JP4843932B2 - Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material - Google Patents

Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material Download PDF

Info

Publication number
JP4843932B2
JP4843932B2 JP2004315960A JP2004315960A JP4843932B2 JP 4843932 B2 JP4843932 B2 JP 4843932B2 JP 2004315960 A JP2004315960 A JP 2004315960A JP 2004315960 A JP2004315960 A JP 2004315960A JP 4843932 B2 JP4843932 B2 JP 4843932B2
Authority
JP
Japan
Prior art keywords
epoxy resin
reinforced composite
fiber
composite material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004315960A
Other languages
Japanese (ja)
Other versions
JP2006124555A (en
Inventor
浩之 瀧山
史郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004315960A priority Critical patent/JP4843932B2/en
Publication of JP2006124555A publication Critical patent/JP2006124555A/en
Application granted granted Critical
Publication of JP4843932B2 publication Critical patent/JP4843932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Description

本発明は、繊維強化複合材料に有用なエポキシ樹脂組成物、繊維強化複合材料を得るための中間基材としてのプリプレグ、およびスポーツ用途、航空宇宙用途、一般産業用途に適した繊維強化複合材料、特に、ゴルフシャフト、釣り竿、自動車のプロペラシャフトなどの管状体材料に好適に用いることができる繊維強化複合材料に関するものである。   The present invention relates to an epoxy resin composition useful for a fiber reinforced composite material, a prepreg as an intermediate substrate for obtaining a fiber reinforced composite material, and a fiber reinforced composite material suitable for sports use, aerospace use, general industrial use, In particular, the present invention relates to a fiber-reinforced composite material that can be suitably used for tubular body materials such as golf shafts, fishing rods, and automobile propeller shafts.

分子内にエポキシ基を有する化合物で構成されるエポキシ樹脂と、その硬化剤とからなる一液型のエポキシ樹脂組成物は、その優れた機械強度、耐薬品性、耐熱性、金属部材や強化繊維などの基材との良好な接着性などのために、塗料・舗装材料、接着剤、あるいは炭素繊維などの強化繊維と組み合わせて繊維強化複合材料用マトリックス樹脂として用いられている。   A one-pack type epoxy resin composition consisting of an epoxy resin composed of a compound having an epoxy group in the molecule and its curing agent, has excellent mechanical strength, chemical resistance, heat resistance, metal members and reinforcing fibers. In order to have good adhesion to a base material such as a coating material, it is used as a matrix resin for fiber reinforced composite materials in combination with paint / paving materials, adhesives, or reinforcing fibers such as carbon fibers.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量性能と優れた強度特性のため、ゴルフシャフト、釣り竿、テニスやバトミントン等のラケット、ホッケー等のスティックなど、スポーツ用途をはじめ、航空宇宙用途、自動車・船舶、浴槽、ヘルメット等の一般産業用途などに広く用いられているが、さらなる軽量化要求に応えるため、かかる材料の強度特性を向上させる技術が必要とされている。特にゴルフシャフト、釣竿、自動車用プロペラシャフトなどは管状体としてのねじり強さが必要とされている。   Fiber reinforced composite material consisting of reinforced fiber and matrix resin is lightweight and has excellent strength characteristics, so it can be used for sports applications such as golf shafts, fishing rods, rackets such as tennis and badminton, sticks such as hockey, and aerospace applications. Although widely used in general industrial applications such as automobiles / ships, bathtubs, helmets, etc., in order to meet the demand for further weight reduction, there is a need for a technique for improving the strength characteristics of such materials. In particular, golf shafts, fishing rods, automobile propeller shafts, and the like are required to have torsional strength as tubular bodies.

この要求に対して、例えば、カーボン短繊維を配合したエポキシ樹脂組成物をマトリックス樹脂として用い、一方向複合材料の機械物性を向上させる手法が知られている(例えば、特許文献1参照)。しかし、かかる方法では、ゴルフクラブシャフトのような繊維方向が複数からなる積層構成を有する複合材料管状体のねじり強さに関しては、向上効果が不十分であり、更なる高性能な繊維強化複合材料への要求に対し応えきれず、かかる強度特性をさらに向上させる技術が必要であった。   In response to this requirement, for example, a technique is known in which an epoxy resin composition containing carbon short fibers is used as a matrix resin to improve the mechanical properties of a unidirectional composite material (see, for example, Patent Document 1). However, in such a method, the effect of improving the torsional strength of the composite material tubular body having a laminated structure composed of a plurality of fiber directions such as a golf club shaft is insufficient, and a further high-performance fiber-reinforced composite material. Therefore, a technique for further improving the strength characteristics is needed.

