JP2549623B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP2549623B2
JP2549623B2 JP61020065A JP2006586A JP2549623B2 JP 2549623 B2 JP2549623 B2 JP 2549623B2 JP 61020065 A JP61020065 A JP 61020065A JP 2006586 A JP2006586 A JP 2006586A JP 2549623 B2 JP2549623 B2 JP 2549623B2
Authority
JP
Japan
Prior art keywords
thickness
copper
pressure
semiconductor device
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61020065A
Other languages
Japanese (ja)
Other versions
JPS6297356A (en
Inventor
昌壽 金谷
敏夫 小川
行雄 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Publication of JPS6297356A publication Critical patent/JPS6297356A/en
Application granted granted Critical
Publication of JP2549623B2 publication Critical patent/JP2549623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、冷間圧接(コールドウェルド)により封止
される半導体装置とその製造方法に関するもので、特に
冷間圧接部分の母材が銅板である平型電力用半導体装置
とその製造方法に使用される。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor device sealed by cold pressure welding (cold weld) and a method for manufacturing the same, and particularly, a base material of a cold pressure welding part is a copper plate. It is used in a flat type power semiconductor device and a manufacturing method thereof.

[発明の技術的背景] 半導体装置は信頼性の面から通常N2ガス等の不活性ガ
スを装置内部に封入し、外気と遮断する必要があり、そ
のため外囲器は密閉構造となっている。従来半導体装
置、特に平型電力用半導体装置の気密封止技術として一
般にTig溶接(アーク溶接)が用いられている。しかし
近年これを冷間圧接技術により封止する傾向があり、既
に平型電力用半導体装置の一部製品には実際に適用され
はじめている。冷間圧接法は被圧接部材間に大きな加圧
力を加え、外部から熱を加えることなしに常温で接合す
る方法である。
[Technical background of the invention] For reliability of a semiconductor device, it is usually necessary to seal an inert gas such as N 2 gas inside the device to shut it off from the outside air. Therefore, the envelope has a closed structure. . Conventionally, Tig welding (arc welding) is generally used as a hermetically sealing technique for semiconductor devices, especially flat power semiconductor devices. However, in recent years, there is a tendency to seal this by a cold pressure welding technique, and it has already begun to be actually applied to some products of the flat type power semiconductor device. The cold pressure welding method is a method in which a large pressure is applied between the members to be pressure-bonded and the members are bonded at room temperature without applying heat from the outside.

冷間圧接法により封止される平型電力用半導体装置の
従来例について図面に基づいて説明する。第3図はこの
装置の側面図であり、被圧接金属板の外周部近傍のみA
−A線断面(第4図参照)を示している。第4図は第3
図の平面図である。1及び5は平型半導体装置(例えば
ダイオード)の電極ポストである。2はセラミック等の
絶縁物円筒の外囲器部分で、電極ポスト1と電極ポスト
5とを絶縁すると共に内部に半導体チップ(図示なし)
を収容する。3は上部被圧接金属板、4は下部被圧接金
属板で一般に銅板が使用される。上記被圧接金属板3は
絶縁物円筒部2に固着され、下部被圧接金属板4は電極
ポスト5に固着されている。前記2つの被圧接金属板3
及び4は互いに重ね合わされ、その外周縁から所定の距
離lを隔てた内側の環状部分6を冷間圧接して気密封止
される。第5図はこの封止工程を説明するための部分断
面図を含む側面図である。前記2つの被圧接金属板3及
び4は上部圧接ダイス7及び下部圧接ダイス8とに挾ま
れ、プレス等の圧力印加装置により室温で加圧して接合
封止される。第6図及び第7図は上部圧接ダイス7の主
要部を示す概要図で、第6図はB−B線断面図(第7図
参照)、第7図はその平面図である。下部圧接ダイス8
の主要部は通常上部圧接ダイス7と同形である。9は圧
接ダイス7の圧入部であり、圧入部9の形状は通常断面
台形の環状形である。10,11及び12は圧入部9のそれぞ
れ先端加圧面、外側加圧面及び内側加圧面である。
A conventional example of a flat-type power semiconductor device sealed by a cold pressure welding method will be described with reference to the drawings. FIG. 3 is a side view of this apparatus, in which only the vicinity of the outer peripheral portion of the pressure-contacted metal plate is A
The -A line cross section (refer FIG. 4) is shown. Figure 4 is the third
It is a top view of a figure. Reference numerals 1 and 5 are electrode posts of a flat semiconductor device (for example, a diode). Reference numeral 2 denotes an envelope portion of an insulating cylinder such as ceramic, which insulates the electrode posts 1 and 5 from each other and has a semiconductor chip (not shown) inside.
To accommodate. 3 is an upper pressure-contacting metal plate, and 4 is a lower pressure-contacting metal plate, which is generally a copper plate. The pressure-contacting metal plate 3 is fixed to the insulator cylindrical portion 2, and the lower pressure-contacting metal plate 4 is fixed to the electrode post 5. The two pressed metal plates 3
And 4 are superposed on each other, and an inner annular portion 6 separated from the outer peripheral edge thereof by a predetermined distance l is cold-pressed to hermetically seal. FIG. 5 is a side view including a partial cross-sectional view for explaining this sealing step. The two pressure-contacting metal plates 3 and 4 are sandwiched between an upper pressure-contacting die 7 and a lower pressure-contacting die 8, and are pressed and sealed at room temperature by a pressure applying device such as a press. 6 and 7 are schematic views showing the main part of the upper press-contact die 7, FIG. 6 is a sectional view taken along the line BB (see FIG. 7), and FIG. 7 is a plan view thereof. Lower pressure welding die 8
The main part of is normally the same shape as the upper pressure welding die 7. Reference numeral 9 is a press-fitting portion of the press-fitting die 7, and the shape of the press-fitting portion 9 is usually an annular shape having a trapezoidal cross section. Reference numerals 10, 11 and 12 denote a tip pressing surface, an outer pressing surface and an inner pressing surface of the press-fitting portion 9, respectively.

冷間圧接により被圧接金属板3,4の環状部分6は加圧
され塑性変形を受ける。冷間圧接技術における被圧接金
属板間の接合は、塑性変形の過程で両金属板のそれぞれ
の金属原子が相互に部分的に金属結合するためと考えら
れている。平型電力用半導体装置の封止に冷間圧接技術
を用いるのは最近のことであり、現在被圧接金属板には
主として銅板が使用されている。また一部においてはこ
の銅板にNiメッキを施して使用される例もあるがいずれ
の場合においても熱処理は行なわれていない。
By the cold pressure welding, the annular portions 6 of the pressure-welded metal plates 3 and 4 are pressed and subjected to plastic deformation. It is considered that the welding between the pressure-welded metal plates in the cold pressure welding technique is because the respective metal atoms of both metal plates are partially metal-bonded to each other during the plastic deformation process. The cold pressure welding technique has recently been used for sealing a flat type power semiconductor device, and at present, a copper plate is mainly used as a pressure-welded metal plate. In some cases, the copper plate is plated with Ni for use, but in any case, heat treatment is not performed.

