JP2552213Y2 - Titanium powder manufacturing equipment - Google Patents

Titanium powder manufacturing equipment

Info

Publication number
JP2552213Y2
JP2552213Y2 JP10834791U JP10834791U JP2552213Y2 JP 2552213 Y2 JP2552213 Y2 JP 2552213Y2 JP 10834791 U JP10834791 U JP 10834791U JP 10834791 U JP10834791 U JP 10834791U JP 2552213 Y2 JP2552213 Y2 JP 2552213Y2
Authority
JP
Japan
Prior art keywords
powder
titanium
reaction vessel
titanium powder
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10834791U
Other languages
Japanese (ja)
Other versions
JPH0546923U (en
Inventor
英一 深澤
良治 村山
亘 籠橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP10834791U priority Critical patent/JP2552213Y2/en
Publication of JPH0546923U publication Critical patent/JPH0546923U/en
Application granted granted Critical
Publication of JP2552213Y2 publication Critical patent/JP2552213Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、水素化脱水素法により
チタン粉末を製造する際、水素化チタン粉を脱水素する
工程で使用されるチタン粉末の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing titanium powder used in the step of dehydrogenating titanium hydride powder when producing titanium powder by hydrodehydrogenation.

【0002】[0002]

【従来の技術】従来、チタン粉末を製造する一方法とし
て、金属チタンが水素を吸蔵して脆化する特性を利用し
た水素化脱水素法(HDH法)が知られており、この方
法によれば高品位の粉末冶金原料に必要な極低塩素チタ
ン粉の製造が可能で、微細なチタン粉末を比較的低コス
トで得ることができるため、工業的規模において広く利
用されている。
2. Description of the Related Art Conventionally, as one method for producing titanium powder, there has been known a hydrodehydrogenation (HDH) method utilizing the property that metallic titanium absorbs hydrogen and becomes brittle. For example, ultra-low chlorine titanium powder required for high-grade powder metallurgy raw materials can be produced, and fine titanium powder can be obtained at relatively low cost, so that it is widely used on an industrial scale.

【0003】一般に、水素化脱水素法によるチタン粉末
の製造プロセスは、原料チタンを高温下の水素ガス雰囲
気中で水素化する水素化工程、水素化チタン塊を不活性
雰囲気下で粉砕する粉砕工程、粉砕後の水素化チタン粉
を高温の真空中で脱水素処理する脱水素工程、脱水素時
に焼結したチタン塊を破砕する解砕工程、得られたチタ
ン粉末を所定粒度に分級調整する篩別工程の各段階から
なっている。
[0003] Generally, a titanium powder production process by hydrodehydrogenation includes a hydrogenation step of hydrogenating raw titanium in a high-temperature hydrogen gas atmosphere and a pulverization step of pulverizing a titanium hydride lump in an inert atmosphere. A dehydrogenation step of dehydrogenating the crushed titanium hydride powder in a high-temperature vacuum, a crushing step of crushing the sintered titanium mass at the time of dehydrogenation, and a sieve for classifying and adjusting the obtained titanium powder to a predetermined particle size. It consists of each stage of a separate process.

【0004】ところが上記の水素化脱水素法を適用する
場合には、特に脱水素工程において水素化チタン粉の焼
結が過度に進行して次工程の解砕処理が著しく困難とな
ったり、昇温中に原料の充填部位に大きな温度差が生じ
て多量の水素ガスが突発的に発生し、原料粉が容器外に
飛散して発熱体その他の部材に固着する等の不都合な現
象を招く問題点がある。
However, when the above-mentioned hydrodehydrogenation method is applied, particularly in the dehydrogenation step, sintering of the titanium hydride powder proceeds excessively, so that the next step of crushing becomes extremely difficult, A problem that causes a large temperature difference between the raw material filling sites during the temperature, a large amount of hydrogen gas is suddenly generated, and the raw material powder scatters outside the container and adheres to the heating element and other members. There is a point.

【0005】[0005]

【考案が解決しようとする課題】これらの現象は、いず
れも製品収率および工程管理や作業能率などを低下さ
せ、結果的に製造コストを高める要因となるため、水素
化脱水素法における大きな改良課題とされている。
All of these phenomena decrease the product yield, process control, work efficiency, etc., and eventually increase the production cost. It is an issue.

【0006】本考案者らは上記の現象につき多角的な検
討を加えた結果、従来の脱水素処理に使用されている装
置の加熱機構および水素化チタン粉を充填するための容
器形状に主因があることを解明した。
The inventors of the present invention have conducted various studies on the above phenomena, and as a result, the main factors are the heating mechanism of the apparatus used in the conventional dehydrogenation treatment and the shape of the container for filling the titanium hydride powder. I clarified something.

【0007】本考案は、前記の知見に基づき脱水素装置
に機構的な改良を加えることによって開発されたもの
で、その目的は脱水素処理過程における原料粉の焼結緩
和ならびに飛散現象を効果的に防止することができるチ
タン粉末の製造装置を提供することにある。
The present invention has been developed based on the above findings by making a mechanical improvement to the dehydrogenation apparatus, and its object is to effectively reduce the sintering and scattering of the raw material powder in the dehydrogenation process. An object of the present invention is to provide an apparatus for producing titanium powder, which can prevent the occurrence of the problem.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本考案によるチタン粉末の製造装置は、水素化脱水
素法に用いる脱水素処理装置であって、上部に加熱ヒー
ターを内蔵した反射板で囲繞された加熱ゾーンと、下部
に冷却コイルを周設した冷却ゾーンとを備え、側壁部に
不活性ガス導入管および真空排気管が設置された密閉構
造の装置本体に、シリンダーを介して前記加熱ゾーンと
冷却ゾーンの間を昇降移動する機構を有し、かつ水素化
チタン粉を充填した皿状の反応容器を多段に積み重ねて
載置するための反応容器支持部を装備してなることを構
成上の特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, an apparatus for producing titanium powder according to the present invention is a dehydrogenation apparatus for use in a hydrodehydrogenation method. A heating zone surrounded by a plate, a cooling zone having a cooling coil provided in the lower part, and a device body having a closed structure in which an inert gas introduction pipe and a vacuum exhaust pipe are provided on a side wall portion, via a cylinder. It has a mechanism for moving up and down between the heating zone and the cooling zone, and is equipped with a reaction vessel support portion for stacking and placing a tray-like reaction vessel filled with titanium hydride powder in multiple stages. Is a structural feature.

【0009】[0009]

【作用】脱水素処理においては処理される水素化チタン
が粉状体である関係で、熱伝導率が小さいうえに脱水素
反応に多量の吸熱を伴うため、従来のように水素化チタ
ン粉を多量に充填した一体型反応容器をヒーターによる
外周加熱のみによって昇温させる装置では粉末充填位置
によって昇温速度に大きな差異が生じる。したがって、
高温部では脱水素が完了してチタンに転化しているにも
拘らず低温部の脱水素終了時点まで処理を継続しなけれ
ばならないため、高温部において過度の粉末焼結が進行
したり、昇温中に発生して粉末中に吸蔵された水素ガス
が一時に突発的に多量噴出して外部に激しく飛散する現
象を招く。
In the dehydrogenation treatment, since the titanium hydride to be treated is a powdery substance, it has low thermal conductivity and a large amount of heat absorption in the dehydrogenation reaction. In an apparatus in which a large amount of an integrated reaction vessel is heated only by heating the outer periphery with a heater, there is a great difference in the rate of temperature increase depending on the powder filling position. Therefore,
Although the dehydrogenation has been completed and converted to titanium in the high-temperature part, the treatment must be continued until the end of the dehydrogenation in the low-temperature part. A large amount of hydrogen gas generated during warming and absorbed in powder is suddenly ejected in large quantities at once, causing a phenomenon of violent scattering to the outside.

【0010】本考案による装置によれば、加熱昇温が加
熱ヒーターを内蔵し周囲を反射板で囲繞した構造の加熱
ゾーン内でおこなわれ、且つ処理すべき水素化チタン粉
が複数個の皿状反応容器に適度に分割充填された状態で
多段に積み重ねられているから、水素化チタン粉は局部
的な昇温変動を起こすことなく常に均一に加熱される。
この作用で過度の焼結や粉末の飛散現象は効果的に抑制
され、同時に昇温速度が速まるため脱水素時間が著しく
短縮される。
According to the apparatus according to the present invention, the heating is carried out in a heating zone having a structure in which a heater is built in and the periphery of which is surrounded by a reflection plate, and the titanium hydride powder to be treated has a plurality of dish-like shapes. Since the titanium hydride powder is stacked in multiple stages while being appropriately divided and filled in the reaction vessel, the titanium hydride powder is always uniformly heated without causing local temperature fluctuation.
By this action, excessive sintering and powder scattering phenomena are effectively suppressed, and at the same time, the heating rate is increased, so that the dehydrogenation time is significantly reduced.

【0011】また、装置本体の下部には冷却ゾーンがあ
り、反応容器支持部による昇降移動を介して脱水素処理
後の反応容器が急速に冷却されるから、処理能力を大幅
に向上させることが可能となる。
In addition, a cooling zone is provided at a lower portion of the apparatus main body, and the reaction vessel after the dehydrogenation treatment is rapidly cooled through the vertical movement by the reaction vessel supporting portion, so that the processing capacity can be greatly improved. It becomes possible.

【0012】[0012]

【実施例】以下、本考案を図示の実施例に基づいて詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments.

【0013】図1は本考案による脱水素処理用のチタン
粉末製造装置を示した断面図で、1は各部材を真空シー
ル状に結合形成した密閉構造の装置本体で、上部は加熱
ゾーン2、下部は冷却ゾーン3となっている。装置本体
1はステンレス鋼のような耐熱耐食性の金属材料で構成
され、好ましくは外壁部を水冷可能なジャケット機構に
設計し、その側壁部に不活性ガス導入管4、真空排気管
5および温度測定器6(熱電対、放射温度計等)や電源
接続器など必要な設備が設置されている。
FIG. 1 is a sectional view showing an apparatus for producing titanium powder for dehydrogenation according to the present invention. Reference numeral 1 denotes an apparatus body having a closed structure in which each member is joined and formed in a vacuum seal. The lower part is a cooling zone 3. The apparatus main body 1 is made of a heat-resistant and corrosion-resistant metal material such as stainless steel, and preferably has an outer wall designed to be a water-coolable jacket mechanism, and has an inert gas introduction pipe 4, a vacuum exhaust pipe 5, and a temperature measurement on its side wall. Necessary facilities such as a heater 6 (thermocouple, radiation thermometer, etc.) and a power supply connector are provided.

【0014】加熱ゾーン2は、モリブデン製の加熱ヒー
ター7を内蔵し、その周囲を例えばモリブデン−ステン
レス製の反射板8で囲繞して区画形成されており、また
冷却ゾーン3は、フレオンのような冷媒を流通する構造
の冷却コイル9が周設された区画により形成されてい
る。
The heating zone 2 has a built-in heater 7 made of molybdenum, and is formed by surrounding the periphery thereof with a reflector 8 made of, for example, molybdenum-stainless steel. The cooling coil 9 having a structure for circulating the refrigerant is formed by sections around the cooling coil 9.

【0015】装置本体1の内部には、系外の作動装置
(図示せず) に連結するシリンダー10を介して反射板8
の底面部と共に昇降移動する機構の反応容器支持部11が
装備されており、該反応容器支持部11の上部に多段に積
み重ねられた皿状の反応容器12が載置されている。した
がって、皿状の反応容器12は反応容器支持部11を昇降さ
せることにより加熱ゾーン2と冷却ゾーン1の間を移動
する。
The reflection plate 8 is provided inside the apparatus main body 1 through a cylinder 10 connected to an actuator (not shown) outside the system.
A reaction vessel supporting portion 11 having a mechanism for moving up and down together with the bottom portion of the reaction vessel is provided, and a dish-shaped reaction vessel 12 stacked in multiple stages is placed on the upper portion of the reaction vessel supporting portion 11. Therefore, the dish-shaped reaction vessel 12 moves between the heating zone 2 and the cooling zone 1 by moving the reaction vessel support 11 up and down.

【0016】反応容器支持部11の上部に載置される各反
応容器12はステンレス鋼などの耐熱耐食性の金属材料で
構成された円筒容器で、好ましくは図2に示すように積
み重ねた際、各段に水素ガスの抜け口が形成される形態
に上端部に複数個のガス抜き凹部13を形成し、最上部に
上蓋14を被せた状態でセットする。
Each of the reaction vessels 12 mounted on the upper portion of the reaction vessel support portion 11 is a cylindrical vessel made of a heat-resistant and corrosion-resistant metal material such as stainless steel, and preferably, when stacked as shown in FIG. A plurality of gas venting recesses 13 are formed at the upper end in a form in which a hydrogen gas outlet is formed in a step, and the upper portion is set with an upper lid 14 covered.

【0017】脱水素処理にあたっては、各反応容器に水
素化チタン粉15を充填して多段に積み重ねた状態で反応
容器支持部11に載置し、シリンダー10を駆動させて反応
容器12の全体が加熱ゾーン2に入るように位置させたの
ち、真空排気管5から脱気して装置本体1の系内を真空
置換する。ついで、不活性ガス導入管4からアルゴンガ
スを流入して、加熱ヒーター7により系内を昇温させ
る。この際、各反応容器12に充填された水素化チタン粉
15は分割充填と反射板8の作用で均一に加熱され、水素
ガスの発生による粉末の飛散現象は効果的に抑制され
る。脱水素処理が完了したら、シリンダーを駆動させて
反応容器12の位置を冷却ゾーン3まで降下させ、急速に
冷却する。
In the dehydrogenation treatment, each reaction vessel is filled with titanium hydride powder 15 and placed on the reaction vessel support 11 in a state of being stacked in multiple stages, and the cylinder 10 is driven so that the entire reaction vessel 12 is After being positioned so as to enter the heating zone 2, the inside of the system of the apparatus main body 1 is evacuated by evacuating from the evacuation pipe 5 and performing vacuum replacement. Then, argon gas is introduced from the inert gas introduction pipe 4 and the inside of the system is heated by the heater 7. At this time, the titanium hydride powder filled in each reaction vessel 12
15 is uniformly heated by the action of the division filling and the reflection plate 8, and the scattering of powder due to the generation of hydrogen gas is effectively suppressed. When the dehydrogenation treatment is completed, the position of the reaction vessel 12 is lowered to the cooling zone 3 by driving the cylinder, and is cooled rapidly.

【0018】このようにして冷却された各反応容器内の
チタンは、塊状に焼結しているがその状態は均等に緩和
されており、通常の機械的粉砕により解砕されないよう
な過度の焼結は発生しない。
The titanium in each of the reaction vessels cooled in this way is sintered in a lump, but its condition is alleviated uniformly, and excessive calcination that cannot be crushed by ordinary mechanical pulverization. No knots occur.

【0019】[0019]

【考案の効果】以上のとおり、本考案によれば水素化脱
水素法による従来のチタン粉末製造技術で問題とされて
いた脱水素処理時における水素化チタン粉の飛散や過度
の焼結現象が効果的に防止され、しかも円滑な操作で短
時間内に脱水素処理を施すことが可能なチタン粉末の製
造装置が提供される。したがって、粉末冶金材料に好適
な高品位のチタン粉末を製造するための工業的装置とし
て極めて有用である。
[Effects of the Invention] As described above, according to the present invention, scattering and excessive sintering of titanium hydride powder at the time of dehydrogenation, which has been a problem in the conventional titanium powder production technology by hydrodehydrogenation, are considered. There is provided an apparatus for producing titanium powder, which is effectively prevented and capable of performing a dehydrogenation treatment in a short time by a smooth operation. Therefore, it is extremely useful as an industrial apparatus for producing high-quality titanium powder suitable for powder metallurgy materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案によるチタン粉末の製造装置を例示した
断面図である。
FIG. 1 is a cross-sectional view illustrating a titanium powder manufacturing apparatus according to the present invention.

【図2】好ましい反応容器の載置状態を示した一部切欠
拡大断面図である。
FIG. 2 is a partially cut-away enlarged cross-sectional view showing a preferred mounted state of a reaction vessel.

【符号の説明】[Explanation of symbols]

1 装置本体 2 加熱ゾーン 3 冷却ゾーン 4 不活性ガス導入管 5 真空排気管 6 温度測定器 7 加熱ヒーター 8 反射板 9 冷却コイル 10 シリンダー 11 反応容器支持部 12 反応容器 13 ガス抜き凹部 14 上蓋 15 水素化チタン粉 DESCRIPTION OF SYMBOLS 1 Apparatus main body 2 Heating zone 3 Cooling zone 4 Inert gas introduction pipe 5 Vacuum exhaust pipe 6 Temperature measuring device 7 Heater 8 Reflector 9 Cooling coil 10 Cylinder 11 Reaction vessel support part 12 Reaction vessel 13 Gas release recess 14 Top lid 15 Hydrogen Titanium powder

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 水素化脱水素法に用いる脱水素処理装置
であって、上部に加熱ヒーターを内蔵し反射板で囲繞さ
れた加熱ゾーンと、下部に冷却コイルを周設した冷却ゾ
ーンとを備え、側壁部に不活性ガス導入管および真空排
気管が設置された密閉構造の装置本体に、シリンダーを
介して前記加熱ゾーンと冷却ゾーンの間を昇降移動する
機構を有し、かつ水素化チタン粉を充填した皿状の反応
容器を多段に積み重ねて載置するための反応容器支持部
を装備してなることを特徴とするチタン粉末の製造装
置。
1. A dehydrogenation treatment apparatus used for a hydrodehydrogenation method, comprising a heating zone built in a heating heater and surrounded by a reflector at an upper part, and a cooling zone having a cooling coil provided around the lower part. A device having a mechanism for vertically moving between the heating zone and the cooling zone via a cylinder in a device body having a sealed structure in which an inert gas introduction pipe and a vacuum exhaust pipe are provided on a side wall, and titanium hydride powder An apparatus for producing titanium powder, comprising: a reaction vessel supporting portion for stacking and mounting a plurality of tray-shaped reaction vessels filled with a.
【請求項2】 皿状の各反応容器が上端部に複数個のガ
ス抜き凹部を形成した円筒容器であり、最上部に上蓋を
被せた状態で処理容器支持部に載置される請求項1記載
のチタン粉末の製造装置。
2. A dish-shaped reaction vessel is a cylindrical vessel having a plurality of gas venting recesses formed at an upper end thereof, and is mounted on a processing vessel support with an upper lid being put on an uppermost portion. An apparatus for producing the titanium powder according to the above.
JP10834791U 1991-12-03 1991-12-03 Titanium powder manufacturing equipment Expired - Fee Related JP2552213Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10834791U JP2552213Y2 (en) 1991-12-03 1991-12-03 Titanium powder manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10834791U JP2552213Y2 (en) 1991-12-03 1991-12-03 Titanium powder manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0546923U JPH0546923U (en) 1993-06-22
JP2552213Y2 true JP2552213Y2 (en) 1997-10-29

Family

ID=14482402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10834791U Expired - Fee Related JP2552213Y2 (en) 1991-12-03 1991-12-03 Titanium powder manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2552213Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246903B2 (en) * 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
KR101426388B1 (en) * 2013-06-11 2014-08-05 (주)티피에스 Cooking a vessel manufacture method

Also Published As

Publication number Publication date
JPH0546923U (en) 1993-06-22

Similar Documents

Publication Publication Date Title
US3419935A (en) Hot-isostatic-pressing apparatus
CN101786161B (en) Microwave irradiation pressurized sintering equipment and use method thereof
US6751999B2 (en) Method and apparatus for forming metallic materials
AU2011293707B2 (en) Sintering of metal and alloy powders by microwave/millimeter-wave heating
CN103691953B (en) The manufacture method of the manufacture method of tungsten titanium target material and tungsten titanium target material combination
WO2002058437A1 (en) Microwave processing using highly microwave absorbing powdered material layers
CN208218962U (en) A kind of MOCVD reactor
Luo et al. Novel fabrication of titanium by pure microwave radiation of titanium hydride powder
US4359336A (en) Isostatic method for treating articles with heat and pressure
CN103539124B (en) Based on manufacture method and the microwave reduction stove of the silicon of microwave
CN106756158A (en) Tantalum-tungsten alloy blank preparation method
JP2552213Y2 (en) Titanium powder manufacturing equipment
CN105185424B (en) A kind of nuclear reactor neutron absorber material metatitanic acid terbium pellet and its preparation method
US20210023625A1 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
KR101352371B1 (en) Fabrication method of low oxygen titanium powders by Self-propagating High-temperature synthesis
CN107401922A (en) Blank heating device in aluminium alloy semi-solid thixotropic forming
EP1693130B1 (en) Isostat for processing materials and method for removing ceramic material from metallic articles by using said isostat
Li et al. Production of hydrogen storage alloy of Mg2NiH4 by hydriding combustion synthesis in laboratory scale
KR100651269B1 (en) Apparatus for reducing metal oxide with hydrogen and method for reducing molybdenum oxide with hydrogen using the same
CN110085338A (en) UO2The preparation method and preparation facilities of/Cr hybrid fuel pellet
US4509729A (en) Hot isostatic pressing apparatus
CN103449383B (en) Preparation method of copper-indium-gallium-selenium alloy
JPH04263787A (en) Hot isostatic pressurizing device
US3536309A (en) Apparatus for the manufacture of chrome powder
WO2013183790A1 (en) Method for manufacturing cigs sputtering target

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees