JPH0776138B2 - High thermal shock resistance joining method of ceramics and metal and joining product - Google Patents

High thermal shock resistance joining method of ceramics and metal and joining product

Info

Publication number
JPH0776138B2
JPH0776138B2 JP30707486A JP30707486A JPH0776138B2 JP H0776138 B2 JPH0776138 B2 JP H0776138B2 JP 30707486 A JP30707486 A JP 30707486A JP 30707486 A JP30707486 A JP 30707486A JP H0776138 B2 JPH0776138 B2 JP H0776138B2
Authority
JP
Japan
Prior art keywords
metal
base material
ceramic
joining
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30707486A
Other languages
Japanese (ja)
Other versions
JPS63159265A (en
Inventor
陽一 宮沢
弘記 杉山
裕 御代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP30707486A priority Critical patent/JPH0776138B2/en
Publication of JPS63159265A publication Critical patent/JPS63159265A/en
Publication of JPH0776138B2 publication Critical patent/JPH0776138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、セラミックスと金属とを接合して耐熱衝撃
性の高い接合製品を得る接合方法および接合製品に関す
るものである。
TECHNICAL FIELD The present invention relates to a joining method and a joining product for joining a ceramic and a metal to obtain a joined product having high thermal shock resistance.

「従来の技術」 周知のように、摩耗や熱作用を頻繁に受ける金属部品
(金属母材)に対しては、一部にセラミックスを用いて
部品の耐摩耗性耐熱性の向上を図る手段が取られてい
る。
"Prior art" As is well known, for metal parts (metal base materials) that are frequently subjected to wear and heat, there is a means to improve wear resistance and heat resistance of the parts by using ceramics in part. Has been taken.

従来、上記のようなセラミックスと金属との接合製品
は、第4図に示すように、金属母材1とセラミックス母
材2とを中間金属層3を介して接合一体化したものであ
った。この接合製品の接合方法としては、主に次の3つ
の方法が用いられている。まず、第1の方法は、セラミ
ックス母材2の接合面に予め30〜60μm程度の厚みのメ
タライズ層を形成しておき、このセラミックス母材2に
前記中間金属層3をロウ付するとともに、この中間金属
層3を金属母材1にロウ付する方法である。また、第2
の方法は、金属母材1の接合面には金属用のロウ材を塗
布すると同時に、セラミックス母材2にはメタライズ用
のロウ材を塗布し、これらの間に中間金属層3を介装
し、これらを加熱することによって一時にロウ付し、一
体化する方法である。そして、第3の方法は、金属母材
1とセラミックス母材2との間に中間金属層3を介装
し、これら3者を加圧下で加熱し、中間金属層3をそれ
ぞれ金属母材1およびセラミックス母材2中に拡散さ
せ、接合する方法である。
Conventionally, the above-mentioned ceramic-metal joint product has been obtained by integrally joining the metal base material 1 and the ceramic base material 2 through the intermediate metal layer 3, as shown in FIG. The following three methods are mainly used for joining the joined products. First, in the first method, a metallized layer having a thickness of about 30 to 60 μm is formed in advance on the joint surface of the ceramic base material 2, the intermediate metal layer 3 is brazed to the ceramic base material 2, and This is a method of brazing the intermediate metal layer 3 to the metal base material 1. Also, the second
In this method, a brazing material for metal is applied to the joint surface of the metal base material 1, a brazing material for metallization is applied to the ceramic base material 2, and an intermediate metal layer 3 is interposed between them. This is a method in which these are brazed at one time by heating and integrated. And the 3rd method interposes the intermediate | middle metal layer 3 between the metal base material 1 and the ceramics base material 2, heats these 3 persons under pressure, and each intermediate metal layer 3 is made into the metal base material 1. And a method of diffusing into the ceramic base material 2 and joining.

上記中間金属層3としては、通常、Cu、Al、Niや、また
Ag等の貴金属、そして、これら単体金属を含んでなる高
展延性金属もしくはその合金が使用されている。
The intermediate metal layer 3 is usually Cu, Al, Ni, or
Noble metals such as Ag, and highly malleable metals or their alloys containing these simple metals are used.

上記接合構造において、接合強度はセラミックス母材2
と中間金属層3との接合面積に比例することが知られて
いる。また、金属母材1とセラミックス母材2との間に
かかる応力を緩和するためには、中間金属層3としては
ある程度以上の厚みが必要であるが、中間金属層3自体
の伸縮に伴う変形力のセラミックス母材2への影響を考
える場合、この中間金属層3の厚みは薄い方が好ましい
ことになる。従って、現状において、セラミックス母材
2に直接接合しているメタライズ層などは上記したよう
に30〜60μm程度の薄さに形成されている。
In the above joining structure, the joining strength is the ceramic base material 2
It is known to be proportional to the bonding area between the intermediate metal layer 3 and the intermediate metal layer 3. Further, in order to relieve the stress applied between the metal base material 1 and the ceramic base material 2, the intermediate metal layer 3 needs to have a certain thickness or more, but the deformation due to the expansion and contraction of the intermediate metal layer 3 itself. Considering the influence of the force on the ceramic base material 2, it is preferable that the thickness of the intermediate metal layer 3 is thin. Therefore, at present, the metallized layer directly bonded to the ceramic base material 2 is formed to a thickness of about 30 to 60 μm as described above.

「発明が解決しようとする問題点」 ところで、上記従来のセラミックスと金属との接合製品
には、下記のような問題点があり、その解決が望まれて
いる。
"Problems to be Solved by the Invention" By the way, the above-described conventional bonded product of ceramics and metal has the following problems, and the solution thereof is desired.

すなわち、上記接合製品においては、第5図に示すよう
に、通常は接合強度を上げるためにセラミックス母材2
の接合側の面2aのほぼ全域を覆うように中間金属層3を
形成し、接合している。そのため、このような構造にお
いては、例えば熱膨張率の大きい金属母材1の冷却収縮
に伴って中間金属層3にかかる引張り応力は、図中矢印
のように各辺の中央に向かって働くことになり、その結
果、中間金属層3の角部C…に最も大きな引張り応力が
働く。そのため、引張り応力に対して弱いセラミックス
母材2は、上記角部Cに相当する部分に応力集中が生じ
てクラックが発生し、剥離してしまうということがしば
しば発生している。
That is, in the above bonded product, as shown in FIG. 5, the ceramic base material 2 is usually used to increase the bonding strength.
The intermediate metal layer 3 is formed so as to cover almost the entire area of the surface 2a on the bonding side, and is bonded. Therefore, in such a structure, for example, the tensile stress applied to the intermediate metal layer 3 due to the cooling shrinkage of the metal base material 1 having a large thermal expansion coefficient acts toward the center of each side as indicated by the arrow in the figure. As a result, the largest tensile stress acts on the corner portions C ... Of the intermediate metal layer 3. Therefore, in the ceramic base material 2 which is vulnerable to tensile stress, stress concentration often occurs in the portion corresponding to the corner portion C, cracks occur, and peeling often occurs.

これに対し、第6図に示すように、応力集中を避けるた
めに接合部分4に角部をつくらないように中間金属層3
の形状を円板状にする構造が考えられる。しかし、例え
ば、Al2O3の熱膨張率は7.8×10-6、Si3N4のそれは4×1
0-6というように、金属の熱膨張率はセラミックスの2
〜4倍もあるため、角部のない接合面の採用によって接
合面積をある程度減少して、換言すれば接合強度をある
程度犠牲にして行なう上記改良構造においても、第7図
に示すように、経時的に接合部分の外周に沿ってセラミ
ックス母材2にクラックが発生し、終には剥離してしま
うという経時的劣化現象を避けることができない。特
に、金属母材が外部からの熱や機械的外力を受け、大き
な変形を伴う場合は、一層セラミックスに力が加わり、
クラックが発生しやすい。
On the other hand, as shown in FIG. 6, in order to avoid stress concentration, the intermediate metal layer 3 is formed so as not to form a corner at the joint portion 4.
It is conceivable that the disk shape is a disk shape. However, for example, the coefficient of thermal expansion of Al 2 O 3 is 7.8 × 10 -6 , that of Si 3 N 4 is 4 × 1
The thermal expansion coefficient of metal is 0 to 6 of that of ceramics.
Since it is about 4 times as large, the joining area is reduced to some extent by adopting a joining surface without corners, in other words, even in the above-described improved structure in which the joining strength is sacrificed to some extent, as shown in FIG. Inevitably, the ceramic base material 2 is cracked along the outer periphery of the bonded portion and eventually peels off, which is a deterioration phenomenon over time. In particular, when the metal base material receives external heat or mechanical external force and is greatly deformed, the force is further applied to the ceramics,
Cracks easily occur.

この発明は上記事情に鑑みてなされたもので、その目的
は特に金属母材の熱変動(熱衝撃)に伴う伸縮がセラミ
ックス母材にかかるのを減少させ、それによりセラミッ
クス母材のクラックを減少させ、製品の耐熱衝撃性、信
頼性の向上および高寿命化を図ることのできるセラミッ
クスと金属との高耐熱衝撃性接合方法および接合製品を
提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to reduce the expansion and contraction of the metal base material due to thermal fluctuation (thermal shock) on the ceramic base material, thereby reducing cracks in the ceramic base material. In view of the above, it is an object of the present invention to provide a high thermal shock resistance joining method for a ceramic and a metal and a joined product capable of improving the thermal shock resistance and reliability of the product and extending the life of the product.

「問題点を解決するための手段」 本発明者らは、上記問題点を解決するために、鋭意研究
を重ねたところ、下記のような知見を得るに至った。
"Means for Solving Problems" The inventors of the present invention have conducted intensive studies to solve the above problems, and have obtained the following findings.

(i) 前記したように、銅などの高展延性金属からな
る中間金属層は、金属母材とセラミックス母材とを直接
接合すると、各々の熱膨張の差により応力が発生してセ
ラミックス母材に割れが発生するので、これを防ぐため
に、応力緩和を目的にセラミックス母材と金属母材との
間に介装されているものである。この中間金属層によっ
て接合した製品は、常温およびその近辺で使用している
場合には、中間金属層の働きにより大過なく使用するこ
とができる。しかし、この製品に熱衝撃、例えば350℃
〜室温の温度差を繰り返し与えると、中間金属層は高展
延性金属であるために大きく伸縮を繰り返し、その応力
により終にはセラミックス母材に割れが発生してしま
う。
(I) As described above, when the metal base material and the ceramic base material are directly bonded to each other, the intermediate metal layer made of a highly malleable metal such as copper generates stress due to the difference in thermal expansion between the ceramic base material and the ceramic base material. Since cracks occur in the ceramics, in order to prevent this, it is interposed between the ceramic base material and the metal base material for the purpose of stress relaxation. The product joined by this intermediate metal layer can be used without a great deal by the action of the intermediate metal layer when used at room temperature and its vicinity. However, this product has a thermal shock, for example 350 ° C.
When the temperature difference between room temperature and room temperature is repeatedly applied, the intermediate metal layer repeatedly expands and contracts greatly because it is a highly malleable metal, and the stress eventually causes cracks in the ceramic base material.

したがって、前記のような熱衝撃が接合製品に加えられ
る場合、中間金属層のセラミックス母材に対する接合面
積は少なければ少ない程、熱変動に伴う中間金属層の伸
縮量が少なくなることになる。この考えに基づいて、中
間金属層を多孔状または柱状に複数に分割し、この多孔
状金属材をセラミックス母材と金属母材との間に介装、
接合するか、または多数の柱状金属材を間隔を設けてセ
ラミックス母材と金属母材との間に介装、接合すれば少
なくとも中間金属自体に起因する応力を大幅に緩和する
ことができる。
Therefore, when the above-described thermal shock is applied to the joined product, the smaller the joining area of the intermediate metal layer to the ceramic base material, the smaller the expansion and contraction amount of the intermediate metal layer due to the thermal fluctuation. Based on this idea, the intermediate metal layer is divided into a plurality of porous or columnar, the porous metal material is interposed between the ceramic base material and the metal base material,
At least stress caused by the intermediate metal itself can be remarkably relaxed by bonding or by interposing and bonding a large number of columnar metal materials with a space provided between the ceramic base material and the metal base material.

(ii) しかし、前記多孔板構造の場合、全体的に連続
しているので、中間金属層の総計としての伸縮変形量は
それほど軽減されないし、また、分割柱状構造である
と、セラミックス母材に対して金属が接合面に平行に変
位する場合などに各柱状金属材の接合面に大きな応力が
かかってしまう。
(Ii) However, in the case of the perforated plate structure, since it is wholly continuous, the total amount of expansion and contraction deformation of the intermediate metal layer is not reduced so much. On the other hand, when the metal is displaced parallel to the joint surface, a large stress is applied to the joint surface of each columnar metal material.

そこで、まず一つには、第1図および第2図に示すよう
に、金属母材1とセラミックス母材2との間に介在させ
る多孔板状金属材5の各孔に柱状セラミックス材6…を
挿入し、これら柱状セラミックス材6と多孔金属板5と
からなる中間複合層をセラミックス母材2および金属母
材1に接合したところ、多孔板状金属材5に均等に柱状
の杭を打ち込んだ状態となり、この多孔板状金属材5の
熱伸縮変形量を押さえ、その結果、金属母材1および中
間複合層7(多孔板状金属5…+柱状セラミックス材6
…)のセラミックス母材2へかかる応力を大幅に緩和す
ることができた。
Therefore, first of all, as shown in FIGS. 1 and 2, the columnar ceramic material 6 is provided in each hole of the porous plate-shaped metal material 5 interposed between the metal base material 1 and the ceramic base material 2. Was inserted and the intermediate composite layer composed of the columnar ceramic material 6 and the porous metal plate 5 was joined to the ceramic base material 2 and the metal base material 1, and columnar piles were evenly driven into the porous plate-shaped metal material 5. Then, the amount of thermal expansion and contraction deformation of the perforated plate-shaped metal material 5 is suppressed, and as a result, the metal base material 1 and the intermediate composite layer 7 (perforated plate-shaped metal 5 ... + Columnar ceramic material 6)
The stress applied to the ceramic base material 2 of (...) Was relieved significantly.

次に、第3図に示すように、柱状金属材8…の場合は、
これら柱状金属材8…をセラミックス材で囲むことによ
って、つまり、実際的には多孔板状セラミックス材9の
各孔中に柱状金属材8…を挿入して得られた中間複合層
10をセラミックス母材2と金属母材1に介装、接合する
ことによって、接合面に平行な金属母材1および各柱状
金属材8の変位を確実に抑えることができ、しかも金属
母材1および中間複合層10のセラミックス母材2へかか
る応力を大幅に緩和することができた。
Next, as shown in FIG. 3, in the case of the columnar metal material 8 ...
An intermediate composite layer obtained by surrounding these columnar metal materials 8 with a ceramic material, that is, by actually inserting the columnar metal materials 8 into each hole of the porous plate-shaped ceramic material 9.
By interposing and bonding 10 between the ceramic base material 2 and the metal base material 1, the displacement of the metal base material 1 and each columnar metal material 8 parallel to the bonding surface can be surely suppressed, and the metal base material 1 Also, the stress applied to the ceramic base material 2 of the intermediate composite layer 10 could be relieved significantly.

この発明は、上記知見に基づいてなされたものである。This invention was made based on the above findings.

すなわち、この発明に係るセラミックスと金属との高耐
熱衝撃性接合方法は、 セラミックス母材2の表面上にメタライズ層11を形成
し、多孔板状セラミックス材9または多孔板金属材5の
上下面に露出するようにして多数の柱状金属材8または
柱状セラミックス材6が挿入されてなる中間複合層7ま
たは10を前記メタライズ層11に接合し、この中間複合層
7または10上に金属母材1を接合することを特徴とする
ものである。
That is, according to the high thermal shock resistance joining method of ceramics and metal according to the present invention, the metallized layer 11 is formed on the surface of the ceramic base material 2, and the perforated plate-shaped ceramic material 9 or the perforated plate metal material 5 is provided on the upper and lower surfaces thereof. An intermediate composite layer 7 or 10 in which a large number of columnar metal materials 8 or columnar ceramic materials 6 are inserted so as to be exposed is joined to the metallized layer 11, and the metal base material 1 is placed on the intermediate composite layer 7 or 10. It is characterized by joining.

また、この発明に係るセラミックスと金属との高耐熱衝
撃性接合製品は、 セラミックス母材2の表面上に多孔板状セラミックス材
9または多孔板状金属材5の上下面に露出するようにし
て多数の柱状金属材8または柱状セラミックス材6が挿
入されてなる中間複合層7または10がメタライズ層11を
介して接合され、この上に金属母材1が接合されている
ことを特徴とするものである。
In addition, the high thermal shock-resistant joint product of ceramics and metal according to the present invention is provided on the surface of the ceramic base material 2 such that the porous plate-shaped ceramic material 9 or the porous plate-shaped metal material 5 is exposed on the upper and lower surfaces. The intermediate composite layer 7 or 10 having the columnar metal material 8 or the columnar ceramic material 6 inserted therein is joined via the metallized layer 11, and the metal base material 1 is joined thereon. is there.

なお、上記構成において、中間複合層7または10を構成
している多孔板状金属材5と柱状セラミックス6…、ま
たは多孔板状セラミックス材9と柱状金属材8…は、互
いに接合した方がより効果的であるが、単に挿入した状
態のままでも所期の効果は得られるので、特に互いに接
合しなくてもよい。
In the above structure, it is more preferable that the porous plate-shaped metal material 5 and the columnar ceramics 6 forming the intermediate composite layer 7 or 10 or the porous plate-shaped ceramics material 9 and the columnar metal material 8 are bonded to each other. Although effective, the desired effect can be obtained even when the inserted state is simply maintained, so that it is not particularly necessary to bond them to each other.

また、上記構成の中間複合層7(または10)の接合にお
いて、図に示すように、セラミックス母材2上にメタラ
イズ層11を形成した後にロウ材12により中間複合層7
(10)を接合することにより行なってもよいし、セラミ
ックス母材2上にロウ材を介して中間複合層7(10)を
重ね、これを加熱することによりメタライズ層形成と中
間複合層接合とを1回の加熱処理により行なってもよ
い。一度で行なうには、例えば、ロウ材としてAg−Cu−
Ti系の活性金属ロウ材などが使用される。また、メタラ
イズ層形成と接合とを別々に行なう場合は、Mo.Mn法に
よるメタライジング等の公知の方法が用いられる。な
お、各中間複合層7、10と金属母材1との接合はロウ材
13により行なわれる。
Further, in the joining of the intermediate composite layers 7 (or 10) having the above structure, as shown in the figure, after the metallized layer 11 is formed on the ceramic base material 2, the intermediate composite layer 7 is formed by the brazing material 12.
(10) may be joined, or the intermediate composite layer 7 (10) may be superposed on the ceramic base material 2 with a brazing material interposed therebetween and heated to form the metallized layer and the intermediate composite layer. May be performed by one heat treatment. To do it at one time, for example, as a brazing material, Ag-Cu-
A Ti-based active metal brazing material is used. Further, when the metallization layer formation and the bonding are performed separately, a known method such as metalizing by the Mo.Mn method is used. The intermediate composite layers 7 and 10 and the metal base material 1 are joined by a brazing material.
Performed by 13.

さらに、この発明において、ロウ付は、真空または不活
性ガス等の非酸化性雰囲気下、常圧で、700〜1250℃に
て行なわれる。また、メタライズ層単独形成の場合も、
非酸化性雰囲気下、700〜1400℃で行なわれる。
Further, in the present invention, the brazing is performed at 700 to 1250 ° C. under normal pressure under vacuum or in a non-oxidizing atmosphere such as an inert gas. Also, in the case of forming the metallized layer alone,
It is carried out at 700 to 1400 ° C in a non-oxidizing atmosphere.

なお、本発明の接合製品においては、以下に示す実施例
から明らかなように、耐熱衝撃試験における強度低下率
は約20%以下という実測値を示す。これに対し、一般に
セラミックス、金属母材の種類によっても異なるが、通
常、初期の接合強度(主として剪断強度)に対して測定
誤差も含め30%程度の強度低下は、実用上許容される範
囲である。従って、本発明の接合製品は実用上高い性能
をもつものと判断される。
In the joined product of the present invention, the strength reduction rate in the thermal shock test is about 20% or less, which is an actual measured value, as is clear from the examples shown below. On the other hand, in general, it depends on the type of ceramics and metal base materials, but usually, a strength drop of about 30% including the measurement error with respect to the initial bonding strength (mainly shear strength) is within the practically acceptable range. is there. Therefore, the joined product of the present invention is judged to have high performance in practical use.

次に、本発明を実施例によりさらに詳しく説明する。Next, the present invention will be described in more detail with reference to examples.

「実施例1〜2」 第2図の構造において、すなわち、セラミックス母材2
上にメタライズ層11を形成し、この上にロウ材12によっ
て多孔板状金属材5および柱状セラミックス材6とから
なる中間複合層7を接合し、この上にさらにロウ材13に
よって金属母材1を接合した構造の接合品を各々下記材
質、寸法により作成した。
"Examples 1 and 2" In the structure of FIG. 2, that is, the ceramic base material 2
A metallized layer 11 is formed on top of this, and an intermediate composite layer 7 consisting of a perforated plate-shaped metal material 5 and a columnar ceramic material 6 is joined thereto by means of a brazing material 12, and a metal base material 1 is further formed by means of a brazing material 13 thereon. A joined product having a structure in which the above was joined was prepared using the following materials and dimensions.

(実施例1) 15×15×5t(mm)のアルミナセラミックス母材上に銀、
銅、チタン各粉の混合物を塗布し、これを真空下で1000
℃、15分間加熱して30〜60μmのメタライズ層を形成し
た。この上にロウ材としてBAg−8(JIS Z3261)を介し
て、15×10×2t(mm)の多孔板状銅材に直径2×高さ2
の多数の円柱状アルミナセラミックス材を嵌合してなる
中間複合層をのせ、真空下、860℃、15分間加熱して接
合した。さらに、前記中間複合層上にBAg−8粉を用い
て、この上に金属母材として30×60×6t(mm)のS45Cを
のせ、真空下、860℃、15分間加熱して接合した。
(Example 1) Silver was formed on a 15 × 15 × 5 t (mm) alumina ceramics base material,
Apply a mixture of copper and titanium powder, and apply 1000
The mixture was heated at ℃ for 15 minutes to form a metallized layer of 30 to 60 μm. On this, BAg-8 (JIS Z3261) is used as a brazing material, and a perforated plate-shaped copper material of 15 × 10 × 2t (mm) has a diameter of 2 × height 2
The intermediate composite layer formed by fitting a large number of columnar alumina ceramic materials was placed and heated under vacuum at 860 ° C. for 15 minutes to bond them. Further, BAg-8 powder was used on the intermediate composite layer, 30 × 60 × 6t (mm) of S45C was placed on it as a metal base material, and heated under vacuum at 860 ° C. for 15 minutes for bonding.

得られた接合品を次のような熱衝撃試験にかけた。すな
わち、室温から200℃/minで350℃まで昇温し、その後35
0℃で15分間保持した後、炉から外気中に取り出して室
温まで降温し、室温で15分間保持する一続きを1サイク
ルとする内容の試験である。
The obtained bonded product was subjected to the following thermal shock test. That is, the temperature was raised from room temperature to 350 ° C. at 200 ° C./min, then 35
After holding at 0 ° C for 15 minutes, it is taken out from the furnace into the outside air, cooled to room temperature, and kept at room temperature for 15 minutes, which is one cycle.

その結果、この実施例1の接合品は、当初の剪断強度が
10点の平均16.12kg/mm2(以下、強度値は、同様にすべ
て10点の平均値を示す)であったのが、100回のサイク
ルを加えた後は平均12.94kg/mm2となり、その耐熱強度
低下率は、約20%以下という高性能を示した。
As a result, the bonded product of Example 1 had an initial shear strength.
The average of 10 points was 16.12 kg / mm 2 (hereinafter, all the strength values similarly show the average value of 10 points), but after adding 100 cycles, the average was 12.94 kg / mm 2 . The heat resistance strength reduction rate showed high performance of about 20% or less.

(実施例2) 上記実施例1において、中間複合層を構成する多孔板状
銅材および柱状アルミナセラミックス材の寸法を各々20
×20×3t(mm)および直径3×高さ3(mm)に替えて、
他の条件は同一にして接合品を作成した。
(Example 2) In Example 1, the dimension of the perforated plate-shaped copper material and the columnar alumina ceramics material constituting the intermediate composite layer was 20 respectively.
Change to × 20 × 3t (mm) and diameter 3 × height 3 (mm),
Other conditions were the same and the joined product was created.

得られた接合品を上記同様の熱衝撃試験にかけた。The joined article thus obtained was subjected to the same thermal shock test as described above.

その結果、この実施例2の接合品は、当初の剪断強度が
平均14.30kg/mm2であったのが、100回のサイクルを加え
た後は平均11.45kg/mm2となり、その耐熱強度低下率
は、約20%以下という高性能を示した。
As a result, the joint product of Example 2 had an initial shear strength of 14.30 kg / mm 2 on average, but after 100 cycles, it had an average of 11.45 kg / mm 2 , which resulted in a decrease in heat resistance strength. The rate showed high performance of about 20% or less.

「実施例3」 第3図の構造において、すなわち、セラミックス母材2
上にメタライズ層を形成し、この上にロウ材12によって
多孔板状セラミックス材9および柱状金属材8とからな
る中間複合層10を接合し、この上にさらにロウ材13によ
って金属母材1を接合した構造の接合品を各々下記材
質、寸法により作成した。
Example 3 In the structure of FIG. 3, that is, the ceramic base material 2
A metallized layer is formed on top of this, an intermediate composite layer 10 consisting of a porous plate-shaped ceramics material 9 and a columnar metal material 8 is joined by a brazing material 12, and a metal base material 1 is further formed by a brazing material 13 thereon. A joined product having a joined structure was prepared with the following materials and dimensions.

15×15×5t(mm)のアルミナセラミックス母材上に銀、
銅、チタン各粉の混合物を塗布し、これを真空下で1000
℃6、15分間加熱して50μmのメタライズ層を形成し
た。この上にロウ材としてBAg−8(JIS Z3261)を介し
て、15×15×2t(mm)の多孔板状セラミックス材に直径
2×高さ2(mm)の多数の柱状銅材を組み合わせてなる
中間複合層をのせ、真空下、860℃、15分間加熱して接
合した。さらに、前記中間複合層上にBAg−8粉を介装
し、この上に金属母材として32×60×6t(mm)のS45Cを
のせ、真空下、860℃、15分間加熱して接合した。
Silver on 15 x 15 x 5t (mm) alumina ceramics base material,
Apply a mixture of copper and titanium powder, and apply 1000
A metallized layer of 50 μm was formed by heating at 6 ° C. for 15 minutes. On this, through BAg-8 (JIS Z3261) as a brazing material, combine a large number of columnar copper materials of diameter 2 x height 2 (mm) with perforated plate-shaped ceramic material of 15 x 15 x 2t (mm). The resulting intermediate composite layer was placed and heated under vacuum at 860 ° C. for 15 minutes to bond them. Further, BAg-8 powder was interposed on the intermediate composite layer, 32 × 60 × 6t (mm) of S45C was placed on it as a metal base material, and heated under vacuum at 860 ° C. for 15 minutes for bonding. .

得られた接合品を前記同様の熱衝撃試験にかけた。The joined article thus obtained was subjected to the same thermal shock test as described above.

その結果、この実施例3の接合品は、当初の剪断強度が
10点の平均14.85kg/mm2(以下、強度値は、同様のすべ
て10点の平均値を示す)であったのが、100回のサイク
ルを加えた後は平均12.53kg/mm2となり、その耐熱強度
低下率は、約20%以下という高性能を示した。
As a result, the bonded product of Example 3 had an initial shear strength.
The average of 10 points was 14.85 kg / mm 2 (hereinafter, the strength value shows the same average value of all 10 points), but after adding 100 cycles, the average is 12.53 kg / mm 2 , The heat resistance strength reduction rate showed high performance of about 20% or less.

(比較例) 熱衝撃試験の比較例として、30×15×5t(mm)のアルミ
ナセラミックス母材上に13×13×2t(mm)の四角形銅板
をロウ材(BAg−8)介して32×60×6t(mm)のS45Cを
金属母材として接合したものについて、前記実施例と全
く同様にして350℃の熱衝撃試験を行った。
(Comparative Example) As a comparative example of the thermal shock test, a rectangular copper plate of 13 × 13 × 2t (mm) was placed on a 30 × 15 × 5t (mm) alumina ceramic base material through a brazing material (BAg-8) to form 32 ×. A thermal shock test at 350 ° C. was carried out in exactly the same manner as in the above-mentioned examples with respect to the one obtained by joining 60 × 6 t (mm) S45C as a metal base material.

その結果、当初剪断強度が平均4.46kg/mm2であったの
が、10回目のサイクルで既に平均2.58kg/mm2までと約42
%の強度低下を示し、50回目では0.30kg/mm2まで低下
し、実用範囲から外れる結果となった。
As a result, the initial shear strength was 4.46 kg / mm 2 on average, but by the 10th cycle it had already reached an average of 2.58 kg / mm 2, which was about 42%.
%, The strength decreased to 0.30 kg / mm 2 at the 50th time, which was outside the practical range.

「発明の効果」 以上説明したように、本発明によれば、耐熱衝撃性が高
く、信頼性に優れ、高寿命なセラミックスと金属との接
合製品を容易に得ることができる。
[Advantages of the Invention] As described above, according to the present invention, it is possible to easily obtain a bonded product of ceramics and metal that has high thermal shock resistance, excellent reliability, and long life.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図は、この発明を説明するためのもの
で、第1図はこの発明に係る高耐熱衝撃性接合製品の一
例を示す側断面図、第2図は第1図の要部である中間複
合層の斜視図、第3図はこの発明に係る高耐熱衝撃性接
合製品の他の例を示す側断面図、第4図は従来の接合製
品の一例を示す側面構成図、第5図は第4図A−A線に
沿う断面図、第6図は他の従来例の要部平面図、第7図
は同従来例の要部側面図である。 1……金属母材、 2……セラミックス母材、 3……中間金属層、 5……多孔板状金属材、 6……柱状セラミックス材、 7、10……中間複合層、 8……柱状金属材、 9……多孔板状セラミックス材、 11……メタライズ層、 12、13……ロウ材。
FIGS. 1 to 3 are for explaining the present invention. FIG. 1 is a side sectional view showing an example of a high thermal shock resistant joined product according to the present invention, and FIG. 2 is a main part of FIG. FIG. 3 is a side sectional view showing another example of the high thermal shock resistant joint product according to the present invention, and FIG. 4 is a side view showing an example of a conventional joint product. FIG. 5 is a sectional view taken along the line AA in FIG. 4, FIG. 6 is a plan view of a main part of another conventional example, and FIG. 7 is a side view of a main part of the conventional example. 1 ... Metal base material, 2 ... Ceramic base material, 3 ... Intermediate metal layer, 5 ... Perforated plate metal material, 6 ... Columnar ceramic material, 7, 10 ... Intermediate composite layer, 8 ... Columnar Metal material, 9 ... Porous plate ceramic material, 11 ... Metallized layer, 12, 13 ... Brazing material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セラミックス母材の表面上にメタライズ層
を形成し、板状セラミックス材または板状金属材の上下
面に露出するようにして多数の柱状金属材または柱状セ
ラミックス材が挿入されてなる中間複合層を前記メタラ
イズ層上に接合し、この中間複合層上に金属母材を接合
することを特徴とするセラミックスと金属との高耐熱衝
撃性接合方法。
1. A metallized layer is formed on the surface of a ceramic base material, and a large number of columnar metal materials or columnar ceramic materials are inserted so as to be exposed on the upper and lower surfaces of the plate-shaped ceramic material or the plate-shaped metal material. A high thermal shock-resistant joining method for ceramics and metal, comprising joining an intermediate composite layer onto the metallized layer, and joining a metal base material onto the intermediate composite layer.
【請求項2】セラミックス母材の表面上に板状セラミッ
クス材または板状金属材の上下面に露出するようにして
多数の柱状金属材または柱状セラミックス材が挿入され
てなる中間複合層がメタライズ層を介して接合され、こ
の上に金属母材が接合されていることを特徴とするセラ
ミックスと金属との高耐熱衝撃性接合製品。
2. A metallized layer which is an intermediate composite layer in which a large number of columnar metal materials or columnar ceramic materials are inserted so as to be exposed on the upper and lower surfaces of the plate-shaped ceramic material or the plate-shaped metal material on the surface of the ceramic base material. A high thermal shock resistance joint product of ceramics and metal, which is characterized in that it is joined via a metal base material.
JP30707486A 1986-12-23 1986-12-23 High thermal shock resistance joining method of ceramics and metal and joining product Expired - Lifetime JPH0776138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30707486A JPH0776138B2 (en) 1986-12-23 1986-12-23 High thermal shock resistance joining method of ceramics and metal and joining product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30707486A JPH0776138B2 (en) 1986-12-23 1986-12-23 High thermal shock resistance joining method of ceramics and metal and joining product

Publications (2)

Publication Number Publication Date
JPS63159265A JPS63159265A (en) 1988-07-02
JPH0776138B2 true JPH0776138B2 (en) 1995-08-16

Family

ID=17964725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30707486A Expired - Lifetime JPH0776138B2 (en) 1986-12-23 1986-12-23 High thermal shock resistance joining method of ceramics and metal and joining product

Country Status (1)

Country Link
JP (1) JPH0776138B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE407456T1 (en) * 2002-10-04 2008-09-15 Nexans METAL-CERAMIC HIGH-TEMPERATURE SUPERCONDUCTOR COMPOSITE AND METHOD FOR CONNECTING A CERAMIC HIGH-TEMPERATURE SUPERCONDUCTOR TO A METAL

Also Published As

Publication number Publication date
JPS63159265A (en) 1988-07-02

Similar Documents

Publication Publication Date Title
JPH0454825B2 (en)
US4598025A (en) Ductile composite interlayer for joining by brazing
JPH0614531B2 (en) Manufacturing method of power semiconductor module
JPH0776138B2 (en) High thermal shock resistance joining method of ceramics and metal and joining product
JPH0729859B2 (en) Ceramics-Metal bonding material
JPH0776137B2 (en) High thermal shock resistance joining method of ceramics and metal and joining product
JPH02196075A (en) Joined structure
JPS61117171A (en) Heat stress alleviator
JPS63225585A (en) Ceramic-metal joined body and joining method
JP2926819B2 (en) Case for mounting semiconductor elements
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JPS62182170A (en) Ceramics joint structure
JPH01224280A (en) Ceramic-metal conjugate form
JPS61151070A (en) Ceramic member bonded body
JP2553865B2 (en) Method for producing metal-ceramic laminated body
JPS60145972A (en) Ceramic-metal bonded body
JPH0243704B2 (en) SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JPH0468265B2 (en)
JPS61136969A (en) Method of bonding sialon and metal
JPH0659708B2 (en) Metal ceramics bonded body
JPS63239162A (en) Manufacture of ceramic joined body
JPH0371393B2 (en)
JPS63179733A (en) Joining structure of ceramics and metal and manufacture thereof
JPH0659575B2 (en) Method of joining metal and ceramics