[背景技術の問題点] 平型電力用半導体装置の封止においては、圧接封止部
分は円環状の広い領域にわたっている。従来の冷間圧接
技術ではこの全領域にわたって完全な金属結合を得るこ
とが困難で、円環状の圧接部分の一部或いは全面に微小
孔が生じる場合が多い。圧接部分の密封性の良否は外囲
器内部にヘリウムガスを注入し、圧接部分から外部に洩
れるヘリウムガスのリーク量(atom・cc/sec)で計測さ
れる。Tigの場合、基準リーク量は、例えば10-8atom・c
c/sec以下とされている。冷間圧接による場合は従来のT
ig溶接の場合に比し密封性が著しく低く、この基準リー
ク量以外の半導体装置を得ることが難しい。このため被
圧接金属が銅の場合、銅板表面に薄くNiメッキ或いはCr
メッキした後に冷間圧接をすることが一部でおこなわれ
ているが効果は不充分である。圧接部分の全面を完全な
金属結合に至らしめ、基準リーク量以内の密封度とする
冷間圧接技術は未知である。
[Problems of the Background Art] In the sealing of a flat power semiconductor device, the pressure-sealed portion covers a wide annular region. It is difficult to obtain a perfect metallurgical bond over the entire area by the conventional cold pressure welding technique, and micropores are often formed in a part or the whole of the annular pressure welding portion. The quality of the sealing property of the press contact part is measured by injecting helium gas inside the envelope and measuring the leak amount of the helium gas leaking from the press contact part to the outside (atom cc / sec). In the case of Tig, the standard leak amount is, for example, 10 −8 atom · c.
It is less than c / sec. Conventional T when cold pressure welding is used
The hermeticity is remarkably low as compared with the case of ig welding, and it is difficult to obtain a semiconductor device having a leak amount other than the reference leak amount. Therefore, if the metal to be pressed is copper, the surface of the copper plate should be thinly plated with Ni or Cr.
Some parts are cold-pressed after plating, but the effect is insufficient. The cold pressure welding technology, which achieves complete metallurgical bonding on the entire surface of the pressure welding portion and the degree of sealing is within the standard leak amount, is unknown.

[発明の目的] 本発明の目的は、冷間圧接により封止する半導体装置
とその製造方法において、Niメッキされた銅の被圧接金
属板が完全な金属結合を有するための条件を求め、これ
によりTig溶接と同等の高い密封性を有する半導体装置
とその製造方法を提供することである。
[Object of the Invention] An object of the present invention is to find a condition for a pressure-bonded metal plate of Ni-plated copper to have a perfect metal bond in a semiconductor device and a manufacturing method thereof that are sealed by cold pressure welding. Is to provide a semiconductor device having a high sealing property equivalent to that of Tig welding and a manufacturing method thereof.

[発明の概要] 本発明は、Niメッキされた銅の被圧接金属板を冷間圧
接して封止する場合、密封性の良否を決定する主たる要
因は被圧接金属板の板厚tCu、Niメッキの厚さtNi及び圧
接部分の変形率Rであるという知見に基づき、試行を重
ね、そのデータを重回帰分析の手法等を用いて処理検証
してなされたものである。また他の本発明は、Niメッキ
された銅の被圧接金属板を熱処理してNiメッキ層と銅板
との界面にCuとNiとの相互拡散層を形成して後、冷間圧
接を行うと、より安定した気密封止が得られる場合が多
いという知見に基づいておこなわれた。
[Summary of the Invention] In the present invention, when a pressure-bonded metal plate of Ni-plated copper is cold-pressed and sealed, the main factor that determines the quality of the sealing property is the thickness t Cu of the pressure-bonded metal plate, Based on the knowledge that it is the thickness t Ni of Ni plating and the deformation rate R of the pressure contact portion, trials were repeated, and the data was processed and verified using a method of multiple regression analysis and the like. Still another aspect of the present invention is to heat-treat a pressure-bonded metal plate of Ni-plated copper to form an interdiffusion layer of Cu and Ni at the interface between the Ni-plated layer and the copper plate, and then perform cold pressure welding. , It was conducted based on the finding that more stable hermetic sealing is often obtained.

即ち本発明は、半導体基体の外囲器としての一方のア
ッセンブリには、電極ポストと絶縁物円筒部と金属板を
有し、電極ポストと絶縁物円筒部とはそれぞれの端部で
密着結合されるとともに絶縁物円筒部の他端は金属板の
一端で密着結合され、また半導体基体の外囲器としての
他方のアッセンブリには、電極ポストと金属板を有して
密着結合され、各アッセンブリは両金属板が互いにその
面を接触するように配置、積層され、積層された両アッ
センブリの内部には半導体基体を組みこみ、かつ、接触
した2つの金属板の外周縁から、所定の距離を隔てた内
側の環状部分を冷間圧接して気密封止される半導体装置
において、(1)前記2つの被圧接金属板の前記冷間圧
接部分の銅板の厚さtCuがいずれも200μmないし800μ
mであり、(2)前記冷間圧接部分の2つの銅板の被圧
接面にはいずれもNiメッキがなされ、そのメッキ厚さt
Niは0.5μmないし30μmであり、(3)前記冷間圧接
部分の変形率Rは10%ないし85%であり、且つ(4)R
を%、tCu及びtNiをμmで表したときのR,tCu,tNiのそ
れぞれの数値が R≧115+2.25tNi−0.21tCu ……(1) の関係式を満たすことを特徴とする半導体装置である。
That is, according to the present invention, one assembly as an envelope of a semiconductor substrate has an electrode post, an insulating cylindrical portion, and a metal plate, and the electrode post and the insulating cylindrical portion are closely bonded at their ends. At the same time, the other end of the insulating cylindrical portion is tightly coupled at one end of the metal plate, and the other assembly as the envelope of the semiconductor substrate is tightly coupled with the electrode post and the metal plate. Both metal plates are arranged and laminated so that their surfaces are in contact with each other, and a semiconductor substrate is incorporated inside both of the laminated assemblies, and a predetermined distance is provided from the outer peripheral edges of the two metal plates in contact with each other. In the semiconductor device in which the inner annular portion is cold-pressed to hermetically seal, (1) the thickness t Cu of the copper plate at the cold-pressed portion of the two pressed metal plates is 200 μm to 800 μm.
m, and (2) Ni-plating is applied to the pressure-contacted surfaces of the two copper plates in the cold pressure-bonded portion, and the plating thickness t
Ni is 0.5 μm to 30 μm, (3) the deformation ratio R of the cold pressure welded portion is 10% to 85%, and (4) R
%, T Cu and t Ni in μm, the respective values of R, t Cu , t Ni satisfy the relational expression of R ≧ 115 + 2.25t Ni −0.21t Cu (1). And a semiconductor device.

なお、本発明における変形率Rは、冷間圧接部分の銅
板の圧接前の厚さをtCu、圧接後の厚さをtCu′とすると
次式で表される。
Incidentally, deformation ratio R in the present invention is represented cold welding portion of the thickness of the t Cu before pressing the copper plate, the thickness after pressure When t Cu 'by the following equation.

R=(tCu−tCu′)/tCu×100(%) また他の本発明は、前記半導体装置の製造方法におい
て、厚さ200μmないし800μmの銅板からなる2つの被
圧接金属板のそれぞれの被圧接面に厚さ0.5μmないし3
0μmのNiメッキを施し、次に前記被圧接金属板を熱処
理して銅板とNiメッキ層との界面に銅とNiとの相互拡散
層を形成した後、冷間圧接部分の百分率で表した変形率
Rが前記(1)式の関係を満足するように冷間圧接する
ことを特徴とする製造方法である。
R = (t Cu −t Cu ′) / t Cu × 100 (%) In another aspect of the present invention, in the method for manufacturing a semiconductor device, each of two pressure-contacted metal plates made of a copper plate having a thickness of 200 μm to 800 μm. Thickness of 0.5μm to 3 on the contact surface
After applying 0 μm Ni plating and then heat-treating the pressure-bonded metal plate to form an interdiffusion layer of copper and Ni at the interface between the copper plate and the Ni-plated layer, deformation expressed as a percentage of the cold-pressed portion The manufacturing method is characterized in that cold pressure welding is performed so that the rate R satisfies the relationship of the above formula (1).

この発明により冷間圧接技術においても従来のTig溶
接と同等の密封性が得られ且つ前記銅板の厚さ等の選択
範囲が拡大された。
According to the present invention, even in the cold pressure welding technique, the sealing property equivalent to that of the conventional Tig welding can be obtained, and the selection range of the thickness and the like of the copper plate is expanded.

なお、優先権の主張の基礎とされる特願昭60−120682
号の明細書の特許請求の範囲第1項記載の半導体装置は
本明細書の特許請求の範囲第3項記載の半導体装置であ
り、前記特願昭60−120682号の明細書の特許請求の範囲
第2項記載の半導体装置は本明細書の特許請求の範囲第
6項記載の半導体装置のうちの1つの半導体装置と同じ
である。
In addition, Japanese Patent Application No. 60-120682, which is the basis for claiming priority.
The semiconductor device described in claim 1 of the specification is the semiconductor device described in claim 3 of the present specification, and the semiconductor device described in the specification of Japanese Patent Application No. 60-120682. The semiconductor device according to claim 2 is the same as one of the semiconductor devices according to claim 6 of the present specification.

[発明の実施例] 一対のNiメッキされた銅の被圧接金属板の冷間圧接の
試行を繰り返し行ない、均一な金属結合が得られる銅板
の厚さtCu、メッキ厚さtNi及び変形率Rの限界条件を調
べた。なおこの試行においては、第6図及び第7図に示
すような円筒状で、圧入部9の断面が台形状の上下一対
の圧接ダイス7,8を用い、第5図に示すように冷間圧接
を行なった。圧接後の密封性は半導体装置内部にヘリウ
ムガスを封入し、そのヘリウムガスが圧接部分を通して
外部に漏れる量を測定する方法で行なった。
[Examples of the invention] A pair of Ni-plated copper pressure-bonded metal plates subjected to repeated cold-pressure welding trials were repeatedly performed to obtain a uniform metallurgical bond. The thickness t Cu , the plating thickness t Ni, and the deformation rate of the copper plate. The limiting condition of R was investigated. In this trial, a pair of upper and lower pressure welding dies 7 and 8 each having a cylindrical shape as shown in FIGS. 6 and 7 and a trapezoidal cross section of the press-fitting portion 9 are used, as shown in FIG. Pressed. The sealing property after pressure welding was performed by a method in which helium gas was sealed inside the semiconductor device and the amount of the helium gas leaking to the outside through the pressure welding portion was measured.

銅板のある厚さtCuに対しNiメッキの厚さtNiが厚すぎ
ると基準リーク量以内の良い密封性の金属結合が得られ
ないばかりか或いは全く結合できない。この状態でtNi
のみを減少し、ある限界値tNimaxより薄くすると完全な
金属結合が得られる。またtCuとTtNiの値を一定にし
て、加圧力を変化させた場合、変形率がある限界値Rmin
を超えた時(変形を大きくしたとき)はじめて金属結合
が得られる。この理由について第1図を参照して説明す
る。第1図は圧接部分6の拡大断面図であり、3,4は被
圧接金属板、13はNiメッキ層である。上下の圧接ダイス
(5図参照)によって圧力を加えられた被圧接金属板3,
4の銅は比較的やわらかい金属であり、圧接ダイスの
内、外側加圧面から力を受け横方向即ち金属板面と平行
方向に伸びる。このとき銅母材は十分な塑性流れを生じ
て変形している。一方Niは銅より伸びが小さいので、接
合面側のNiメッキ層13は圧接ダイスの圧入部の中央近傍
で切断される。さらに荷重を加えると銅母材は伸びが進
むため切断されたNiメッキ層は両側へ引張られる。切断
されたNiメッキ層の両端間からは塑性流れの進んだ銅母
材が現れてくる。この銅母材は酸化物その他の汚染のな
い清浄な新生面であり、2枚の銅板のそれぞれの新生面
が互いに接触し、加圧されるとき、この2枚の銅板は完
全な金属結合にいたる。Niメッキ層は、清浄に処理され
た銅母材の表面を覆い、冷間圧接工程にいたるまでの
間、大気等による銅母材表面の汚染を防止し、冷間圧接
時の新生面形成を容易にするものと考えられる。以上が
Niメッキされた銅母材が完全な金属結合をするメカニズ
ムで、冷間圧接技術において極めて本質的な発見であ
る。
If the thickness t Ni of the Ni plating is too thick with respect to the certain thickness t Cu of the copper plate, not only a metal bond with good sealing property within the standard leak amount cannot be obtained, but also no bond can be obtained at all. T Ni in this state
Only a certain limit, t Ni max, below which a perfect metallic bond is obtained. When the applied pressure is changed with the values of t Cu and Tt Ni kept constant, the deformation rate reaches a certain limit value Rmin.
Only when the temperature exceeds (when the deformation is increased), a metallic bond is obtained. The reason for this will be described with reference to FIG. FIG. 1 is an enlarged cross-sectional view of the pressure contact portion 6, 3 and 4 are pressure contact metal plates, and 13 is a Ni plating layer. Pressed metal plate 3, which is pressed by the upper and lower pressure contact dies (see Fig. 5),
Copper of 4 is a relatively soft metal, and receives a force from the outer pressure surface of the pressure welding die and extends laterally, that is, in the direction parallel to the metal plate surface. At this time, the copper base material is deformed by causing sufficient plastic flow. On the other hand, since Ni has a smaller elongation than copper, the Ni plating layer 13 on the joint surface side is cut in the vicinity of the center of the press-fitting portion of the pressure welding die. When a further load is applied, the copper base material expands, so the cut Ni plating layer is pulled to both sides. A copper base material with advanced plastic flow appears between both ends of the cut Ni plating layer. The copper matrix is a clean fresh surface free of oxides and other contaminants, and when the fresh surfaces of the two copper plates are in contact with each other and pressed, the two copper plates are in perfect metallic bond. The Ni plating layer covers the surface of the cleanly treated copper base material, prevents contamination of the copper base material surface by the atmosphere and the like until the cold pressure welding process, making it easy to form a new surface during cold pressure welding. It is thought to be done. More than
The mechanism by which the Ni-plated copper base material forms a complete metallurgical bond is a very essential discovery in cold pressure welding technology.

このメカニズムにより試行結果を矛盾なく説明でき
る。例えばNiメッキ層の厚さtNiがある厚さtNimax以上
に厚い場合には、冷間圧接過程で銅母材が伸びてもNiメ
ッキ層が破断せず、従って銅の新生面を露出させること
ができなくなり、望ましい金属結合は得られない。また
変形率Rがある限界値Rminより小さい場合においても銅
の伸びが不十分となり、Niメッキ層を破断させることが
できなくなり、金属結合は得られない。一方Niメッキ層
をある限界値tNimax以上に厚くし、銅母材の厚さもこれ
に伴って厚くし、且つ銅の伸びる絶対量を増やしてやれ
ば、Niメッキ層を破断させることができ、金属結合を得
ることができる。しかしこの場合、圧接部分の変形量も
大きくなり、加工の途中で圧接部分の銅が硬化し、硬度
が著しく高くなり、銅の伸びが急激に小さくなって、Ni
メッキ層を破断することができず金属結合が得られない
場合がある。
With this mechanism, trial results can be explained consistently. For example, if the thickness t Ni of the Ni plating layer is thicker than a certain thickness t Ni max, the Ni plating layer does not break even if the copper base material stretches during the cold pressure welding process, thus exposing the new surface of copper. The desired metallurgical bond is not obtained. Even when the deformation rate R is smaller than a certain limit value Rmin, the elongation of copper is insufficient, the Ni plating layer cannot be broken, and a metal bond cannot be obtained. On the other hand, if the Ni plating layer is thickened to a certain limit value t Ni max or more, the thickness of the copper base material is also increased accordingly, and the absolute amount of copper elongation is increased, the Ni plating layer can be broken. , A metal bond can be obtained. However, in this case, the amount of deformation of the pressure contact portion also becomes large, the copper in the pressure contact portion hardens during the processing, the hardness becomes extremely high, and the elongation of the copper sharply decreases.
In some cases, the plating layer cannot be broken and a metal bond cannot be obtained.

上述のようにtCu,tNi及びRの3変数は、Niメッキさ
れた銅の被圧接金属板の冷間圧接の良否を左右する極め
て重要なパラメータである。
As described above, the three variables of t Cu , t Ni, and R are extremely important parameters that determine the quality of cold pressure welding of the Ni-plated copper pressure-welded metal plate.

次にtCu,tNi及びRをパラメータとして行なった密封
性の実験結果の一例を第1表ないし第3表に示す。この
実験では2つの被圧接金属板のtCu及びtNiは互いに等し
く、 R=(2tCu−2tCu′)/2tCu×100(%) とする。
Next, Tables 1 to 3 show an example of the results of an experiment of the sealing property performed by using t Cu , t Ni and R as parameters. In this experiment, t Cu and t Ni of the two metal plates to be pressed are equal to each other, and R = (2t Cu −2t Cu ′) / 2t Cu × 100 (%).

第1表はtCu=400μm、R=60%としてtNiを変化さ
せて、ヘリウムガスのリークレートを測定した結果であ
る。tNiが1μmないし15μmの範囲で良好な密封性を
有する金属結合が得られる。
Table 1 shows the results of measuring the leak rate of helium gas by changing t Ni with t Cu = 400 μm and R = 60%. A metal bond having a good sealing property is obtained when t Ni is in the range of 1 μm to 15 μm.

第2表はtCu=400μm、tNi=10μmとしてRを変化
させたときのリークレートを示す。Rが30%以下では金
属結合が得られないが、60%以上では極めて密封性の良
い金属結合が得られる。
Table 2 shows the leak rate when R is changed with t Cu = 400 μm and t Ni = 10 μm. When R is 30% or less, no metal bond can be obtained, but when R is 60% or more, a metal bond with excellent sealing property is obtained.

第3表はtNi=10μm、R=60%として、tCuを変化さ
せたときのリークレートを示す。tCuが200μm以下では
密封性が良くない。300μm程度からかなり密封性が良
くなる。400μm以上では極めて密封性の良い金属結合
が得られる。
Table 3 shows the leak rate when t Cu was changed, with t Ni = 10 μm and R = 60%. If t Cu is less than 200 μm, the sealing performance is not good. From about 300 μm, the sealing property is improved considerably. If it is 400 μm or more, a metal bond having a very good sealing property can be obtained.

次に第1表ないし第3表と同様の実験をtCu,tNi及び
Rの種々の数値の組合せについて行なって得られた実験
結果の一例を第2図に示す。第2図は極めて良好な密封
性を有する半導体装置を得るためのtCu,tNi及びRの限
界値を示す図表である。横軸はNiメッキの厚さ(μ
m)、縦軸は変形率R(%)である。例えばパラメータ
tCuを400μmとしたときの曲線Bは、2つの変数tNi
Rとの限界値を示す。tNi=5μmならば変形率Rは40
%以上あれば良好な結果が得られる。またtNi=15μm
のときはRは60%以上であればよい。従ってtCu=400μ
mの場合においてはRは各Niメッキ厚さtNiに対し直線
B以上(第2図の斜線で示す許容領域)の値をとればよ
い。またR=40%にするとtNiは5μm以下にする必要
があり、R=60%とすればtNiは15μm以下であればよ
い。従ってtNiは各Rの値に対し直線Bから縦軸までの
値(前記許容領域)以下とすればよい。他の直線A,Cに
ついても同様の見方をする。
Next, FIG. 2 shows an example of the experimental results obtained by conducting the same experiments as in Tables 1 to 3 for various combinations of t Cu , t Ni and R. FIG. 2 is a table showing the limit values of t Cu , t Ni and R for obtaining a semiconductor device having extremely good hermeticity. The horizontal axis is the Ni plating thickness (μ
m), the vertical axis is the deformation rate R (%). Parameters
Curve B when t Cu is 400 μm shows the limit values of two variables t Ni and R. If t Ni = 5 μm, the deformation rate R is 40
Good results are obtained when the ratio is at least%. Also, t Ni = 15 μm
In this case, R may be 60% or more. Therefore t Cu = 400μ
In the case of m, R may take a value equal to or greater than the straight line B (permissible area shown by the diagonal lines in FIG. 2) for each Ni plating thickness t Ni . When R = 40%, t Ni needs to be 5 μm or less, and when R = 60%, t Ni needs to be 15 μm or less. Therefore, t Ni should be less than or equal to the value from the straight line B to the vertical axis (the above-mentioned allowable region) for each value of R. The same applies to the other straight lines A and C.

第1表ないし第3表若しくは第2図に例示したものと
パラメータの数値を変えた多くの実験データを統計的に
処理し、重回帰分析の手法を用いて、3変数tCu,tNi
びRの間に存在する限界値を決定する(1)式を求め
た。この式は、2変数が決まった場合、残りの変数の限
界値を決定するものである。一例として、tCu=400μm
の場合tNi=5μmならば(1)式よりRは42.3%以上
あればよい。またtNi=5μm、R=42.3%であるなら
ば(1)式より計算しtCuは400μm以上必要なことがわ
かる。同様にtCu=400μm、R=42.3%と決まった場合
には(1)式よりtNiは5μm以下とすればよい。
A large number of experimental data having different parameter values from those shown in Tables 1 to 3 or 2 were statistically processed, and three variables t Cu , t Ni and The formula (1) for determining the limit value existing between R was obtained. This formula determines the limit values of the remaining variables when two variables are determined. As an example, t Cu = 400 μm
In the case of t Ni = 5 μm, R should be 42.3% or more according to the equation (1). Further, if t Ni = 5 μm and R = 42.3%, it is found from the formula (1) that t Cu needs to be 400 μm or more. Similarly, when it is determined that t Cu = 400 μm and R = 42.3%, t Ni should be 5 μm or less from the equation (1).

良い密封性を得るためのtCu,tNi及びRは限界値を決
定する(1)式は、良い密封性の基準としてヘリウムガ
スのリークレートが1×10-8atom・cc/sec以内して求め
たものである。但し検出装置のリークレートの限界感度
は約10-10atom・cc/secであり、封入したHeは100%Heの
場合である。然しながら実用上のtCu,tNi及びRの値
は、密封性以外の機械的強度、製造技術等の条件からも
制約される、tCuについては、200μm以下では機械的強
度が不足する等の欠点があり、800μm以上では組立、
取扱い等に際して外囲器に無理な力を与えるおそれがあ
るので、200μmないし800μmに制限される。tNiにつ
いては、0.5μm以下では銅母材面を均一にメッキする
ことが困難となり、30μm以上では圧接部分の変形量が
大きくなり銅の硬化等によりNiメッキ層の破断が困難と
なるので0.5μmないし30μmに制限する必要がある。
Rについては10%以下の変形ではNiメッキ層の破断の確
実性が得られず、85%以上では外囲器の膨み現象等に対
する機械的強度が不足し、10%ないし85%に制限され
る。
Equation (1), which determines the limit values for t Cu , t Ni, and R for obtaining good hermeticity, is based on the fact that the leak rate of helium gas is within 1 × 10 -8 atom · cc / sec as the standard for good hermeticity. It was sought after. However, the limit sensitivity of the leak rate of the detector is about 10 -10 atom · cc / sec, and the enclosed He is 100% He. However, the practical values of t Cu , t Ni, and R are restricted by the mechanical strength other than the sealing property, the manufacturing technology, and other conditions. Regarding t Cu , when the thickness is 200 μm or less, the mechanical strength is insufficient. There is a defect, and if it is 800 μm or more, it is assembled,
It is limited to 200 μm to 800 μm because it may apply excessive force to the envelope during handling. Regarding t Ni , if 0.5 μm or less, it is difficult to uniformly plate the copper base material surface, and if it is 30 μm or more, the amount of deformation of the pressure contact portion becomes large and it becomes difficult to break the Ni plating layer due to hardening of copper. It is necessary to limit it to μm to 30 μm.
Regarding R, if the deformation is less than 10%, the Ni plating layer cannot be reliably broken, and if it exceeds 85%, the mechanical strength against the phenomenon of bulging of the envelope is insufficient, and it is limited to 10% to 85%. It

次に本発明の製造方法の実施例について第8図ないし
第10図を参照して説明する。第8図は製造工程を示すも
ので、同図(a)は半導体チップ7を収納していない状
態の上部組立体22と下部組立体23とを示す。上部組立体
22は電極ポスト1、絶縁物円筒部2及び上部被圧接金属
板(銅板)3をロー付等により組み立てたものであり、
下部組立体23は下部被圧接金属板(銅板)4及び電極ポ
スト5をロー付等により組み立てたものである。上部及
び下部被圧接金属板3及び4の銅板の厚さtCuはいずれ
も400μmとする。次に被圧接金属板3及び4のそれぞ
れの被圧接面にメツキ厚tNiが13μmとなるよう公知の
方法によりNiメッキ13を施す。この場合、被圧接金属板
の表裏の露出面全域にわたりNiメッキをしても差し支え
ない。第8図(b)は、この状態を示すもので、同図
(a)の破線で囲まれた被圧接金属板3の一部分Pの拡
大断面図である。次に上部及び下部組立体22及び23を例
えば水素雰囲気中で約500℃ないし800℃の温度で、数分
ないし数十分間の熱処理をおこない、被圧接金属板の銅
板とNiメッキ層との界面に銅とNiとの相互拡散層14を形
成する。相互拡散層14の厚さtは3μmである。第8図
(c)はこの状態を模式的に示すもので、同図(b)の
破線で囲まれた被圧接面の一部分Qの拡大断面図であ
る。その後、上部及び下部組立体22及び23内に半導体ペ
レット等を収納し、公知の方法により2つの被圧接金属
板の外周縁から内側の環状部材を冷間圧接して気密封止
し、半導体装置を得る。冷間圧接したときの被圧接金属
板の変形率Rは10%ないし85%で且つ前記の「R≧115
+2.25tNi−0.21tCu…(1)」 を満足する必要がある。この実施例では(1)式の右辺
の値は、tNi=13μm、tCu=400μmであるから60.25と
なる。従ってR=65%になるように加圧する。この半導
体装置のヘリウムガスのリークレートを測定した結果、
1×10-10(atom・cc/sec)以下で、検出装置の最高感
度で測定しても検知不能で良好な気密封止が得られた。
この半導体装置の圧入部6(第1図参照)の圧接界面の
XMA(X−ray Micro Analisis)分析写真の結果では、
圧接界面にはNi元素の存在は全く観測されず完全な銅の
新生面間の接合であることが確認された。又これと同じ
銅母材に同様のNiメッキと熱処理を施した試料のXMA線
分析結果を第9図に示す。第9図の横軸は、試料断面に
おける銅板とNiメッキ層との界面に垂直方向(第8図
(c)におけるc1−c2方向)の距離を示し、縦軸は銅又
はNiのそれぞれの位置における各特性X線量を示す。同
図において銅及びNiの特性X線が共に観測される範囲は
相互拡散層14であり、その左右(第9図において)はそ
れぞれ実測的に銅のみからなる銅板部分16及びNiのみか
らなるNi部分15である。
Next, an embodiment of the manufacturing method of the present invention will be described with reference to FIGS. FIG. 8 shows the manufacturing process, and FIG. 8A shows the upper assembly 22 and the lower assembly 23 in a state in which the semiconductor chip 7 is not housed. Upper assembly
Reference numeral 22 denotes an electrode post 1, an insulator cylinder portion 2 and an upper pressure-contacted metal plate (copper plate) 3 assembled by brazing,
The lower assembly 23 is formed by assembling the lower pressure-contacting metal plate (copper plate) 4 and the electrode post 5 by brazing or the like. The thickness t Cu of the copper plates of the upper and lower pressed metal plates 3 and 4 is 400 μm. Next, Ni plating 13 is applied to the pressed surfaces of the pressed metal plates 3 and 4 by a known method so that the plating thickness t Ni is 13 μm. In this case, Ni plating may be applied to the entire exposed surfaces of the front and back of the pressure-contacted metal plate. FIG. 8 (b) shows this state and is an enlarged cross-sectional view of a part P of the pressure-contacted metal plate 3 surrounded by the broken line in FIG. 8 (a). Next, the upper and lower assemblies 22 and 23 are subjected to heat treatment in a hydrogen atmosphere at a temperature of about 500 ° C. to 800 ° C. for a few minutes to a few tens of minutes to form a copper plate and a Ni plating layer of the pressure-welded metal plate. An interdiffusion layer 14 of copper and Ni is formed at the interface. The thickness t of the mutual diffusion layer 14 is 3 μm. FIG. 8 (c) schematically shows this state, and is an enlarged cross-sectional view of a part Q of the pressed surface surrounded by the broken line in FIG. 8 (b). Thereafter, the semiconductor pellets and the like are housed in the upper and lower assemblies 22 and 23, and the inner annular member is cold-welded and hermetically sealed from the outer peripheral edges of the two pressure-contacted metal plates by a known method. To get The deformation ratio R of the pressure-contacted metal plate when cold-pressing is 10% to 85% and the above-mentioned “R ≧ 115
+ 2.25t Ni −0.21t Cu (1) ”must be satisfied. In this embodiment, the value on the right side of the expression (1) is 60.25 because t Ni = 13 μm and t Cu = 400 μm. Therefore, pressure is applied so that R = 65%. As a result of measuring the helium gas leak rate of this semiconductor device,
Below 1 × 10 -10 (atom cc / sec), good hermetic sealing was obtained with no detection even when measured with the highest sensitivity of the detector.
Of the press-contact interface of the press-fitting portion 6 (see FIG. 1) of this semiconductor device.
In the result of XMA (X-ray Micro Analisis) analysis photograph,
The existence of Ni element was not observed at the press contact interface, and it was confirmed that the joining was between completely new copper surfaces. FIG. 9 shows the XMA line analysis result of a sample obtained by subjecting the same copper base material to the same Ni plating and heat treatment. The horizontal axis of FIG. 9 represents the distance in the direction perpendicular to the interface between the copper plate and the Ni plating layer in the sample cross section (direction c 1 -c 2 in FIG. 8 (c)), and the vertical axis represents copper or Ni, respectively. The characteristic X-ray doses at the positions are shown. In the figure, the range in which the characteristic X-rays of copper and Ni are both observed is the interdiffusion layer 14, and the left and right sides (in FIG. 9) of the copper plate portion 16 made of only copper and Ni made of only Ni are actually measured. Part 15 is.

次に銅板の厚さtCu、Niメッキ厚tNi及び変形率Rは前
記実施例と同一とし、Niメッキ後の熱処理条件(処理温
度又は処理時間)のみを変えて相互拡散層の厚さtを10
μmとした場合について前記実施例と同様の測定を行な
った。この場合の半導体装置のヘリウムガスのリークレ
ートは1×10-7(atom・cc/sec)であって、望ましい値
ではない。また圧接界面のXMA分析写真の結果では、圧
接界面にNi元素の存在が部分的に観察され、完全な銅の
新生面の接合が得られていない。第10図は第9図に対応
するもので相互拡散層の厚さtは10μmである。多数の
試料について上記実施例と同様の実験を繰り返し行ない
熱処理をした場合の冷間圧接の諸条件を調べた。その結
果、熱処理をし相互拡散層を設けた場合における気密性
が得られる冷間圧接の条件は、前記の銅板の厚さtCu、N
iメッキ厚tNi及び変形率Rのそれぞれの範囲並びに
tCu、tNi、R間の前記(1)式の関係を満足する必要の
あることが確認された。またこの場合、より安定した気
密性を得るためには、相互拡散層の厚さtは熱処理前の
Niメッキ層厚tNiに対し t≦1/2tNiであり且つt≦10μm とすることが望ましい実施態様である。
Next, the thickness t Cu of the copper plate, the Ni plating thickness t Ni, and the deformation rate R are the same as those in the above-mentioned embodiment, and only the heat treatment condition (treatment temperature or treatment time) after Ni plating is changed, and the thickness t of the interdiffusion layer is changed. A 10
The same measurement as that of the above-described example was performed for the case of μm. In this case, the leak rate of the helium gas in the semiconductor device is 1 × 10 −7 (atom · cc / sec), which is not a desirable value. In addition, in the result of the XMA analysis photograph of the pressure contact interface, the presence of Ni element was partially observed at the pressure contact interface, and complete bonding of the new copper surface was not obtained. FIG. 10 corresponds to FIG. 9, and the thickness t of the interdiffusion layer is 10 μm. Experiments similar to those in the above-described examples were repeated for a large number of samples to examine various conditions of cold pressure welding when heat treatment was performed. As a result, the condition of cold pressure welding that can obtain the airtightness when the heat treatment is performed to form the interdiffusion layer is as follows: the thickness of the copper plate t Cu , N
Each range of i plating thickness t Ni and deformation rate R, and
It was confirmed that it is necessary to satisfy the relationship of the above formula (1) among t Cu , t Ni and R. Further, in this case, in order to obtain more stable airtightness, the thickness t of the interdiffusion layer is set to the value before the heat treatment.
It is a desirable embodiment that t ≦ 1 / 2t Ni and t ≦ 10 μm with respect to the Ni plating layer thickness t Ni .

なお銅とNiとの相互拡散層は、銅板とNiメッキ層との
界面において銅板中の銅原子がNiメッキ層へ、Niメッキ
層中のNi原子が銅板中に拡散して形成されるもので、多
くの場合固体状態で生成されるが、一部溶融凝固した銅
とNiの合金層が含まれても差し支えない。
Note that the mutual diffusion layer of copper and Ni, copper atoms in the copper plate to the Ni plating layer at the interface between the copper plate and the Ni plating layer, Ni atoms in the Ni plating layer is formed by diffusing into the copper plate. In most cases, it is produced in a solid state, but it may be contained in a partially melted and solidified alloy layer of copper and Ni.

本発明の製造方法によれば、冷間圧接において、より
安定な気密性が得られるが、それ以外に水素雰囲気中の
高温熱処理により外囲器等の内壁に付着するガス、塵或
いは酸化物等の異物の除去が行なわれ、半導体装置の実
稼働中の信頼性を高めることができる。
According to the manufacturing method of the present invention, in cold welding, more stable airtightness can be obtained, but in addition to that, gas, dust or oxides attached to the inner wall of the envelope or the like by high temperature heat treatment in a hydrogen atmosphere The foreign matter is removed, and the reliability of the semiconductor device during actual operation can be improved.

本発明の特許請求の範囲第2項記載の半導体装置は本
発明の半導体装置のうち本発明の製造方法を用いて得ら
れる半導体装置である。また特許請求の範囲第3項記載
の半導体装置は本発明の半導体装置のうち本発明の製造
方法を用いない場合の望ましい実施態様である。
The semiconductor device according to the second aspect of the present invention is a semiconductor device obtained by using the manufacturing method of the present invention among the semiconductor devices of the present invention. The semiconductor device according to the third aspect of the present invention is a preferred embodiment of the semiconductor device of the present invention when the manufacturing method of the present invention is not used.

また特許請求の範囲第4項記載の半導体装置は、本発
明の製造方法を用いても或いは用いなくても、いずれの
場合でもよく、製造技術上或は生産管理上等から特に望
ましい実施態様である。
The semiconductor device according to claim 4 may be used in any case with or without the manufacturing method of the present invention, and is a particularly desirable embodiment from the viewpoint of manufacturing technology or production control. is there.

また特許請求の範囲第5項記載の半導体装置は、本発
明の製造方法を用いた半導体装置であって、特許請求の
範囲第2項又は第4項記載の半導体装置の望ましい実施
態様である。
A semiconductor device according to claim 5 is a semiconductor device using the manufacturing method of the present invention, and is a desirable embodiment of the semiconductor device according to claim 2 or 4.

なお被圧接金属板の外周縁から環状の冷間圧接部分の
距離を0.2mm以上とすることは、本発明の効果を確実に
するために望ましい。
In addition, it is desirable to ensure the effect of the present invention by setting the distance from the outer peripheral edge of the metal plate to be pressure-bonded to the annular cold pressure-bonded portion to 0.2 mm or more.

[発明の効果] 本発明の半導体装置及びその製造方法により、Tig溶
接封止と同等の密封性を有する半導体装置を冷間圧接技
術により供給できるようになった。
[Advantages of the Invention] With the semiconductor device and the manufacturing method thereof according to the present invention, a semiconductor device having a sealing property equivalent to Tig welding sealing can be supplied by the cold pressure welding technique.

冷間圧接により封止できることは、Tig溶接に比べて
作業能率が格段に向上する。即ち簡単に、速く、安価に
できるという利点がある。
The ability to seal by cold pressure welding significantly improves work efficiency compared to Tig welding. That is, there is an advantage that it can be made simple, fast, and inexpensive.

また本発明により従来微少リークのあった半導体装置
を完全密封でき、その長時間にわたる信頼性を格段に向
上させた。
Further, according to the present invention, a semiconductor device which has conventionally had a minute leak can be completely sealed, and its long-term reliability is remarkably improved.

また本発明によりtCu、tNi及びRの選択範囲が拡大さ
れ、3変数の新しい組合わせ使用が可能となり、設計の
自由度を増すと共に、工程管理も容易になった。また本
発明の製造方法により、外囲器等の装置内壁の清浄化が
行なわれ、信頼性の高い製品が得られた。
Further, according to the present invention, the selection range of t Cu , t Ni and R is expanded, a new combination of three variables can be used, the degree of freedom in design is increased, and the process control is facilitated. Further, the inner wall of the apparatus such as the envelope was cleaned by the manufacturing method of the present invention, and a highly reliable product was obtained.

なお、本発明の技術的思想は、半導体装置の封止のみ
ならず多くの分野の金属の接合を要する部門に適用され
る。
The technical idea of the present invention is applied not only to the sealing of semiconductor devices but also to various fields in which metal bonding is required.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による半導体装置の冷間圧接部分の拡大
断面図、第2図はtCu,tNi及びRの限界値を表す図表、
第3図は本発明の半導体装置の一部破断側面図、第4図
は第3図の半導体装置の平面図、第5図は半導体装置を
圧接ダイスに挾んで冷間圧接する状態を示す一部切欠き
中間省略側面図、第6図及び第7図は圧接ダイスのそれ
ぞれ断面図及び平面図、第8図(a)ないし(c)は本
発明の製造方法の工程を示すもので同図(a)は上部及
び下部組立体の側面図、同図(b)はNiメッキ後の被圧
接金属板の拡大断面図、同図(c)は熱処理後の被圧接
金属板の拡大断面図、第9図及び第10図は熱処理後の銅
板とNiメッキ層との界面のXMA線分析結果の例を示す図
である。 3,4……被圧接金属板(銅板)、6……環状部分(冷間
圧接部分)、13……Niメッキ層、14……相互拡散層、15
……実質的にニッケルからのみなるニッケル部分、16…
…実質的に銅のみからなる銅板部分、21……半導体装
置、l……所定の距離、tCu……被圧接金属板(銅板)
の圧接前の冷間圧接部分の厚さ(μm)、tCu′……被
圧接金属板(銅板)の圧接後の冷間圧接部分の厚さ(μ
m)、tNi……Niメッキの厚さ(μm)、t……相互拡
散層の厚さ(μm)、R……冷間圧接部分の変形率
(%)。
FIG. 1 is an enlarged cross-sectional view of a cold pressure contact portion of a semiconductor device according to the present invention, and FIG. 2 is a table showing limit values of t Cu , t Ni and R,
FIG. 3 is a partially cutaway side view of the semiconductor device of the present invention, FIG. 4 is a plan view of the semiconductor device of FIG. 3, and FIG. 5 shows a state in which the semiconductor device is sandwiched between pressure welding dies and subjected to cold pressure welding. 6 and 7 are sectional views and plan views, respectively, of the press-contact die, and FIGS. 8A to 8C show the steps of the manufacturing method of the present invention. (A) is a side view of the upper and lower assemblies, (b) is an enlarged cross-sectional view of the pressure-bonded metal plate after Ni plating, (c) is an enlarged cross-sectional view of the pressure-bonded metal plate after heat treatment, FIG. 9 and FIG. 10 are views showing examples of XMA line analysis results of the interface between the copper plate and the Ni plating layer after the heat treatment. 3,4 …… Pressed metal plate (copper plate), 6 …… annular part (cold pressure contact part), 13 …… Ni plating layer, 14 …… Mutual diffusion layer, 15
…… A nickel part consisting essentially of nickel, 16…
… Copper plate part consisting essentially of copper, 21 …… Semiconductor device, l …… Predetermined distance, t Cu …… Pressed metal plate (copper plate)
Thickness of cold pressure welded part before welding (μm), t Cu ′ ... Thickness of cold pressure welded part after pressure welding of metal plate (copper plate) (μm)
m), t Ni: Ni plating thickness (μm), t: Mutual diffusion layer thickness (μm), R: Cold deformation deformation ratio (%).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五十嵐 行雄 川崎市幸区小向東芝町1 株式会社東芝 多摩川工場内 (56)参考文献 特公 昭59−52031(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Igarashi 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki City Inside the Tamagawa Plant of Toshiba Corporation (56) References Japanese Patent Publication No. 59-52031 (JP, B2)

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基体の外囲器としての一方のアッセ
ンブリには、電極ポストと絶縁物円筒部と金属板を有
し、電極ポストと絶縁物円筒部とはそれぞれの端部で密
着結合されるとともに絶縁物円筒部の他端は金属板の一
端で密着結合され、また半導体基体の外囲器としての他
方のアッセンブリには、電極ポストと金属板を有して密
着結合され、各アッセンブリは両金属板が互いにその面
を接触するように配置、積層され、積層された両アッセ
ンブリの内部には半導体基体を組みこみ、かつ、接触し
た2つの金属板の外周縁から、所定の距離を隔てた内側
の環状部分を冷間圧接して気密封止される半導体装置に
おいて、 前記2つの被圧接金属板の母材がいずれも銅板であっ
て、被圧接面に、銅とニッケルの相互拡散をさせない単
独のニッケルメッキ層、又は銅ニッケル相互拡散層を伴
うニッケルメッキ層、を有し、前記冷間圧延部分以外の
部分における銅板の厚さが200μmないし800μmであ
り、単独のニッケルメッキ層の場合に前記冷間圧接部分
以外の部分におけるニッケルメッキ層の厚さ又は銅ニッ
ケル相互拡散層を伴うニッケルメッキ層の場合に相互拡
散層の1/2の厚さにニッケルメッキ層の厚さを加えた合
計厚さが0.5μmないし30μmであり、且つ前記冷間圧
接部分以外の部分に対する前記冷間圧接部分の変形率R
を単位%、前記冷間圧接部分以外の部分における銅板の
厚さtCuを単位μm、前記冷間圧接部分以外の部分にお
ける単独のニッケルメッキ層の厚さ又は相互拡散層の1/
2の厚さにニッケルメッキ層の厚さを加えた合計厚さtNi
を単位μmでそれぞれ表したとき R≧115+2.25tNi−0.21tCu の関係式を満たすことを特徴とする半導体装置。
1. An assembly as an envelope of a semiconductor substrate has an electrode post, an insulating cylindrical portion and a metal plate, and the electrode post and the insulating cylindrical portion are closely bonded at their respective end portions. At the same time, the other end of the insulating cylindrical portion is tightly coupled at one end of the metal plate, and the other assembly as the envelope of the semiconductor substrate is tightly coupled with the electrode post and the metal plate. Both metal plates are arranged and laminated so that their surfaces are in contact with each other, and a semiconductor substrate is incorporated inside both of the laminated assemblies, and a predetermined distance is provided from the outer peripheral edges of the two metal plates in contact with each other. In the semiconductor device in which the inner annular portion is cold-pressed and hermetically sealed, the base materials of the two pressed metal plates are both copper plates, and mutual diffusion of copper and nickel occurs on the pressed surface. Alone nickel that does not A plating layer or a nickel plating layer with a copper-nickel interdiffusion layer, wherein the thickness of the copper plate in the portion other than the cold-rolled portion is 200 μm to 800 μm, and in the case of a single nickel plating layer, the cold The thickness of the nickel plating layer other than the pressure contact part or the total thickness of the nickel plating layer with copper-nickel interdiffusion layer, which is 1/2 the thickness of the interdiffusion layer plus the thickness of the nickel plating layer 0.5 μm to 30 μm, and the deformation ratio R of the cold pressure welded portion relative to the portion other than the cold pressure welded portion
Is the unit%, the thickness t Cu of the copper plate in the portion other than the cold pressure welding portion is μm, the thickness of the single nickel plating layer in the portion other than the cold pressure welding portion or 1 / of the interdiffusion layer
Total thickness of 2 plus thickness of nickel plating layer t Ni
When expressed in units of μm, the semiconductor device satisfies the relational expression of R ≧ 115 + 2.25t Ni −0.21t Cu .
【請求項2】前記冷間圧接部分以外の部分における前記
相互拡散層が銅板とニッケルメッキ層との界面に形成さ
れており、相互拡散層の厚さが0.25μmないし10μmで
あり、実質的に銅のみからなる銅板部分の厚さが199.75
μmないし790μmであり、実質的にニッケルのみから
なるニッケルメッキ層の厚さが0.25μmないし20μmで
ある特許請求の範囲第1項記載の半導体装置。
2. The interdiffusion layer in a portion other than the cold pressure welded portion is formed at an interface between a copper plate and a nickel plating layer, and the thickness of the interdiffusion layer is 0.25 μm to 10 μm, and substantially. The thickness of the copper plate made of only copper is 199.75.
2. The semiconductor device according to claim 1, wherein the thickness is .mu.m to 790 .mu.m, and the thickness of the nickel plating layer consisting essentially of nickel is 0.25 .mu.m to 20 .mu.m.
【請求項3】前記冷間圧接部分以外の部分における銅板
の厚さが200μmないし600μmであり、単独のニッケル
メッキ層の厚さが0.5μmないし25μmである特許請求
の範囲第1項記載の半導体装置。
3. The semiconductor according to claim 1, wherein the copper plate has a thickness of 200 μm to 600 μm in a portion other than the cold pressure welded portion, and the thickness of a single nickel plating layer is 0.5 μm to 25 μm. apparatus.
【請求項4】前記冷間圧接部分以外の部分における銅板
の厚さが400μmないし600μmであり、単独のニッケル
メッキ層の厚さ又は相互拡散層の1/2の厚さにニッケル
メッキ層の厚さを加えた合計厚さが1μmないし25μm
である特許請求の範囲第1項記載の半導体装置。
4. The thickness of the copper plate in a portion other than the cold pressure welded portion is 400 μm to 600 μm, and the thickness of the nickel plated layer is half the thickness of the single nickel plated layer or the interdiffusion layer. Total thickness of 1 μm to 25 μm
The semiconductor device according to claim 1, wherein
【請求項5】銅ニッケルの相互拡散層が前記冷間圧接部
分以外の部分における銅板とニッケルメッキ層との界面
に形成されており、前記相互拡散層の厚さが0.5μmな
いし10μmであり、実質的に銅からなる銅板の厚さが39
9.5μmないし590μmであり、実質的にニッケルからな
るニッケルメッキ層の厚さが0.5μmないし15μmであ
る特許請求の範囲第2項又は第4項記載の半導体装置。
5. A copper-nickel interdiffusion layer is formed at an interface between the copper plate and the nickel plating layer in a portion other than the cold pressure welded portion, and the thickness of the interdiffusion layer is 0.5 μm to 10 μm. The thickness of the copper plate consisting essentially of copper is 39
The semiconductor device according to claim 2, wherein the thickness is 9.5 μm to 590 μm, and the thickness of the nickel plating layer substantially made of nickel is 0.5 μm to 15 μm.
【請求項6】被圧接金属板の外周縁から0.2mm以上隔て
た内側の環状部分が冷間圧接されている特許請求の範囲
第1項ないし第5項のいずれかに記載の半導体装置。
6. The semiconductor device according to claim 1, wherein an inner annular portion separated by 0.2 mm or more from the outer peripheral edge of the pressure-contacted metal plate is cold-pressed.
【請求項7】半導体基体の外囲器としての一方のアッセ
ンブリには、電極ポストと絶縁物円筒部と金属板を有
し、電極ポストと絶縁物円筒部とはそれぞれの端部で密
着結合されるとともに絶縁物円筒部の他端は金属板の一
端で密着結合され、また半導体基体の外囲器としての他
方のアッセンブリには、電極ポストと金属板を有して密
着結合され、各アッセンブリは両金属板が互いにその面
を接触するように配置、積層され、積層された両アッセ
ンブリの内部には半導体基体を組みこみ、かつ、接触し
た2つの金属板の外周縁から、所定の距離を隔てた内側
の環状部分を冷間圧接して気密封止される半導体装置の
製造方法において、 厚さ200μmないし800μmの銅板からなる2つの被圧接
金属板のそれぞれの被圧接面に厚さ0.5μmないし30μ
mのニッケルメッキを施し、次に前記被圧接金属板を熱
処理して銅板とニッケルメッキ層との界面に銅とニッケ
ルとの相互拡散層を形成した後、前記冷間圧接部分の変
形率Rが10%ないし85%であると共に、この変形率Rを
単位%、変形前の銅板の圧接部における厚さtCuを単位
μm、銅板上の熱処理前の圧接部におけるニッケルメッ
キの厚さtNiを単位μmでそれぞれ表したとき R≧115+2.25tNi−0.21tCu の関係式を満たすように冷間圧接することを特徴とする
半導体装置の製造方法。
7. One assembly as an envelope of a semiconductor substrate has an electrode post, an insulating cylinder portion, and a metal plate, and the electrode post and the insulating cylinder portion are closely bonded at their respective end portions. At the same time, the other end of the insulating cylindrical portion is tightly coupled at one end of the metal plate, and the other assembly as the envelope of the semiconductor substrate is tightly coupled with the electrode post and the metal plate. Both metal plates are arranged and laminated so that their surfaces are in contact with each other, and a semiconductor substrate is incorporated inside both of the laminated assemblies, and a predetermined distance is provided from the outer peripheral edges of the two metal plates in contact with each other. In a method of manufacturing a semiconductor device in which an inner ring portion is cold-pressed to hermetically seal, two pressure-bonded metal plates made of a copper plate having a thickness of 200 μm to 800 μm each have a thickness of 0.5 μm to a pressure-bonded surface. 30μ
m nickel plating and then heat treating the pressure-contacted metal plate to form an interdiffusion layer of copper and nickel at the interface between the copper plate and the nickel plating layer. The deformation rate R is unit%, the thickness t Cu of the pressure-bonded portion of the copper plate before deformation is μm, and the nickel-plated thickness t Ni of the pressure-bonded portion of the copper plate before heat treatment is 10% to 85%. A method of manufacturing a semiconductor device, characterized in that cold pressure welding is performed so as to satisfy a relational expression of R ≧ 115 + 2.25t Ni −0.21t Cu when expressed in units of μm.
【請求項8】相互拡散層の厚さが、熱処理前の前記ニッ
ケルメッキの厚さを2分の1を超えない厚さであり且つ
10μmを超えない厚さである特許請求の範囲第7項記載
の半導体装置の製造方法。
8. The thickness of the interdiffusion layer is not more than half the thickness of the nickel plating before heat treatment, and
The method for manufacturing a semiconductor device according to claim 7, wherein the thickness is not more than 10 μm.
【請求項9】被圧接金属板の外周縁から0.2mm以上隔て
た内側の環状部分を冷間圧接する特許請求の範囲第7項
又は第8項記載の半導体装置の製造方法。
9. The method of manufacturing a semiconductor device according to claim 7, wherein an inner annular portion separated by 0.2 mm or more from the outer peripheral edge of the pressure-contacted metal plate is subjected to cold pressure welding.
JP61020065A 1985-06-05 1986-02-03 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2549623B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-120682 1985-06-05
JP12068285 1985-06-05

Publications (2)

Publication Number Publication Date
JPS6297356A JPS6297356A (en) 1987-05-06
JP2549623B2 true JP2549623B2 (en) 1996-10-30

Family

ID=14792336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020065A Expired - Fee Related JP2549623B2 (en) 1985-06-05 1986-02-03 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2549623B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758859B2 (en) * 2006-10-04 2011-08-31 株式会社リョーセンエンジニアズ Cylinder structure and cylinder manufacturing method of high-pressure vessel having cylindrical cylinder
JP5144285B2 (en) * 2007-06-04 2013-02-13 古河電気工業株式会社 Pressure welding heat pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952031A (en) * 1982-09-16 1984-03-26 Kubota Ltd Excavating working vehicle

Also Published As

Publication number Publication date
JPS6297356A (en) 1987-05-06

Similar Documents

Publication Publication Date Title
US4640436A (en) Hermetic sealing cover and a method of producing the same
US8497445B2 (en) Vacuum valve
JP3850787B2 (en) Electronic component package, its lid, lid for the lid, and method for manufacturing the lid
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
DE69321216T2 (en) SEMICONDUCTOR ARRANGEMENT WITH ELECTRICAL CONNECTION
JP2549623B2 (en) Semiconductor device and manufacturing method thereof
DE68921681T2 (en) Flat pressure contact type semiconductor device.
JPH01298617A (en) Contact for vacuum valve and manufacture
JP2000068396A (en) Cover for hermetic seal
JP3281318B2 (en) Pressure contact type semiconductor device and method of manufacturing the same
JP2550667B2 (en) Hermetically sealed lid manufacturing method
KR100659534B1 (en) Sealing ring for hermetically sealing semiconductor device and method of manufacturing semiconductor device using same
DE2049571A1 (en) Semiconductor component
JPH0749152B2 (en) Method for manufacturing envelope of rectifying element
JP2000049198A (en) Pressure welding type semiconductor device and producing method therefor
JP2003142615A (en) Method for manufacturing hermetically sealed cover
JP2523742B2 (en) Electrode plate and manufacturing method thereof
JP2001345394A (en) Sealing cap for electronic element packages
JPS6086838A (en) Semiconductor device
JPH07245356A (en) Semiconductor package and its manufacture
JP2642386B2 (en) Vacuum valve and method of manufacturing the same
JPH0645469A (en) Apparatus for producing spacer with solder
JPH036662B2 (en)
JPH0639582A (en) Precise composite brazing filler metal
JPH09120971A (en) Flat semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees