JP2553865B2 - Method for producing metal-ceramic laminated body - Google Patents

Method for producing metal-ceramic laminated body

Info

Publication number
JP2553865B2
JP2553865B2 JP62138604A JP13860487A JP2553865B2 JP 2553865 B2 JP2553865 B2 JP 2553865B2 JP 62138604 A JP62138604 A JP 62138604A JP 13860487 A JP13860487 A JP 13860487A JP 2553865 B2 JP2553865 B2 JP 2553865B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
spacer
ceramic tile
ceramic tiles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62138604A
Other languages
Japanese (ja)
Other versions
JPS63303874A (en
Inventor
隆弘 蒲
二朗 土田
孝夫 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP62138604A priority Critical patent/JP2553865B2/en
Publication of JPS63303874A publication Critical patent/JPS63303874A/en
Application granted granted Critical
Publication of JP2553865B2 publication Critical patent/JP2553865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば耐摩耗送風機等の耐摩耗構造材とし
て使用される金属−セラミック積層接合体の製造方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a metal / ceramic laminate bonded body used as a wear resistant structural material such as a wear resistant blower.

〔従来の技術〕[Conventional technology]

耐摩耗送風機の羽根板等は、圧送される粉体との接触
により急速に摩耗が進む。その金属部材の内面に窒素け
い(Si3N4)、アルミナ(Al2O3)等のセラミックタイル
を貼付けて粉体との直接接触を遮断することは、摩耗を
防止し耐久性を改善するための極めて効果的な対策であ
る。
The blade plate of the abrasion-resistant blower rapidly wears due to contact with the powder to be pressure-fed. The ceramic tiles such as nitrogen silica (Si 3 N 4 ) and alumina (Al 2 O 3 ) are attached to the inner surface of the metal member to block the direct contact with the powder to prevent abrasion and improve durability. This is an extremely effective measure.

この場合、金属部材とその表面に貼り付けられるセラ
ミックタイルとは熱膨張係数に大きな差があるので、両
部材の間に、熱応力を緩和するための中間層材として、
銀や銅などの延性金属、または両部材の中間の熱膨張係
数を有するインバー合金やコバール合金等の所謂低熱膨
張性合金が介装される。第4図に、その積層接合体の断
面構造を示す。(10)は金属基材、(20)は中間層材、
(30)はセラミックタイルである。中間層材(20)はセ
ラミックタイル(30)と略相似形の薄板材であり、セラ
ミックタイル(30)の配列パターンに略一致する配列パ
ターンを以て金属基材(10)上に分散配置され、その上
にセラミックタイル(30)が所定の配列パターンに従っ
て配設されている。なお、セラミックタイルの片側面
(中間層材に当接する面)には、中間層との接合のため
に、メタライズ処理(Ti−Cu合金等の金属膜形成)が施
される。このように積層された金属基材(10)と中間層
材(20)とセラミックタイル(30)のそれぞれの重ね合
せ面は、加熱下に、例えばそれらの重ね合せ面間に予め
付与されたロウ材との反応により、または拡散接合等に
より接合一体化される。
In this case, since there is a large difference in the coefficient of thermal expansion between the metal member and the ceramic tile attached to the surface thereof, as an intermediate layer material for relaxing thermal stress between the two members,
A ductile metal such as silver or copper, or a so-called low thermal expansion alloy such as an Invar alloy or Kovar alloy having a thermal expansion coefficient intermediate between those members is interposed. FIG. 4 shows a sectional structure of the laminated joined body. (10) is a metal base material, (20) is an intermediate layer material,
(30) is a ceramic tile. The intermediate layer material (20) is a thin plate material having a shape substantially similar to that of the ceramic tile (30), and the intermediate layer material (20) is distributed and arranged on the metal base material (10) with an array pattern that substantially matches the array pattern of the ceramic tile (30). Ceramic tiles (30) are arranged on the upper surface in a predetermined arrangement pattern. It should be noted that one side surface of the ceramic tile (the surface contacting the intermediate layer material) is subjected to a metallizing treatment (forming a metal film such as a Ti—Cu alloy) for joining with the intermediate layer. The superposed surfaces of the metal base material (10), the intermediate layer material (20) and the ceramic tile (30) thus laminated are heated and heated, for example, a braze previously applied between the superposed surfaces. They are joined and integrated by reaction with the material or by diffusion joining or the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記積層接合体の製造において、中間層材(20)の上
に重ねられる各セラミックタイル(30)は、互いの側面
が無理なく当接し合うように配列されるが、重ね合せ面
を接合するための加熱工程で生じる合金基材(10)の面
方向の膨張は必ずしも完全に等方的に生起するわけでは
ないため、セラミックタイル(30)群の配列にずれが生
じる。そのずれが生じた状態で、接合温度が常温まで冷
却させると、その冷却する過程で生じる金属基材(10)
の面方向の収縮により、セラミックタイル(30)同士の
側面間にせり合いが生じて、第6図のように接合体が湾
曲してしまい、またそのせり合いによりセラミックタイ
ル(30)にクラックが発生する。この湾曲やクラックの
発生を防止する方法として、第4図に示すように、セラ
ミックタイル(30)同士の側面間に若干の隙間(G)を
もたせることが考えられる。むろん、その隙間(G)の
幅は、接合温度から常温まで降温した状態において、側
面同士がせり合いを生じることなく当接し合うように設
定されることが最も望ましい。
In the production of the above-mentioned laminated bonded body, the ceramic tiles (30) to be stacked on the intermediate layer material (20) are arranged so that their side surfaces come into abutting contact with each other without difficulty. Since the expansion of the alloy base material (10) in the surface direction in the heating step does not always occur isotropically, the arrangement of the ceramic tile (30) group is displaced. When the joining temperature is cooled to room temperature with the deviation, the metal base material (10) generated in the cooling process
The shrinkage of the ceramic tiles (30) causes the side faces of the ceramic tiles (30) to come into contact with each other, and the joined body is curved as shown in Fig. 6, and the warp causes cracks in the ceramic tiles (30). appear. As a method of preventing the occurrence of such bending and cracks, it is conceivable to provide a slight gap (G) between the side surfaces of the ceramic tiles (30) as shown in FIG. Of course, it is most desirable that the width of the gap (G) is set so that the side surfaces are brought into contact with each other without causing mutual friction when the temperature is decreased from the joining temperature to room temperature.

しかしながら、多数のセラミックタイル(30)を、隣
り合うセラミックタイルとの間に一定の隙間をもつよう
に配設することは実際上極めて困難である。また、仮り
にセラミックタイル(30)群の全体に亘って均等な所定
の隙間(G)をもたせることができたとしても、その接
合体が水平面に対しわずかでも傾いていると、加熱接合
工程において、第5図に示すように、セラミックタイル
(30)群は傾斜面に沿ってずれ、一方の側に片寄って、
セラミックタイル間の隙間(G)が消失し、もしくは不
足する状態となり、その状態で接合面が接合固定される
ことになる。このため、常温に到ると、第6図のように
接合体にそりが生じてしまう。この加熱接合工程におけ
るセラミックタイル(30)群のずれとそれに因る接合体
の変形は、接合面をロウ付け等のように溶融させる場合
に顕著である。これを防止するには、接合体を略完全な
水平状態に保持して加熱接合を行うことが必要である
が、工業的製造工程においてそのような措置を講じるの
は極めて困難である。
However, it is extremely difficult in practice to arrange a large number of ceramic tiles (30) with a certain gap between adjacent ceramic tiles. Even if the ceramic tile (30) group can be provided with a uniform predetermined gap (G), if the joined body is slightly inclined with respect to the horizontal plane, the heating and joining process will be performed. , As shown in FIG. 5, the ceramic tile (30) group is displaced along the inclined surface and is offset to one side,
The gap (G) between the ceramic tiles disappears or becomes insufficient, and the joint surfaces are joined and fixed in that state. Therefore, when the temperature reaches room temperature, the bonded body warps as shown in FIG. The displacement of the ceramic tile (30) group in the heating and bonding step and the deformation of the bonded body due to the displacement are remarkable when melting the bonding surfaces such as brazing. In order to prevent this, it is necessary to hold the joined body in a substantially horizontal state and perform the heating joining, but it is extremely difficult to take such a measure in the industrial manufacturing process.

本発明は上記問題点を解決するためになされたもので
ある。
The present invention has been made to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記のように金属基材と、中間層材と、セ
ラミックタイルとが、互いの重ね合せ面間で接合された
積層接合体の製造方法において、 隣り合うセラミックタイルの側面と側面との間に、易
圧縮変形性材料からなる所要肉厚のスペーサを介装して
セラミックタイルを所定の配列パターンに従って配設
し、接合温度に加熱した後の冷却過程における金属基材
の面方向の収縮に伴って生じるセラミックタイルの側面
間の圧縮応力により前記スペーサを圧縮偏平化させるこ
とを特徴としている。
The present invention, in the method for manufacturing a laminated joined body in which the metal base material, the intermediate layer material, and the ceramic tile are joined between the overlapping surfaces as described above, in the side surface and the side surface of the adjacent ceramic tiles. In between, ceramic tiles are arranged according to a predetermined array pattern with a spacer of a required thickness made of an easily compressible deformable material interposed, and the surface direction of the metal substrate in the cooling process after heating to the joining temperature It is characterized in that the spacer is compressed and flattened by the compressive stress between the side surfaces of the ceramic tile caused by the contraction.

本発明方法を図面により説明すると、第1図は、金属
基材(10)、中間層材(20)およびセラミックタイル
(30)からなる積層結合体の接合面における断面構造を
示し、第2図は、接合前におけるセラミックタイル(3
0)の平面配列パターンの例を示している。図中、(4
0)はスペーサである。
The method of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional structure at a joint surface of a laminated combined body including a metal substrate (10), an intermediate layer material (20) and a ceramic tile (30), and Is a ceramic tile (3
0) shows an example of a plane array pattern. In the figure, (4
0) is a spacer.

スペーサ(40)は、易圧縮変形性材料、すなわち、積
層体を接合温度から室温まで冷却する途中の金属基材
(10)の面方向の収縮に伴って隣り合うセラミックタイ
ル(30)同士の側面間に生じる圧縮応力により容易に偏
平化する材料からなる。その例として、紙、または銅、
銀等の高延性金属、あるいは圧縮強度の低いセラミック
などが挙げられる。紙スペーサは、接合温度で焼失しな
いもの(例えば、紙粘着テープ)を、セラミックタイル
の側面に巻き付け、もしくは貼り付ければよく、また金
属スペーサは、セラミックタイルの側面に、無電解めっ
き、蒸着等を行うか、または金属箔テープを巻付け、も
しくは貼り付けることにより形成することができる。ま
た、セラミックスペーサは、セラミック粉末のスラリー
またはペーストをセラミックタイルの側面に塗布し、乾
燥・焼成することにより形成することができる。
The spacer (40) is an easily compressible deformable material, that is, the side surface of the ceramic tiles (30) adjacent to each other due to the shrinkage in the surface direction of the metal base material (10) during the cooling of the laminate from the joining temperature to room temperature. It is made of a material that is easily flattened by the compressive stress generated between them. Examples are paper or copper,
Highly ductile metal such as silver, or ceramic having low compressive strength may be used. A paper spacer that does not burn off at the joining temperature (for example, paper adhesive tape) may be wound around or attached to the side surface of the ceramic tile, and a metal spacer may be formed on the side surface of the ceramic tile by electroless plating or vapor deposition. It can be formed by performing or by winding or sticking a metal foil tape. Further, the ceramic spacer can be formed by applying a slurry or paste of ceramic powder to the side surface of the ceramic tile, and drying and firing.

スペーサ(40)によって与えられる隙間(G)の適正
な幅寸法、すなわちスペーサの適正な肉厚は、金属基材
(10)の収縮量等に応じて決められるが、おおむね30〜
100μm程度であればよい。
An appropriate width dimension of the gap (G) provided by the spacer (40), that is, an appropriate wall thickness of the spacer is determined according to the shrinkage amount of the metal base material (10), etc.
It may be about 100 μm.

上記のように、各セラミックタイル(30)の側面にス
ペーサ(40)を取付けたうえ、中間層材(20)の上に略
隙間のないように配設し、しかるのち接合温度に加熱し
て金属基材(10)、中間層材(20)およびセラミックタ
イル(30)のそれぞれの重ね合せ面(接合面)を接合す
ることにより目的とする積層接合体を得る。
As mentioned above, attach the spacer (40) to the side surface of each ceramic tile (30) and arrange it on the intermediate layer material (20) so that there is no gap, and then heat to the bonding temperature. A target laminated bonded body is obtained by bonding the respective overlapping surfaces (bonding surfaces) of the metal base material (10), the intermediate layer material (20) and the ceramic tile (30).

〔作用〕[Action]

積層接合体の接合温度から常温に到る冷却過程で生じ
るセラミックタイル(30)同士の側面間のせり合を防止
するに必要な隙間は、セラミックタイル(30)の側面間
に介装されたスペーサ(40)の肉厚によって与えられ
る。
The gaps required to prevent the side faces of the ceramic tiles (30) from sticking together during the cooling process from the joining temperature of the laminated joined body to room temperature are spacers interposed between the side faces of the ceramic tiles (30). Given by the wall thickness of (40).

スペーサ(40)は予めセラミックタイル(30)の側面
に取付けられているので、セラミックタイル(30)を配
設する際には、隣り合うセラミックタイル(30)と(3
0)とがスペーサ(40)をはさんで相当接するように配
設すればよく、その配設作業には隙間(G)の幅寸法の
測定・調節等の付加的操作を必要としない。
Since the spacer (40) is attached to the side surface of the ceramic tile (30) in advance, when disposing the ceramic tile (30), the adjacent ceramic tiles (30) and (3
It suffices to dispose the spacer (40) and the spacer (40) so as to be substantially in contact with each other, and the disposing work does not require additional operations such as measurement and adjustment of the width dimension of the gap (G).

接合温度から常温まで冷却する過程で金属基材の両方
向の収縮に伴ってセラミックタイル(30)の側面と側面
との間に生じる圧縮応力は、スペーサ(40)の弾性変形
もしくは塑性変形(偏平化)により吸収されるので、セ
ラミックタイル(30)同士のせり合い、およびそれによ
るセラミックタイル(30)のクラック発生は未然に回避
され、常温まで冷却した積層接合体におけるセラミック
タイル(30)同士は、第3図に示すように、圧縮偏平化
したスペーサ(40)をはさんで密着し、セラミックタイ
ル間に隙間のない状態となっている。
The compressive stress generated between the side surfaces of the ceramic tile (30) due to the contraction of the metal base material in both directions during the cooling from the joining temperature to room temperature causes elastic deformation or plastic deformation (flattening) of the spacer (40). ), The ceramic tiles (30) are prevented from sticking to each other and cracking of the ceramic tiles (30) caused thereby, and the ceramic tiles (30) in the laminated joined body cooled to room temperature are As shown in FIG. 3, the compression flattened spacers (40) are sandwiched and adhered to each other so that there is no gap between the ceramic tiles.

〔実施例〕〔Example〕

(i)金属基材:SS41鋼板(200W×250L×6t,mm) (ii)中間層材:純銅、正方形板状体(7×7×0.5t,m
m) (iii)セラミックタイル:窒化けい素焼結品、正方形
板状体(10×10×3t,mm)。片側面はメタライズ処理済
み(Ti−Cu合金粉末をタイルに塗布し、水素雰囲気中、
1200℃で焼付け)。
(I) Metal substrate: SS41 steel plate (200 W x 250 L x 6 t , mm) (ii) Intermediate layer material: pure copper, square plate (7 x 7 x 0.5 t , m)
m) (iii) Ceramic tile: Sintered silicon nitride, square plate (10 x 10 x 3 t , mm). One side has been metallized (Ti-Cu alloy powder is applied to the tiles in a hydrogen atmosphere,
Baking at 1200 ℃).

(iv)スペーサ 供試材a: 難燃性紙テープ(ニチバン製「紙粘着テープNo.25
1」)をセラミックタイルの側面に巻き付ける。
(Iv) Spacer Specimen a: Flame-retardant paper tape (Nichiban's "Paper Adhesive Tape No. 25"
Wrap 1 ") around the side of the ceramic tile.

供試材b: Ni−P無電解めっきにより、セラミックタイルの側面
にNi−Pめっき層を形成。
Sample material b: Ni-P electroless plating was used to form a Ni-P plating layer on the side surface of the ceramic tile.

供試材c: 窒素けい素微粉末をメチルアルコールに分散したスラ
リーをセラミックタイルの側面に塗布し、乾燥後、焼成
して多孔質の窒素けいセラミックコーティングを形成。
Specimen c: A slurry of nitrogen silicon fine powder dispersed in methyl alcohol is applied to the side surface of the ceramic tile, dried and then fired to form a porous nitrogen silicon ceramic coating.

上記各スペーサの肉厚は約50μmである。 The thickness of each spacer is about 50 μm.

(v)各部材の重ね合せ面間の接合: Cu−Agロウ材(BAG 8)を重ね合せ面間に塗布。(V) Bonding between overlapping surfaces of each member: Cu-Ag brazing material (BAG 8) is applied between the overlapping surfaces.

金属基材(10)表面に中間層材(20)を分散配設し、
その上にセラミックタイル(40)を、スペーサ(40)を
介して互いに当接するように配設し、しかるのち900℃
に加熱保持して各部材の重ね合せ面(接合面)をロウ材
の反応により接合し、常温まで冷却することにより、第
3図に示す断面構造を有する積層接合体(a)、(b)
および(c)を得た。
Dispersing the intermediate layer material (20) on the surface of the metal substrate (10),
Ceramic tiles (40) are placed on top of them so that they abut each other via spacers (40), and then 900 ° C.
The laminated bonded bodies (a) and (b) having the cross-sectional structure shown in FIG. 3 are obtained by heating and holding the materials to bond the overlapping surfaces (bonding surfaces) of the members by the reaction of the brazing material and cooling to room temperature.
And (c) were obtained.

得られた各供試積層接合体(a)、(b)および
(c)のいずれも、湾曲変形およびセラミックタイルの
割れはなく、また重ね合せ面の接合も良好であることが
確認された。
It was confirmed that none of the obtained laminated laminates (a), (b) and (c) under test had curved deformation and cracks in the ceramic tiles, and the joining of the superposed surfaces was good.

〔発明の効果〕〔The invention's effect〕

本発明は、セラミックタイルを、その側面にスペーサ
を取付けて配設することとしたので、スペーサの肉厚に
よりセラミックタイル同士の側面間に所定の隙間が与え
られ、従ってその配設作業において隙間幅の測定・調節
等の付加的作業を必要とせずに、効果良くセラミックタ
イルを所定の配列パターンに従って配設することができ
る。むろん、その積層接合体に若干の傾きがあっても、
接合作業時にセラミックタイルの位置ずれ(セラミック
タイル同士の側面間の隙間幅の変動)を生じることもな
い。また、そのスペーサにより、積層接合体の接合温度
から常温への冷却過程で生じるセラミックタイル同士の
側面間のせり合いが吸収・緩和される。従って、本発明
方法によれば、変形やセラミックタイルの割れ等のない
金属−セラミック積層接合体を能率よく製造することが
でき、またその積層接合体におけるセラミックタイルは
圧縮偏平化したスペーサを介して密に当接しているので
金属基材の表面保護層としての機能にすぐれている。
In the present invention, the ceramic tiles are arranged with the spacers attached to the side surfaces thereof, so that a predetermined gap is provided between the side surfaces of the ceramic tiles due to the thickness of the spacers. It is possible to effectively arrange the ceramic tiles according to a predetermined arrangement pattern without requiring additional work such as measurement and adjustment. Of course, even if the laminated joint has a slight inclination,
Positional deviation of the ceramic tiles (variation of the gap width between the side surfaces of the ceramic tiles) does not occur during the bonding work. Further, the spacer absorbs and relaxes the interference between the side surfaces of the ceramic tiles that occurs during the cooling process from the bonding temperature of the laminated bonded body to room temperature. Therefore, according to the method of the present invention, it is possible to efficiently produce a metal-ceramic laminate joined body without deformation or cracking of the ceramic tile, and the ceramic tile in the laminate joined body is compressed and flattened through the spacer. Since they are in close contact with each other, they have an excellent function as a surface protective layer of the metal substrate.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明における積層接合体の接合前の状態を模
式的に示す断面図、第2図は本発明におけるセラミック
タイルの配設態様の例を示す平面図、第3図は本発明に
よる積層接合体の接合後の状態を模式的に示す断面図、
第4図〜第6図は従来の積層接合体の模式的断面図であ
る。 10:金属基材、20:中間層材、30:セラミックタイル、40:
スペーサ、G:隙間。
FIG. 1 is a cross-sectional view schematically showing a state before joining of a laminated joined body according to the present invention, FIG. 2 is a plan view showing an example of arrangement of ceramic tiles according to the present invention, and FIG. 3 is according to the present invention. Sectional drawing which shows the state after joining of a laminated joined body typically,
FIG. 4 to FIG. 6 are schematic sectional views of a conventional laminated bonded body. 10: Metal substrate, 20: Intermediate layer material, 30: Ceramic tile, 40:
Spacer, G: Gap.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属基材面に、中間層材として金属板材を
分散配置し、中間層材上面に、セラミックタイルを配設
したうえ、互いの重ね合せ面を加熱下に接合する金属−
セラミック積層接合体の製造方法において、 隣り合うセラミックタイルの側面と側面との間に、易圧
縮変形性材料からなる所要肉厚のスペーサを介装してセ
ラミックタイルを所定の配列パターンに配設し、接合温
度に加熱した後の冷却過程における金属基材の面方向の
収縮に伴って生じるセラミックタイルの側面間の圧縮応
力により、前記スペーサを圧縮偏平化させることを特徴
とする金属−セラミック積層接合体の製造方法。
1. A metal for disposing a metal plate material as an intermediate layer material on the surface of a metal base material, disposing a ceramic tile on the upper surface of the intermediate layer material, and joining the superposed surfaces to each other under heating.
In the method for manufacturing a ceramic laminate joined body, a spacer having a required thickness made of an easily compressible deformable material is interposed between the side surfaces of adjacent ceramic tiles to arrange the ceramic tiles in a predetermined array pattern. A metal-ceramic laminated joint characterized by compressing and flattening the spacer by a compressive stress between the side surfaces of the ceramic tile caused by shrinkage in the surface direction of the metal base material in the cooling process after heating to the joining temperature. Body manufacturing method.
JP62138604A 1987-06-02 1987-06-02 Method for producing metal-ceramic laminated body Expired - Lifetime JP2553865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138604A JP2553865B2 (en) 1987-06-02 1987-06-02 Method for producing metal-ceramic laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138604A JP2553865B2 (en) 1987-06-02 1987-06-02 Method for producing metal-ceramic laminated body

Publications (2)

Publication Number Publication Date
JPS63303874A JPS63303874A (en) 1988-12-12
JP2553865B2 true JP2553865B2 (en) 1996-11-13

Family

ID=15225974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138604A Expired - Lifetime JP2553865B2 (en) 1987-06-02 1987-06-02 Method for producing metal-ceramic laminated body

Country Status (1)

Country Link
JP (1) JP2553865B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2753192B1 (en) * 1996-09-12 1998-10-09 Commissariat Energie Atomique ASSEMBLY OF CERAMIC TILES JUXTAPOSED ON A METAL LAYER, AND MANUFACTURING METHOD THEREOF
EP2851151B1 (en) * 2013-09-20 2017-08-23 Ansaldo Energia IP UK Limited Method of fixing through brazing a heat resistant component on a surface of a heat exposed component

Also Published As

Publication number Publication date
JPS63303874A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
JP6924910B2 (en) Ceramic-aluminum assembly with joint grooves
JPS5849672A (en) Jointed body comprising metal layer and ceramic layer and manufacture
JP2553865B2 (en) Method for producing metal-ceramic laminated body
US4981761A (en) Ceramic and metal bonded composite
EP0595075A2 (en) Microlaminated composites and method for preparing them
JPS5835954B2 (en) Method for bonding metal-ceramic multilayer abradable composites to metallic substrates
JP2553866B2 (en) Method for producing metal-ceramic laminated body
JPH02128832A (en) Honeycomb structure
JPH01141883A (en) Method for joining ceramic to metal
JPS63225585A (en) Ceramic-metal joined body and joining method
WO2021106098A1 (en) Method for manufacturing joined substrate
JP2754193B2 (en) Lamination bonding molding method
JPH01141881A (en) Method for bonding porous ceramic to metal
JPH02263774A (en) Method for joining ceramic to metal
JP4161618B2 (en) Method for producing multilayer ceramic fired body
KR20170104327A (en) apparatus set for producing warpage of ceramic substrate and method for producing warpage of ceramic substrate using there of
JPH09157039A (en) Device for producing multilayer ceramic sintered compact
JP2569876B2 (en) Manufacturing method of ceramics
JPH04160070A (en) Ceramic joint body and its production
JPH0776138B2 (en) High thermal shock resistance joining method of ceramics and metal and joining product
JPH0744282B2 (en) Semiconductor pressure transducer
JPH0744281B2 (en) Method for manufacturing semiconductor pressure transducer
JPH0453743A (en) Manufacture of mirror surface member resistant to heat, abrasion and vibration
JPS61206268A (en) Manufacture of semiconductor pressure transducer
JPH0580434B2 (en)