JP2540555B2 - Surface coating for carbon fiber - Google Patents

Surface coating for carbon fiber

Info

Publication number
JP2540555B2
JP2540555B2 JP19642087A JP19642087A JP2540555B2 JP 2540555 B2 JP2540555 B2 JP 2540555B2 JP 19642087 A JP19642087 A JP 19642087A JP 19642087 A JP19642087 A JP 19642087A JP 2540555 B2 JP2540555 B2 JP 2540555B2
Authority
JP
Japan
Prior art keywords
carbon fiber
dianhydride
resin
bis
surface coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19642087A
Other languages
Japanese (ja)
Other versions
JPS6440569A (en
Inventor
泰蔵 長広
修一 森川
信史 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP19642087A priority Critical patent/JP2540555B2/en
Publication of JPS6440569A publication Critical patent/JPS6440569A/en
Application granted granted Critical
Publication of JP2540555B2 publication Critical patent/JP2540555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な炭素繊維用表面被覆剤に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel surface coating agent for carbon fiber.

〔従来の技術〕[Conventional technology]

熱硬化性樹脂及び熱可塑性樹脂の耐熱性付与及び機械
的強度を向上させる目的で、補強材として炭素繊維が広
く利用されている。これ等炭素繊維を補強材とし、樹脂
をマトリックスとする複合材料は成形品として、例えば
長繊維を使用して航空機の内、外装材、またはレジャー
用品としての釣り竿、ゴルフクラブのシャフト、テニス
ラケット等に、また短繊維を使用して歯車、軸受等の機
械部品等に巾広く利用されている。
Carbon fiber is widely used as a reinforcing material for the purpose of imparting heat resistance and improving mechanical strength of thermosetting resins and thermoplastic resins. These composite materials using carbon fiber as a reinforcing material and resin as a matrix are molded articles such as fishing rods, golf club shafts, tennis rackets, etc., which are made of long fibers and used as interior and exterior materials for aircraft or leisure goods. Moreover, it is widely used for mechanical parts such as gears and bearings by using short fibers.

かかる成形品を製造するには、直径10ミクロン以下の
炭素繊維を数千〜数万本束ねた繊維束にマトリックスと
しての樹脂を含浸させ、成形材料とした後、各種の成形
方法により成形品とするのが一般的である。
In order to produce such a molded product, a resin as a matrix is impregnated into a fiber bundle obtained by bundling thousands of carbon fibers having a diameter of 10 microns or less to form a molding material, and the molded product is then molded by various molding methods. It is common to do.

即ち、直径10ミクロン以下の炭素繊維はこのままで
は、もつれ、切断が起こり易く、取扱いが困難であるか
ら、炭素繊維束の表面をエポキシ樹脂、ナイロン樹脂、
アクリル樹脂等で表面を被覆し結束させる必要がある。
That is, since carbon fibers having a diameter of 10 microns or less are easily entangled and cut and are difficult to handle, the surface of the carbon fiber bundle is treated with epoxy resin, nylon resin,
It is necessary to coat the surface with acrylic resin or the like to bind the surfaces together.

然るに、最近の技術進歩の発展に伴い、耐熱性を有す
る複合材料の要望が一段と増大し、マトリックス材料と
して耐熱性のあるポリイミド樹脂、ポリエーテルエーテ
ルケトン樹脂、ポリエーテルサルフォン樹脂、ポリエー
テルイミド樹脂等も検討されるに至った。しかしかかる
超耐熱樹脂をマトリックス材料として使用する場合、超
耐熱樹脂の成形温度が350℃以上、特に400℃前後の高温
を必要とする為、従来のエポキシ樹脂等を収束剤として
使用した炭素繊維束では、これ等結束剤が成形時熱分解
を起こし、分解ガスによる気泡の発生または炭素繊維と
マトリックス樹脂との密着性が阻害され、成形品とした
場合、十分な強度を有するものがえられないという問題
が生じてきた。この為、結束剤として400℃前後の成形
温度でも安定で、一方ワニス化が可能な表面被覆剤とし
てポリイミド樹脂を用いる試みも行われた。しかしポリ
イミド樹脂を炭素繊維束の結束剤として使用してもマト
リックス樹脂との密着性に乏しく、利用するのに十分な
繊維束をえることは困難であった。
However, with the recent development of technological advances, the demand for heat-resistant composite materials has further increased, and heat-resistant polyimide resins, polyether ether ketone resins, polyether sulfone resins, and polyetherimide resins have been used as matrix materials. And so on. However, when using such super heat-resistant resin as a matrix material, the molding temperature of the super heat-resistant resin requires a high temperature of 350 ° C or higher, especially around 400 ° C, so carbon fiber bundles using conventional epoxy resin etc. as a sizing agent. In these cases, these binders cause thermal decomposition during molding, and bubbles are generated due to decomposition gas or the adhesion between the carbon fiber and the matrix resin is impaired, and when a molded product is obtained, a product having sufficient strength cannot be obtained. The problem has arisen. Therefore, it has been attempted to use a polyimide resin as a surface coating agent which is stable as a binding agent even at a molding temperature of about 400 ° C. and can be varnished. However, even if a polyimide resin is used as a binding agent for a carbon fiber bundle, the adhesion to the matrix resin is poor, and it is difficult to obtain a sufficient fiber bundle for use.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明の目的は、350℃以上の高温でも分解すること
がなく、しかも取扱いが容易な炭素繊維束を形成するこ
との可能な炭素繊維用表面被覆剤を提供することにあ
る。
An object of the present invention is to provide a surface coating agent for carbon fibers, which does not decompose even at a high temperature of 350 ° C. or higher and can form a carbon fiber bundle which is easy to handle.

〔問題を解決するための手段〕[Means for solving problems]

本発明者らは、前記目的を達成する為に種々検討した
結果、遂に本発明に到達した。
The present inventors finally arrived at the present invention as a result of various investigations for achieving the above object.

即ち、本発明は式(I)で表される繰り返し単位を有
するポリイミドまたはその前駆体を必須成分とする炭素
繊維用表面被覆剤である。
That is, the present invention is a surface coating agent for carbon fibers, which contains a polyimide having a repeating unit represented by the formula (I) or a precursor thereof as an essential component.

(式中、RはC=C、 からなる群から選ばれた少なくとも一種の4価の基を表
わす。) 本発明で使用する式(I)で示される新規ポリイミド
樹脂は、4,4′−ビス(3−アミノフェノキシ)ジフェ
ニルと式(II)で示されるテトラカルボン酸二無水物と
からえられる。
(In the formula, R is C = C, Represents at least one tetravalent group selected from the group consisting of The novel polyimide resin represented by the formula (I) used in the present invention is obtained from 4,4'-bis (3-aminophenoxy) diphenyl and the tetracarboxylic acid dianhydride represented by the formula (II).

(式中、Rは式(I)中のRに同じ。) 本発明に使用されるテトラカルボン酸二無水物は、エ
チレンカルボン酸二無水物、シクロペンタンテトラカル
ボン酸二無水物、ピロメリット酸二無水物、2,2′,3,
3′−ベンゾフェノンテトラカルボン酸二無水物、2,
2′,3,3′−ビフェニルテトラカルボン酸二無水物、3,
3′,4,4′−ビフェニルテトラカルボン酸二無水物、2,2
−ビス(3,4−ジカルボキシフェニル)プロパン二無水
物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン
二無水物、ビス(3,4−ジカルボキシフェニル)エーテ
ル二無水物、ビス(3,4−ジカルボキシフェニル)スル
ホン二無水物、1,1−ビス(2,3−ジカルボキシフェニ
ル)エタン二無水物、ビス(2,3−ジカルボキシフェニ
ル)メタン二無水物、ビス(3,4−ジカルボキシフェニ
ル)メタン二無水物、2,3,6,7−ナフタレンテトラカル
ボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン
酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二
無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水
物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,
3,6,7−アセトラセンテトラカルボン酸二無水物、1,2,
7,8−フェナントレンテトラカルボン酸二無水物であ
る。
(In the formula, R is the same as R in the formula (I).) The tetracarboxylic acid dianhydride used in the present invention includes ethylenecarboxylic acid dianhydride, cyclopentanetetracarboxylic acid dianhydride, and pyromellitic acid. Dianhydride, 2,2 ', 3,
3'-benzophenone tetracarboxylic dianhydride, 2,
2 ', 3,3'-biphenyltetracarboxylic dianhydride, 3,
3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2
-Bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, Bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,2, 5,6-naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,
3,6,7-acetoracene tetracarboxylic dianhydride, 1,2,
It is 7,8-phenanthrene tetracarboxylic dianhydride.

4,4′−ビス(3−アミノフェノキシ)ジフェニルと
かかるテトラカルボン酸二無水物は、モル比0.5〜1.5の
範囲内で必要に応じ有機溶剤として、例えばN,N−ジメ
チルホルムアミド、N,N−ジメチルアセトアミド、N,N−
ジエチルアセトアミド、N,N−ジメチルメトキシアセト
アミド、N−メチル−2−ピロリドン、1,3−ジメチル
−2−イミダゾリジノン、N−メチルカプロラクタム、
1,2−ジメトキシエタン、ビス(2−メトキシエチル)
エーテル、1,2−ビス(2−メトキシエトキシ)エタ
ン、ビス〔2−(2−メトキシエトキシ)エチル〕エー
テル、テトラヒドロフラン、1,3−ジオキサン、1,4−ジ
オキサン、ピリジン、ピコリン、ジメチルスルホキシ
ド、ジメチルスルホン、テトラメチル尿素、ヘキサメチ
ルホスホルアミド等を1種以上用いて、炭素繊維の表面
を被覆する。
4,4′-bis (3-aminophenoxy) diphenyl and the tetracarboxylic dianhydride are used as an organic solvent, if necessary, in a molar ratio of 0.5 to 1.5, such as N, N-dimethylformamide, N, N. -Dimethylacetamide, N, N-
Diethylacetamide, N, N-dimethylmethoxyacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam,
1,2-dimethoxyethane, bis (2-methoxyethyl)
Ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl] ether, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxide, The surface of the carbon fiber is coated with one or more of dimethyl sulfone, tetramethyl urea, hexamethyl phosphoramide and the like.

炭素繊維に式(I)で示す新規ポリイミド樹脂を被覆
するには次の方法が利用できる。
The following method can be used for coating the carbon fiber with the novel polyimide resin represented by the formula (I).

(1)表面に何も被覆されていない炭素繊維束を使用
し、これに4,4′−ビス(3−アミノフェノキシ)ジフ
ェニルとテトラカルボン酸二無水物および前記有機溶剤
よりなるポリアミド酸の溶液を連続的に含浸させる。こ
の場合の溶液濃度は5重量%〜80重量%、含浸される樹
脂量が0.1〜10重量%になるように調節する。かかるポ
リアミド酸の含浸工程によりポリアミド酸を含浸させた
炭素繊維は、次いで100℃程度の温度で風乾させ溶媒を
除去する。その後250℃程度の温度まで昇温し、ポリイ
ミド化する。
(1) A carbon fiber bundle whose surface is not coated, and a solution of a polyamic acid containing 4,4'-bis (3-aminophenoxy) diphenyl, tetracarboxylic acid dianhydride and the organic solvent is used. Are continuously impregnated. In this case, the solution concentration is adjusted to 5% by weight to 80% by weight, and the impregnated resin amount is adjusted to 0.1 to 10% by weight. The carbon fiber impregnated with the polyamic acid in the polyamic acid impregnation step is then air-dried at a temperature of about 100 ° C. to remove the solvent. After that, the temperature is raised to about 250 ° C. to form a polyimide.

