JP2550266B2 - Manufacturing method of composite flame-retardant fiber - Google Patents

Manufacturing method of composite flame-retardant fiber

Info

Publication number
JP2550266B2
JP2550266B2 JP4233635A JP23363592A JP2550266B2 JP 2550266 B2 JP2550266 B2 JP 2550266B2 JP 4233635 A JP4233635 A JP 4233635A JP 23363592 A JP23363592 A JP 23363592A JP 2550266 B2 JP2550266 B2 JP 2550266B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
flame
polyclar
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4233635A
Other languages
Japanese (ja)
Other versions
JPH05239728A (en
Inventor
敬治 市堀
隆治 松本
洋一 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4233635A priority Critical patent/JP2550266B2/en
Publication of JPH05239728A publication Critical patent/JPH05239728A/en
Application granted granted Critical
Publication of JP2550266B2 publication Critical patent/JP2550266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、難燃剤で高度に難燃強
化したポリクラール繊維と他の繊維とを混合して、風合
や吸湿性などに優れ、かつ難燃性を有する複合難燃繊維
の製法に関する。 【0002】 【従来の技術】近年、インテリアのみならず衣料用繊維
製品においても難燃化が強く要望され、しかも難燃性以
外の視感、風合、吸湿性、耐洗濯性、耐久性などの性能
に対する要望も強まってきている。 【0003】従来より繊維の難燃化に関する研究は、モ
ダアクリル系繊維やポリクラール系繊維を中心に、ポリ
エステル系繊維やビスコースレーヨン系繊維などの特定
繊維の単独物について行なわれており、1種の繊維の単
独物では難燃性能に優れたものもえられているが、消費
者のますます多様化し、高度化する要求には、ほとんど
こたえられていないのが現状である。したがって、必然
的に難燃性繊維と他の繊維との混綿、混紡、交織などが
必要となるが、2種以上の異種の繊維を混合した複合繊
維に対する難燃化の研究は数が少ない。 【0004】たとえば、含燐ポリエステル繊維とアクリ
ロニトリル系繊維との混合による複合繊維(特公昭52-2
1612号公報)や、スズ酸およびアンチモン酸含有ポリク
ラール繊維とポリエステル繊維、アクリル繊維、木綿な
どとの混合による複合繊維(特開昭53-6617 号公報)が
有効であるとの記載があるが、難燃性、風合、吸湿性な
どの点で充分とはいいがたい。 【0005】 【発明が解決しようとする課題】本発明は消費者のます
ます多様化し、高度化する難燃性、視感、風合、吸湿
性、耐洗濯性、耐久性などに対する要求にこたえられる
繊維がないという問題を解決するためになされたもので
ある。 【0006】 【課題を解決するための手段】本発明者らは、かかる実
情に鑑み鋭意検討を重ねた結果、Sb化合物を多量に含
有させ、高度に難燃性を付与したポリクラール繊維を、
他の可燃性繊維と混合して複合繊維にしたばあいに、従
来の難燃性繊維と比べて難燃性の低下の度合が極めて小
さくなることを見出し、本発明を完成するに至った。 【0007】すなわち、本発明は、ハロゲン含有ビニル
高分子/部分アセタール化ポリビニルアルコール(以
下、部分アセタール化PVAという)が重量比で6/4 〜
4/6である重合体混合物に、該重合体混合物に対し8〜5
0%(重量%、以下同様)のSb化合物を含有させて製
造した繊維85〜15部(重量部、以下同様)と天然繊維お
よび化学繊維よりなる群から選ばれた少なくとも1種の
繊維15〜85部とを総量が100 部になるように複合して複
合難燃繊維を製造するに際し、Sb化合物として粒径を
2μm以下に揃えたものを使用することを特徴とする複
合難燃繊維の製法に関するものであって、所望の難燃性
を有し、視感、風合、吸湿性、耐洗濯性、耐久性などの
性能を満足する複合難燃繊維がえられる。 【0008】 【実施例】本発明に用いるハロゲン含有ビニル系高分子
(以下、ハロゲン含有高分子と略す)としては、たとえ
ば塩化ビニル、塩化ビニリデンなどのハロゲン含有モノ
マーの単独重合体や共重合体、これらのハロゲン含有モ
ノマーと共重合可能なモノマー、たとえばアクリロニト
リル、スチレン、酢酸ビニル、アクリル酸エステルなど
との共重合体、またはハロゲン含有モノマーがPVA系
ポリマーにグラフトしたかたちのグラフト重合体などが
あげられるが、これらに限定されるものではない。これ
らハロゲン含有高分子は単独で用いてもよく、混合して
用いてもよい。なお、ハロゲン含有高分子の塩素含有量
は20%以上であることが難燃性を保つ上で好ましい。 【0009】本発明に用いる部分アセタール化PVAに
はとくに限定はなく、通常の繊維の製造に使用される部
分アセタール化PVAが使用されうる。 【0010】本発明において、ハロゲン含有高分子/部
分アセタール化PVAが重量比で6/4 〜4/6 である重合
体混合物(以下、ハロゲン含有高分子/部分アセタール
化PVA混合物という)に、該ハロゲン含有高分子/部
分アセタール化PVA混合物に対し8〜50%のSb化合
物を含有させた組成物から製造された繊維(以下、Sb
含有ポリクラール繊維という)が使用される。 【0011】前記ハロゲン含有高分子/部分アセタール
化PVA混合物中におけるハロゲン含有高分子の割合が
前記範囲より小さくなると、目的とする高度な難燃性が
えられなくなり、また逆に部分アセタール化PVAの割
合が前記範囲より小さくなると、ハロゲン含有高分子の
水性エマルジョンと部分アセタール化PVA水溶液混合
物よりなる紡糸原液の安定性や紡糸性、あるいは強度や
耐熱性などの一般の繊維性能の低下などがおこり、好ま
しくない。 【0012】本発明に用いるSb化合物は難燃剤として
用いられるものであり、その具体例としては酸化アンチ
モン(Sb2 3 、Sb2 4 、Sb2 5 など)、ア
ンチモン酸、オキシ塩化アンチモンなどの無機アンチモ
ン化合物があげられるが、これらに限定されるものでは
ない。これらは単独で用いてもよく、2種以上組合わせ
て用いてもよい。 【0013】ハロゲン含有高分子/部分アセタール化P
VA混合物に対するSb化合物の割合は8〜50%、好ま
しくは8〜40%である。該量が8%未満では複合難燃繊
維として必要な難燃性をうるために、アンチモン含有ポ
リクラール繊維の複合難燃繊維中における混合率を高め
る必要が生じ、複合難燃繊維の難燃性以外の、たとえば
視感、風合、吸湿性、耐洗濯性、耐久性などの性能がえ
がたくなる。一方、該量が50%をこえると、Sb含有ポ
リクラール繊維製造時のノズル詰まりや繊維物性(強
度、伸度など)の低下がおこり、高度に難燃性を付与し
た繊維であるSb含有ポリクラール繊維の製造面や品質
面などで問題が生じ、好ましくない。 【0014】本発明においてはハロゲン含有高分子/部
分アセタール化PVA混合物に対する難燃剤の量は8〜
50%であり、これに更に他の難燃剤を組合わせて用いて
もよい。 【0015】前記Sb化合物と組合わせて用いることの
できる難燃剤としては、たとえば酸化第2スズ、メタス
ズ酸、オキシハロゲン化第1スズ、オキシハロゲン化第
2スズ、水酸化第1スズなどの無機スズ化合物、ヘキサ
ブロモベンゼンなどの芳香族ハロゲン化物、塩化パラフ
ィンなどの脂肪族ハロゲン化物、トリス(2,3-ジクロロ
プロピル)ホスフェートなどの含ハロゲン燐化合物、ジ
ブチルアミノホスフェートなどの有機燐化合物、ポリ燐
酸アンモニウムなどの無機燐化合物などがあげられる。 【0016】本発明においては、Sb含有ポリクラール
繊維15〜85部と、天然繊維および化学繊維よりなる群か
ら選ばれた少なくとも1種の繊維85〜15部とから本発明
の複合難燃繊維100 部が製造される。 【0017】本発明におけるSb含有ポリクラール繊維
と天然繊維および化学繊維よりなる群から選ばれた少な
くとも1種の繊維との使用割合は、最終製品に要求させ
る難燃性、視感、風合、吸湿性、耐洗濯性、耐久性など
の性能により決定されるものである。なおSb含有ポリ
クラール繊維を製造するのに用いるハロゲン含有高分子
の種類およびその構成割合、難燃剤の種類および添加
量、複合難燃繊維中に混合される繊維の種類および組合
わせなどにより前記使用割合が決められる。 【0018】前記Sb含有ポリクラール繊維が15部未
満、すなわち混合する天然繊維および化学繊維の割合が
85部をこえる混合割合では、難燃性に乏しい複合繊維と
なり、一方、Sb含有ポリクラール繊維が85部をこえ、
混合する天然繊維や化学繊維の割合が15部未満の混合割
合では、難燃性に優れてはいるものの他の視感、風合、
吸湿性、耐洗濯性、耐久性などの性能が充分ではなく、
いずれも好ましくない。 【0019】本発明による複合難燃繊維が優れた難燃性
を有する理由は、Sb含有ポリクラール繊維にガス型の
難燃効果を有するSb化合物が多量に混合されているた
め、火源に接したとき、不燃性のハロゲン化水素、ハロ
ゲン、ハロゲン化アンチモンなどのガスを比較的低温で
生成するとともに不燃性の分解物が可燃性の繊維を被覆
してしまうためと推察される。 【0020】前記天然繊維の具体例としては、たとえば
綿、麻などの植物繊維や、羊毛、絹などの動物繊維な
ど、また化学繊維の具体例としては、たとえばレーヨン
繊維、キュプラ繊維などの再生繊維、アセテート繊維な
どの半合成繊維、あるいはナイロン繊維、ポリエステル
繊維、アクリル繊維などの合成繊維などがあげられる
が、これらに限定されるものではない。これらの天然繊
維や化学繊維は単独でSb含有ポリクラール繊維と複合
してもよく、2種以上でSb含有ポリクラール繊維と複
合してもよい。 【0021】本発明に用いるSb含有ポリクラール繊維
は、無機金属化合物などの難燃剤を多量に含むものであ
るが、製造に際しては無機金属化合物などの難燃剤を振
動ミルなどで充分に粉砕し、粒径を2μm以下に揃える
ことにより、ノズル詰まりや糸切れなどの紡糸上のトラ
ブルを起こすことなく、通常の紡糸方法で製造すること
ができる。また必要に応じSb含有ポリクラール繊維の
ダル性や繊維表面の平滑性を変えるために、コロイド状
Sb微粉体やSbのコロイド水溶液を紡糸原液に添加し
たり、あるいは水溶性Sb化合物の水溶液をノズル直前
の紡糸原液に混合したのち紡糸し、実質的に水不溶性の
Sb化合物の形で繊維中に含有させたりしてもよい。 【0022】複合難燃繊維を製造する方法としては、単
繊維の状態で混綿したり、混紡したりしてもよく、また
交撚してもよく、それぞれの糸を製造したのち交織して
もよく、紡績のときに固まりにしてスラブやネップにし
たり、巻きつけたりしてもよい。 【0023】なお、本明細書における繊維とは、長繊
維、短繊維のごときいわゆる繊維のみならず、糸、織
物、編物、不織布などのごとき繊維製品をも含む概念で
ある。 【0024】本発明による複合難燃繊維には必要に応じ
て、帯電防止剤、熱着色防止剤、耐光性向上剤、白度向
上剤、失透性防止剤などを含有せしめてもよいことは当
然のことである。 【0025】このようにして本発明の製法によりえられ
る複合難燃繊維は、所望の難燃性を有し、しかも混合す
る他の繊維の視感、風合、吸湿性、耐洗濯性、耐久性な
どの特性を併有している。 【0026】以下、実施例をあげて本発明の製法をさら
に詳しく説明するが、本発明はかかる実施例のみに限定
されるものではない。なお、実施例における繊維の難燃
性は酸素指数法(LOI法)によって下記のようにして
測定した。これは、一般に繊維の難燃性は織物の状態で
測定、評価されているが、織物では糸の撚数、太さ、打
込本数などにより燃焼性に差を生じ、繊維自体の難燃性
を正しく評価しえないためである。 【0027】(燃焼性)所定の割合で混綿した綿を2g
取り、これを8等分して約6cmのコヨリを8本作って酸
素指数試験器のホルダーに直立させ、この試料が5cm燃
え続けるのに必要な最少酸素濃度を測定し、これをLO
I値とした。LOI値が大きい程燃えにくく、難燃性が
高い。 【0028】製造例1〜2 平均重合度1700、ケン化度99モル%のPVAを70℃で水
に溶解して16%のPVA水溶液を調製し、これに濃度30
%のポリ塩化ビニル(以下、PVCという)エマルジョ
ンを加え、さらに別途調製した50%濃度の三酸化アンチ
モン(平均粒径1.1 μm)水分散液を加えてよく撹拌
し、重量比でPVC:PVA:三酸化アンチモン=50:
50:15で、かつ樹脂濃度が21.0%の紡糸原液を調製し
た。 【0029】この紡糸原液を湿式エマルジョン紡糸法に
より45℃の飽和芒硝水溶液(350g/リットル)中に吐出
し、ついで95℃の飽和芒硝水溶液中で熱処理し、水洗し
たのち、乾燥、延伸、熱処理を行なった。 【0030】えられた繊維をさらに70℃のアセタール化
浴中でアセタール化したのち、炭酸ナトリウム水溶液で
中和、水洗、乾燥を行ない、重量比でPVC:部分アセ
タール化PVA:三酸化アンチモン=49:51:15の2d
の高度に難燃性を付与したSb含有ポリクラール繊維を
えた(製造例1)。 【0031】一方、三酸化アンチモンのかわりにメタス
ズ酸を前記樹脂に対し15%添加したものを同様に紡糸
し、重量比でPVC:部分アセタール化PVA:メタス
ズ酸=50:50:15の2dのポリクラール繊維を比較のため
に製造した(製造例2)。 【0032】実施例1〜4および比較例1〜9 製造例1でえられたSb含有ポリクラール繊維および比
較のためのポリクラール繊維のそれぞれと綿とを表1に
示す割合で混綿し、複合繊維をえた。 【0033】えられた複合繊維を用いて燃焼性試験用試
料を作製し、LOI値を測定した。それらの結果を表1
および図1に示す。 【0034】また、複合繊維が綿としての特徴(視感、
風合など)を有するか否かについて官能試験を行なっ
た。それらの結果を表1に示す。 【0035】なお、表1中の○は綿としての特徴を有す
る、×は有しないことを示す。 【0036】 【表1】 【0037】表1の結果から、本発明に用いるSb含有
ポリクラール繊維(製造例1)は、ポリクラール繊維
(製造例2)と比べ、綿と混綿したばあい、綿の混合割
合が20〜85部では本発明に用いるSb含有ポリクラール
繊維を用いた方がポリクラール繊維を用いたものよりも
難燃性の低下が非常に少なく、高いLOI値を示し、難
燃性に優れることがわかる。 【0038】実施例5 製造例1でえられた三酸化アンチモンを15%添加したポ
リクラール繊維(Sb含有ポリクラール繊維)60部と綿
などの表2に示す繊維40部とを混綿し、複合繊維をえた
(綿のばあい実施例2の複合繊維に相当する)。 【0039】えられた複合繊維およびSb含有ポリクラ
ール繊維そのものを用いてそれぞれのLOI値を求め、
その差を求めた。それらの結果を表2に示す。 【0040】比較例10 製造例2でえられたメタスズ酸15%を用いたポリクラー
ル繊維を用いて実施例5と同様にして混綿し、複合繊維
をえた。 【0041】えられた複合繊維およびポリクラール繊維
そのものを用いてそれぞれのLOI値を求め、その差を
求めた。それらの結果を表2に示す。 【0042】 【表2】【0043】表2の結果から、製造例1でえられたSb
含有ポリクラール繊維を用いた本発明の複合繊維(実施
例5)は、製造例2でえられたメタスズ酸を用いた複合
繊維(比較例10)と比較してLOI値の低下が少ないこ
とがわかる。 【0044】製造例3〜9 PVC:部分アセタール化PVA:三酸化アンチモンを
重量比でそれぞれ49:51:0、49:51:2、49:51:
6、49:51:10、49:51:20、49:51:50、49:51:70
(それぞれ製造例3〜9)にかえたほかは、製造例1と
同様にしてポリクラール繊維(製造例3)、Sb含有ポ
リクラール繊維(製造例6〜8)および比較のためのS
b含有ポリクラール繊維(製造例4、5、9)をえた。 【0045】なお、PVC:部分アセタール化PVA:
三酸化アンチモンが49:51:70のばあいには、ノズルが
詰まり、糸切れが発生した。 【0046】実施例6〜8および比較例11〜14 製造例3〜9でえられたポリクラール繊維、Sb含有ポ
リクラール繊維および比較のためのSb含有ポリクラー
ル繊維それぞれ50部と綿50部とを混綿し、複合繊維をえ
た。 【0047】えられた複合繊維を用いてLOI値を測定
した。結果を表3に示す。 【0048】 【表3】 【0049】表3の結果から、三酸化アンチモンの添加
量が10〜50%のポリクラール繊維(Sb含有ポリクラー
ル繊維)を用いると、Sb含有ポリクラール繊維50部と
綿50部との複合繊維の難燃性を高度にしうることがわか
る。しかも、これらのSb含有ポリクラール繊維はノズ
ル詰まりや糸切れなどの紡糸上の問題なしに製造しう
る。 【0050】 【発明の効果】本発明の複合難燃繊維を用いると、所望
の難燃性を有し、しかも単一の難燃性繊維のみからでは
えがたい、視感、風合、吸湿性、耐洗濯性、耐久性など
の特徴を持ったインテリア繊維製品や衣料用繊維製品が
えられ、消費者のますます多様化し、高度化する要求に
こたえることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mixes polyclar fiber highly flame-retarded with a flame retardant with other fibers to provide excellent feeling and hygroscopicity. And a method for producing a composite flame-retardant fiber having flame retardancy. In recent years, there has been a strong demand for flame retardancy not only in interiors but also in textile products for clothing, and in addition to flame retardancy, visual feeling, texture, hygroscopicity, washing resistance, durability, etc. The demand for the performance of is increasing. [0003] Conventionally, research on flame retardation of fibers has been conducted mainly on modacrylic fibers and polyclar fibers, and single fibers such as polyester fibers and viscose rayon fibers have been studied. Although some fibers have excellent flame-retardant performance as a single substance, the present situation is that they have hardly met the increasingly diverse and sophisticated demands of consumers. Therefore, it is inevitably necessary to mix cotton, flame-spun fibers, and other fibers with each other, but there are few studies on flame-retardant composite fibers in which two or more different kinds of fibers are mixed. For example, a composite fiber obtained by mixing phosphorus-containing polyester fiber and acrylonitrile fiber (Japanese Patent Publication No. 52-2).
1612) and composite fibers made by mixing polyclar fibers containing stannic acid and antimonic acid with polyester fibers, acrylic fibers, cotton, etc. (JP-A-53-6617) are effective. It is hard to say that it has sufficient flame retardancy, texture, and hygroscopicity. SUMMARY OF THE INVENTION The present invention meets consumers' increasingly diverse and sophisticated requirements for flame retardancy, visibility, feeling, moisture absorption, washing resistance, durability and the like. It was made to solve the problem of the lack of fibers. The inventors of the present invention have made extensive studies in view of the above-mentioned circumstances, and as a result, have made a polyclar fiber containing a large amount of Sb compound and highly flame-retarded,
It has been found that, when mixed with other combustible fibers to form a composite fiber, the degree of reduction in flame retardancy is extremely small as compared with the conventional flame retardant fiber, and the present invention has been completed. That is, the present invention relates to a halogen-containing vinyl.
System polymer / partially acetalized polyvinyl alcohol (hereinafter referred to as partially acetalized PVA) is 6/4 - by weight
To a polymer mixture which is 4/6, and 8 to 5 for said polymer mixture
85 to 15 parts of fibers produced by containing 0% (wt%, the same below) of Sb compound (parts by weight, the same below) and at least one fiber 15 to 15 selected from the group consisting of natural fibers and chemical fibers A process for producing a composite flame-retardant fiber, characterized in that when a composite flame-retardant fiber is produced by combining 85 parts with a total amount of 100 parts, an Sb compound having a particle size of 2 μm or less is used. The present invention provides a composite flame-retardant fiber having desired flame retardancy and satisfying performances such as visual feeling, feeling, hygroscopicity, washing resistance and durability. EXAMPLES Halogen-containing vinyl polymers used in the present invention
(Hereinafter, abbreviated as halogen-containing polymer) , for example, vinyl chloride, homopolymers or copolymers of halogen-containing monomers such as vinylidene chloride, monomers copolymerizable with these halogen-containing monomers, such as acrylonitrile, styrene, Examples thereof include, but are not limited to, a copolymer with vinyl acetate and an acrylic ester, and a graft polymer in which a halogen-containing monomer is grafted on a PVA-based polymer. These halogen-containing polymers may be used alone or in combination. The chlorine content of the halogen-containing polymer is preferably 20% or more in order to maintain flame retardancy. The partially acetalized PVA used in the present invention is not particularly limited, and the partially acetalized PVA used for ordinary fiber production can be used. In the present invention, a polymer mixture having a halogen-containing polymer / partially acetalized PVA in a weight ratio of 6/4 to 4/6 (hereinafter referred to as a halogen-containing polymer / partially acetalized PVA mixture) is Fibers made from compositions containing 8-50% Sb compound to halogen-containing polymer / partially acetalized PVA mixture (hereinafter Sb
(Containing polyclar fiber) is used. When the ratio of the halogen-containing polymer in the halogen-containing polymer / partial acetalized PVA mixture is smaller than the above range, the desired high flame retardancy cannot be obtained, and conversely, the partial acetalized PVA of If the ratio is less than the above range, stability and spinnability of a spinning dope containing an aqueous emulsion of a halogen-containing polymer and a partially acetalized PVA aqueous solution mixture, or deterioration of general fiber performance such as strength and heat resistance occurs. Not preferable. The Sb compound used in the present invention is used as a flame retardant, and specific examples thereof include antimony oxide (Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5, etc.), antimonic acid, antimony oxychloride. Examples of the inorganic antimony compound include, but are not limited to. These may be used alone or in combination of two or more. Halogen-containing polymer / partially acetalized P
The ratio of Sb compound to the VA mixture is 8-50%, preferably 8-40%. If the amount is less than 8%, it is necessary to increase the mixing ratio of the antimony-containing polyclar fiber in the composite flame-retardant fiber in order to obtain the flame-retardant property required as the composite flame-retardant fiber. , It becomes difficult to obtain performances such as visual feeling, feeling, hygroscopicity, washing resistance, and durability. On the other hand, when the amount exceeds 50%, nozzle clogging during production of Sb-containing polyclar fiber and deterioration of fiber physical properties (strength, elongation, etc.) occur, and Sb-containing polyclar fiber which is highly flame-retardant. This is not preferable because it causes problems in terms of manufacturing and quality. In the present invention, the amount of the flame retardant based on the halogen-containing polymer / partially acetalized PVA mixture is 8 to.
50%, which may be used in combination with other flame retardants. Examples of the flame retardant that can be used in combination with the Sb compound include inorganic materials such as stannic oxide, metastannic acid, stannous oxyhalide, stannic oxyhalide, stannous hydroxide and the like. Tin compounds, aromatic halides such as hexabromobenzene, aliphatic halides such as chloroparaffin, halogen-containing phosphorus compounds such as tris (2,3-dichloropropyl) phosphate, organic phosphorus compounds such as dibutylaminophosphate, polyphosphoric acid Examples thereof include inorganic phosphorus compounds such as ammonium. In the present invention, 100 parts of the composite flame-retardant fiber of the present invention comprises 15 to 85 parts of Sb-containing polyclar fiber and 85 to 15 parts of at least one fiber selected from the group consisting of natural fibers and chemical fibers. Is manufactured. The proportion of the Sb-containing polyclar fiber used in the present invention and at least one fiber selected from the group consisting of natural fibers and chemical fibers depends on the flame retardancy, visual sensation, texture and moisture absorption required for the final product. It is determined by performance such as durability, washing resistance and durability. In addition, the above-mentioned use ratio is determined depending on the kind and composition ratio of the halogen-containing polymer used for producing the Sb-containing polyclar fiber, the kind and addition amount of the flame retardant, the kind and combination of fibers mixed in the composite flame-retardant fiber, etc. Can be decided. Less than 15 parts of the Sb-containing polyclar fiber, that is, the ratio of natural fiber and chemical fiber to be mixed is
When the mixing ratio exceeds 85 parts, the composite fiber has poor flame retardancy, while the Sb-containing polyclar fiber exceeds 85 parts,
When the mixing ratio of the natural fiber and the chemical fiber to be mixed is less than 15 parts, other visual feeling, texture, although excellent in flame retardancy,
Performance such as hygroscopicity, washing resistance, durability is not sufficient,
Neither is preferred. The reason why the composite flame-retardant fiber according to the present invention has excellent flame retardancy is that the Sb-containing polyclar fiber is mixed with a large amount of the Sb compound having a gas-type flame-retardant effect, and thus it comes into contact with the fire source. At this time, it is presumed that gases such as incombustible hydrogen halide, halogen, and antimony halide are generated at a relatively low temperature, and the incombustible decomposition product covers the combustible fiber. Specific examples of the natural fibers include vegetable fibers such as cotton and hemp, animal fibers such as wool and silk, and specific examples of the chemical fibers include regenerated fibers such as rayon fibers and cupra fibers. Examples thereof include, but are not limited to, semi-synthetic fibers such as acetate fibers, and synthetic fibers such as nylon fibers, polyester fibers, and acrylic fibers. These natural fibers and chemical fibers may be compounded with the Sb-containing polyclar fiber alone, or two or more of them may be compounded with the Sb-containing polyclar fiber. The Sb-containing polyclar fiber used in the present invention contains a large amount of a flame retardant such as an inorganic metal compound. During production, the flame retardant such as an inorganic metal compound is sufficiently crushed by a vibration mill or the like to have a particle size of By adjusting the thickness to 2 μm or less, it is possible to carry out the production by a normal spinning method without causing a trouble in spinning such as nozzle clogging or yarn breakage. In addition, colloidal Sb fine powder or a colloidal aqueous solution of Sb may be added to the spinning dope, or an aqueous solution of a water-soluble Sb compound may be added immediately before the nozzle in order to change the dullness of the Sb-containing polyclar fiber and the smoothness of the fiber surface. After mixing with the spinning dope of (1) and then spinning, it may be contained in the fiber in the form of a substantially water-insoluble Sb compound. As a method for producing the composite flame-retardant fiber, it is possible to mix cotton in the state of a single fiber, mix-spin it, or twist it. Of course, it may be lumped into a slab, a nep, or wound during spinning. The term "fiber" in the present specification is a concept including not only so-called fibers such as long fibers and short fibers but also fiber products such as yarns, woven fabrics, knitted fabrics and non-woven fabrics. If desired, the composite flame-retardant fiber according to the present invention may contain an antistatic agent, a heat discoloration preventing agent, a light resistance improving agent, a whiteness improving agent, a devitrification preventing agent and the like. Of course. Thus, the composite flame-retardant fiber obtained by the production method of the present invention has desired flame-retardant properties, and the visual feeling, feel, hygroscopicity, washing resistance and durability of other fibers to be mixed. It also has characteristics such as sex. Hereinafter, the production method of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to such Examples. The flame retardancy of the fibers in the examples was measured by the oxygen index method (LOI method) as follows. This is because the flame retardancy of the fiber is generally measured and evaluated in the state of the woven fabric, but in the woven fabric, the flammability of the fiber itself changes due to the difference in the flammability depending on the number of twists, the thickness, and the number of threads. Because it cannot be evaluated correctly. (Combustibility) 2 g of cotton mixed in a predetermined ratio
Take this, divide it into 8 equal pieces, and make 8 pieces of 6 cm-long twist, stand upright on the holder of the oxygen index tester, measure the minimum oxygen concentration required for this sample to continue burning for 5 cm, and use this LO
The I value was used. The larger the LOI value, the harder it is to burn and the higher the flame resistance. Production Examples 1-2 PVA having an average degree of polymerization of 1700 and a saponification degree of 99 mol% was dissolved in water at 70 ° C. to prepare a 16% PVA aqueous solution.
% Polyvinyl chloride (hereinafter referred to as PVC) emulsion, and a separately prepared 50% concentration antimony trioxide (average particle size 1.1 μm) aqueous dispersion is added and well stirred, and the weight ratio of PVC: PVA: Antimony trioxide = 50:
A spinning stock solution with a resin concentration of 21.0% was prepared at 50:15. This spinning solution was discharged into a saturated Glauber's salt aqueous solution (350 g / liter) at 45 ° C. by a wet emulsion spinning method, then heat treated in a saturated Glauber's salt aqueous solution at 95 ° C., washed with water, dried, stretched and heat treated. I did. The obtained fiber is further acetalized in an acetalization bath at 70 ° C., neutralized with an aqueous sodium carbonate solution, washed with water and dried, and the weight ratio of PVC: partially acetalized PVA: antimony trioxide = 49. : 51:15 2d
The Sb-containing polyclar fiber with high flame retardancy was obtained (Production Example 1). On the other hand, in the same manner, 15% metastannic acid was added to the above resin instead of antimony trioxide, and the same spinning was performed, and the weight ratio of PVC: partially acetalized PVA: metastannic acid = 50: 50: 15 was 2d. Polyclar fiber was produced for comparison (Production Example 2). Examples 1 to 4 and Comparative Examples 1 to 9 Each of the Sb-containing polyclar fiber obtained in Production Example 1 and the polyclar fiber for comparison and cotton were mixed at a ratio shown in Table 1 to form a composite fiber. I got it. A sample for flammability test was prepared by using the obtained conjugate fiber, and LOI value was measured. The results are shown in Table 1.
And shown in FIG. The characteristics of the composite fiber as cotton (visual feeling,
A sensory test was conducted to determine whether or not the product had a texture). The results are shown in Table 1. In Table 1, ◯ means that cotton has characteristics, and x means that it does not. [Table 1] From the results shown in Table 1, the Sb-containing polyclar fiber (Production Example 1) used in the present invention has a cotton mixing ratio of 20 to 85 parts when compared with the Polyclar fiber (Production Example 2). It can be seen that, when the Sb-containing polyclar fiber used in the present invention is used, the decrease in flame retardancy is much smaller than that using the polyclar fiber, a high LOI value is exhibited, and the flame retardancy is excellent. Example 5 60 parts of polyclar fiber (Sb-containing polyclar fiber) containing 15% of antimony trioxide obtained in Production Example 1 and 40 parts of fibers such as cotton shown in Table 2 were mixed to form a composite fiber. (Corresponding to the composite fiber of Example 2 for cotton). The LOI value of each of the obtained composite fiber and Sb-containing polyclar fiber itself was determined,
I calculated the difference. Table 2 shows the results. Comparative Example 10 Using the polyclar fiber containing 15% of metastannic acid obtained in Production Example 2 and mixing in the same manner as in Example 5, a composite fiber was obtained. The LOI value of each of the obtained conjugate fiber and polyclar fiber itself was determined, and the difference between them was determined. Table 2 shows the results. [Table 2] From the results of Table 2, Sb obtained in Production Example 1
It can be seen that the conjugate fiber of the present invention using the contained polyclar fiber (Example 5) has less decrease in LOI value as compared with the conjugate fiber using metastannic acid obtained in Production Example 2 (Comparative Example 10). . Production Examples 3 to 9 PVC: partially acetalized PVA: antimony trioxide in weight ratio of 49: 51: 0, 49: 51: 2, 49:51: respectively.
6, 49:51:10, 49:51:20, 49:51:50, 49:51:70
(Reproduction Examples 3 to 9), except that the polyclar fiber (Production Example 3), the Sb-containing polyclar fiber (Production Examples 6 to 8) and the S for comparison were prepared in the same manner as in Production Example 1.
b-containing polyclar fibers (Production Examples 4, 5, and 9) were obtained. PVC: partially acetalized PVA:
When antimony trioxide was 49:51:70, the nozzle was clogged and thread breakage occurred. Examples 6-8 and Comparative Examples 11-14 50 parts of cotton and 50 parts of cotton, respectively, of the polyclar fiber obtained in Production Examples 3-9, the Sb-containing polyclar fiber and the comparative Sb-containing polyclar fiber were mixed. , A composite fiber was obtained. The LOI value was measured using the obtained conjugate fiber. The results are shown in Table 3. [Table 3] From the results shown in Table 3, when polyclar fiber containing 10 to 50% of antimony trioxide (Sb-containing polyclar fiber) is used, the flame retardancy of a composite fiber of 50 parts of Sb-containing polyclar fiber and 50 parts of cotton is shown. It turns out that sex can be advanced. Moreover, these Sb-containing polyclar fibers can be produced without problems in spinning such as nozzle clogging and yarn breakage. When the composite flame-retardant fiber of the present invention is used, it has desired flame-retardant properties, and it is difficult to obtain a single flame-retardant fiber. The interior textile products and textile products for clothing, which have characteristics such as durability, washing resistance, and durability, can be obtained, and can meet the increasingly diverse and sophisticated demands of consumers.

【図面の簡単な説明】 【図1】製造例1でえられたSb含有ポリクラール繊維
および製造例2でえられた比較のためのポリクラール繊
維のそれぞれと綿とを混綿してえられた複合繊維を用い
て求めたLOI値と混綿割合との関係を示すグラフであ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a composite fiber obtained by mixing cotton with each of the Sb-containing polyclar fiber obtained in Production Example 1 and the comparative polyclar fiber obtained in Production Example 2. It is a graph which shows the relationship between LOI value calculated | required using.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−6617(JP,A) 特開 昭52−99399(JP,A) 特開 昭48−73521(JP,A) 特公 昭57−17964(JP,B2)   ────────────────────────────────────────────────── ─── Continued front page    (56) References Japanese Unexamined Patent Publication No. 53-6617 (JP, A)                 JP-A-52-99399 (JP, A)                 JP-A-48-73521 (JP, A)                 Tokiko Sho 57-17964 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1 ハロゲン含有ビニル系高分子/部分アセタール化ポ
リビニルアルコールが重量比で6/4 〜4/6 である重合体
混合物に、該重合体混合物に対し8〜50重量%のSb化
合物を含有させて製造した繊維85〜15重量部と、天然繊
維および化学繊維よりなる群から選ばれた少なくとも1
種の繊維15〜85重量部とを総量が100重量部になるよう
に複合して複合難燃繊維を製造するに際し、Sb化合物
として粒径を2μm以下に揃えたものを使用することを
特徴とする複合難燃繊維の製法。
(57) [Claims] 1. A polymer mixture having a halogen-containing vinyl polymer / partially acetalized polyvinyl alcohol in a weight ratio of 6/4 to 4/6 is added in an amount of 8 to 50 parts by weight based on the weight of the polymer mixture. % Sb compound containing 85 to 15 parts by weight of fiber, and at least 1 selected from the group consisting of natural fiber and chemical fiber.
In producing a composite flame-retardant fiber by combining 15 to 85 parts by weight of the seed fiber so that the total amount becomes 100 parts by weight, the Sb compound having a particle size of 2 μm or less is used. A method of manufacturing composite flame-retardant fiber.
JP4233635A 1992-09-01 1992-09-01 Manufacturing method of composite flame-retardant fiber Expired - Lifetime JP2550266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4233635A JP2550266B2 (en) 1992-09-01 1992-09-01 Manufacturing method of composite flame-retardant fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4233635A JP2550266B2 (en) 1992-09-01 1992-09-01 Manufacturing method of composite flame-retardant fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59244130A Division JPH0611930B2 (en) 1984-10-05 1984-11-19 Composite flame retardant fiber

Publications (2)

Publication Number Publication Date
JPH05239728A JPH05239728A (en) 1993-09-17
JP2550266B2 true JP2550266B2 (en) 1996-11-06

Family

ID=16958134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4233635A Expired - Lifetime JP2550266B2 (en) 1992-09-01 1992-09-01 Manufacturing method of composite flame-retardant fiber

Country Status (1)

Country Link
JP (1) JP2550266B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4873521A (en) * 1972-01-11 1973-10-04
US4035542A (en) * 1974-05-16 1977-07-12 Celanese Corporation Flame retardant fiber blend containing fibers which if present apart from the admixture undergo burning
JPS5114640A (en) * 1974-07-24 1976-02-05 Daifuku Machinery Works Yokiotasudanni keishihojikanona unpansha
JPS5128137A (en) * 1974-09-03 1976-03-09 Kojin Kk NANNENSEIJUSHISOSEIBUTSU
JPS536617A (en) * 1976-07-07 1978-01-21 Kohjin Co Ltd Composite fibers
JPS5933207B2 (en) * 1976-09-27 1984-08-14 株式会社千野製作所 Uniaxial scanning radiation thermometer
JPS5717964A (en) * 1980-07-07 1982-01-29 Minolta Camera Co Ltd Dust figure transfer type electrophotographing copying method

Also Published As

Publication number Publication date
JPH05239728A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US4863797A (en) Flame-retarded composite fiber
US5208105A (en) Flame-retarded composite fiber
JP2593985B2 (en) Textile products for bedding
JP2693129B2 (en) Flame-retardant fiber composite and fabric manufactured using the same
JP2550266B2 (en) Manufacturing method of composite flame-retardant fiber
JP2593989B2 (en) Interior textile products
JP3531358B2 (en) Flame retardant fiber composite using halogen-containing fiber
JP2593988B2 (en) Textile products for clothing
JP3525237B2 (en) Flame retardant fiber composite using halogen-containing fiber
JPH0611930B2 (en) Composite flame retardant fiber
JP2898563B2 (en) Flame retardant method for combustible fibers
JP3004107B2 (en) Flame retardant fiber composite
JP2505352B2 (en) Composite flame retardant fiber
JPH08158201A (en) Flame retardant fabric excellent in light fastness
JP2812672B2 (en) Manufacturing method of flame retardant fiber composite
JP2968343B2 (en) Composite flame retardant fiber
JP2505377B2 (en) Composite flame retardant fiber
JPH0368134B2 (en)
JPH10245731A (en) Flame-retardant two-layered yarn and fabric comprising the same
JPH08209490A (en) Heat and flame resistant cloth
JPS59204918A (en) Flame-retardant acrylic synthetic yarn
JP2007270408A (en) Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product using the same
JP2007154338A (en) Flame-retardant fabric for cover