JP2553866B2 - Method for producing metal-ceramic laminated body - Google Patents

Method for producing metal-ceramic laminated body

Info

Publication number
JP2553866B2
JP2553866B2 JP62138605A JP13860587A JP2553866B2 JP 2553866 B2 JP2553866 B2 JP 2553866B2 JP 62138605 A JP62138605 A JP 62138605A JP 13860587 A JP13860587 A JP 13860587A JP 2553866 B2 JP2553866 B2 JP 2553866B2
Authority
JP
Japan
Prior art keywords
intermediate layer
ceramic
block
metal
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62138605A
Other languages
Japanese (ja)
Other versions
JPS63303875A (en
Inventor
隆弘 蒲
二朗 土田
孝夫 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP62138605A priority Critical patent/JP2553866B2/en
Publication of JPS63303875A publication Critical patent/JPS63303875A/en
Application granted granted Critical
Publication of JP2553866B2 publication Critical patent/JP2553866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば耐摩耗送風機等の構成部材として使
用される金属−セラミック積層接合体の製造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for producing a metal / ceramic laminate joined body used as a constituent member of, for example, an abrasion-resistant blower.

〔従来の技術〕[Conventional technology]

耐摩耗送風機の羽根板等は、圧送される粉体との接触
により急速に摩耗が進む。その金属部材の内面にセラミ
ックタイルを貼り付けて粉体との直接接触を遮断するこ
とは、摩耗を防止し耐久性を改善するための極めて効果
的な方法である。
The blade plate of the abrasion-resistant blower rapidly wears due to contact with the powder to be pressure-fed. Affixing a ceramic tile on the inner surface of the metal member to block direct contact with the powder is an extremely effective method for preventing abrasion and improving durability.

この場合、金属部材とその表面に貼り付けられるセラ
ミックタイルとは熱膨張係数に大きな差があるので、両
部材の間に、熱応力を緩和するための中間層材として、
銀や銅などの延性金属、または両部材の中間の熱膨張係
数を有するインバー合金やコバール合金等の所謂低熱膨
張性合金が介装される。第4図に、その積層接合体の積
層構造を示す斜視図、第5図は断面図である。(10)は
金属基材、(20′)は中間層部材、(30)はセラミック
タイルである。中間層部材(20′)は、金属基材(10)
とセラミックタイル(30)との熱膨張量の差により生じ
る応力の吸収・緩和効果の確保、および材料節減等のた
めに、セラミックタイル(30)より小さい平面形状を有
する薄板材であり、隣り合う中間層部材(20′)との間
に一定の間隔(g)をおいてセラミックタイル(30)群
の配列パターンに略一致するパターンを以て配設され
る。また、該中間層部材(20′)は、その上に重ねられ
るセラミックタイル(30)の載置姿態を安定化するため
に、セラミックタイル(30)の略相似の平面形状を有し
ている。なお、セラミックタイル(30)の片側面(中間
層部材との当接面)には、中間層部材との接合のため
に、メタライズ処理が施される。このように積層された
金属基材(10)と中間層部材(20′)とセラミックタイ
ル(30)との互いの重ね合せ面(S1)(S2)は、加熱下
に、例えば予めその重ね合せ面間に付与されたロウ材
(40)との反応により、または重ね合せ面間の拡散接合
等により、接合一体化される。
In this case, since there is a large difference in the coefficient of thermal expansion between the metal member and the ceramic tile attached to the surface thereof, as an intermediate layer material for relaxing thermal stress between the two members,
A ductile metal such as silver or copper, or a so-called low thermal expansion alloy such as an Invar alloy or Kovar alloy having a thermal expansion coefficient intermediate between those members is interposed. FIG. 4 is a perspective view showing the laminated structure of the laminated assembly, and FIG. 5 is a sectional view. (10) is a metal substrate, (20 ') is an intermediate layer member, and (30) is a ceramic tile. The intermediate layer member (20 ') is a metal base material (10).
And the ceramic tile (30) are thin plate materials having a planar shape smaller than that of the ceramic tile (30) in order to secure the effect of absorbing and relaxing the stress caused by the difference in the amount of thermal expansion between them and to save the material. The ceramic tiles (30) are arranged in a pattern substantially corresponding to the arrangement pattern of the group of ceramic tiles (30) at a constant interval (g) from the intermediate layer member (20 '). Further, the intermediate layer member (20 ') has a substantially similar planar shape of the ceramic tile (30) in order to stabilize the mounting state of the ceramic tile (30) to be stacked thereon. It should be noted that one side surface (contact surface with the intermediate layer member) of the ceramic tile (30) is subjected to a metallizing treatment for joining with the intermediate layer member. The mutual overlapping surfaces (S1) (S2) of the metal base material (10), the intermediate layer member (20 '), and the ceramic tile (30) thus laminated are heated, for example, in advance. They are joined and integrated by a reaction with the brazing material (40) provided between the surfaces or by diffusion joining between the overlapping surfaces.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記積層接合体の製造において、金属基材(10)の上
面に、中間層部材(20′)を、隣り合う中間層部材(2
0′)との間に一定の間隔(g)をおきながらセラミッ
クタイル(30)群の配列パターンと略一致するように配
設することが必要であるが、多数の中間層部材(20′)
をそのように配置する作業は極めて煩わしく、かつ非能
率である。また、所定の配列パターンに従って配設でき
たとしても、その上に重ねられるセラミックタイル(3
0)の配設作業時、あるいは運搬移動の隣にずれが生じ
て中間層材としての役目が損なわれることもある。
In the production of the above-mentioned laminated joined body, the intermediate layer member (20 ') is provided on the upper surface of the metal base material (10) and the adjacent intermediate layer member (2).
It is necessary to arrange the ceramic tiles (30) so as to substantially match the arrangement pattern of the group of ceramic tiles (30) with a certain space (g) between them and the intermediate layer members (20 ').
The task of arranging so is extremely cumbersome and inefficient. Even if the tiles can be arranged according to a predetermined arrangement pattern, the ceramic tiles (3
There is a case that the function as the intermediate layer material is impaired due to a deviation occurring during the work of disposing (0) or adjacent to the transportation movement.

本発明は上記問題点を解決するためになされたもので
ある。
The present invention has been made to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記のように金属基材と中間層材とセラミ
ックタイルとを重ね、互いの重ね合せ面間を加熱下に接
合する積層接合体の製造方法において、 前記中間層材として、金属板に、セラミックタイルの輪
郭線模様と略一致する分布パターンをなす切欠溝を断続
的に穿設することにより形成された、セラミックタイル
と略相似の平面形状を有する多数のブロックが切欠溝不
連続部を介して相互に連結されてなるブロック集合板を
使用することを特徴としている。
The present invention is a method for manufacturing a laminated joined body, in which a metal base material, an intermediate layer material, and a ceramic tile are stacked as described above, and the overlapping surfaces of the metal base material and the ceramic tile are bonded to each other under heating. A plurality of blocks having a planar shape substantially similar to that of the ceramic tile, which are formed by intermittently forming notch grooves having a distribution pattern that substantially matches the contour pattern of the ceramic tile. It is characterized by using block collecting plates which are mutually connected via the.

本発明方法について図面を参照して説明すると、第1
図において、(20)は中間層材として金属基材(10)と
セラミックタイル(30)との間に介在するブロック集合
板である。第2図はそのブロック集合体のブロック配列
パターンを示している。ブロック集合板(20)は金属板
(銅、銀などの延性金属またはインバー合金、コバール
合金等の低熱膨張性金属等の板材)にセラミックタイル
(30)(図の例では正六角形平面形状を有している)の
輪郭線模様(図の例では亀甲様様)に略一致する分布パ
ターンを以て切欠溝(21)を断続的に穿設したものであ
る。そのブロック集合板(20)は、断続する切欠溝(2
1)によってセラミックタイル(30)と略相似の平面形
状(正六角形)に画成された多数のブロック(23)が、
切欠溝の不連続部(22)を介して相互に連なり、全体と
して1つの板状体をなしている。
The method of the present invention will be described with reference to the drawings.
In the figure, (20) is a block aggregate plate interposed between the metal base material (10) and the ceramic tile (30) as an intermediate layer material. FIG. 2 shows a block array pattern of the block aggregate. The block aggregate plate (20) has a ceramic tile (30) (a regular hexagonal planar shape in the example in the figure) on a metal plate (a ductile metal such as copper or silver, or a plate material such as a low thermal expansion metal such as Invar alloy or Kovar alloy). The notch groove (21) is intermittently provided with a distribution pattern that substantially coincides with the contour pattern (in the example shown in the figure). The block assembly plate (20) has an intermittent groove (2
A large number of blocks (23) defined by 1) in a planar shape (regular hexagon) that is substantially similar to the ceramic tile (30),
They are connected to each other via the discontinuous portion (22) of the notch groove and form a single plate-like body as a whole.

第3図は、ブロック集合板の上に重ねられるセラミッ
クタイルが矩形平面を有するものである場合(その輪郭
線模様は格子模様となる)に使用されるブロック集合板
(20)のブロック配列パターンの例を示している。セラ
ミックタイルの輪郭線模様(格子模様)に略一致する分
布パターンを以て断続的に穿設された切欠溝(21)によ
り、矩形平面を有する多数のブロック(23)が画成さ
れ、各ブロック(23)は、その辺の略中央に位置する切
欠溝不連続部(22)を介して相互に連結されている。
FIG. 3 shows the block arrangement pattern of the block aggregate plate (20) used when the ceramic tile to be overlaid on the block aggregate plate has a rectangular plane (its contour pattern is a lattice pattern). An example is shown. A large number of blocks (23) having a rectangular flat surface are defined by the notch grooves (21) which are intermittently provided with a distribution pattern which substantially matches the contour pattern (lattice pattern) of the ceramic tile, and each block (23 ) Are connected to each other via a notch groove discontinuity (22) located approximately at the center of the side.

第2図では、切欠溝(21)を、ブロック(23)の1つ
おきの頂部で不連続とし、第3図の例ではその切欠溝
(21)を、ブロック(23)の辺において不連続とするパ
ターンを示しているが、必ずしもそうである必要はな
く、要するに多数のブロック(23)が、相互に連結され
た一体関係を形成するように、ブロック(23)の平面形
状に応じて、なお望ましくは必要最小限の数の切欠溝不
連続部(22)を以てブロック(23)全体が連結一体関係
をなすような断続パターンの切欠溝(21)を形成すれば
よい。
In FIG. 2, the notch groove (21) is discontinuous at every other apex of the block (23), and in the example of FIG. 3, the notch groove (21) is discontinuous at the side of the block (23). However, this is not necessarily the case, and according to the planar shape of the block (23), a large number of blocks (23) form an interconnected integral relationship. Desirably, the cutout groove (21) having an intermittent pattern is formed so that the entire block (23) is connected and integrated with a minimum number of cutout groove discontinuous portions (22).

ブロック(23)同士が必要最小限の数の切欠溝不連続
部(22)を以て連結されることが望ましいのは、切欠溝
不連続部(22)によるブロック(23)同士の相互の拘束
関係を可及的に少なくしブロック(23)を熱応力緩和層
として十分に機能させるためである。同じ理由により、
各切欠溝不連続部(22)の大きさ(隣り合う切欠溝の突
端部と突端部との幅寸法等)は、ブロック集合板(20)
のハンドリング時に、折れ曲り、裂断等の不都合をきた
さない範囲内で、できるだけ小さく形成しておくことが
望ましい。切欠溝不連続部(22)を小さくしておけば、
後記のように積層接合体の加熱接合工程において、その
部分を溶断させ、各ブロックを互に分離独立させること
も容易になる。
It is desirable that the blocks (23) are connected to each other with a minimum number of notch groove discontinuities (22) so that the blocks (23) are restrained from each other by the notch groove discontinuities (22). This is because the number of blocks is reduced as much as possible to allow the block (23) to sufficiently function as a thermal stress relaxation layer. For the same reason,
The size of each notch groove discontinuity (22) (the width dimension between the protrusions of adjacent notches and the like) is determined by the block aggregate plate (20).
It is desirable to make it as small as possible within a range that does not cause inconvenience such as bending and tearing at the time of handling. If the notch groove discontinuity (22) is made small,
As will be described later, in the heating and joining process of the laminated joined body, that portion can be melt-cut and the blocks can be separated and independent from each other.

なお、ブロック集合板のサイズ(広さ)は任意であ
り、金属基材(10)の面積が比較的広い場合において、
その広い面積に一枚のブロック集合板(20)を載置する
ことが困難な場合は、これを複数の面積部分に分割して
金属基材(10)上に並列載置すればよい。
The size (width) of the block assembly plate is arbitrary, and when the area of the metal base material (10) is relatively large,
When it is difficult to mount one block aggregate plate (20) on the large area, it may be divided into a plurality of area portions and mounted in parallel on the metal base material (10).

本発明によれば、金属基材(10)にブロック集合板
(20)を載設し、これにセラミックタイル(30)群を配
設したうえ、加熱下に各部材間の重ね合せ面(S1)(S
2)を接合することにより目的とする積層接合体が得ら
れる。その接合は公知の一般的方法(拡散接合、ロウ付
等)により行われる。得られる積層接合体における中間
層部材である各ブロック(23)は、接合前の状態、すな
わち切欠溝不連続部(22)を介する相互の連結状態を有
していてもよいが、最も好ましいのは、加熱接合工程
で、接合熱を利用して切欠溝不連続部(22)を溶融分断
(溶断)し、各ブロック(23)を互いに分離独立させる
ことである。特にロウ付けによる接合を行う場合は、ロ
ウ材との反応による低融点化合物の生成により、容易に
切欠溝不連続部(22)の溶断が達成される。
According to the present invention, the block assembly plate (20) is mounted on the metal substrate (10), the ceramic tile (30) group is arranged on the block assembly plate (20), and the overlapping surface (S1) between the members is heated. ) (S
By joining 2), the desired laminated joined body can be obtained. The bonding is performed by a known general method (diffusion bonding, brazing, etc.). Each block (23) which is an intermediate layer member in the obtained laminated joined body may have a state before joining, that is, a mutually connected state via the notch groove discontinuous portion (22), but is most preferable. In the heating and joining step, the notch groove discontinuous portion (22) is melt-divided (fused) by utilizing the joining heat, and the blocks (23) are separated and independent from each other. In particular, when joining by brazing, the melting of the notch groove discontinuous portion (22) is easily achieved by the formation of a low melting point compound due to the reaction with the brazing material.

〔作用〕[Action]

ブロック集合板(20)は、その上に配設されるセラミ
ックタイル(30)群の配列パターンに略一致する配列パ
ターンを有するブロック(23)の集合体であるので、こ
れを金属基材(10)上に載置するだけの単純な作業によ
り、中間層材の配設作業を完了し、従って多数の中間層
部材を1枚ずつ配置する場合のような煩瑣な作業は一切
省略される。
The block assembly plate (20) is an assembly of blocks (23) having an array pattern that substantially matches the array pattern of the ceramic tiles (30) arranged on the block assembly plate (20). ) The work of arranging the intermediate layer material is completed by a simple work of placing the intermediate layer member on top, and therefore, the troublesome work of arranging a large number of intermediate layer members one by one is omitted.

加熱接合工程においてブロック集合板(20)の切欠溝
不連続部(22)を溶断しない場合、得られる積層接合体
内のブロック(23)は、加熱接合前と同じく相互に連結
された拘束状態にあるけれども、隣り合うブロック(2
3)との間の切欠溝(21)の存在により、各ブロック毎
の熱膨張・収縮が比較的自由であり、従ってそのブロッ
ク集合板は接合温度から常温に到る冷却過程における金
属基材(10)とセラミックタイル(30)との間の熱応力
緩和層としての機能を果す。また、加熱接合工程におい
てブロック集合板(20)の切欠溝不連続部(22)を溶断
させた場合には、得られる積層接合体におけるブロック
(23)は各々分離独立して相互の拘束関係から完全に解
放され、従って多数の中間層部材(20′)を1枚ずつ分
散配置した場合と実質的に同一の応力緩和層として機能
する。
When the cut groove discontinuous portion (22) of the block assembly plate (20) is not melt-fused in the heat-bonding step, the block (23) in the obtained laminated bonded body is in the constrained state in which it is interconnected as before the heat-bonding. However, adjacent blocks (2
Due to the presence of the notch groove (21) between the block aggregate plate and the block, the thermal expansion and contraction of each block is relatively free, so that the block aggregate plate has a metal base material in the cooling process from the joining temperature to room temperature ( It functions as a thermal stress relaxation layer between the ceramic tile (30) and the ceramic tile (30). Further, when the cut groove discontinuous portion (22) of the block assembly plate (20) is melt-fused in the heating and joining step, the blocks (23) in the obtained laminated joined body are separated and independent from each other due to the restraint relationship. It is completely released, and thus functions as a stress relaxation layer which is substantially the same as the case where a large number of intermediate layer members (20 ') are dispersed one by one.

〔実施例〕〔Example〕

実施例1 (i)金属基材:SS41鋼板(200W×250L×6t,mm) (ii)中間層材(ブロック集合板): 純銅板(200W×250L×0.5t,mm)に第2図に示す亀甲
模様をなす切欠溝(溝幅:2mm)を断続分布パターンを以
て穿設することにより、正六角形状のブロック(対辺距
離:9.92mm)が切欠溝不連続部(22)を介して連結して
いるブロック集合板を製作。切欠溝不連続部(22)は3
つの切欠溝(21)の突端部が直径2mmの円に外接する大
きさである。
Example 1 (i) Metal substrate: SS41 steel plate (200 W x 250 L x 6 t , mm) (ii) Intermediate layer material (block aggregate plate): Pure copper plate (200 W x 250 L x 0.5 t , mm) A notched groove (groove width: 2 mm) having a hexagonal pattern shown in Fig. 2 is bored with a discontinuous distribution pattern, so that a regular hexagonal block (opposite side distance: 9.92 mm) has a notched groove discontinuity (22). Manufactures a block aggregate plate that is connected via. Notch groove discontinuity (22) is 3
The size of the tip of each of the two cutout grooves (21) is circumscribing a circle with a diameter of 2 mm.

(iii)セラミックタイル: 窒化けい素系セラミック焼結品、正六角形(対辺距
離:12mm、厚さ:3mm)。片側面はメタライズ処理済み(C
u−Ti合金粉末を塗布し、水素雰囲気中、1200℃で焼付
け) 上記金属基材にブロック集合板を載置し、その上にセ
ラミックタイルを配設したのち、加熱炉内にて920℃に
加熱保持し、各部材の重ね合せ面間に予め付与しておい
たCu−Agロウ材(BAG 8)の反応により重ね合せ面を
ロウ付けし、しかるのち常温まで徐冷して積層接合体を
得た。この積層接合体をAとする。この積層接合体にお
ける中間層部材であるブロックは、切欠溝不連続部が溶
断され、相互に分離独立している。
(Iii) Ceramic tile: Silicon nitride ceramic sintered product, regular hexagon (distance: 12 mm, thickness: 3 mm). Metallized on one side (C
u-Ti alloy powder is applied and baked at 1200 ° C in a hydrogen atmosphere.) A block aggregate plate is placed on the above-mentioned metal base material, a ceramic tile is placed on it, and then at 920 ° C in a heating furnace. The laminated surface is heated and held, and the laminated surface is brazed by the reaction of the Cu-Ag brazing material (BAG 8) that has been previously applied between the laminated surfaces of each member, and then slowly cooled to room temperature to form a laminated joined body. Obtained. This laminated bonded body is designated as A. In the block which is the intermediate layer member in this laminated assembly, the cutout groove discontinuities are melted and separated from each other.

実施例2 (i)金属基材:SS41鋼板(200W×250L×6t,mm) (ii)中間層材(ブロック集合板) 純銅板(200W×250L×0.5t,mm)に第2図に示す亀甲模
様をなす切欠溝(溝幅:2mm)を断続分布パターンを以て
穿設することにより、正六角形状のブロック(対辺距
離:9.92mm)が切欠溝不連続部(22)を介して連結して
いるブロック集合板を製作。切欠溝不連続部(22)は3
つの切欠溝(21)の突端部が直径2mmの円に外接する大
きさである。
Example 2 (i) Metal substrate: SS41 steel plate (200 W x 250 L x 6 t , mm) (ii) Intermediate layer material (block aggregate plate) Pure copper plate (200 W x 250 L x 0.5 t , mm) A hexagonal block (distance between sides: 9.92 mm) forms a cutout groove discontinuity (22) by piercing a notched groove (groove width: 2 mm) having a hexagonal pattern shown in Fig. 2 with an intermittent distribution pattern. Produces a block aggregate plate that is connected through. Notch groove discontinuity (22) is 3
The size of the tip of each of the two cutout grooves (21) is circumscribing a circle with a diameter of 2 mm.

(iii)セラミックタイル: 窒化けい素系セラミック焼結品、正六角形(対辺距
離:12mm、厚さ:3mm)。片側面は実施例1と同じように
メラタイズ処理済み。
(Iii) Ceramic tile: Silicon nitride ceramic sintered product, regular hexagon (distance: 12 mm, thickness: 3 mm). One side has been melatized as in Example 1.

上記金属基材にブロック集合板を載置し、その上にセ
ラミックタイルを配設したのち、加熱炉内にて900℃に
加熱保持し、各部材の重ね合せ面に予め付与していたCu
−Agロウ材により重ね合せ面を接合せしめ、しかるのち
常温まで徐冷して積層接合体を得た。この積層接合体を
Bとする。この積層接合体における中間層材であるブロ
ックは、接合前と同じく、切欠溝不連続部を介した連結
状態を保っている。
After placing the block aggregate plate on the metal base material and arranging the ceramic tiles on it, it is heated and held at 900 ° C. in a heating furnace, and Cu which has been previously given to the superposed surfaces of the respective members.
-Ag brazing material was used to join the superposed surfaces together, and then gradually cooled to room temperature to obtain a laminated joint. This laminated bonded body is designated as B. The block, which is the intermediate layer material in this laminated joined body, maintains the connected state through the notch groove discontinuity, as before joining.

比較例1 中間層材として、ブロック集合板に代え、一枚の純銅
板(200W×250L×0.5t,mm)を使用する点を除いて実施
例2と同一の条件により積層接合体を得た。この積層接
合体をCとする。
Comparative Example 1 A laminated bonded body was manufactured under the same conditions as in Example 2 except that a single pure copper plate (200 W x 250 L x 0.5 t , mm) was used as the intermediate layer material instead of the block aggregate plate. Obtained. This laminated bonded body is designated as C.

比較例2 多数の正六角形純銅板(対辺距離:9.92mm、板厚:0.5m
m)を中間層部材とし、これを1枚ずつ分散配置(隣り
合う純銅板の側面との間の隙間幅:2mm)する点を除い
て、実施例2と同一の条件により積層接合体を得る。こ
の積層接合体をDとする。
Comparative Example 2 Many regular hexagonal pure copper plates (distance: 9.92 mm, plate thickness: 0.5 m)
m) is an intermediate layer member, and a laminated bonded body is obtained under the same conditions as in Example 2 except that the intermediate layer members are dispersed and arranged one by one (gap width between adjacent side surfaces of pure copper plates: 2 mm). . This laminated bonded body is designated as D.

上記各積層接合体A、B、CおよびDをセラミックタ
イルの亀甲模様にそって、セラミックタイル毎に切断分
離し、切断分離されたそれぞれの積層接合体小片につい
て接合面の剪断接着強度を測定して第1表に示す結果を
得た。
Each of the above-mentioned laminated bonded bodies A, B, C and D was cut and separated for each ceramic tile along the hexagonal pattern of the ceramic tile, and the shear adhesive strength of the bonded surface was measured for each cut and separated laminated bonded body piece. The results shown in Table 1 were obtained.

第1表に示すように、積層接合体C(中間層材として
切欠溝を有しない1枚の純銅板使用)では、接着強度が
著しく低い。これは、中間層材の熱応力緩和層としての
機能が低く、接合温度から常温に到る冷却過程で生じる
熱応力により重ね合せ面の接合が損なわれたことによ
る。他方、ブロック集合板を中間層材として使用し、加
熱接合工程で、そのブロックを互いに分離独立させて得
られた発明例である積層接合体Aは高い接合強度を有し
ており、その接合強度は、従来法(多数の中間層部材を
1枚ずつ分散配置)により得られた積層接合体Dのそれ
と同等であり、また他の発明例である積層接合体B(ブ
ロック集合板を使用。但し、ブロックは相互に連結した
ままである)についても、良好な接合強度を有してお
り、いずれの場合も、ブロック集合板は中間層材として
熱応力緩和機能を果たしていることがわかる。
As shown in Table 1, in the laminated joined body C (using one pure copper plate having no notch groove as the intermediate layer material), the adhesive strength is extremely low. This is because the function of the intermediate layer material as a thermal stress relaxation layer is low, and the joining of the overlapping surfaces is impaired by the thermal stress generated in the cooling process from the joining temperature to room temperature. On the other hand, a laminated bonded body A, which is an example of the invention obtained by using the block aggregate plate as an intermediate layer material and separating the blocks from each other in the heating bonding process, has a high bonding strength. Is equivalent to that of the laminated joined body D obtained by the conventional method (a large number of intermediate layer members are dispersed and arranged one by one), and is another example of the laminated joined body B (using a block aggregate plate. , The blocks remain connected to each other) also have good joint strength, and in both cases, it can be seen that the block aggregate plate fulfills the thermal stress relaxation function as the intermediate layer material.

〔発明の効果〕〔The invention's effect〕

本発明は、金属基材とセラミックタイルとの中間層材
(熱応力緩和層)としてブロック集合板を使用すること
としたので、多数の中間層部材を1枚ずつ分散配置する
場合のような煩わしさと困難は全くなく、ブロック集合
板を金属基材上に載置するという単純な作業により労せ
ずして中間層材の配設を完了し、しかもその後の工程に
おいて各ブロックの分布パターンにいずれか生じること
もない。従って、積層接合体を高能率下に製造すること
ができると共に、その品質、特に接合強度の高位安定化
の効果が得られる。特にブロック集合板の各ブロックを
加熱接合工程において溶断し、分離独立させることによ
り、多数の中間層部材を1枚ずつ分散配設した場合と同
じ積層接合体を得ることもでき、その工業的価値は大で
ある。
In the present invention, since the block aggregate plate is used as the intermediate layer material (thermal stress relaxation layer) between the metal base material and the ceramic tile, it is troublesome to disperse a large number of intermediate layer members one by one. There is no difficulty at all, and the arrangement of the intermediate layer material is completed without any effort by the simple work of placing the block aggregate plate on the metal base material. It never happens. Therefore, it is possible to manufacture the laminated bonded body with high efficiency, and at the same time, it is possible to obtain the effect of stabilizing the quality of the laminated bonded body, especially the bonding strength. In particular, by melting each block of the block aggregate plate in the heating and bonding process and separating and separating them independently, it is possible to obtain the same laminated bonded body as in the case where a large number of intermediate layer members are dispersed and arranged, and its industrial value. Is large.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明における部材積層態様の例を示す斜視
図、第2図、第3図は本発明に使用されるブロック集合
板の例を示す平面図、第4図は従来の製造法における部
材積層態様の例を示す斜視図、第5図は積層接合体の積
層断面を示す図である。 10:金属基材、20′:中間層部材、20:ブロック集合板、
21:切欠溝、22:切欠溝不連続部、23:ブロック、30:セラ
ミックタイル。
FIG. 1 is a perspective view showing an example of a member stacking mode in the present invention, FIGS. 2 and 3 are plan views showing an example of a block assembly plate used in the present invention, and FIG. 4 is a conventional manufacturing method. FIG. 5 is a perspective view showing an example of a member stacking mode in FIG. 5, and FIG. 10: metal base material, 20 ': intermediate layer member, 20: block aggregate plate,
21: Notched groove, 22: Notched groove discontinuous portion, 23: Block, 30: Ceramic tile.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属基材面に、中間層材を配設し、中間層
材上面に、セラミックタイルを一定の配列パターンを以
て配設したうえ、互いの重ね合せ面を加熱接合する金属
−セラミック積層接合体の製造方法において、 前記中間層材として、金属板に、セラミックタイルの輪
郭線模様と略一致する分布パターンをなす切欠溝を断続
的に穿設することにより形成された、セラミックタイル
と略相似の平面形状を有する多数のブロックが切欠溝不
連続部を介して相互に連結されてなるブロック集合板を
使用することを特徴とする金属−セラミック積層接合体
の製造方法。
1. A metal-ceramic in which an intermediate layer material is disposed on the surface of a metal base material, ceramic tiles are disposed on the upper surface of the intermediate layer material in a fixed arrangement pattern, and the superposed surfaces of the ceramic tiles are heat-bonded to each other. In the method for manufacturing a laminated joined body, as the intermediate layer material, the metal plate is formed by intermittently forming cutout grooves forming a distribution pattern substantially matching the contour line pattern of the ceramic tile, and a ceramic tile. A method for producing a metal / ceramic laminate joined body, comprising using a block aggregate plate in which a large number of blocks having substantially similar planar shapes are connected to each other through a notch groove discontinuity.
【請求項2】加熱接合過程において、中間層材であるブ
ロック集合板の切欠溝不連続部を溶断し、各ブロックを
相互に分離させることを特徴とする上記第1項に記載の
金属−セラミック積層接合体の製造方法。
2. The metal-ceramic according to claim 1, wherein, in the heating and bonding process, the discontinuous portions of the notched grooves of the block aggregate plate which is the intermediate layer material are melted and the blocks are separated from each other. Method for manufacturing laminated joined body.
JP62138605A 1987-06-02 1987-06-02 Method for producing metal-ceramic laminated body Expired - Lifetime JP2553866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138605A JP2553866B2 (en) 1987-06-02 1987-06-02 Method for producing metal-ceramic laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138605A JP2553866B2 (en) 1987-06-02 1987-06-02 Method for producing metal-ceramic laminated body

Publications (2)

Publication Number Publication Date
JPS63303875A JPS63303875A (en) 1988-12-12
JP2553866B2 true JP2553866B2 (en) 1996-11-13

Family

ID=15225997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138605A Expired - Lifetime JP2553866B2 (en) 1987-06-02 1987-06-02 Method for producing metal-ceramic laminated body

Country Status (1)

Country Link
JP (1) JP2553866B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851151B1 (en) * 2013-09-20 2017-08-23 Ansaldo Energia IP UK Limited Method of fixing through brazing a heat resistant component on a surface of a heat exposed component

Also Published As

Publication number Publication date
JPS63303875A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
CN102751201B (en) The manufacture method of power module substrate and power module substrate
CN106165090B (en) Substrate unit for power module and power module
US9096471B2 (en) Method for producing a layered material
US4918281A (en) Method of manufacturing lightweight thermo-barrier material
JP2023538229A (en) Method for manufacturing metal-ceramic substrates, and metal-ceramic substrates manufactured using such methods
JP2553866B2 (en) Method for producing metal-ceramic laminated body
US6345437B1 (en) Process for the manufacturing of an arched metal ceramic substratum
JP3994758B2 (en) Manufacturing method of chip-type electronic component
JPH0566999U (en) Circuit board
JP2553865B2 (en) Method for producing metal-ceramic laminated body
JP3554851B2 (en) Method of wire soldering to composite board surface and jig used therefor
JP2000263533A (en) Ceramic base and its manufacture
WO2019198551A1 (en) Ceramics-metal bonded body and method of manufacturing same, and multi-piece ceramics-metal bonded body and method of manufacturing same
JPH05305426A (en) Manufacture of brazed honeycomb panel
JP2754193B2 (en) Lamination bonding molding method
JP2766443B2 (en) Manufacturing method of ceramic heater
JP2012074532A (en) Manufacturing method of metal-ceramics joint substrate
JPH022829B2 (en)
JPH01228730A (en) Manufacture of ceramic die
JPH04170372A (en) Production of aluminum nitride substrate joined with copper
JP2004327737A (en) Compound substrate and manufacturing method therefor
JP3374082B2 (en) Method of manufacturing diamond cutter and diamond cutter
JPS6141702A (en) Composite material containing sintered hard body
JP2883003B2 (en) Manufacturing method of ceramic joined body
JPH03133592A (en) Bonded body and its production