JPH0546923U - Titanium powder manufacturing equipment - Google Patents

Titanium powder manufacturing equipment

Info

Publication number
JPH0546923U
JPH0546923U JP10834791U JP10834791U JPH0546923U JP H0546923 U JPH0546923 U JP H0546923U JP 10834791 U JP10834791 U JP 10834791U JP 10834791 U JP10834791 U JP 10834791U JP H0546923 U JPH0546923 U JP H0546923U
Authority
JP
Japan
Prior art keywords
powder
titanium
dehydrogenation
zone
titanium powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10834791U
Other languages
Japanese (ja)
Other versions
JP2552213Y2 (en
Inventor
英一 深澤
良治 村山
亘 籠橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP10834791U priority Critical patent/JP2552213Y2/en
Publication of JPH0546923U publication Critical patent/JPH0546923U/en
Application granted granted Critical
Publication of JP2552213Y2 publication Critical patent/JP2552213Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】 【目的】 脱水素処理過程における原料粉の焼結緩和な
らびに飛散現象を効果的に防止することができる操作性
に優れるチタン粉末の製造装置を提供する。 【構成】 水素化脱水素法を用いる脱水素処理装置であ
って、上部に加熱ヒーター7を内蔵し反射板8で囲繞さ
れた加熱ゾーン2と、下部に冷却コイル9を周設した冷
却ゾーン3とを備え、側壁部に不活性ガス導入管4およ
び真空排気管5が設置された密閉構造の装置本体1に、
シリンダー10を介して前記加熱ゾーン2と冷却ゾーン3
の間を昇降移動する機構を有し、かつ水素化チタン粉15
を充填した皿状の反応容器12を多段に積み重ねて載置す
るための反応容器支持部11を装備した構造。
(57) [Summary] [Object] To provide a titanium powder manufacturing apparatus which is capable of effectively preventing the sintering relaxation and scattering phenomenon of the raw material powder during the dehydrogenation treatment process and which has excellent operability. A dehydrogenation apparatus using a hydrodehydrogenation method, comprising: a heating zone 2 having a heater 7 built-in in the upper part and surrounded by a reflector 8; and a cooling zone 3 having a cooling coil 9 in the lower part. And a device main body 1 having a closed structure in which the inert gas introduction pipe 4 and the vacuum exhaust pipe 5 are installed on the side wall,
The heating zone 2 and the cooling zone 3 through the cylinder 10.
It has a mechanism to move up and down between
A structure equipped with a reaction container support portion 11 for stacking and placing dish-shaped reaction containers 12 filled with the above in multiple stages.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、水素化脱水素法によりチタン粉末を製造する際、水素化チタン粉を 脱水素する工程で使用されるチタン粉末の製造装置に関する。 The present invention relates to an apparatus for producing titanium powder used in a step of dehydrogenating titanium hydride powder when producing titanium powder by a hydrodehydrogenation method.

【0002】[0002]

【従来の技術】[Prior Art]

従来、チタン粉末を製造する一方法として、金属チタンが水素を吸蔵して脆化 する特性を利用した水素化脱水素法(HDH法)が知られており、この方法によ れば高品位の粉末冶金原料に必要な極低塩素チタン粉の製造が可能で、微細なチ タン粉末を比較的低コストで得ることができるため、工業的規模において広く利 用されている。 Conventionally, as one method for producing titanium powder, a hydrodehydrogenation method (HDH method), which utilizes the characteristic that metallic titanium absorbs hydrogen and becomes brittle, has been known. It is widely used on an industrial scale because it enables the production of ultra-low chlorine titanium powder, which is necessary for powder metallurgy raw materials, and enables fine titanium powder to be obtained at a relatively low cost.

【0003】 一般に、水素化脱水素法によるチタン粉末の製造プロセスは、原料チタンを高 温下の水素ガス雰囲気中で水素化する水素化工程、水素化チタン塊を不活性雰囲 気下で粉砕する粉砕工程、粉砕後の水素化チタン粉を高温の真空中で脱水素処理 する脱水素工程、脱水素時に焼結したチタン塊を破砕する解砕工程、得られたチ タン粉末を所定粒度に分級調整する篩別工程の各段階からなっている。Generally, a manufacturing process of titanium powder by the hydrodehydrogenation method includes a hydrogenation step of hydrogenating raw material titanium in a hydrogen gas atmosphere at a high temperature, and crushing a titanium hydride mass in an inert atmosphere. Crushing process, dehydrogenation process of crushed titanium hydride powder in vacuum at high temperature, crushing process of crushing sintered titanium lumps during dehydrogenation, and the obtained titanium powder to a specified particle size. It consists of each stage of the sieving process for classifying and adjusting.

【0004】 ところが上記の水素化脱水素法を適用する場合には、特に脱水素工程において 水素化チタン粉の焼結が過度に進行して次工程の解砕処理が著しく困難となった り、昇温中に原料の充填部位に大きな温度差が生じて多量の水素ガスが突発的に 発生し、原料粉が容器外に飛散して発熱体その他の部材に固着する等の不都合な 現象を招く問題点がある。However, when the above-mentioned hydrodehydrogenation method is applied, the sintering of titanium hydride powder excessively progresses particularly in the dehydrogenation step, and the crushing treatment in the next step becomes extremely difficult. During the temperature rise, a large temperature difference occurs in the part where the raw material is filled, and a large amount of hydrogen gas is suddenly generated, causing the inconvenient phenomenon that the raw material powder is scattered outside the container and adheres to the heating element and other members. There is a problem.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

これらの現象は、いずれも製品収率および工程管理や作業能率などを低下させ 、結果的に製造コストを高める要因となるため、水素化脱水素法における大きな 改良課題とされている。 All of these phenomena reduce the product yield, process control, work efficiency, etc., and eventually increase the manufacturing cost, and are therefore considered to be major improvements in the hydrodehydrogenation method.

【0006】 本考案者らは上記の現象につき多角的な検討を加えた結果、従来の脱水素処理 に使用されている装置の加熱機構および水素化チタン粉を充填するための容器形 状に主因があることを解明した。As a result of various studies on the above phenomenon, the inventors of the present invention have mainly studied the heating mechanism of the apparatus used for the conventional dehydrogenation treatment and the shape of the container for filling the titanium hydride powder. It was clarified that there is.

【0007】 本考案は、前記の知見に基づき脱水素装置に機構的な改良を加えることによっ て開発されたもので、その目的は脱水素処理過程における原料粉の焼結緩和なら びに飛散現象を効果的に防止することができるチタン粉末の製造装置を提供する ことにある。The present invention was developed by adding a mechanical improvement to the dehydrogenation device based on the above findings, and its purpose is to reduce the sintering relaxation of the raw material powder and the scattering phenomenon in the dehydrogenation process. It is an object of the present invention to provide a titanium powder manufacturing apparatus capable of effectively preventing the above.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的を達成するための本考案によるチタン粉末の製造装置は、水素化脱 水素法に用いる脱水素処理装置であって、上部に加熱ヒーターを内蔵した反射板 で囲繞された加熱ゾーンと、下部に冷却コイルを周設した冷却ゾーンとを備え、 側壁部に不活性ガス導入管および真空排気管が設置された密閉構造の装置本体に 、シリンダーを介して前記加熱ゾーンと冷却ゾーンの間を昇降移動する機構を有 し、かつ水素化チタン粉を充填した皿状の反応容器を多段に積み重ねて載置する ための反応容器支持部を装備してなることを構成上の特徴とするものである。 The titanium powder production apparatus according to the present invention for achieving the above-mentioned object is a dehydrogenation treatment apparatus used in the hydrodehydrogenation method, and has a heating zone surrounded by a reflection plate having a built-in heater at its upper part, It is equipped with a cooling zone around which a cooling coil is provided in the lower part, and a device with a sealed structure in which an inert gas introduction pipe and a vacuum exhaust pipe are installed on the side wall part, and between the heating zone and the cooling zone via a cylinder It has a mechanism to move up and down, and is equipped with a reaction vessel support for stacking and placing multiple dish-shaped reaction vessels filled with titanium hydride powder in multiple stages. is there.

【0009】[0009]

【作用】[Action]

脱水素処理においては処理される水素化チタンが粉状体である関係で、熱伝導 率が小さいうえに脱水素反応に多量の吸熱を伴うため、従来のように水素化チタ ン粉を多量に充填した一体型反応容器をヒーターによる外周加熱のみによって昇 温させる装置では粉末充填位置によって昇温速度に大きな差異が生じる。したが って、高温部では脱水素が完了してチタンに転化しているにも拘らず低温部の脱 水素終了時点まで処理を継続しなければならないため、高温部において過度の粉 末焼結が進行したり、昇温中に発生して粉末中に吸蔵された水素ガスが一時に突 発的に多量噴出して外部に激しく飛散する現象を招く。 In the dehydrogenation process, since titanium hydride to be treated is in the form of powder, it has a low thermal conductivity and a large amount of heat is absorbed in the dehydrogenation reaction. In an apparatus that raises the temperature of the filled integrated reaction vessel only by heating the outer circumference with a heater, the temperature rise rate greatly varies depending on the powder filling position. Therefore, even though dehydrogenation is completed in the high temperature part and converted to titanium, the treatment must be continued until the end of dehydrogenation in the low temperature part, resulting in excessive powder sintering in the high temperature part. Occurs, or a large amount of hydrogen gas occluded in the powder generated during temperature rise suddenly and suddenly scatters to the outside.

【0010】 本考案による装置によれば、加熱昇温が加熱ヒーターを内蔵し周囲を反射板で 囲繞した構造の加熱ゾーン内でおこなわれ、且つ処理すべき水素化チタン粉が複 数個の皿状反応容器に適度に分割充填された状態で多段に積み重ねられているか ら、水素化チタン粉は局部的な昇温変動を起こすことなく常に均一に加熱される 。この作用で過度の焼結や粉末の飛散現象は効果的に抑制され、同時に昇温速度 が速まるため脱水素時間が著しく短縮される。According to the apparatus according to the present invention, the heating temperature is raised in the heating zone of the structure in which the heater is built in and the circumference is surrounded by the reflection plate, and the titanium hydride powder to be treated is mixed with a plurality of dishes. The titanium hydride powders are always uniformly heated without causing local temperature rise fluctuations because they are stacked in multiple stages in a state where they are appropriately divided and filled in a cylindrical reaction vessel. By this action, excessive sintering and powder scattering phenomenon are effectively suppressed, and at the same time, the temperature rising rate is increased, so that the dehydrogenation time is significantly shortened.

【0011】 また、装置本体の下部には冷却ゾーンがあり、反応容器支持部による昇降移動 を介して脱水素処理後の反応容器が急速に冷却されるから、処理能力を大幅に向 上させることが可能となる。Further, since there is a cooling zone in the lower part of the apparatus main body, and the reaction vessel after the dehydrogenation treatment is rapidly cooled through the ascending / descending movement of the reaction vessel support, the treatment capacity can be greatly improved. Is possible.

【0012】[0012]

【実施例】【Example】

以下、本考案を図示の実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0013】 図1は本考案による脱水素処理用のチタン粉末製造装置を示した断面図で、1 は各部材を真空シール状に結合形成した密閉構造の装置本体で、上部は加熱ゾー ン2、下部は冷却ゾーン3となっている。装置本体1はステンレス鋼のような耐 熱耐食性の金属材料で構成され、好ましくは外壁部を水冷可能なジャケット機構 に設計し、その側壁部に不活性ガス導入管4、真空排気管5および温度測定器6 (熱電対、放射温度計等)や電源接続器など必要な設備が設置されている。FIG. 1 is a cross-sectional view showing an apparatus for producing titanium powder for dehydrogenation treatment according to the present invention, in which 1 is an apparatus main body having a closed structure in which each member is connected and formed in a vacuum seal shape, and an upper part is a heating zone 2 The lower part is a cooling zone 3. The apparatus main body 1 is made of a heat-corrosion-resistant metallic material such as stainless steel, and is preferably designed with a jacket mechanism capable of water cooling the outer wall, and an inert gas introduction pipe 4, a vacuum exhaust pipe 5 and a temperature pipe are provided on the side wall thereof. Necessary facilities such as measuring instrument 6 (thermocouple, radiation thermometer, etc.) and power supply connector are installed.

【0014】 加熱ゾーン2は、モリブデン製の加熱ヒーター7を内蔵し、その周囲を例えば モリブデン−ステンレス製の反射板8で囲繞して区画形成されており、また冷却 ゾーン3は、フレオンのような冷媒を流通する構造の冷却コイル9が周設された 区画により形成されている。The heating zone 2 has a built-in heater 7 made of molybdenum and is surrounded by a reflective plate 8 made of, for example, molybdenum-staining, and the cooling zone 3 is formed like a Freon. A cooling coil 9 having a structure in which a coolant flows is formed by compartments provided around the cooling coil 9.

【0015】 装置本体1の内部には、系外の作動装置(図示せず) に連結するシリンダー10 を介して反射板8の底面部と共に昇降移動する機構の反応容器支持部11が装備さ れており、該反応容器支持部11の上部に多段に積み重ねられた皿状の反応容器12 が載置されている。したがって、皿状の反応容器12は反応容器支持部11を昇降さ せることにより加熱ゾーン2と冷却ゾーン1の間を移動する。Inside the apparatus main body 1, there is provided a reaction container support portion 11 of a mechanism that moves up and down together with the bottom portion of the reflection plate 8 via a cylinder 10 connected to an operating device (not shown) outside the system. The dish-shaped reaction vessels 12 stacked in multiple stages are placed on top of the reaction vessel support 11. Therefore, the dish-shaped reaction container 12 moves between the heating zone 2 and the cooling zone 1 by moving the reaction container support 11 up and down.

【0016】 反応容器支持部11の上部に載置される各反応容器12はステンレス鋼などの耐熱 耐食性の金属材料で構成された円筒容器で、好ましくは図2に示すように積み重 ねた際、各段に水素ガスの抜け口が形成される形態に上端部に複数個のガス抜き 凹部13を形成し、最上部に上蓋14を被せた状態でセットする。Each reaction container 12 placed on the upper part of the reaction container support 11 is a cylindrical container made of a heat-resistant and corrosion-resistant metallic material such as stainless steel, and preferably when stacked as shown in FIG. A plurality of degassing recesses 13 are formed at the upper end in a form in which a hydrogen gas vent is formed at each step, and the uppermost part is set with an upper lid 14 covered.

【0017】 脱水素処理にあたっては、各反応容器に水素化チタン粉15を充填して多段に積 み重ねた状態で反応容器支持部11に載置し、シリンダー10を駆動させて反応容器 12の全体が加熱ゾーン2に入るように位置させたのち、真空排気管5から脱気し て装置本体1の系内を真空置換する。ついで、不活性ガス導入管4からアルゴン ガスを流入して、加熱ヒーター7により系内を昇温させる。この際、各反応容器 12に充填された水素化チタン粉15は分割充填と反射板8の作用で均一に加熱され 、水素ガスの発生による粉末の飛散現象は効果的に抑制される。脱水素処理が完 了したら、シリンダーを駆動させて反応容器12の位置を冷却ゾーン3まで降下さ せ、急速に冷却する。In the dehydrogenation process, titanium hydride powder 15 is filled in each reaction container and placed in a multi-tiered state on the reaction container support 11 and the cylinder 10 is driven to drive the reaction container 12 After the whole is positioned so as to enter the heating zone 2, the inside of the system of the apparatus main body 1 is evacuated by degassing from the vacuum exhaust pipe 5. Then, argon gas is introduced from the inert gas introducing pipe 4 and the temperature of the system is raised by the heater 7. At this time, the titanium hydride powder 15 filled in each reaction container 12 is uniformly heated by the action of the divided filling and the reflecting plate 8, and the scattering phenomenon of the powder due to the generation of hydrogen gas is effectively suppressed. When the dehydrogenation process is completed, the cylinder is driven to lower the position of the reaction vessel 12 to the cooling zone 3 and rapidly cool it.

【0018】 このようにして冷却された各反応容器内のチタンは、塊状に焼結しているがそ の状態は均等に緩和されており、通常の機械的粉砕により解砕されないような過 度の焼結は発生しない。The titanium in each reaction vessel cooled in this way is sintered in a lump form, but the state is evenly relaxed, and the titanium is not crushed by ordinary mechanical crushing. Does not occur.

【0019】[0019]

【考案の効果】[Effect of the device]

以上のとおり、本考案によれば水素化脱水素法による従来のチタン粉末製造技 術で問題とされていた脱水素処理時における水素化チタン粉の飛散や過度の焼結 現象が効果的に防止され、しかも円滑な操作で短時間内に脱水素処理を施すこと が可能なチタン粉末の製造装置が提供される。したがって、粉末冶金材料に好適 な高品位のチタン粉末を製造するための工業的装置として極めて有用である。 As described above, according to the present invention, the scattering of titanium hydride powder and the excessive sintering phenomenon during the dehydrogenation process, which were problems in the conventional titanium powder manufacturing technology by the hydrodehydrogenation method, are effectively prevented. In addition, a titanium powder manufacturing apparatus capable of performing dehydrogenation treatment in a short time by a smooth operation is provided. Therefore, it is extremely useful as an industrial apparatus for producing high-quality titanium powder suitable for powder metallurgy materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案によるチタン粉末の製造装置を例示した
断面図である。
1 is a cross-sectional view illustrating an apparatus for producing titanium powder according to the present invention.

【図2】好ましい反応容器の載置状態を示した一部切欠
拡大断面図である。
FIG. 2 is a partially cutaway enlarged sectional view showing a mounted state of a preferable reaction container.

【符号の説明】[Explanation of symbols]

1 装置本体 2 加熱ゾーン 3 冷却ゾーン 4 不活性ガス導入管 5 真空排気管 6 温度測定器 7 加熱ヒーター 8 反射板 9 冷却コイル 10 シリンダー 11 反応容器支持部 12 反応容器 13 ガス抜き凹部 14 上蓋 15 水素化チタン粉 1 Device Main Body 2 Heating Zone 3 Cooling Zone 4 Inert Gas Introducing Pipe 5 Vacuum Exhaust Pipe 6 Temperature Measuring Device 7 Heating Heater 8 Reflector 9 Cooling Coil 10 Cylinder 11 Reaction Vessel Support 12 Reaction Vessel 13 Gas Vent 14 Top Lid 15 Hydrogen Titanium oxide powder

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 水素化脱水素法に用いる脱水素処理装置
であって、上部に加熱ヒーターを内蔵し反射板で囲繞さ
れた加熱ゾーンと、下部に冷却コイルを周設した冷却ゾ
ーンとを備え、側壁部に不活性ガス導入管および真空排
気管が設置された密閉構造の装置本体に、シリンダーを
介して前記加熱ゾーンと冷却ゾーンの間を昇降移動する
機構を有し、かつ水素化チタン粉を充填した皿状の反応
容器を多段に積み重ねて載置するための反応容器支持部
を装備してなることを特徴とするチタン粉末の製造装
置。
1. A dehydrogenation apparatus used in a hydrodehydrogenation method, comprising: a heating zone having a built-in heating heater surrounded by a reflection plate; and a cooling zone having a cooling coil surrounding the lower section. A titanium hydride powder having a mechanism for moving up and down between the heating zone and the cooling zone via a cylinder in the apparatus body having a closed structure in which an inert gas introduction pipe and a vacuum exhaust pipe are installed on the side wall portion. An apparatus for producing titanium powder, characterized by comprising a reaction vessel supporting portion for stacking and placing dish-shaped reaction vessels filled with the above in a multistage manner.
【請求項2】 皿状の各反応容器が上端部に複数個のガ
ス抜き凹部を形成した円筒容器であり、最上部に上蓋を
被せた状態で処理容器支持部に載置される請求項1記載
のチタン粉末の製造装置。
2. The dish-shaped reaction vessel is a cylindrical vessel having a plurality of gas venting recesses formed at its upper end, and is placed on the processing vessel support with the uppermost lid covered. The titanium powder manufacturing apparatus described.
JP10834791U 1991-12-03 1991-12-03 Titanium powder manufacturing equipment Expired - Fee Related JP2552213Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10834791U JP2552213Y2 (en) 1991-12-03 1991-12-03 Titanium powder manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10834791U JP2552213Y2 (en) 1991-12-03 1991-12-03 Titanium powder manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0546923U true JPH0546923U (en) 1993-06-22
JP2552213Y2 JP2552213Y2 (en) 1997-10-29

Family

ID=14482402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10834791U Expired - Fee Related JP2552213Y2 (en) 1991-12-03 1991-12-03 Titanium powder manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2552213Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502182A (en) * 2008-09-09 2012-01-26 エイチ.シー. スターク インコーポレイテッド Dynamic hydrogenation of refractory metal powders
KR101426388B1 (en) * 2013-06-11 2014-08-05 (주)티피에스 Cooking a vessel manufacture method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502182A (en) * 2008-09-09 2012-01-26 エイチ.シー. スターク インコーポレイテッド Dynamic hydrogenation of refractory metal powders
KR101426388B1 (en) * 2013-06-11 2014-08-05 (주)티피에스 Cooking a vessel manufacture method

Also Published As

Publication number Publication date
JP2552213Y2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
AU2011293707B2 (en) Sintering of metal and alloy powders by microwave/millimeter-wave heating
CN110845237A (en) High-entropy ceramic powder, preparation method thereof and high-entropy ceramic block
WO2002058437A1 (en) Microwave processing using highly microwave absorbing powdered material layers
CN101786161A (en) Microwave irradiation pressurized sintering equipment and use method thereof
Luo et al. Novel fabrication of titanium by pure microwave radiation of titanium hydride powder
CN105185424B (en) A kind of nuclear reactor neutron absorber material metatitanic acid terbium pellet and its preparation method
JPH0546923U (en) Titanium powder manufacturing equipment
CN203545695U (en) Microwave pressurizing synthesizing device
CN101722308B (en) Molybdenum-base rare earth powder metallurgy forming plug and manufacturing method thereof
US5502743A (en) High temperature furnace
US3658507A (en) Process for the manufacture of chrome powder
CN207299918U (en) Blank heating device in aluminium alloy semi-solid thixotropic forming
Li et al. Production of hydrogen storage alloy of Mg2NiH4 by hydriding combustion synthesis in laboratory scale
US3504093A (en) Induction furnace apparatus for the manufacture of metal carbide
EP2182881A2 (en) Microwave sintering furnace and method for sintering artificial tooth using the same
US3278301A (en) Method for the manufacture of dense sintered articles
CN110085338A (en) UO2The preparation method and preparation facilities of/Cr hybrid fuel pellet
KR100651269B1 (en) Apparatus for reducing metal oxide with hydrogen and method for reducing molybdenum oxide with hydrogen using the same
US4509729A (en) Hot isostatic pressing apparatus
Ringwood et al. Uniaxial hot-pressing in bellows containers
CN103449383B (en) Preparation method of copper-indium-gallium-selenium alloy
US3536309A (en) Apparatus for the manufacture of chrome powder
Subramanian et al. A novel method of sintering UO2 pellets by microwave heating
RU2395603C2 (en) Procedure for fabrication lithium-boron composite and reactor
JPH04263787A (en) Hot isostatic pressurizing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees