0270100 A JPH0270100 A JP H0270100A JP 21838888 A JP21838888 A JP 21838888A JP 21838888 A JP21838888 A JP 21838888A JP H0270100 A JPH0270100 A JP H0270100A
Authority
JP
Japan
Prior art keywords
descaling
nacl
steel strip
alloy steel
pickling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21838888A
Other languages
Japanese (ja)
Other versions
JP2577619B2 (en
Inventor
Kazuo Sakurai
一生 桜井
Koji Goto
宏二 後藤
Akimasa Fujita
藤田 昭正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63218388A priority Critical patent/JP2577619B2/en
Publication of JPH0270100A publication Critical patent/JPH0270100A/en
Application granted granted Critical
Publication of JP2577619B2 publication Critical patent/JP2577619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To favorably perform descaling without causing a pit on steel strip by electrolyzing ferro alloy steel strip contg. Ni in an electrolytic soln. incorporating NaCl as a main body in the specified conditions and thereafter pickling it with sulfofluoric acid to remove even metallic material just under scale. CONSTITUTION:Ferro alloy steel strip contg. at least Ni and/or Cr is electrolyzed in an electrolytic soln. consisting of an aq. soln. wherein 50-200g/l NaCl is contained as a main component and 0.4-1.0mol HNO3 or FeCl3 per 1mol/l NaCl is added thereto in the conditions of 20-80 deg.C liquid temp. and 5-30A/dm<2> current density while utilizing the ferro alloy steel strip as an anode. Then ferro alloy steel strip is pickled by either of sulfofluoric acid (150-250g/l H2SO4, 5-50g/l HF, 70-90 deg.C liquid temp.) and nitrifluoric acid (50-100g/l HNO3, 5-50g/l HF, 50-70 deg.C liquid temp.) and even metallic material just under scale is removed. Thereby favorable descaling is performed at high velocity and the problem of waste liquid disposal is made little.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スケール除去に使用される薬液の管理及びそ
の廃液処理が簡単であり、スケール除去能力が大きくて
ラインスピードを高速化しても追従可能であり、ライン
で発生する廃液やスラッジについて環境汚染などの公害
上の問題も無く、そして何よりも最終製品の表面にピッ
ト等を発生させず品質を良好にさせる少なくともニッケ
ル及び/又はクロムを含有する合金鉄鋼帯の脱スケール
方法及び装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention allows easy management of the chemical solution used for scale removal and treatment of its waste liquid, and has a large scale removal ability that can keep up even when the line speed is increased. It is possible, there are no pollution problems such as environmental pollution with respect to waste liquid and sludge generated in the line, and above all, it contains at least nickel and/or chromium, which does not cause pits or the like on the surface of the final product and improves the quality. The present invention relates to a method and apparatus for descaling alloy steel strip.

〔従来の技術〕[Conventional technology]

少なくともニッケル及び/又はクロムを含有する合金鉄
鋼帯の代表的なものと言えるJIS G 4306r熱
間圧延ステンレス鋼帯」に規定される熱間圧延ステンレ
ス鋼帯製品は、一般に熱間圧延されたステンレス鋼帯を
素材としてこれを焼鈍などを含む熱処理、酸洗又はこの
酸洗に準じる処理を施すために一連のライン化された焼
鈍酸洗工程を通板されて製造されている。そして、この
焼鈍酸洗工程を経て製造された熱間圧延ステンレス鋼帯
を剪断してJIS G 4304 r熱間圧延ステンレ
ス鋼板」に規定される熱間圧延ステンレス鋼板製品が製
造されている。
Hot-rolled stainless steel strip products specified in JIS G 4306r hot-rolled stainless steel strip, which can be said to be a representative alloy steel strip containing at least nickel and/or chromium, are generally made of hot-rolled stainless steel. It is manufactured by using a strip as a raw material and passing it through a series of lined annealing and pickling processes in order to subject it to heat treatment including annealing, pickling, or a treatment similar to pickling. The hot rolled stainless steel strip produced through this annealing and pickling process is then sheared to produce a hot rolled stainless steel sheet product defined in JIS G 4304r "Hot Rolled Stainless Steel Sheet".

また、JIS G 4307 r冷間圧延ステンレス鋼
帯」に規定されるNn2D、 Nn2B、 Nα3.N
α4.、BA等の各種表面仕上の冷間圧延ステンレス鋼
帯製品は、前記焼鈍酸洗工程を経て製造された熱間圧延
ステンレス鋼帯を素材とし、これをそれぞれライン化さ
れた冷間圧延工程、焼鈍酸洗工程を必要に応じて繰り返
し通板し、しかもこれらの工程間にあって素材表面の残
存スケールや堆石を除去するために必要に応じてライン
化された中間研磨工程に通板され、更に調質圧延工程、
剪断や裁断処理等がなされる精整工程を経て製造されて
いる。そして、このようにして製造された冷間圧延ステ
ンレス鋼帯を剪断してJIS G 4305 r冷間圧
延ステンレス鋼板」に規定される冷間圧延ステンレス鋼
板製品が一 製造されているのである。
In addition, Nn2D, Nn2B, Nα3. N
α4. Cold rolled stainless steel strip products with various surface finishes such as The pickling process is repeated as necessary, and between these processes, the plate is passed through an intermediate polishing process lined as necessary to remove residual scale and debris on the surface of the material, and then further conditioned. quality rolling process,
It is manufactured through a refining process that includes shearing and cutting. The cold rolled stainless steel strip thus produced is sheared to produce a cold rolled stainless steel sheet product defined in JIS G 4305r Cold Rolled Stainless Steel Sheet.

以上に述べた如く、ステンレス鋼帯製品及び同鋼板製品
等の合金鉄の製品は、熱間圧延、この熱間圧延後の焼鈍
を含む熱処理及び冷間圧延により加工硬化された素材の
軟化焼鈍等が施されるので、程度の差こそあれその都度
その素材表面に主としてFeやCrなどの酸化物から成
るスケールが生成する。この素材表面に生成したスケー
ルを完全に除去して各工程を推進しないと良好な表面品
質の最終製品を得ることが出来ないので、その都度脱ス
ケール処理が施されるのである。
As mentioned above, ferroalloy products such as stainless steel strip products and stainless steel plate products are manufactured by hot rolling, heat treatment including annealing after hot rolling, and softening annealing of materials work-hardened by cold rolling. As a result, scale consisting mainly of oxides such as Fe and Cr is generated on the surface of the material to varying degrees. A final product with good surface quality cannot be obtained unless scale generated on the surface of the material is completely removed before proceeding with each process, so descaling treatment is performed each time.

しかしながら、合金鉄鋼帯、特にステンレス鋼帯等の素
材表面に生成するスケールは、一般に緻密なために非常
に除去困雛である。そこでこの合金鉄鋼帯の素材表面に
生成するスケールの脱スケールに関して、従来から種々
な脱スケール方法が実施されたり提案されたりしている
However, scale that forms on the surface of materials such as alloy steel strips, particularly stainless steel strips, etc., is generally dense and very difficult to remove. Therefore, various descaling methods have been implemented or proposed in the past regarding the descaling of the scale generated on the material surface of this alloy steel strip.

先ず、古くから最も基本的で且つ広〈実施されてきた処
理方法は、硫酸、硝酸、塩酸、弗酸又はこれらを混合し
た混酸薬液で処理して脱スケールを行い、均一で適度の
不動態化処理を施す酸洗処理であった。しかしながら、
この酸洗処理のみによる処理方法では、合金鉄鋼帯を高
速処理して生産性を向上せしめ尚且つ完全な脱スケール
処理を行い、最終製品として表面品質の良好なものを得
るという要求に対応し切れなくなり、この酸洗処理の前
に、機械的、化学的又はこれらを組合せた前処理が併用
されるようになってきたのである。
First, the most basic and widely used treatment method is to descale by treating with sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, or a mixed acid solution of these, and achieve uniform and appropriate passivation. It was a pickling treatment. however,
This treatment method using only pickling treatment cannot meet the demands of high-speed processing of alloyed steel strips to improve productivity, complete descaling treatment, and obtaining final products with good surface quality. Mechanical, chemical, or a combination of these pretreatments have come to be used in combination before this pickling treatment.

その機械的前処理としては、酸洗処理に先立ってショク
1〜ブラストやスケールブレーカ−などによってスケー
ル層に亀裂を生じさせて酸洗処理での脱スケールを容易
にする処理方法であるが、これらの機械的前処理にあっ
ては合金鉄鋼帯の素地に圧痕を残したり加工硬化を起こ
させたりする欠点を有していた。
Mechanical pretreatment is a treatment method in which cracks are created in the scale layer by blasting or scale breakers prior to the pickling treatment to facilitate descaling in the pickling treatment. The mechanical pretreatment has the drawback of leaving impressions on the base of the alloy steel strip and causing work hardening.

また、従来より行われているNa2SO4を電解質とす
る水溶液中での電解や溶融苛性アルカリ処理等の化学的
前処理によって一部の成分を変質させてスケールの組成
や素地との結合力を弱める方法も実施されているが、ス
ケール量の比較的少なし1冷間圧延材にあっては効果が
あるが、スケール量の多い熱間圧延材に対しては効果が
少なかった。
In addition, conventional methods include electrolysis in an aqueous solution using Na2SO4 as an electrolyte and chemical pretreatment such as molten caustic alkaline treatment to alter some of the components and weaken the composition of the scale and its bonding strength with the substrate. Although this method was effective for cold-rolled materials with a relatively small amount of scale, it was less effective for hot-rolled materials with a large amount of scale.

一方、合金鉄鋼帯、特にステンレス鋼帯の生産性向上の
ために圧延、焼鈍と共に、従来より表面品質を尚−層良
好なものにしつつ、脱スケールを高速化して高能率に実
施することが要求され、そのためスケール除去能力の大
きい脱スケール方法の開発が望まれるようになってきた
。しかしながら、化学的前処理としてNa2SO4水溶
液中で陽極電解を行う場合に、この前処理方法は冷間圧
延材に対しては効果は大きいが、熱間圧延材に対しては
元来それ程大きな効果はなく、またCr”イオンを溶出
させるのでその廃液処理が公害防止上甚だ厄介であった
。従ってNa2SO4水溶液中での電解による前処理で
は熱間圧延材に対しては高速化し難い上、熱間、冷間い
ずれの圧延材に対しても高速化した場合はそれだけCr
”イオン溶出量が増して電解液の老化を早めると共にそ
の処理が一層厄介となる欠点があった。
On the other hand, in order to improve the productivity of alloy steel strips, especially stainless steel strips, in addition to rolling and annealing, it is necessary to improve the surface quality even better than before, and to perform descaling at high speed and with high efficiency. Therefore, it has become desirable to develop a descaling method with a high scale removal ability. However, when performing anodic electrolysis in a Na2SO4 aqueous solution as a chemical pretreatment, this pretreatment method has a large effect on cold rolled materials, but is not as effective on hot rolled materials. Moreover, since Cr" ions are eluted, the treatment of the waste liquid is extremely troublesome in terms of pollution prevention. Therefore, pretreatment by electrolysis in an aqueous Na2SO4 solution is difficult to increase the speed of hot rolled materials, and When the speed is increased for any cold-rolled material, the Cr
``The problem was that the amount of ion elution increased, accelerating the aging of the electrolytic solution and making its treatment even more troublesome.

また、化学的前処理の他の方法として溶融苛性アルカリ
処理を行う場合は、溶融苛性アルカリが高粘性であるこ
とから高速化によって液持出し量が大きくなり、ワイピ
ング装置によっても速度に追従して液持出し量の増加を
防止することが困難でゴス1−高となる欠点があった。
In addition, when performing molten caustic treatment as another method of chemical pretreatment, since the molten caustic is highly viscous, increasing the speed increases the amount of liquid taken out, and the wiping device also follows the speed and liquid There was a drawback that it was difficult to prevent an increase in the amount taken out, resulting in a 1-high level.

そして上記の如く高速化することが困難である前処理を
弱体化してその弱体化分を強化するために酸濃度及び液
温を上げて酸洗を行う場合には酸洗液の老化が早まる結
果、酸濃度管理、追酸、廃液処理等にかかる労力、費用
が多大のものとなる欠点があった。また酸洗の代わりに
NaCl等を電解質とする水溶液中で陽極電解を行って
もそれが脱スケールの主体となる程に強く行う場合はス
テンレス鋼帯にピットを発生させ易い欠点があった。こ
のように丁寧に低速で行ってこそ良い結果を得る脱スケ
ールとその高速化とは、上記の如〈従来両立し難いもの
であった。
As mentioned above, when pickling is performed by increasing the acid concentration and liquid temperature in order to weaken the pretreatment and strengthen the weakened portion, which is difficult to speed up, the aging of the pickling solution is accelerated. However, there was a drawback that the labor and cost required for acid concentration management, acid addition, waste liquid treatment, etc. were enormous. Further, even if anodic electrolysis is performed in an aqueous solution containing NaCl or the like as an electrolyte instead of pickling, if the electrolysis is performed so strongly that it becomes the main descaling agent, pits are likely to occur in the stainless steel strip. As mentioned above, descaling, which only yields good results when done carefully and at low speeds, and speeding up descaling have been difficult to reconcile in the past.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで本発明は、上記従来技術の欠点がなくスケール除
去能力が大きく従って高速化が可能でしかも廃液処理の
問題が少なく、また合金鉄鋼帯にピットを発生させるこ
となく、更に表面を品質良好にさせる合金鉄鋼帯の脱ス
ケール方法及び装置を提供することを課題とする。
Therefore, the present invention does not have the above-mentioned drawbacks of the prior art, has a large scale removal ability, and therefore can operate at high speeds, has fewer problems in waste liquid treatment, does not generate pits in the alloy steel strip, and further improves the surface quality. An object of the present invention is to provide a method and apparatus for descaling alloy steel strip.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等はかかる課題を解決すべく鋭意検討の結果、
最終の処理としてはスケール直下の金属素地をも積極的
に除去して表面をきれいにする利点を有する硝弗酸と硝
弗酸とのいずれかによる酸洗処理を採用し、その前処理
として50〜200 g / flのNaClを主成分
としこれにNaCl 1 moQ/ Q当りHNO3又
はFeCl3を0.4〜1.0moΩ/ρ添加した水溶
液から成る電解液中で且つ所定範囲の液温と電流密度の
下で陽極電解処理することにより、この前処理の段階で
Cr46イオンの発生やピットの発生がなく且つ大部分
のスケールが除去され、その結果最終処理である酸洗処
理の負担が軽減されて高速化が可能となると共にスケー
ル直下の金属素地まで除去されて表面品質の優れた合金
鉄鋼帯が得られることを究明して本発明を完成したので
ある。
As a result of intensive studies to solve such problems, the inventors of the present invention found that
As the final treatment, pickling treatment with either nitric-fluoric acid or nitric-fluoric acid, which has the advantage of actively removing the metal base directly under the scale and cleaning the surface, is adopted. In an electrolytic solution consisting of an aqueous solution containing 200 g/fl NaCl as the main component and to which 0.4 to 1.0 moΩ/ρ of HNO3 or FeCl3 per 1 moQ/Q of NaCl was added, and at a predetermined range of liquid temperature and current density. By performing anodic electrolytic treatment at the bottom, there is no generation of Cr46 ions or pits at this pretreatment stage, and most of the scale is removed, resulting in a reduction in the burden of the final pickling process and a high speed process. They completed the present invention by discovering that it is possible to obtain a steel alloy strip with excellent surface quality by removing even the metal substrate immediately below the scale.

〔構成の説明〕[Explanation of configuration]

本発明において適用できる合金鉄鋼帯は、少なくともニ
ッケル及び/又はクロムを含有する合金鉄鋼帯であり、
熱間圧延材、冷間圧延材のいずれの合金鉄鋼帯であって
も良い。
The alloy steel strip that can be applied in the present invention is an alloy steel strip containing at least nickel and/or chromium,
The alloy steel strip may be either a hot-rolled material or a cold-rolled material.

前処理として用いる電解液としては、50〜200gI
QのNaClを主成分としこれにNa CQ 1 mo
Q/ n当りHNO3又はFeCO3を0.4〜1.0
mofl/ (を添加した水溶液から成る電解液であり
、この電解液のNaClの濃度が50 g / 0未満
であると電解液の導電性が低下して電流効率が下がると
共に第6図に示すように処理減量が少なくなるためであ
り、一方NaClの濃度は高い程好ましいが最高を20
0 g / Qとした理由はNaClの水への溶解度を
考慮したためである。またHNO3又はFeCO3を添
加する理由は合金鉄鋼帯表面のピット発生を抑制するた
めであり、その添加量としてはNaClの濃度1 mo
Q/ n当り0.4〜1.0moQ/lの範囲とする必
要がある。すなわち、Naω1mob/ Q当り0.4
moff/ nより少ないとピット発生の抑制効果が低
下するようになり、NaCl 1 moQ/ Q当り1
.OmoQ/ Qより多くしてもピット発生の抑制効果
に変化なく不経済となるのである。また、電解液温度は
20℃〜80℃とする必要がある。すなわち、電解液温
度は高い方が脱スケール能力が大となり且つ供給電力が
下がると共に、第9図に示すように導電率(単位: m
 S/cm=103/l’ am)が上がるため電解効
率が向上する。しかし、電解液温度が80℃を超えると
水の蒸発量が急に増加することから、電解液濃度が変化
(高くなる)して脱スケール能力や電解効率が低下し、
また濃度管理も煩雑になる。一方、低い方の液温は常温
(20℃)でも差し支えないが、あまり低いと脱スケー
ル能力が低下するのである。更にまた、電流密度は5A
/dm2より小さいと脱スケール効果が小さくなり、一
方30A/diより大きいと電流密度不均一による電解
模様が発生し易くなることから、5〜30A/dr&の
範囲とする必要がある。
The electrolytic solution used for pretreatment is 50 to 200 gI
The main component is NaCl of Q, and Na CQ 1 mo
0.4 to 1.0 HNO3 or FeCO3 per Q/n
This is an electrolytic solution consisting of an aqueous solution to which mofl/ ( is added. If the concentration of NaCl in this electrolytic solution is less than 50 g / 0, the conductivity of the electrolytic solution will decrease and the current efficiency will decrease, as shown in Figure 6. On the other hand, the higher the concentration of NaCl, the better, but the maximum is 20%.
The reason for setting it to 0 g/Q is that the solubility of NaCl in water was considered. The reason for adding HNO3 or FeCO3 is to suppress the occurrence of pits on the surface of the alloy steel strip, and the amount added is 1 mo of NaCl concentration.
It is necessary to set it in the range of 0.4 to 1.0 moQ/l per Q/n. That is, Naω1mob/0.4 per Q
If it is less than moff/n, the effect of suppressing pit generation will decrease, and NaCl 1 moQ/1 per Q
.. Even if the amount is increased more than OmoQ/Q, it becomes uneconomical without any change in the effect of suppressing pit generation. Moreover, the electrolyte temperature needs to be 20°C to 80°C. In other words, the higher the electrolyte temperature, the greater the descaling ability, the lower the supplied power, and the lower the conductivity (unit: m) as shown in Figure 9.
S/cm=103/l' am) increases, so the electrolytic efficiency improves. However, when the electrolyte temperature exceeds 80°C, the amount of water evaporation suddenly increases, which causes the electrolyte concentration to change (become higher) and reduce descaling ability and electrolysis efficiency.
In addition, concentration management becomes complicated. On the other hand, the lower liquid temperature may be room temperature (20° C.), but if it is too low, the descaling ability will decrease. Furthermore, the current density is 5A
If it is smaller than /dm2, the descaling effect will be small, while if it is larger than 30 A/dm, electrolytic patterns due to non-uniform current density will easily occur, so it is necessary to set it in the range of 5 to 30 A/dr&.

次に本発明方法において前記前処理の後に行う酸洗処理
に使用する酸としては、スケール層直下の変質層までも
除去するために硝弗酸と硝弗酸と=11− のいずれかを使用するのであり、硝弗酸酸洗液ではHF
濃度5〜50gIQ 、 HNO3濃度5〜100 g
 / Qが適当であり、硝弗酸酸洗液ではHF濃濃度5
〜5ビ範囲中でもHF濃度が高い方が好ましい。
Next, in the method of the present invention, the acid used in the pickling treatment performed after the pretreatment is either nitric-fluoric acid or nitric-fluoric acid =11- in order to remove even the altered layer directly below the scale layer. In the nitrofluoric acid pickling solution, HF
Concentration 5-50gIQ, HNO3 concentration 5-100g
/ Q is appropriate, and the HF concentration is 5 for the nitrofluoric acid pickling solution.
It is preferable that the HF concentration is higher within the range of ~5V.

一般に硝弗酸酸洗液か硝弗酸酸洗液かのいずれか一方を
使用する場合,及びいずれをも使用して2段の酸洗を行
う場合の後段で使用するものとしては、表面の仕上り状
態及び不働態化処理の観点から硝弗酸酸洗液を好ましく
は液温50〜70℃で使用するのが良い。このように前
段に硝弗酸を、後段に硝弗酸を使用する2段の酸洗をS
US 304, 5O5430等に適用する場合、硝弗
酸による上記効果の他に、先に使用する硝弗酸酸洗液の
液温を70〜90℃として酸洗すれば硝弗酸による脱ス
ケール及びエツチング効果が加わって大変良い結果が得
られる。第1表は熱間圧延ステンレス鋼帯(SUS 3
04。
In general, when using either the nitric-fluoric acid pickling solution or the nitric-fluoric acid pickling solution, or in the latter stage of two-stage pickling using both, From the viewpoint of finished product and passivation treatment, it is preferable to use the nitric-fluoric acid pickling solution at a temperature of 50 to 70°C. In this way, two-stage pickling using nitric-fluoric acid in the first stage and nitric-fluoric acid in the second stage
When applied to US 304, 5O5430, etc., in addition to the above-mentioned effects of nitric-fluoric acid, descaling and descaling by nitric-fluoric acid can be achieved by pickling at a temperature of 70 to 90°C in the nitric-fluoric acid pickling solution used first. With the addition of an etching effect, very good results can be obtained. Table 1 shows hot rolled stainless steel strips (SUS 3
04.

SO5 430)を硝弗酸,硫酸,硝弗酸各単独使用の
酸洗液で処理したときの減量を調べた結果である。
These are the results of investigating the weight loss when SO5 430) was treated with pickling solutions using nitric-fluoric acid, sulfuric acid, and nitric-fluoric acid alone.

第1表から硝弗酸酸洗液が前段の酸洗液とじて特に優れ
ていることが判る。冷間圧延材についても同様な結果が
得られる。H2SO4単独使用の酸洗液による前段酸洗
処理は、SO3 304の場合は減量が大きいがスマッ
トを生じさせることがあるため行わない方が好ましく、
SO5 430の場合は実施しても良い。なお、第1表
において、実験用供試材は全てスケールブレーカ−によ
る機械的前処理を施したものである。
It can be seen from Table 1 that the nitric-fluoric acid pickling solution is particularly superior to the first-stage pickling solution. Similar results are obtained for cold-rolled materials. It is preferable not to carry out the pre-stage pickling treatment using a pickling solution using only H2SO4, since the weight loss is large in the case of SO3 304, but it may cause smut.
In the case of SO5 430, it may be implemented. In Table 1, all of the test materials were subjected to mechanical pretreatment using a scale breaker.

以下余白 第1表 次に、本発明方法を実施するための装置を図面によって
詳細に説明する。
The following is a margin: Table 1. Next, the apparatus for carrying out the method of the present invention will be explained in detail with reference to the drawings.

第1図は本発明方法を実施するための装置の1例の概略
図、第2図は第1図の電解液槽の拡大平面図、第3図は
本発明方法を実施するための装置の他の例の概略図、第
4図は第3図の電解液槽の拡大平面図、第5図は本発明
方法を実施するための装置の更に他の例の概略図である
Fig. 1 is a schematic diagram of an example of an apparatus for carrying out the method of the present invention, Fig. 2 is an enlarged plan view of the electrolyte bath shown in Fig. 1, and Fig. 3 is a schematic diagram of an example of an apparatus for carrying out the method of the present invention. FIG. 4 is an enlarged plan view of the electrolyte bath of FIG. 3, and FIG. 5 is a schematic diagram of still another example of the apparatus for carrying out the method of the present invention.

図面中、第1図及び第2図において、1は焼鈍炉と冷却
装置(図示なし)によって熱処理を受けた少なくともニ
ッケル及び/又はクロムを含有する合金鉄鋼帯、2はN
aCl水溶液を主成分としこれに所定量のI(NO3又
はFeCl3を添加した水溶液から成る電解液、3は電
解液2が建浴されている電解液槽、4は電解液槽3内に
設けられた陽極板、5は同じく電解液槽3内に設けられ
た陰極板、6は電解用直流電源、7は硝弗酸と硝弗酸と
のいずれかから成る酸洗液8が建浴されている酸洗槽、
9は送板ロール、IOは浸漬ロール、IIはプラッシュ
ロール、]2はプラッシュロール月のバックアップ0−
ル、13は洗浄ノズルである。また第3図及び第4図に
おいて、14は硫酸、硝酸の如き導電性液15が建浴さ
れた導電性液槽、16は導電性液槽14内に設けられた
耐酸性を有する陽極板、17は一枚の電極板から成る陰
極板、18は電解用直流電源6とは別に切替え用スイッ
チ19を介して接続されている小容量の印加電圧用の直
流電源、20はガス抜き用孔である。更に第5図におい
て、21は電解液槽3と酸洗槽7との間に設けられてい
て陽極となる通電ロールである。
In the drawings, in FIGS. 1 and 2, 1 is an alloy steel strip containing at least nickel and/or chromium that has been heat-treated in an annealing furnace and a cooling device (not shown), and 2 is an N
An electrolytic solution consisting of an aqueous solution containing an aCl aqueous solution as a main component and to which a predetermined amount of I (NO3 or FeCl3) is added; 3 is an electrolyte tank in which electrolyte 2 is prepared; 4 is an electrolyte tank provided in electrolyte tank 3; 5 is a cathode plate provided in the electrolyte tank 3, 6 is a DC power source for electrolysis, and 7 is a pickling solution 8 made of either nitric-fluoric acid or nitric-fluoric acid. pickling tank,
9 is a feeding roll, IO is an immersion roll, II is a plush roll, ]2 is a plush roll Monthly backup 0-
13 is a cleaning nozzle. 3 and 4, 14 is a conductive liquid tank in which a conductive liquid 15 such as sulfuric acid or nitric acid is prepared; 16 is an acid-resistant anode plate provided in the conductive liquid tank 14; 17 is a cathode plate consisting of a single electrode plate; 18 is a DC power source for a small capacity applied voltage connected via a changeover switch 19 separately from the DC power source 6 for electrolysis; and 20 is a gas vent hole. be. Further, in FIG. 5, reference numeral 21 denotes a current-carrying roll that is provided between the electrolytic solution tank 3 and the pickling tank 7 and serves as an anode.

以上のような構成より成る本発明に係る合金鉄鋼帯の脱
スケール装置は、基本的には次に詳述するように3つの
装置がある。第1の装置は第1図及び第2図に、第2の
装置は第3図及び第4図に、第3の装置は第5図にそ九
ぞれ示しである。
The apparatus for descaling alloy steel strips according to the present invention having the above-mentioned configuration basically includes three apparatuses as described in detail below. The first device is shown in FIGS. 1 and 2, the second device in FIGS. 3 and 4, and the third device in FIG. 5.

先ず第1の装置は、第1図及び第2図に示すように、陽
極板4と陰極板5とが共に電解液槽3内部に設けられて
おり、この電解液槽3の後に酸洗槽7,7が配設されて
いる装置であり、この装置における陽極板4としては白
金、ルテニウム酸化]6 物、鉛酸化物のいずれか1種が適用され、陰極板5とし
ては白金、チタン、オーステナイト系ステンレス鋼のい
ずれか1種が適用される。中でも陽極板4は白金、陰極
板5はチタンが特に好適である。このような第1の装置
において、焼鈍炉、冷却装置(図示なし)によって熱処
理を受けた合金鉄鋼帯1は、先ず送板ロール9を経てN
aCl水溶液を主成分としこれに所定量のHNO,又は
FeCl3を添加した水溶液から成る電解液2が建浴さ
れた電解液槽3へ送板され、前後の浸漬ロール10.1
0にて電解液2中に浸漬された状態で通過され、ここで
NaCl水溶液を主成分としこれに所定量のFINO3
又はFeCらを添加した水溶液から成る電解液による溶
解作用及び陽極電解作用を受けて合金鉄鋼帯1の表面の
スケールの大部分が電解液2中に溶解除去される。そし
て大部分のスケールが溶解除去された合金鉄鋼帯1は、
電解液槽3の後に設けられている送板ロール9を経てプ
ラッシュロール11とバックアップロール12との間を
通過し、この際に陽極電解によって金属素地との結合力
が弱まってぃるが未だ付着残存しているスケールの大半
が除去される。次に、合金鉄鋼帯1は送板ロール9を経
て、次の1槽目の酸洗槽7内に送板され、前後の浸漬ロ
ール10.10によって浸漬された状態で通過され、そ
の間に僅かに残存しているスケールの全部が溶解される
と共にスケール層の直下に存在する金属素地の金属素地
まで溶解される。更に合金鉄鋼帯1は、2槽目の酸洗槽
7を通過する間に再度スケール層直下の金属素地が溶解
されて仕上げされる。しかる後に合金鉄鋼帯1は、送板
ロール9を経てプラッシュロール11とバックアップロ
ール12との間を通過せしめられ、合金鉄鋼帯1の表面
に付着している金属や結合力が弱い状態で残存している
金属素地がきれいに除去される。
First, as shown in FIGS. 1 and 2, in the first device, an anode plate 4 and a cathode plate 5 are both provided inside an electrolyte tank 3, and a pickling tank is installed after this electrolyte tank 3. In this device, the anode plate 4 is made of platinum, ruthenium oxide]6, or lead oxide, and the cathode plate 5 is made of platinum, titanium, titanium, or lead oxide. Any one type of austenitic stainless steel is applied. Among these, it is particularly preferable to use platinum for the anode plate 4 and titanium for the cathode plate 5. In such a first apparatus, the alloy steel strip 1 that has been heat-treated in an annealing furnace and a cooling device (not shown) is first passed through a feeding roll 9 and then
An electrolyte solution 2 consisting of an aCl aqueous solution as a main component and a predetermined amount of HNO or FeCl3 added thereto is fed to an electrolyte tank 3 in which a bath has been prepared, and the front and rear immersion rolls 10.1
The main component is NaCl aqueous solution, and a predetermined amount of FINO3 is added thereto.
Most of the scale on the surface of the alloy steel strip 1 is dissolved and removed in the electrolytic solution 2 by the dissolving action and anodic electrolytic action of the electrolytic solution consisting of an aqueous solution containing FeC or the like. The alloy steel strip 1 from which most of the scale has been dissolved and removed is
It passes through the feed roll 9 provided after the electrolyte tank 3 and between the plush roll 11 and the backup roll 12, and at this time, the bonding force with the metal base is weakened by anodic electrolysis, but it is still attached. Most of the remaining scale is removed. Next, the alloy steel strip 1 is fed through a feed roll 9 into the next first pickling tank 7, where it is passed through the front and back dipping rolls 10 and 10 in a dipped state, and a small amount of All of the scale remaining in the scale layer is dissolved, and the metal base layer directly below the scale layer is also dissolved. Further, while the alloy steel strip 1 passes through the second pickling tank 7, the metal base immediately below the scale layer is melted again and finished. Thereafter, the alloy steel strip 1 is passed through a feed roll 9 and between a plush roll 11 and a backup roll 12, and the metal adhering to the surface of the alloy steel strip 1 and the weak bonding force remain. The metal substrate that is present is removed cleanly.

第2の装置は、第3図及び第4図に示すように、陰極板
17とその前後に浸漬ロール10.10とが設けられて
いる電解液槽3の前に硫酸、硝酸の如き導電性液I5が
建浴された導電性液槽14が配設されており、且つこの
導電性液槽14内に耐酸性を有する陽極板16とその前
後に浸漬ロール10.10が設けられており、また電解
液槽3の後に酸洗槽7,7が配設されており、更に耐酸
性を有する陽極板16と陰極板17とに電解用直流電源
6が接続されていると共にこの電解用直流電源6とは別
に切替え用スイッチ19を介して付加電圧用直流電源1
8が接続されている装置である。以上のような第2の装
置においては、合金鉄鋼帯]、は送板ロール9及び前後
の浸漬ロール10,1.0によって導電性液15が建浴
された導電性液槽14内の陽極板J6の間を非接触状態
で送板される。この際、合金鉄鋼帯1は陽極板16の作
用を受けて陰極に帯電し、この時に陽極板16からは酸
素ガスが発生する。一方、陰極に帯電した合金鉄鋼帯1
からは水素ガスが発生する。そして、この水素ガスの作
用で一部の結合力の弱いスケールが除去されるようにな
る。その結果、次のNaCl水溶液を主成分としこれに
所定量のHNO3又はF e CQ 3を添加した水溶
液から成る電解液2での陽極電解処理の効果がより大き
くなるのである。
As shown in FIGS. 3 and 4, the second device is equipped with a conductive liquid such as sulfuric acid or nitric acid in front of the electrolyte bath 3, which is provided with a cathode plate 17 and dipping rolls 10.10 before and after the cathode plate 17. A conductive liquid tank 14 in which liquid I5 is prepared is disposed, and within this conductive liquid tank 14, an acid-resistant anode plate 16 and dipping rolls 10 and 10 are provided before and after the anode plate 16. Further, pickling tanks 7, 7 are arranged after the electrolytic solution tank 3, and an electrolytic DC power source 6 is connected to the acid-resistant anode plate 16 and cathode plate 17. In addition to 6, the additional voltage DC power supply 1 is connected via a changeover switch 19.
8 is the connected device. In the second device as described above, the alloy steel strip] is the anode plate in the conductive liquid tank 14 in which the conductive liquid 15 is prepared by the feeding roll 9 and the front and rear dipping rolls 10, 1.0. The plate is fed between J6 in a non-contact manner. At this time, the alloy steel strip 1 is negatively charged under the action of the anode plate 16, and at this time, oxygen gas is generated from the anode plate 16. On the other hand, the alloy steel strip 1 charged at the cathode
Hydrogen gas is generated. Then, some of the scales with weak bonding strength are removed by the action of this hydrogen gas. As a result, the effect of the anodic electrolytic treatment using the electrolytic solution 2 consisting of an aqueous solution containing the following NaCl aqueous solution as a main component and to which a predetermined amount of HNO3 or Fe CQ3 is added becomes even greater.

なお、電解液槽3に設けられる陰極板17は、第4図に
示すように一枚の連続した電極電解面積の大きい電極板
を用いると、脱スケール効果が更に向上するようになり
且つ一つの電解液槽3内に陽極と陰極とが混在しないこ
とから電極間での迷走電流がなく、電解電流効率が向上
するようになる。
In addition, if the cathode plate 17 provided in the electrolytic solution tank 3 is a single continuous electrode plate having a large electrode electrolysis area as shown in FIG. 4, the descaling effect will be further improved and one Since the anode and cathode are not mixed in the electrolytic solution tank 3, there is no stray current between the electrodes, and the electrolytic current efficiency is improved.

また、それぞれの素材として陽極板16は白金、陰極板
17はチタンが前述した理由と同様に塩素ガスの発生量
が少なく寿命も延長するためより好適であるが、比較的
安価なステンレス鋼も使用でき、その場合はコスト面で
有利である。
In addition, as for the respective materials, platinum is used for the anode plate 16 and titanium is used for the cathode plate 17. Similar to the above-mentioned reason, stainless steel, which is relatively inexpensive, is also used, although it is more suitable because it produces less chlorine gas and has a longer life. Yes, it is possible, and in that case it is advantageous in terms of cost.

更にこの際、陽極板16と陰極板17とに接続されてい
る電解用直流電源の他に、別に小容量の印加電圧用直流
電源18が接続されていると、導電性液槽14において
も成る程度の脱スケールが起るため次の電解液槽3での
脱スケール作用を更に助長せしめるようになり、しかも
通常の電解処理待以外の場合にあってはその陽極板16
.17が保護されるようになるのである。
Furthermore, at this time, in addition to the DC power source for electrolysis connected to the anode plate 16 and the cathode plate 17, if a small capacity DC power source 18 for applied voltage is separately connected, the voltage will also be generated in the conductive liquid tank 14. Since descaling occurs to a certain extent, the descaling effect in the next electrolytic solution tank 3 is further promoted, and in cases other than the normal electrolytic treatment, the anode plate 16
.. 17 will be protected.

第3の装置は、第5図に示すように、NaCl水溶液を
主成分としこれに所定量のHNO3又はFeCl3を添
加した水溶液から成る電解液2が建浴されており且つ陰
極板5が設けられている電解液槽3と酸洗槽7,7との
間に陽極となる通電ロール21が設けられており、この
通電ロール21と陰極板5とに電解用直流電源6が接続
されている装置である。
In the third device, as shown in FIG. 5, an electrolytic solution 2 made of an aqueous solution containing NaCl aqueous solution as a main component and a predetermined amount of HNO3 or FeCl3 added thereto is prepared, and a cathode plate 5 is provided. An energizing roll 21 serving as an anode is provided between the electrolytic solution tank 3 and the pickling tanks 7, 7, and a DC power source 6 for electrolysis is connected to the energizing roll 21 and the cathode plate 5. It is.

尚、この第3の装置においても第2の装置のように陰極
板5と通電ロール21とに接続されている電解用直流電
源6の他に、別に小容量の印加電圧用直流電源18が接
続されていることが電極保護の面でより好ましい。以上
のような第3の装置においては、合金鉄鋼帯1は送板ロ
ール9.浸漬ロール10、10を介して電解液槽3に送
板され、陰極板5の間を非接触状態で送板される。この
時、通電ロール21が陽極となり、これに合金鉄鋼帯1
が接触することによって合金鉄鋼帯1自体が直接陽極と
なる。また電解液槽3中の陰極板5との間に電解用直流
電源6より供電される。そして、この装置においては、
通電ロール21は電解液槽3の後に配設されていること
が重要である。すなわち、スケールの導電性が低いため
に、スケールを有したままの合金鉄鋼帯1に直接通電す
るとスパークが発生し易くなる。従って、NaCl水溶
液を主成分としこれに所定量のHNO3又はF e C
Q 3を添加した水溶液から成る電解液2中での電解処
理によって、スケールのほとんどを除去した後に直接通
電することが重要となってくるのである。また、通電ロ
ール2]はプライドル方式であって且つロール表面は粗
い方がより確実な供電が可能となる。
In addition, in this third device, in addition to the electrolytic DC power source 6 connected to the cathode plate 5 and the energizing roll 21 as in the second device, a separate small-capacity DC power source 18 for applied voltage is connected. It is more preferable to protect the electrodes. In the third device as described above, the alloy steel strip 1 is transferred to a feed plate roll 9. It is fed to the electrolytic solution tank 3 via dipping rolls 10, 10, and fed between the cathode plates 5 in a non-contact state. At this time, the current-carrying roll 21 becomes an anode, and the alloy steel strip 1
By contacting the alloy steel strip 1 itself, it directly becomes an anode. Further, power is supplied between the cathode plate 5 in the electrolytic solution tank 3 and the electrolytic DC power supply 6 . And in this device,
It is important that the energizing roll 21 is arranged after the electrolyte tank 3. That is, since the conductivity of the scale is low, sparks are likely to occur when electricity is applied directly to the alloy steel strip 1 that still has the scale. Therefore, the main component is NaCl aqueous solution, and a predetermined amount of HNO3 or F e C
It is important to apply electricity directly after removing most of the scale by electrolytic treatment in electrolytic solution 2 consisting of an aqueous solution containing Q3. Furthermore, if the current supply roll 2 is of a prydle type and the roll surface is rough, more reliable power supply is possible.

以上のように、通電ロール21を用いて直接通電するこ
とは、電解効率が大きく、又脱スケール効果も優れてい
るため最も好ましい装置である。そして、このような好
ましい通電ロール21の採用を可能にしたのは、NaC
l水溶液を主成分としこれに所定量のHN O3又はF
eC(i3を添加した水溶液から成る電解液を用いて電
解処理することによって、前処理段階でスケールのほと
んどを除去可能になったことによるのである。
As described above, direct energization using the energizing roll 21 is the most preferable device because the electrolytic efficiency is high and the descaling effect is also excellent. What made it possible to adopt such a preferable current-carrying roll 21 was NaC.
The main component is an aqueous solution, and a predetermined amount of HN O3 or F is added to it.
This is because most of the scale can be removed in the pretreatment stage by electrolytic treatment using an electrolytic solution consisting of an aqueous solution containing eC (i3).

〔作 用〕[For production]

上述のように本発明方法は最終処理である酸洗処理の前
処理において、50〜200g/4のNaCl水溶液を
主成分としこれにHN O3又はFeCl3をNaCl
の濃度の0.4〜1 、0mon/l添加した水溶液か
ら成る電解液中で合金鉄鋼帯1を陽極電解処理すること
によって、合金鉄鋼帯1のスケールの大部分を除去する
と共にピットの発生を抑制し、引き続く硝弗酸と硝弗酸
とのいずれかの酸洗液による酸洗処理において残存スケ
ールの除去とスケール直下の金属素地を積極的に除去す
るものである。
As mentioned above, the method of the present invention uses a 50 to 200 g/4 NaCl aqueous solution as the main component in the pretreatment of the final pickling treatment, and HN O3 or FeCl3 is added to the NaCl aqueous solution.
By subjecting the alloy steel strip 1 to anodic electrolytic treatment in an electrolytic solution consisting of an aqueous solution containing a concentration of 0.4 to 1.0 mon/l, most of the scale of the alloy steel strip 1 is removed and the formation of pits In the subsequent pickling treatment using either nitric-fluoric acid or nitric-fluoric acid pickling solution, the residual scale and the metal substrate immediately below the scale are actively removed.

上述の前処理における脱スケールの反応式を合金鉄鋼帯
1の鉄分を代表として示すと次の通りとなる。なお、N
aCl単独とNaClにI(No3又はFeCl3を添
加した場合との反応の差異を明確にするためにNaCρ
単独の反応式も示した。
The reaction formula for descaling in the above-mentioned pretreatment is as follows when the iron content of the alloy steel strip 1 is representative. In addition, N
To clarify the difference in reaction between aCl alone and NaCl with I(No3 or FeCl3), NaCρ
A separate reaction formula is also shown.

< Na CQ単独〉 Fe+2NaC11+2H7O−+ Fe(01()2
↓+2NaCI2+H2↑(陰極)<NaCl +HN
O3> Fe + 2NaCl + 2)INOJ +2H20
→Fe(NO3)2+2NaCl+2820+H2↑(
陰極)<NaCl +FeCl3> Fe+2NaCl+2FeCl3+21(、,0→3F
eCl2+ 2NaCl +2t(2↑(陰極)+02
↑(陽極)以上の反応式よりNaω単独の場合はスケー
ルの主成分である鉄は水酸化物となりスラッジ化するが
、HNO3又はFeCff3を添加することにより鉄は
イオン化して溶解する。また、NaClはいずれの場合
にあっても中性塩独特の自己再生作用を示し、消耗され
ない。この1(NO,、FeCl、のピット抑制作用に
ついての詳細は不明であるが、第2表に示す如< +(
2SO,、HCQ 、 H3PO4の如き還元性の酸で
は効果がないこと、更にH2O2の如き酸化剤でも効果
がないこと、逆にHNO3,FeCl3の如き酸化作用
を有する酸で効果があることから推定すると、狭い範囲
での電気化学的作用と考えられる。
<Na CQ alone> Fe+2NaC11+2H7O−+ Fe(01()2
↓+2NaCI2+H2↑(cathode)<NaCl +HN
O3> Fe + 2NaCl + 2)INOJ +2H20
→Fe(NO3)2+2NaCl+2820+H2↑(
cathode) <NaCl +FeCl3> Fe+2NaCl+2FeCl3+21(,,0→3F
eCl2+ 2NaCl +2t(2↑(cathode)+02
↑ (Anode) According to the above reaction formula, when Naω is used alone, iron, which is the main component of scale, becomes hydroxide and becomes sludge, but by adding HNO3 or FeCff3, iron is ionized and dissolved. Moreover, in any case, NaCl exhibits a self-regeneration action unique to neutral salts and is not consumed. The details of the pit suppression effect of 1 (NO, FeCl) are unknown, but as shown in Table 2, < + (
Judging from the fact that reducing acids such as 2SO, HCQ, and H3PO4 are ineffective, oxidizing agents such as H2O2 are also ineffective, and conversely, oxidizing acids such as HNO3 and FeCl3 are effective. , is considered to be an electrochemical action within a narrow range.

以下余白 以上のように本発明においては、処理においてNaCl
水溶液によって大部分のスケールが除去されると共にH
N O3又はFeCl、3の添加によってピットの発生
が抑制されて次の酸洗処理では僅かな残存スケールを仕
上げ用として除去するだけで良くなり、従来の種々な脱
スケール方法と違って酸洗処理における脱スケール負荷
が大幅に軽減されて合金鉄鋼帯1の金属素地のエツチン
グ作用が強まり、表面品質の優れた製品となるのである
As shown in the margins below, in the present invention, NaCl is used in the treatment.
Most of the scale is removed by an aqueous solution and H
The addition of N O3 or FeCl,3 suppresses the formation of pits, and in the next pickling process, only a small amount of remaining scale needs to be removed for finishing, unlike the various conventional descaling methods. The descaling load on the alloy steel strip 1 is greatly reduced, and the etching effect on the metal base of the alloy steel strip 1 is strengthened, resulting in a product with excellent surface quality.

また、電解液がNaCl水溶液を主成分としこれにNa
Cl、1 moff/ Q当りHN O3又はFeCl
3を0 、4〜1 、0moQ/l添加して成る電解液
であるために、Cr”イオンの発生が無いため電解液槽
3より排出される廃液中のCr”’イオンの処理が不要
となると共にその水溶液中で陽極電解処理すると合金鉄
鋼帯1の金属素地のエツチング作用(脱スケール能力)
が大きいため、ラインスピードが高速化されても追従可
能となるのである。更に酸洗処理時には、酸洗液中のス
ケールの堆積が少なくなるため、酸洗液の寿命も延長さ
れて長時間の高いエツチング作用が維持されると同時に
、酸洗液管理や廃液処理の簡素化が可能となるのである
In addition, the electrolyte is mainly composed of an aqueous NaCl solution and contains NaCl.
Cl, 1 moff/HN O3 or FeCl per Q
Since the electrolyte is made by adding 0, 4 to 1, 0 moQ/l of 3, no Cr" ions are generated, so there is no need to treat Cr"' ions in the waste liquid discharged from the electrolyte tank 3. At the same time, when the anodic electrolytic treatment is performed in the aqueous solution, the etching effect (descaling ability) of the metal base of the alloy steel strip 1 occurs.
Since the line speed is large, it is possible to follow even if the line speed increases. Furthermore, during pickling treatment, the accumulation of scale in the pickling solution is reduced, which extends the life of the pickling solution and maintains high etching action for a long time, while simplifying pickling solution management and waste liquid treatment. This makes it possible to

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例により具体的に説明す
る。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

焼鈍工程を経て走行してくる熱間圧延ステンレス鋼帯(
板厚3.8mmのSUS 304.板厚3.6mmのS
US 430)と板厚4.0■の42%Ni合金を一旦
コイルに巻き取り、第2図に示す工程により種々な送板
速度で、つまり電解時間及び酸洗時間を種々に変えて脱
スケールを行った(実験例1〜3.比較例1〜3)。
Hot rolled stainless steel strip (
SUS 304 with a plate thickness of 3.8 mm. S plate thickness 3.6mm
US 430) and a 42% Ni alloy with a plate thickness of 4.0 mm were wound into a coil, and then descaled using the process shown in Figure 2 at various plate feeding speeds, that is, by varying the electrolysis time and pickling time. (Experimental Examples 1 to 3. Comparative Examples 1 to 3).

電解液としては、Na25O,、NaClとHNO3の
水溶液を使用し、電解条件は既存の電解設備最大能力で
行った。これらの電解液条件及び電解条件を第3表に示
す。引き続く2段の酸洗処理に使用した酸液としては前
段の酸液にはH2SO4濃度が228 g /ρでHF
濃度が10 g / +2の硝弗酸酸洗液を液温75℃
で使用し、後段の酸液にはI(NO3濃度が70g/f
lでHF濃度が’IOgIQの硝弗酸酸洗液を液温60
℃で使用した。この実験に使用した電解槽2.酸洗槽7
及び−27= 8における鉄合金帯の浸漬長はいずれも同じであるから
前段、後段の各酸洗処理時間は電解時間と同じであり、
それ以外の酸洗処理の条件は各実験に共通であるから第
3表に示すことは省略した。
An aqueous solution of Na25O, NaCl, and HNO3 was used as the electrolytic solution, and the electrolysis conditions were set to the maximum capacity of the existing electrolysis equipment. These electrolytic solution conditions and electrolysis conditions are shown in Table 3. The acid solution used in the subsequent two-stage pickling treatment was HF with a H2SO4 concentration of 228 g/ρ.
Nitrofluoric acid pickling solution with a concentration of 10 g/+2 at a liquid temperature of 75°C
The acid solution in the latter stage is I (NO3 concentration is 70g/f).
The nitric fluoric acid pickling solution with an HF concentration of 'IOgIQ was heated to 60°C.
It was used at ℃. Electrolytic cell used in this experiment 2. Pickling tank 7
Since the immersion length of the iron alloy strip in and -27=8 is the same, the pickling treatment time in the first and second stages is the same as the electrolysis time,
Since the other pickling treatment conditions were common to each experiment, they are omitted from Table 3.

上記脱スケールの実験において、陽極電解(処理1)、
前段の酸洗(処理2)、後段の酸洗(処理3)の各処理
後の減量(■/dJ)を測定すると共にそれらを合計し
、各処理段階での脱スケール能力及び工程全体の脱スケ
ール能力を表わした。
In the above descaling experiment, anodic electrolysis (treatment 1),
The weight loss (■/dJ) after each of the first-stage pickling (treatment 2) and second-stage pickling (treatment 3) is measured and summed to determine the descaling ability at each treatment stage and the descaling ability of the entire process. Demonstrates ability to scale.

この減量の測定方法は、各処理工程前後において、約1
0aT1角のサンプルを採取し、高精度天秤にてその重
量を計測し単位面積当たりの重量差を以って減量とした
。また、工程終了時に目視によりスケール残存の有無を
観察した。変質層残存の有無については前記減量調査時
に採取したサンプルを使用して、電子顕微鏡(倍率20
00倍)にて観察した。
This method of measuring weight loss is based on approximately 1
A sample of 0aT1 square was taken, and its weight was measured using a high-precision balance, and the weight difference per unit area was determined as the weight loss. Furthermore, at the end of the process, the presence or absence of scale remaining was visually observed. To determine whether or not the altered layer remains, the samples collected during the weight loss survey were examined using an electron microscope (magnification: 20
00x).

更にピット発生の有無確認も同じく電子顕微鏡にて観察
した。なお、電解液中でのCr”イオンの発生有無の確
認はビーカーテストで確認済みのため本実験では行わな
かった。
Furthermore, the presence or absence of pit generation was similarly observed using an electron microscope. Note that the presence or absence of generation of Cr'' ions in the electrolytic solution was not confirmed in this experiment because it had already been confirmed by a beaker test.

また、冷間圧延材に対しても同様な実験を行った(実験
例4〜6.比較例4〜6)。実験材は板厚1.0■のS
US 304.板厚1.OmnのSUS 430.板厚
1.0mの42%Ni合金を使用した。但し、冷間圧延
材にあっては脱スケールは熱間圧延材に比較すれば容易
であることから前記前段の酸洗は省略し、後段の酸洗は
肌荒れを防ぐため熱間圧延材の場合よりその条件を緩和
し、HNO,濃度が70g/l、HF濃度が5g/nの
硝弗酸酸洗液を液温60℃で使用した。
Similar experiments were also conducted on cold rolled materials (Experimental Examples 4 to 6; Comparative Examples 4 to 6). The experimental material was S with a thickness of 1.0
US 304. Plate thickness 1. Omn SUS 430. A 42% Ni alloy with a plate thickness of 1.0 m was used. However, since descaling is easier for cold-rolled materials compared to hot-rolled materials, the earlier pickling step is omitted, and for hot-rolled materials, the pickling step is carried out in the latter step to prevent surface roughness. The conditions were further relaxed, and a nitric-fluoric acid pickling solution containing HNO at a concentration of 70 g/l and HF at a concentration of 5 g/n was used at a liquid temperature of 60°C.

また、42%Ni合金の冷間圧延材は通常焼鈍酸洗ライ
ンを通板せずに光輝焼鈍ラインを通板することがら酸洗
処理は行わず、本発明の前処理効果の確認のみに留めた
In addition, since the cold-rolled material of 42% Ni alloy is normally passed through the bright annealing line without passing through the annealing and pickling line, pickling treatment was not performed, and the purpose was only to confirm the pretreatment effect of the present invention. Ta.

この第3表より、比較例として示したルツナー法(Na
2S04を電解質とする水溶液中での電解処理法)に比
べて本発明方法に基づく前処理がその能力面からも優れ
ていることが判る(実験例中におけるスケール残及び変
質部が共に無のものが本発明方法に該当する)。なお、
冷間圧延材にあっては、表面変質部残存の確認を行って
いないのは、冷間圧延材にあっては、 変質部の存在か熱間圧延 材の如く明瞭でないためである。
From this Table 3, the Luzner method (Na
It can be seen that the pretreatment based on the method of the present invention is superior in terms of performance compared to the electrolytic treatment method in an aqueous solution using 2S04 as an electrolyte. corresponds to the method of the present invention). In addition,
The reason why we do not check for residual surface alterations in cold-rolled materials is that the existence of altered regions is not as clear in cold-rolled materials as in hot-rolled materials.

以下余白 〔発明の効果〕 以上詳述した如き本発明に係る合金鉄鋼帯の脱スケール
方法及び装置は、以下に列挙するような種々の利点を有
しており、その工業的価値は非常に大きなものがある。
The following margin [Effects of the Invention] The method and apparatus for descaling alloy steel strip according to the present invention as detailed above has various advantages as listed below, and its industrial value is extremely large. There is something.

1、前処理によって大部分のスケールが短時間で除去さ
れることから、酸洗槽における脱スケール負荷が軽減さ
れることになり、酸洗液の寿命も延び脱スケール能力が
安定した。従って、酸洗液の濃度管理及び追酸に要する
労力、費用も軽減されると同時に脱スケールの高速化が
可能となった。
1. Since most of the scale was removed in a short time by pretreatment, the descaling load in the pickling tank was reduced, the life of the pickling solution was extended, and the descaling ability became stable. Therefore, the labor and cost required for controlling the concentration of the pickling solution and addition of acid are reduced, and at the same time, it becomes possible to speed up descaling.

2、熱間圧延材、冷間圧延材のいずれであっても同じラ
インを兼用して充分な脱スケール能力が得られるように
なったことから、生産能力の向上が図られた。
2. The production capacity has been improved because the same line can now be used for both hot-rolled and cold-rolled materials and has sufficient descaling ability.

3、前処理として、50〜200g/lのNaCl水溶
液を主成分とし、これに一定量のHNO3又はF e 
CQ 3を添加した電解液を使用した陽極電解を採用し
たことで、電解槽より排出される廃液中のCr”イオン
の処理が不要となりその処理費用が軽減され、また合金
鉄鋼帯の表面にピットの発生がなくその表面品質が向上
した。
3. As a pretreatment, the main component is a 50 to 200 g/l NaCl aqueous solution, and a certain amount of HNO3 or Fe
Adopting anodic electrolysis using an electrolyte containing CQ3 eliminates the need to treat Cr'' ions in the waste liquid discharged from the electrolytic tank, reducing treatment costs. The surface quality was improved.

4、前処理が充分な脱スケール能力を有ししかも溶融塩
の如く粘性が高くないために、液持出しが少ないことか
らコスト的にも優れている。
4. The pretreatment has sufficient descaling ability, and since the viscosity is not as high as that of molten salt, there is little liquid carried out, which is excellent in terms of cost.

5、前処理にて大部分のスケール除去が可能となったこ
とから、酸洗処理においては残存するスケールの除去が
確実に実施されると同時に、スケール直下の金属素地を
も溶解することになるので、脱スケールが不充分である
ことに起因する合金鉄鋼帯の表面欠陥である肌荒れや光
沢むらが減少できて、最終製品の表面品質が大幅に向上
する。
5. Since it is now possible to remove most of the scale through pre-treatment, the pickling process ensures that the remaining scale is removed and at the same time dissolves the metal base directly under the scale. Therefore, roughness and uneven gloss, which are surface defects of the alloy steel strip caused by insufficient descaling, can be reduced, and the surface quality of the final product can be greatly improved.

6、本発明方法を実施するときの設備面に関しては、電
解槽及び酸洗槽のいずれも従来のものをそのまま使用す
ることができるから、殆んど設備改造を要せず、しかも
脱スケール能力の向上が図れた。
6. With regard to equipment when implementing the method of the present invention, conventional electrolytic cells and pickling tanks can be used as they are, so almost no equipment modification is required, and the descaling ability is improved. The results were improved.

7、本発明装置に関しては、陰極板が設けられている電
解液槽の前に陽極板が設けられている導電性液槽を配設
した構成とした場合には、導電性液槽において合金鉄鋼
帯に予備的な脱スケール作用を生じせしめるため、次の
電解液槽における脱スケールをより増大せしめる効果を
奏するようになった−0 8、電解液槽の後に陽極と成る通電ロールを設けて合金
鉄鋼帯に直接給電する構成とした場合には、電解効率及
び脱スケールをより向上せしめることが可能となった。
7. Regarding the device of the present invention, when a conductive liquid tank in which an anode plate is provided is arranged in front of an electrolytic liquid tank in which a cathode plate is provided, alloy steel or steel is used in the conductive liquid tank. In order to produce a preliminary descaling effect on the strip, it has been effective to further increase the descaling in the next electrolytic solution tank. In the case of a configuration in which power is directly supplied to the steel strip, it has become possible to further improve electrolytic efficiency and descaling.

9、メインの電解用直流電源とは別に印加電圧用直流電
源が接続されている構成とした場合には、電極が保護さ
れるようになって電極の寿命が延長されるようになった
9. When a DC power supply for applied voltage is connected separately from the main DC power supply for electrolysis, the electrodes are protected and the life of the electrodes is extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の1例の工程
図、第2図は第1図の電解液槽の拡大平面図、第3図は
本発明方法を実施するための装置の他の例の工程図、第
4図は第3図の電解液槽の拡大平面図、第5図は本発明
方法を実施するため一潤一 の装置の更に他の例の工程図、第6図〜第8図は各要因
における脱スケール能力を合金鉄鋼帯の減量で表したグ
ラフであり、第6図はNaCl濃度、第7図は)HNO
3濃度、第8図は電解電流密度と合金鉄鋼帯の減量との
関係をそれぞれ示すグラフである。 また第9図は本発明における電解液の濃度と導電率との
関係を液温別に示したグラフ、第10図〜第12図は本
発明によらない電解液の濃度と導電率との関係を液温別
に示したグラフであり、第10図はNa2SO4濃度、
第11図はNaCl濃度、第12図はHNO3濃度にお
ける導電率をそれぞれ示すグラフである。 図面中 1・・・・合金鉄鋼帯 2・・・・電解液 3・・・・電解液槽 4・・・・陽極板 5・・・・陰極板 6・・・・電解用直流電源 7・・・・酸洗液 8・・・・酸洗槽 9・・・・送板ロール 10・・・・浸漬ロール 11”°°°プラッシュロール 12・・・・バックアップロール 13・・・・洗浄ノズル 14・・・・導電性液 15・・・・導電性液槽 16・・・・耐酸性を有する陽極板 17・・・・耐酸性を有する陰極板 】8・・・・印加電圧用の直流電源 19・・・・切替え用スイッチ 20・・・・ガス抜き用孔 21・・・・通電ロール 特 許 出 願 人 日新製鋼株式会社 第 コ N a CQ濃度(g/l) 第 図 80°C−NaCl濃度: 100 g /l・電流密
度:17A/c1m2 f30°C・処理時間:40sec HNO3濃度(g/l) 箒 図 第 図 第 図 濃 度 (g/l)
Fig. 1 is a process diagram of an example of an apparatus for carrying out the method of the present invention, Fig. 2 is an enlarged plan view of the electrolyte tank shown in Fig. 1, and Fig. 3 is a process diagram of an example of an apparatus for carrying out the method of the present invention. FIG. 4 is an enlarged plan view of the electrolyte tank shown in FIG. 3; FIG. 5 is a process diagram of yet another example of Ichijunichi's apparatus for carrying out the method of the present invention; FIG. 6 is a process diagram of another example. ~Figure 8 is a graph showing the descaling ability for each factor in terms of the weight loss of the alloy steel strip, Figure 6 is the NaCl concentration, Figure 7 is the HNO
Figure 8 is a graph showing the relationship between the electrolytic current density and the weight loss of the alloy steel strip. Furthermore, FIG. 9 is a graph showing the relationship between the concentration and conductivity of the electrolytic solution according to the present invention, and FIGS. 10 to 12 are graphs showing the relationship between the concentration and conductivity of the electrolytic solution not according to the present invention. It is a graph shown by liquid temperature, and Fig. 10 shows Na2SO4 concentration,
FIG. 11 is a graph showing conductivity at NaCl concentration, and FIG. 12 is a graph showing conductivity at HNO3 concentration. In the drawings 1... Alloy steel strip 2... Electrolyte 3... Electrolyte tank 4... Anode plate 5... Cathode plate 6... DC power source for electrolysis 7. ... Pickling liquid 8 ... Pickling tank 9 ... Feeding roll 10 ... Dipping roll 11''°°° Plush roll 12 ... Backup roll 13 ... Washing nozzle 14... Conductive liquid 15... Conductive liquid tank 16... Anode plate with acid resistance 17... Cathode plate with acid resistance] 8... Direct current for applied voltage Power supply 19...Switch 20...Gas venting hole 21...Electrifying roll Patent applicant Nissin Steel Co., Ltd. N a CQ concentration (g/l) Figure 80°C- NaCl concentration: 100 g/l・Current density: 17A/c1m2 f30°C・Processing time: 40sec HNO3 concentration (g/l) Broom diagram diagram Concentration (g/l)

Claims (1)

【特許請求の範囲】 1 少なくともニッケル及び/又はクロムを含有する合
金鉄鋼帯を50〜200g/lのNaClを主成分とし
これにNaCl1mol/l当りHNO_3又はFeC
l_3を0.4〜1.0mol/l添加した水溶液から
成る電解液中で液温を20〜80℃、電流密度を5〜3
0A/dm^2の条件下で合金鉄鋼帯を陽極として電解
処理を行い、しかる後に硫弗酸と硝弗酸とのいずれかに
より酸洗処理してスケール直下の金属素地まで除去する
ことを特徴とする合金鉄鋼帯の脱スケール方法。 2 硫弗酸としてH_2SO_4の濃度が150〜25
0g/lでHF濃度が5〜50g/lのものを液温70
〜90℃で使用する請求項1に記載の合金鉄鋼帯の脱ス
ケール方法。 3 硝弗酸としてHNO_3濃度が50〜100g/l
でHF濃度が5〜50g/lのものを液温50〜70℃
で使用する請求項1に記載の合金鉄鋼帯の脱スケール方
法。 4 白金、ルテニウム酸化物、鉛酸化物のいずれか1種
から成る陽極板と白金、チタン、オーステナイト系ステ
ンレス鋼のいずれか1種から成る陰極板とが共に50〜
200g/lのNaClを主成分としこれにNaCl1
mol/l当りHNO_3又はFeCl_3を0.4〜
1.0mol/l添加した水溶液から成る電解液が建浴
されている電解液槽内部に設けられており、該電解液槽
の後に硫弗酸と硝弗酸とのいずれかが建浴されている酸
洗処理槽が配設されていること特徴とする合金鉄鋼帯の
脱スケール装置。 5 50〜200g/lのNaClを主成分としこれに
NaCl1mol/l当りHNO_3又はFeCl_3
を0.4〜1.0mol/l添加した水溶液から成る電
解液が建浴されており陰極板が設けられている電解液槽
の前に導電性液が建浴されており陽極板が設けられてい
る導電性液槽が配設されており、また電解液槽の後に硫
弗酸と硝弗酸とのいずれかが建浴されている酸洗処理槽
が配設されており、前記陰極板と陽極板とに電解用直流
電源が持続されていることを特徴とする合金鉄鋼帯の脱
スケール装置。 6 電解液槽内の陰極板と導電性液槽内の陽極板とに電
解用直流電源が接続されていると共に該電解用直流電源
とは別に印加電圧用直流電源が持続されている請求項5
に記載の合金鉄鋼帯の脱スケール装置。 7 50〜200g/lのNaClを主成分としこれに
NaCl1mol/l当りHNO_3又はFeCl_3
を0.4〜1.0mol/l添加した水溶液から成る電
解液が建浴されており陰極板が配設された電解液槽と硫
弗酸と硝弗酸とのいずれかが建浴されている酸洗処理槽
との間に陽極となる通電ロールが設けられており、該通
電ロールと前記陰極板とに電解用直流電源が持続されて
いることを特徴とする合金鉄鋼帯の脱スケール装置。 8 通電ロールと陰極板とに電解用直流電源が持続され
ていると共に該電解用直流電源とは別に印加電圧用直流
電源が持続されている請求項7に記載の合金鉄鋼帯の脱
スケール装置。
[Claims] 1. A steel alloy strip containing at least nickel and/or chromium, containing 50 to 200 g/l of NaCl as a main component, and containing HNO_3 or FeC per 1 mol/l of NaCl.
In an electrolytic solution consisting of an aqueous solution to which 0.4 to 1.0 mol/l of l_3 has been added, the liquid temperature is 20 to 80°C, and the current density is 5 to 3.
It is characterized by performing electrolytic treatment under the condition of 0 A/dm^2 using an alloy steel strip as an anode, and then pickling with either sulfuric acid or nitric hydrofluoric acid to remove even the metal substrate directly below the scale. A method for descaling alloy steel strips. 2 The concentration of H_2SO_4 as sulfuric acid is 150-25
0 g/l and HF concentration of 5 to 50 g/l at a liquid temperature of 70
The method for descaling a steel alloy strip according to claim 1, wherein the method is used at a temperature of ~90°C. 3 HNO_3 concentration as nitric hydrofluoric acid is 50 to 100 g/l
The liquid temperature is 50 to 70℃ with an HF concentration of 5 to 50 g/l.
The method for descaling a steel alloy strip according to claim 1, which is used in 4 The anode plate made of any one of platinum, ruthenium oxide, or lead oxide and the cathode plate made of any one of platinum, titanium, or austenitic stainless steel are both 50 or more.
The main component is 200g/l of NaCl, and NaCl1 is added to this.
HNO_3 or FeCl_3 per mol/l from 0.4 to
It is provided inside an electrolytic solution tank in which an electrolytic solution consisting of an aqueous solution with 1.0 mol/l added is prepared, and either sulfuric acid or nitric hydrofluoric acid is prepared after the electrolytic solution tank. A descaling device for alloy steel strip characterized by being equipped with a pickling treatment tank. 5 50 to 200 g/l of NaCl as the main component, and HNO_3 or FeCl_3 per 1 mol/l of NaCl.
An electrolytic solution consisting of an aqueous solution containing 0.4 to 1.0 mol/l of A conductive liquid tank is provided, and a pickling treatment tank in which either sulfuric acid or nitric hydrofluoric acid is prepared is provided after the electrolytic solution tank, and the cathode plate is An apparatus for descaling an alloy steel strip, characterized in that a DC power source for electrolysis is maintained between the anode plate and the anode plate. 6. Claim 5, wherein a DC power supply for electrolysis is connected to the cathode plate in the electrolytic solution tank and the anode plate in the conductive liquid tank, and a DC power supply for applied voltage is maintained separately from the DC power supply for electrolysis.
The descaling device for alloy steel strips described in . 7 50 to 200 g/l of NaCl as the main component, and HNO_3 or FeCl_3 per 1 mol/l of NaCl.
An electrolytic solution consisting of an aqueous solution to which 0.4 to 1.0 mol/l of H. An apparatus for descaling an alloy steel strip, characterized in that a current-carrying roll serving as an anode is provided between the pickling treatment tank and a DC power source for electrolysis is maintained between the current-carrying roll and the cathode plate. . 8. The apparatus for descaling a steel alloy strip according to claim 7, wherein a DC power source for electrolysis is maintained between the current-carrying roll and the cathode plate, and a DC power source for applied voltage is maintained separately from the DC power source for electrolysis.
JP63218388A 1988-09-02 1988-09-02 Method and apparatus for descaling alloy steel strip Expired - Lifetime JP2577619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218388A JP2577619B2 (en) 1988-09-02 1988-09-02 Method and apparatus for descaling alloy steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218388A JP2577619B2 (en) 1988-09-02 1988-09-02 Method and apparatus for descaling alloy steel strip

Publications (2)

Publication Number Publication Date
JPH0270100A true JPH0270100A (en) 1990-03-08
JP2577619B2 JP2577619B2 (en) 1997-02-05

Family

ID=16719124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218388A Expired - Lifetime JP2577619B2 (en) 1988-09-02 1988-09-02 Method and apparatus for descaling alloy steel strip

Country Status (1)

Country Link
JP (1) JP2577619B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089900A (en) * 2001-09-17 2003-03-28 Daido Steel Co Ltd Method of descaling metallic strip
JP2018044238A (en) * 2016-09-12 2018-03-22 Jfeスチール株式会社 Electrolytic cleaning device for steel sheet, continuous annealing equipment, and method for producing steel sheet
CN110528058A (en) * 2019-08-29 2019-12-03 浦项(张家港)不锈钢股份有限公司 A kind of 254SMo stainless steel surface pit defect ameliorative way
CN115558935A (en) * 2022-10-18 2023-01-03 山西太钢不锈钢股份有限公司 Annealing and pickling method for hot-rolled austenitic stainless steel strip steel after surface overburning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086429A (en) * 1973-12-07 1975-07-11
JPS5959899A (en) * 1982-09-29 1984-04-05 Kawasaki Steel Corp Method for electrolytic descaling of stainless steel strip
JPS6260900A (en) * 1985-09-09 1987-03-17 Shoji Shimada Method for descaling stainless steel material
JPS63161944A (en) * 1986-12-26 1988-07-05 横河メディカルシステム株式会社 X-ray tomographic imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086429A (en) * 1973-12-07 1975-07-11
JPS5959899A (en) * 1982-09-29 1984-04-05 Kawasaki Steel Corp Method for electrolytic descaling of stainless steel strip
JPS6260900A (en) * 1985-09-09 1987-03-17 Shoji Shimada Method for descaling stainless steel material
JPS63161944A (en) * 1986-12-26 1988-07-05 横河メディカルシステム株式会社 X-ray tomographic imaging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089900A (en) * 2001-09-17 2003-03-28 Daido Steel Co Ltd Method of descaling metallic strip
JP2018044238A (en) * 2016-09-12 2018-03-22 Jfeスチール株式会社 Electrolytic cleaning device for steel sheet, continuous annealing equipment, and method for producing steel sheet
CN110528058A (en) * 2019-08-29 2019-12-03 浦项(张家港)不锈钢股份有限公司 A kind of 254SMo stainless steel surface pit defect ameliorative way
CN115558935A (en) * 2022-10-18 2023-01-03 山西太钢不锈钢股份有限公司 Annealing and pickling method for hot-rolled austenitic stainless steel strip steel after surface overburning
CN115558935B (en) * 2022-10-18 2024-05-03 山西太钢不锈钢股份有限公司 Annealing and pickling method for surface overburning of hot rolled austenitic stainless steel strip steel

Also Published As

Publication number Publication date
JP2577619B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
US4994157A (en) Method and apparatus for descaling stainless steel
EP1115917B1 (en) Process for electrolytic pickling using nitric acid-free solutions
JPH04337094A (en) High-speed pickling method for steel type metal
CN1451058A (en) Continuous electrolytic pickling method for metallic products using alternate current suplied cells
JP6031606B2 (en) High speed pickling process for producing austenitic stainless cold rolled steel sheet
JPH0827600A (en) Descaling method and device for stainless steel strip
JPH0270100A (en) Method and apparatus for descaling ferro alloy strip
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
JP2517353B2 (en) Descaling method for stainless steel strip
JP3004390B2 (en) High-speed descaling and surface modification method and apparatus for hot-rolled alloy steel strip
KR20140017323A (en) High speed pickling process for improving corrosion resistance of austenitic stainless cold strip
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP2965423B2 (en) Pickling of ferritic stainless steel sheet containing high Cr
JPH0711080B2 (en) High-speed electrolytic melting method for steel metal
JP4804657B2 (en) A descaling method for austenitic stainless steel cold-rolled annealed steel sheets
JPH05295600A (en) Continuous descaling method for stainless steel strip and its device
JP3112257B2 (en) Method for electrolytic descaling of Ni annealed plate or Ni alloy annealed plate
JP3269444B2 (en) Titanium descaling method and continuous annealing descaling device
JPH1161500A (en) Descaling of stainless steel strip and heat resistant steel strip
JPH108298A (en) Method for descaling hot rolled steel strip and equipment therefor
JPH0586489A (en) High-speed pickling method of steel-base metal
JPH052760B2 (en)
JPH08319600A (en) Method for descaling stainless steel strip and device therefor
JPH05295599A (en) High speed pickling method for steel metal