(2)4,4′−ビス(3−アミノフェノキシ)ジフェニ
ルとテトラカルボン酸二無水物より通常公知の方法によ
りポリイミド化したのち、そのまま加熱溶融させ、溶融
状態にある新規ポリイミド樹脂を表面に何も被覆されて
いない炭素繊維束に被覆させる。
(2) 4,4'-Bis (3-aminophenoxy) diphenyl and tetracarboxylic acid dianhydride were polyimidized by a generally known method and then heat-melted to form a new polyimide resin in a molten state on the surface. The uncoated carbon fiber bundle is also coated.

以上の新規ポリイミド樹脂で被覆した炭素繊維のロー
ビングは、1mmの長さから30mmの長さに切断してチョッ
プドストランドとし、これに所定の耐熱高分子材料、例
えばポリエーテルサルフォン樹脂、ポリエーテルエーテ
ルケトン樹脂、ポリエーテルイミド樹脂等をマトリック
材料として使用してドライブレンドした後混練する。混
練には押出成形機を利用した溶融混練が好ましく、押出
機により溶融混練した材料はペレット状態でえることが
できる。このペレットは通常公知の成形方法、圧縮成
形、射出成形、押出成形等により所望する成形体とする
ことが可能である。
The roving of carbon fiber coated with the above novel polyimide resin is cut into chopped strands from a length of 1 mm to a length of 30 mm, and a predetermined heat-resistant polymer material, for example, polyether sulfone resin, polyether ether A ketone resin, a polyetherimide resin or the like is used as a matrix material, dry blended, and then kneaded. Melt kneading using an extruder is preferable for kneading, and the material melt-kneaded by the extruder can be obtained in a pellet state. This pellet can be formed into a desired molded body by a generally known molding method, compression molding, injection molding, extrusion molding or the like.

さらには新規ポリイミド樹脂で被覆した炭素繊維束を
各々すき間のない様に一方向に並べ、耐熱高分子材料を
含浸させた後、熱プレスにより厚み0.1〜5mmの炭素繊維
含量30〜80重量%の炭素繊維一方向配向プレプレグとし
た後、このプレプレグを所定の大きさに切断し重ね合わ
せて再度熱プレスにより成形体とすることもできる。
Furthermore, the carbon fiber bundles coated with the novel polyimide resin are arranged in one direction so that there are no gaps, impregnated with a heat-resistant polymer material, and then hot pressed to a carbon fiber content of 30 to 80% by weight with a thickness of 0.1 to 5 mm. After the carbon fiber unidirectionally oriented prepreg is formed, the prepreg may be cut into a predetermined size, overlapped with each other, and hot pressed again to form a molded body.

〔実施例〕〔Example〕

実施例1 4,4′−ビス(3−アミノフェノキシ)ジフェニルと
ピロメリット酸二無水物より得られたピリアミド酸に溶
媒としてN−メチル−2−ピロリドンを用いて、溶液濃
度10重量%、粘度50センチポイズのポリアミド酸溶液を
調整し、これに炭素繊維として表面を酸化処理したアク
リル系炭素繊維束(東邦レーヨン社製商標HTA、12000本
束ロービング)を60M/hrの速度で連続的に浸漬し、100
℃で風乾し、脱溶剤した後、窒素雰囲気下で250℃、1
時間加熱してポリイミド化を行い、ポリイミド樹脂3重
量%を被覆した炭素繊維束Aをえた。
Example 1 Pyramidic acid obtained from 4,4'-bis (3-aminophenoxy) diphenyl and pyromellitic dianhydride using N-methyl-2-pyrrolidone as a solvent, solution concentration 10% by weight, viscosity A 50 cm poise polyamic acid solution was prepared, and an acrylic carbon fiber bundle (trade name HTA manufactured by Toho Rayon Co., Ltd., 12000 bundle roving) whose surface was subjected to oxidation treatment as carbon fiber was continuously immersed in this at a speed of 60 M / hr. , 100
After air-drying at ℃ and removing solvent, 250 ℃ under nitrogen atmosphere, 1
It was heated for a period of time to be polyimidized to obtain a carbon fiber bundle A coated with 3% by weight of a polyimide resin.

実施例2 ピロメリット酸二無水物の代わりに3,3′,4,4′−ビ
フェニルテトラカルボン酸二無水物を使用した以外は実
施例1と同じようにして、ポリイミド樹脂3重量%を被
覆した炭素繊維束Bをえた。
Example 2 3% by weight of polyimide resin was coated in the same manner as in Example 1 except that 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was used instead of pyromellitic dianhydride. The obtained carbon fiber bundle B was obtained.

試験例1〜3 実施例1及び実施例2でえられた炭素繊維束A及び
B、それに比較の為にエポキシ樹脂3重量%を被覆した
炭素繊維束C(東邦レーヨン社製、商標HTA、Eタイ
プ、12000本束ロービング)を使用し、各炭素繊維束を
各6mmの長さにカットしたチョップドストランドを各々3
0wt%にポリエーテルエーテルケトン樹脂(英国ICI社
製、商標ビクトレックスPEEK 450P)を70wt%用いてド
ライブレンドした後、40m/m径の押出機にて押出温度380
℃で溶融混練しながら均一配合ペレットをえた。各均一
配合ペレットは実施例1及び実施例2に対応するものを
AP、BPと称し、比較例として使用したものをCPと称す
る。
Test Examples 1 to 3 Carbon fiber bundles A and B obtained in Examples 1 and 2, and a carbon fiber bundle C coated with 3% by weight of an epoxy resin for comparison (trade name HTA, E manufactured by Toho Rayon Co., Ltd.) Type, 12000 bundle roving), and each chopped strand of carbon fiber bundle cut to a length of 6 mm
After dry blending 70% by weight of polyetheretherketone resin (trade name: Victrex PEEK 450P, manufactured by ICI, UK) to 0% by weight, extrusion temperature of 380 with an extruder of 40 m / m diameter
Uniformly mixed pellets were obtained while melt-kneading at ℃. Each uniform blend pellet corresponds to that of Example 1 and Example 2.
These are referred to as AP and BP, and those used as comparative examples are referred to as CP.

各AP、BP、CPの混練時の安定性をみる為に径3mmのス
トランドダイより押出される溶融樹脂の状態を観察した
ところ、AP、BPはダイよりの発煙もなく、非常に安定し
てペレットがえられたが、CPではダイよりの発煙が多く
みられ、ダイ周辺部にエポキシ樹脂の分解物と思われる
異物がひんぱんに付着し、ストランド切れが多発した。
To observe the stability of each AP, BP, CP when kneading, we observed the state of the molten resin extruded from a strand die with a diameter of 3 mm, and AP and BP were very stable without smoke from the die. Pellets were obtained, but with CP, smoke was more often emitted from the die, and foreign substances that seemed to be a decomposed product of epoxy resin were frequently attached to the periphery of the die, resulting in frequent strand breaks.

次に各AP、BP、CPを用いて35トンの射出成形機、シリ
ンダー温度400℃、金型温度200℃の条件で、相対する2
方向より溶融樹脂を射出注入し、中央部分で溶融樹脂が
衝突し、ウエルド部分を形成するようにした引張試験片
を作成した。尚、一方向より射出する通常の引張試験片
を同時に作成し、ASTM−D638に準じて各引張強度を求
め、表−1に結果を示した。
Next, using each AP, BP, and CP, a 35-ton injection molding machine, a cylinder temperature of 400 ° C, and a mold temperature of 200 ° C are used.
The molten resin was injected and injected from the direction, and the molten resin collided in the central portion to form a welded portion, to prepare a tensile test piece. An ordinary tensile test piece that was injected from one direction was prepared at the same time, and each tensile strength was determined according to ASTM-D638. The results are shown in Table-1.

尚、比較例としてCPを用いた成形体では射出成形時、
シリンダー内でのガスの発生が多く認められたが、AP、
BPともにガスの発生は認められなかった。
As a comparative example, in the case of injection molding with a molded article using CP,
A lot of gas generation was observed in the cylinder, but AP,
No gas was observed in either BP.

試験例4〜6 試験例1〜3と同様に炭素繊維束A及びB、さらにC
を各々すき間のない様一方向に並べ、あらかじめ調整し
ておいたポリエーテルサルフォン樹脂(英国ICI社製、
商品名ピクトレックスPES4100P)の30重量%N−メチル
−2−ピロリドンワニスを均一含浸させ、溶剤を風乾除
去後320℃の温度下で熱プレスし、厚さ0.2mm、炭素繊維
含量68重量%の気泡のない炭素繊維一方向配向プレプレ
グを、それぞれ炭素繊維束Aに対応するものとしてAPR
を、またBに対応するものとしてBPRを、さらにCに対
応するものとしてCPRをえた。
Test Examples 4 to 6 Carbon fiber bundles A and B, and C as in Test Examples 1 to 3
Polyethersulfone resin (made by British ICI,
30% by weight N-methyl-2-pyrrolidone varnish (trade name: Pictrex PES4100P) is uniformly impregnated, the solvent is air-dried, and then hot-pressed at a temperature of 320 ° C to obtain a thickness of 0.2 mm and a carbon fiber content of 68% by weight. APR-free carbon fiber unidirectionally oriented prepregs are used as the ones corresponding to the carbon fiber bundle A.
, BPR as the one corresponding to B, and CPR as the one corresponding to C.

えられたAPR、BPR、CPRを10cm角に切断し、各々を繊
維配向方向を同方向に10枚づつ重ね合わせて熱プレス機
にて温度350℃、プレス圧20Kg/cm2の条件で30分間熱プ
レスし、1.8mm厚さの炭素繊維同方向補強のコンポジッ
トを得た。
The obtained APR, BPR, and CPR are cut into 10 cm squares, and 10 pieces of each are piled up in the same fiber orientation direction, and heat-pressed at a temperature of 350 ° C and a press pressure of 20 kg / cm 2 for 30 minutes. Hot pressing was performed to obtain a 1.8 mm-thick carbon fiber unidirectionally reinforced composite.

このうちCPRをベースとするコンポジットはエポキシ
樹脂の分解によるガス発生が原因と思われる気泡の存在
が多数認められたが、BPRをベースとするコンポジット
には若干の気泡の存在が認められるにすぎなかった。AP
Rには気泡は全く存在しなかった。各々のコンポジット
はそれぞれ繊維の配向方向に切断し、曲げ試験片を作製
しASTM−D790に従って、各々繊維配向方向の曲げ強度を
測定し、表−2の結果をえた。
Among them, the CPR-based composites had a large number of air bubbles, which are considered to be caused by the gas generation due to the decomposition of the epoxy resin, but the BPR-based composites only had a few air bubbles. It was AP
There were no bubbles in R. Each of the composites was cut in the fiber orientation direction to prepare a bending test piece, and the bending strength in the fiber orientation direction was measured according to ASTM-D790, and the results shown in Table 2 were obtained.

表−1および表−2に示すように本発明によるポリイ
ミド樹脂を被覆してなる炭素繊維を使用すると、成形時
の加工安定性および機械強度の向上が認められる。
As shown in Tables 1 and 2, when carbon fibers coated with the polyimide resin according to the present invention are used, improvement in processing stability and mechanical strength during molding is observed.

〔効果〕 かかる式(I)で示される新規ポリイミド樹脂で表面
を被覆した炭素繊維を使用することにより、従来困難で
あったポリイミド樹脂、ポリエーテルエーテルケトン樹
脂等の超耐熱性高分子材料をマトリックスとする成形品
を安定して作ることが可能となり、耐熱を必要とする分
野への用途拡大が期待できる。
[Effect] By using a carbon fiber whose surface is coated with the novel polyimide resin represented by the formula (I), a super heat resistant polymer material such as a polyimide resin or a polyetheretherketone resin, which has been difficult in the past, is used as a matrix. It will be possible to stably produce molded products, and it is expected that the application will be expanded to fields that require heat resistance.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】式(I)で表される繰り返し単位を有する
ポリイミドまたはその前駆体を必須成分とする炭素繊維
用表面被覆剤。 (式中、RはC=C、 からなる群から選ばれた少なくとも一種の4価の基を表
わす。)
1. A surface coating agent for carbon fiber, which comprises a polyimide having a repeating unit represented by the formula (I) or a precursor thereof as an essential component. (In the formula, R is C = C, Represents at least one tetravalent group selected from the group consisting of )
JP19642087A 1987-08-07 1987-08-07 Surface coating for carbon fiber Expired - Lifetime JP2540555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19642087A JP2540555B2 (en) 1987-08-07 1987-08-07 Surface coating for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19642087A JP2540555B2 (en) 1987-08-07 1987-08-07 Surface coating for carbon fiber

Publications (2)

Publication Number Publication Date
JPS6440569A JPS6440569A (en) 1989-02-10
JP2540555B2 true JP2540555B2 (en) 1996-10-02

Family

ID=16357560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19642087A Expired - Lifetime JP2540555B2 (en) 1987-08-07 1987-08-07 Surface coating for carbon fiber

Country Status (1)

Country Link
JP (1) JP2540555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402273B2 (en) 2021-06-03 2023-12-20 臺灣塑膠工業股▲ふん▼有限公司 Sizing agent compositions, carbon fiber materials and composite materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402273B2 (en) 2021-06-03 2023-12-20 臺灣塑膠工業股▲ふん▼有限公司 Sizing agent compositions, carbon fiber materials and composite materials

Also Published As

Publication number Publication date
JPS6440569A (en) 1989-02-10

Similar Documents

Publication Publication Date Title
DE69838168T2 (en) BLANKS FOR MOLDING PROCESSES AND RESINS FOR THIS
Hanana et al. Morphology and mechanical properties of maple reinforced LLDPE produced by rotational moulding: Effect of fibre content and surface treatment
CN109265998A (en) A kind of preparation method of fibre reinforced polyimide-based composite material
WO1998026912A1 (en) Carbon fiber prepreg and method of production thereof
JPS6175880A (en) Size agent
CN104159731A (en) Thermoplastic resin impregnated tape
JPS58127761A (en) High specific gravity composite material reinforced with organic fiber
EP0151722B1 (en) Process for the preparation of thermoplastic composites
JP2540555B2 (en) Surface coating for carbon fiber
KR20160026831A (en) Compositions and methods for making thermoplastic composite materials
US4563232A (en) Process for the preparation of reinforced thermoplastic composites
CN111607217B (en) 3D printing continuous fiber amidourea polymer composite material and preparation method thereof
JP2006052385A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP4671890B2 (en) Prepreg
EP2130856B1 (en) Fiber-reinforced prepreg and composite materials made from the same
JPH04292634A (en) Prepreg
JPH05263370A (en) Surface modifier for carbon fiber
Botelho et al. Study of polyamide 6/6 synthesis carried out by interfacial polymerization on carbon fibre
KR102108053B1 (en) Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same
JP4843932B2 (en) Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JPH02125706A (en) Manufacture of carbon fiber bundle
JP5610335B2 (en) Method for producing fiber-reinforced polyimide material with improved mechanical strength
JPH05124036A (en) Production of fiber-reinforced resin body
JP3145182B2 (en) Prepreg
JP2008231288A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material