また、樹脂硬化物の圧縮降伏応力、圧縮降伏呼び歪み、圧縮弾性率、および圧縮破壊呼び歪みを一定の範囲内に制御して、複合材料管状体のねじり強さを向上する手法が知られている(例えば、特許文献2参照)。しかし、かかる方法でもねじり強さ向上効果は不十分で、圧縮破壊呼び歪みもしくは圧縮弾性率を高めようとすると耐熱性が低下する懸念があった。   Also known is a method for improving the torsional strength of a tubular tubular body by controlling the compressive yield stress, compressive yield nominal strain, compressive elastic modulus, and compressive fracture nominal strain of the cured resin within a certain range. (For example, refer to Patent Document 2). However, even with such a method, the effect of improving the torsional strength is insufficient, and there is a concern that the heat resistance decreases when attempting to increase the compressive fracture nominal strain or the compression elastic modulus.

さらに、平均粒径が0.001μm以上30μm以下のフラーレン類を硬化性樹脂に配合してなる樹脂組成物により、樹脂曲げ強度を向上させる手法が知られている(例えば、特許文献3参照)が、かかる方法は、繊維強化複合材料の管状体のねじり強さ向上を示唆するものではなく、その効果も不十分であった。   Furthermore, there is known a technique for improving the resin bending strength by using a resin composition obtained by blending a fullerene having an average particle size of 0.001 μm to 30 μm with a curable resin (see, for example, Patent Document 3). Such a method does not suggest an improvement in the torsional strength of the tubular body of the fiber-reinforced composite material, and its effect is insufficient.

このように、これら公知の技術では、管状体のねじり強さに関して十分な効果を発現できるエポキシ樹脂組成物や繊維強化複合材料は未だ得られていないのが現状であった。
特開2003−201388号公報 特開2003−277471号公報 特開2004−182775号公報
As described above, in these known techniques, an epoxy resin composition and a fiber-reinforced composite material capable of exhibiting a sufficient effect with respect to the torsional strength of the tubular body have not yet been obtained.
JP 2003-201388 A JP 2003-277471 A JP 2004-182775 A

本発明の目的は、上述した問題点を解決し、優れた耐熱性および強度特性を有するエポキシ樹脂組成物、また、より軽量で強度特性に優れた繊維強化複合材料を提供することにある。   An object of the present invention is to solve the above-described problems, and to provide an epoxy resin composition having excellent heat resistance and strength characteristics, and a fiber-reinforced composite material that is lighter and has excellent strength characteristics.

本発明は、前述した目的を達成する為に以下の構成を有する。すなわち、次の構成要素[A]、[B]、[C]、および[D]を含み、かつ、構成要素[A]、[C]、[D]が次の(1)〜(3)を満たす繊維強化複合材料用エポキシ樹脂組成物の製造方法であって、構成要素[A]に構成要素[C]を、ホモミキサー分散を行った後、超音波分散させる分散工程と、調製されたエポキシ樹脂混合物に構成要素[B]ならびに構成要素[D]を配合し、繊維強化複合材料用エポキシ樹脂組成物を調製する樹脂調製工程を有する、繊維強化複合材料用エポキシ樹脂組成物の製造方法
[A]平均エポキシ当量が200〜400のエポキシ樹脂
[B]硬化剤
[C]最大粒径が10μm以下のフラーレン
[D]ウレア化合物
(1)構成要素[A]に、25℃における粘度が10000mPa・s以下のエポキシ樹脂が5〜80重量%含まれている。
(2)構成要素[C]は、C60、C70またはこれらの混合物であって、構成要素[A]100重量部に対し、0.001〜10重量部含まれている。
(3)構成要素[D]は、構成要素[A]100重量部に対し、1〜10重量部含まれている。
また、前記エポキシ樹脂組成物と強化繊維とからなるプリプレグ、さらには繊維強化複合材料である。
The present invention has the following configuration in order to achieve the above-described object. That is, the following constituent elements [A], [B], [C], and [D] are included, and the constituent elements [A], [C], and [D] are the following (1) to (3). A method for producing an epoxy resin composition for a fiber-reinforced composite material satisfying the following conditions : a component [C] is dispersed in a component [A], and the component [C] is subjected to homomixer dispersion and then ultrasonically dispersed. The manufacturing method of the epoxy resin composition for fiber reinforced composite materials which has a resin preparation process which mix | blends component [B] and component [D] with an epoxy resin mixture, and prepares the epoxy resin composition for fiber reinforced composite materials .
[A] Epoxy resin having an average epoxy equivalent of 200 to 400 [B] Curing agent [C] Fullerene having a maximum particle size of 10 μm or less [D] Urea compound (1) The component [A] has a viscosity at 25 ° C. of 10,000 mPa -5-80 weight% of epoxy resins below s are contained.
(2) Component [C] is C60, C70 or a mixture thereof, and is contained in an amount of 0.001 to 10 parts by weight with respect to 100 parts by weight of component [A].
(3) The component [D] is included in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the component [A].
Further, it is a prepreg composed of the epoxy resin composition and reinforcing fibers, and further a fiber-reinforced composite material.

本発明のエポキシ樹脂組成物は、樹脂硬化物の圧縮弾性率、圧縮破壊呼び歪み、圧縮降伏応力、および耐熱性が良好である。   The epoxy resin composition of the present invention has good compression modulus, compression fracture nominal strain, compression yield stress, and heat resistance of the cured resin.

また、本発明のプリプレグは、取り扱い性が良好であり、成形性に優れるため機械特性に優れた繊維強化複合材料を提供することができる。   Moreover, since the prepreg of the present invention has good handleability and excellent moldability, it can provide a fiber-reinforced composite material having excellent mechanical properties.

さらに、本発明の繊維強化複合材料は軽量で、かつ、例えば円筒状繊維強化複合材料のねじり強さなどが優れた機械特性を有するものである。   Furthermore, the fiber-reinforced composite material of the present invention is lightweight and has mechanical properties such as, for example, excellent torsional strength of a cylindrical fiber-reinforced composite material.

本発明のエポキシ樹脂組成物は、次の構成要素[A]、[B]、[C]、および[D]を含み、かつ、構成要素[A]、[C]、[D]が次の(1)〜(3)を満たす繊維強化複合材料用エポキシ樹脂組成物の製造方法であって、構成要素[A]に構成要素[C]を、ホモミキサー分散を行った後、超音波分散させる分散工程と、調製されたエポキシ樹脂混合物に構成要素[B]ならびに構成要素[D]を配合し、繊維強化複合材料用エポキシ樹脂組成物を調製する樹脂調製工程を有する、繊維強化複合材料用エポキシ樹脂組成物の製造方法である。
[A]平均エポキシ当量が200〜400のエポキシ樹脂
[B]硬化剤
[C]最大粒径(測定方法は実施例で後述)が10μm以下のフラーレン
[D]ウレア化合物
(1)構成要素[A]に、25℃における粘度が10000mPa・s以下のエポキシ樹脂が5〜80重量%含まれている。
(2)構成要素[C]は、C60、C70またはこれらの混合物であって、構成要素[A]100重量部に対し、0.001〜10重量部含まれている。
(3)構成要素[D]は、構成要素[A]100重量部に対し、1〜10重量部含まれている。
本発明には構成要素[A]としてエポキシ樹脂を含むことが必要である。構成要素[A]のエポキシ樹脂としては、分子内に平均して1個を超えるエポキシ基を有する化合物である。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、イソシアネート変性エポキシ樹脂、脂環式エポキシ樹脂、ウレタン変性エポキシ樹脂、ブロム化ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フルオレン型エポキシ樹脂などを使用することができる。これらのエポキシ樹脂は、単独、または2種類以上を併用して使用することが出来、さらには液状のものから固体状のものまで使用することができる。
The epoxy resin composition of the present invention includes the following components [A], [B], [C], and [D], and the components [A], [C], and [D] are the following: A method for producing an epoxy resin composition for a fiber-reinforced composite material that satisfies (1) to (3), wherein the constituent element [C] is dispersed into the constituent element [A] by homomixing and then ultrasonically dispersed. An epoxy for fiber-reinforced composite material, comprising: a dispersion step; and a resin preparation step of preparing component [B] and component [D] in the prepared epoxy resin mixture to prepare an epoxy resin composition for fiber-reinforced composite material It is a manufacturing method of a resin composition .
[A] Epoxy resin having an average epoxy equivalent of 200 to 400 [B] Curing agent [C] Fullerene [D] urea compound (1) component [A] having a maximum particle size (measurement method will be described later in Examples) of 10 μm or less ] Contains 5 to 80% by weight of an epoxy resin having a viscosity at 25 ° C. of 10,000 mPa · s or less.
(2) Component [C] is C60, C70 or a mixture thereof, and is contained in an amount of 0.001 to 10 parts by weight with respect to 100 parts by weight of component [A].
(3) The component [D] is included in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the component [A].
In the present invention, it is necessary to include an epoxy resin as the component [A]. The epoxy resin of component [A] is a compound having an average of more than one epoxy group in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin, isocyanate modified epoxy resin, fat Use cyclic epoxy resin, urethane modified epoxy resin, brominated bisphenol A type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol S type epoxy resin, fluorene type epoxy resin, etc. Can do. These epoxy resins can be used singly or in combination of two or more, and can be used from liquid to solid.

本発明には構成要素[B]として硬化剤を含むことが必要である。構成要素[B]の硬化剤としては、ジアミノジフェニルメタン、ジアミノジフェニルスルホンのような芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物のようなカルボン酸、カルボン酸ヒドラジド、カルボン酸アミド、ポリフェノール化合物、ノボラック樹脂、ポリメルカプタン、及びフッ化ホウ素エチルアミン錯体のようなルイス酸錯体などを使用することができる。中でもジシアンジアミドを含むことが熱安定性の点から好ましい。また、これら硬化剤とエポキシ樹脂とを反応させて得られる硬化活性を有する付加物も、硬化剤に代用させて使用することができる。さらに、これら硬化剤をマイクロカプセル化したものは、プリプレグの保存安定性を高めるために、好ましく用いられる。   In the present invention, it is necessary to include a curing agent as the component [B]. Examples of the curing agent for the component [B] include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amine, and methylhexahydrophthalic anhydride. Such carboxylic acids, carboxylic acid hydrazides, carboxylic acid amides, polyphenol compounds, novolac resins, polymercaptans, and Lewis acid complexes such as boron fluoride ethylamine complexes can be used. Among these, dicyandiamide is preferably included from the viewpoint of thermal stability. In addition, an adduct having curing activity obtained by reacting these curing agents with an epoxy resin can be used in place of the curing agent. Furthermore, those obtained by encapsulating these curing agents are preferably used in order to increase the storage stability of the prepreg.

本発明には構成要素[C]としてフラーレン含むことが必要である。フラーレンしては、C60、C70、C76、C86、C116等挙げられ、単独、または2種類以上を混合して使用することができるが、本発明では、C60、C70またはこれらの混合物を用いる。C60単独としては、ナノムパープル(C60(98%含有))[フロンティアカーボン(株)社製]などがあげられ、C60とC70の混合品としては、ナノムミックス(C60(60%)、C70(25%)含有))[フロンティアカーボン(株)社製]などがあげられる。また、上記フラーレン類を官能基化、水素化したものを用いても良く、水素化フラーレンや水酸化フラーレンの例としては、ナノムスペクトラ[フロンティアカーボン(株)社製]などがあげられる。 In the present invention, it is necessary to include fullerene as the component [C]. Is a fullerene, include C60, C70, C76, C86, C116, etc., alone or can be mixed to use two or more, in the present invention, using a C60, C70 or mixtures thereof. Examples of C60 alone include Nanom Purple (C60 (containing 98%)) [manufactured by Frontier Carbon Co., Ltd.], and examples of the mixture of C60 and C70 include Nanom Mix (C60 (60%), C70 (25%)). %) Contained)) [made by Frontier Carbon Co., Ltd.] and the like. Further, functionalized and hydrogenated fullerenes may be used, and examples of the hydrogenated fullerene and the hydroxylated fullerene include Nanomuspectra [manufactured by Frontier Carbon Co., Ltd.].

構成要素[C]の最大粒径は10μm以下であることが必要である。好ましくは5μm以下、さらに好ましくは1μm以下である。最大粒径が大きいとプリプレグを作製する際に、粒径の大きい物が、加圧含浸しても、強化繊維束中に入り込まず、プリプレグ表面に残存し、樹脂の含浸性を悪化させる。そのため、繊維強化複合材料とした際に、ボイドが発生したり、粒子自体が破壊の起点となり物性低下を引き起こす。したがって、平均粒径ではなく、最大粒径の小さいことが重要である。   The maximum particle size of the component [C] is required to be 10 μm or less. Preferably it is 5 micrometers or less, More preferably, it is 1 micrometer or less. When the maximum particle size is large, when a prepreg is produced, even if the material having a large particle size is impregnated with pressure, it does not enter the reinforcing fiber bundle and remains on the prepreg surface, thereby deteriorating the resin impregnation property. For this reason, when a fiber reinforced composite material is used, voids are generated, or the particles themselves become the starting point of destruction and cause deterioration of physical properties. Therefore, it is important that the maximum particle size is small, not the average particle size.

構成要素[C]の配合量は、構成要素[A]100重量部に対し、[C]が0.001〜10重量部を必須とし、好ましくは[C]が0.001〜4重量部、より好ましくは0.001〜0.5、さらに好ましくは、0.001〜0.05重量部である。下限値未満の配合量であると、ねじり強さの向上効果が小さいことがあり、好ましくない。また上限値を超えると、プリプレグ作製時の樹脂の含浸性が著しく低下することがあり、これが物性低下に繋がるため、好ましくない。 The amount of component [C] to be blended is that 0.001 to 10 parts by weight of [C] is essential with respect to 100 parts by weight of component [A] , preferably 0.001 to 4 parts by weight of [C], More preferably, it is 0.001-0.5, More preferably, it is 0.001-0.05 weight part. If the amount is less than the lower limit, the effect of improving torsional strength may be small, such being undesirable. On the other hand, when the upper limit is exceeded, the impregnation property of the resin during prepreg production may be significantly lowered, which leads to a decrease in physical properties, which is not preferable.

構成要素[A]は粘度の低いエポキシ樹脂を含むことが好ましい。粘度の低いエポキシ樹脂を含むことで、[C]の粒度分布をシャープにでき、最大粒径を小さくすることができる。具体的には、本発明は25℃における粘度が10000mPa・s以下のエポキシ樹脂を5〜80重量%含み、好ましくは、4000mPa・s以下、さらに好ましくは1000mPa・s以下、特に好ましくは400mPa・s以下のエポキシ樹脂を5〜80重量%含むと良い。 The component [A] preferably contains an epoxy resin having a low viscosity. By including an epoxy resin having a low viscosity, the particle size distribution of [C] can be sharpened and the maximum particle size can be reduced. Specifically, the present invention is viscosity seen contains 5 to 80% by weight or less of the epoxy resin 10000 mPa · s at 25 ° C., preferably, 4000 mPa · s or less, more preferably 1000 mPa · s or less, particularly preferably 400 mPa · It is preferable to contain 5 to 80% by weight of epoxy resin of s or less.

また、構成要素[A]に含む25℃における粘度が10000mPa・s以下のエポキシ樹脂としては、グリシジルアミノ基を有することが特に好ましく、5〜80重量%含むことが好ましい。グリシジルアミノ基を有するエポキシ樹脂が5重量%以上であると[C]フラーレンの最大粒径が小さくなる効果が著しいことがあり、ねじり強さの向上効果が大きく好ましい。しかし、80重量%を超えて含まれるとプリプレグにした際、プリプレグのライフが悪くなることがあるため好ましくない。   In addition, the epoxy resin having a viscosity at 25 ° C. of 10,000 mPa · s or less contained in the component [A] particularly preferably has a glycidylamino group, and preferably 5 to 80% by weight. When the epoxy resin having a glycidylamino group is 5% by weight or more, the effect of reducing the maximum particle size of [C] fullerene may be remarkable, and the effect of improving torsional strength is large and preferable. However, if the content exceeds 80% by weight, the life of the prepreg may be deteriorated when the prepreg is formed, which is not preferable.

25℃における粘度が10000mPa・s以下のグリシジルアミノ基を有するエポキシ樹脂としては、MY0500(Vantico Inc製、5000mPa・s)、Ep630(ジャパンエポキシレジン(株)製、1000mPa・s)、MY0510(Vantico Inc製、800mPa・s)、GAN(日本化薬(株)製、160mPa・s)、GOT(日本化薬(株)製、80mPa・s)などが挙げられる。   As an epoxy resin having a glycidylamino group having a viscosity at 25 ° C. of 10,000 mPa · s or less, MY0500 (manufactured by Vantico Inc, 5000 mPa · s), Ep630 (manufactured by Japan Epoxy Resin Co., Ltd., 1000 mPa · s), MY0510 (Vantico Inc) Manufactured, 800 mPa · s), GAN (manufactured by Nippon Kayaku Co., Ltd., 160 mPa · s), GOT (manufactured by Nippon Kayaku Co., Ltd., 80 mPa · s), and the like.

本発明における構成要素[A]の平均エポキシ当量は200〜400であるかかるエポキシ当量となるように原料樹脂を配合することで、得られる樹脂硬化物の架橋密度を好ましい範囲とすることができる。即ち、エポキシ当量が大きいほど架橋点となるエポキシ基の密度が低下し、硬化物の架橋密度は小さくなるため、塑性変形能力を高めることができる。かかる平均エポキシ当量が200未満では樹脂硬化物の塑性変形能力が不十分で、円筒状繊維強化複合材料とした場合のねじり強さが不十分である。一方、400を超えると、樹脂硬化物の耐熱性が不十分になる。平均エポキシ当量が大きい方が、フラーレン類配合による物性(ねじり強さ)向上の効果が相乗的に大きくなるが、耐熱性とのバランスから、より好ましくは220〜390、さらに好ましくは240〜380である。 The average epoxy equivalent of component [A] in the present invention is 200 to 400 . By mix | blending raw material resin so that it may become this epoxy equivalent, the crosslinking density of the resin cured material obtained can be made into a preferable range. That is, the larger the epoxy equivalent, the lower the density of the epoxy group that becomes a cross-linking point and the lower the cross-linking density of the cured product, so that the plastic deformation ability can be increased. When the average epoxy equivalent is less than 200, the plastic deformation ability of the cured resin is insufficient, and the torsional strength in the case of a cylindrical fiber reinforced composite material is insufficient. On the other hand, if it exceeds 400, the heat resistance of the cured resin becomes insufficient. When the average epoxy equivalent is larger, the effect of improving physical properties (torsional strength) by blending fullerenes synergistically increases, but from the balance with heat resistance, it is preferably 220 to 390, more preferably 240 to 380. is there.

ここで、エポキシ当量とは、エポキシ樹脂の質量(g)を樹脂に含まれる全エポキシ基のモル数で除した値である。樹脂の混合物のエポキシ当量は、混合物の直接滴定により定量化できるが、個々の平均エポキシ当量と配合量から計算によって求めることもできる。   Here, the epoxy equivalent is a value obtained by dividing the mass (g) of the epoxy resin by the number of moles of all epoxy groups contained in the resin. The epoxy equivalent of a mixture of resins can be quantified by direct titration of the mixture, but can also be determined by calculation from the individual average epoxy equivalents and loadings.

また、構成要素[A]には、平均エポキシ当量450以上、10000以下の2官能エポキシ樹脂を5重量%以上、60重量%以下含むことが、フラーレン類との相乗効果により、ねじり強さを向上できるため好ましい。平均エポキシ当量750以上の2官能エポキシ樹脂を5重量%以上、60重量%以下含むことがより好ましく、平均エポキシ当量1000以上、5000以下の2官能エポキシ樹脂を5重量%以上60重量%以下含むことがさらに好ましい。エポキシ樹脂は液状成分を含んでいるため、平均エポキシ当量が450以上、10000以下のエポキシ樹脂が5重量%未満であると、全体としての平均エポキシ当量を200以上とすることができず、塑性変形能力の向上効果が不十分となることがあり、一方で60重量%を超えて存在すると、プリプレグ製造工程における、樹脂の含浸性が不十分となることがあるので好ましくない。   Constituent element [A] contains a bifunctional epoxy resin having an average epoxy equivalent of 450 or more and 10000 or less in an amount of 5% by weight or more and 60% by weight or less to improve torsional strength due to a synergistic effect with fullerenes. This is preferable because it is possible. More preferably, it contains 5% by weight or more and 60% by weight or less of a bifunctional epoxy resin having an average epoxy equivalent of 750 or more, and it contains 5% by weight or more and 60% by weight or less of a bifunctional epoxy resin having an average epoxy equivalent of 1000 or more and 5000 or less. Is more preferable. Since the epoxy resin contains a liquid component, if the epoxy resin having an average epoxy equivalent of 450 or more and 10,000 or less is less than 5% by weight, the average epoxy equivalent as a whole cannot be made 200 or more, and plastic deformation is caused. The ability improvement effect may be insufficient. On the other hand, if it exceeds 60% by weight, the resin impregnation in the prepreg production process may be insufficient, which is not preferable.

本発明においては、構成要素[A]にビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有する1種以上のエポキシ樹脂を含むことが好ましい。かかるエポキシ樹脂を1種以上含むことにより、フラーレン類との相乗効果による円筒状繊維強化複合材料のねじり強さが著しく向上し、樹脂硬化物の耐熱性も向上できる。   In the present invention, the constituent element [A] preferably contains one or more epoxy resins having at least one skeleton selected from biphenyl, naphthalene, fluorene, dicyclopentadiene, and an oxazolidone ring. By including one or more of such epoxy resins, the torsional strength of the cylindrical fiber reinforced composite material due to the synergistic effect with the fullerenes can be remarkably improved, and the heat resistance of the cured resin can also be improved.

ビフェニル骨格を有するエポキシ樹脂は市販のものを用いてもよく、例えばエピコート(登録商標)YX4000、エピコートYX4000H、エピコートYL6121(以上、ジャパンエポキシレジン(株)製)、NC3000、NC3000H(以上、日本化薬(株)製)などを挙げることができる。   Commercially available epoxy resins having a biphenyl skeleton may be used. For example, Epicoat (registered trademark) YX4000, Epicoat YX4000H, Epicoat YL6121 (above, manufactured by Japan Epoxy Resins Co., Ltd.), NC3000, NC3000H (above, Nippon Kayaku) For example).

ナフタレン骨格を有するエポキシ樹脂としてはエピクロン(登録商標)HP4032、エピクロンHP4032D、エピクロンH4032H、エピクロンEXA4750、エピクロンEXA4700、エピクロンEXA4701(以上、大日本インキ工業(株)製)、NC7000L、NC7300L(以上、日本化薬)などが挙げられる。   As epoxy resins having a naphthalene skeleton, Epicron (registered trademark) HP4032, Epicron HP4032D, Epicron H4032H, Epicron EXA4750, Epicron EXA4700, Epicron EXA4701 (above, Dainippon Ink Industries, Ltd.), NC7000L, NC7300L (above, Nippon Kayaku) Medicine).

フルオレン骨格を有するエポキシ樹脂としてはオグソール(登録商標)PG、オグソール(登録商標)EG(以上、ナガセケムテックス(株)製)などを挙げることができる。   Examples of the epoxy resin having a fluorene skeleton include Ogsol (registered trademark) PG and Ogsol (registered trademark) EG (manufactured by Nagase ChemteX Corporation).

ジシクロペンタジエン骨格を有するエポキシ樹脂としては、エピクロン(登録商標)HP7200L(エポキシ当量245〜250、軟化点54〜58)、エピクロンHP7200(エポキシ当量255〜260、軟化点59〜63)、エピクロンHP7200H(エポキシ当量275〜280、軟化点80〜85)、エピクロンHP7200HH(エポキシ当量275〜280、軟化点87〜92)(以上、大日本インキ化学工業(株)製)、XD−1000−L(エポキシ当量240〜255、軟化点60〜70)、XD−1000−2L(エポキシ当量235〜250、軟化点53〜63)(以上、日本化薬(株)製)、Tactix(登録商標)556(エポキシ当量215〜235、軟化点79℃)(Huntsman Inc社製)などを挙げることができる。   As an epoxy resin having a dicyclopentadiene skeleton, Epicron (registered trademark) HP7200L (epoxy equivalent: 245 to 250, softening point: 54 to 58), Epicron HP7200 (epoxy equivalent: 255 to 260, softening point: 59 to 63), Epicron HP7200H ( Epoxy equivalents 275-280, softening point 80-85), Epicron HP7200HH (epoxy equivalents 275-280, softening point 87-92) (above, Dainippon Ink & Chemicals, Inc.), XD-1000-L (epoxy equivalent) 240-255, softening point 60-70), XD-1000-2L (epoxy equivalent 235-250, softening point 53-63) (Nippon Kayaku Co., Ltd.), Tactix (registered trademark) 556 (epoxy equivalent) 215-235, softening point 79 ° C.) (manufactured by Huntsman Inc.) ) And the like.

オキサゾリドン環骨格を有するエポキシ樹脂としては、アラルダイトAER(登録商標)4152、XAC4151(以上、旭化成エポキシ(株)製)などを挙げることができる。   Examples of the epoxy resin having an oxazolidone ring skeleton include Araldite AER (registered trademark) 4152, XAC4151 (manufactured by Asahi Kasei Epoxy Co., Ltd.) and the like.

かかるエポキシ樹脂の中でもビフェニル、ジシクロペンタジエン型、およびオキサゾリドン環から選ばれる骨格を有するエポキシ樹脂は、構成要素[C]のフラーレン類と組み合わせた場合にねじり強さの向上効果が大きい点で好ましい。特にビフェニル型、ジシクロペンタジエン型骨格を有するエポキシ樹脂ではねじり強さの向上効果が大きいため好ましく、耐熱性の向上の大きさからジシクロペンタジエン型エポキシ樹脂との組み合わせが最も好ましい。   Among such epoxy resins, an epoxy resin having a skeleton selected from a biphenyl, dicyclopentadiene type, and oxazolidone ring is preferable because it has a large effect of improving torsional strength when combined with fullerenes of the constituent element [C]. In particular, an epoxy resin having a biphenyl type or dicyclopentadiene type skeleton is preferable because the effect of improving the torsional strength is large, and the combination with the dicyclopentadiene type epoxy resin is most preferable because of the large improvement in heat resistance.

本発明における前記構成要素[A]にビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有するエポキシ樹脂が、5〜50重量%含まれることが好ましい。7〜45重量%がより好ましく、10〜40重量%含まれることがさらに好ましい。5重量%未満では、ねじり強さと耐熱性の向上効果が小さく、50重量%を超えると、プリプレグ製造時の樹脂の強化繊維への含浸性が低下する。   The component [A] in the present invention preferably contains 5 to 50% by weight of an epoxy resin having at least one skeleton selected from biphenyl, naphthalene, fluorene, dicyclopentadiene, and an oxazolidone ring. It is more preferably 7 to 45% by weight, and further preferably 10 to 40% by weight. If it is less than 5% by weight, the effect of improving torsional strength and heat resistance is small, and if it exceeds 50% by weight, the impregnation property of the resin to the reinforcing fiber during prepreg production is lowered.

本発明におけるエポキシ樹脂組成物には、必要に応じて熱可塑性樹脂、熱可塑性エラストマー、エラストマー、無機粒子等を添加することができる。   A thermoplastic resin, a thermoplastic elastomer, an elastomer, inorganic particles, etc. can be added to the epoxy resin composition in the present invention as necessary.

本発明に用いる熱可塑性樹脂としては、エポキシ樹脂に可溶なものが好ましい。またエポキシ樹脂に不溶のものであっても、粉砕し、微粒子化したものは好ましく、配合することができる。   The thermoplastic resin used in the present invention is preferably one that is soluble in an epoxy resin. Moreover, even if it is insoluble in the epoxy resin, it is preferably pulverized and finely divided, and can be blended.

具体的にはポリアミド、ポリアミドイミド、ポリアラミド、ポリアリレーンオキシド、ポリアリレート、ポリイミド、ポリエチレンテレフタレート、ポリエーテルイミド、ポリエーテルテレフタレート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリカーボネート、ポリカーボネート、ポリ酢酸ビニル、ポリスチレン、ポリスルホン、ポリビニルアセタール、ポリビニルホルマール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリプロピレン、ポリベンズイミダゾール、ポリメタクリル酸メチル等が用いられる。   Specifically, polyamide, polyamideimide, polyaramide, polyarylene oxide, polyarylate, polyimide, polyethylene terephthalate, polyetherimide, polyether terephthalate, polyetherimide, polyetheretherketone, polyethersulfone, polycarbonate, polycarbonate, poly Vinyl acetate, polystyrene, polysulfone, polyvinyl acetal, polyvinyl formal, polyphenylene oxide, polyphenylene sulfide, polypropylene, polybenzimidazole, polymethyl methacrylate and the like are used.

また、中でもエポキシ樹脂との相溶性、コンポジット物性への悪影響を及ぼさない等の理由から、分子内に水素結合性官能基を有する熱可塑性樹脂が好ましく用いられる。   Among them, a thermoplastic resin having a hydrogen-bonding functional group in the molecule is preferably used for reasons such as compatibility with an epoxy resin and no adverse effects on physical properties of the composite.

分子内に水素結合性官能基の有する熱可塑性樹脂のうち、特にポリアミドは硬化物の弾性率をほとんど損なわずに、靭性及び耐衝撃性を向上させるのに有効である。また、特にポリエーテルイミド、ポリエーテルスルホンは、硬化物の耐熱性を損なうことなく、炭素繊維との接着性を改善するのに有効である。さらに、ポリビニルアセタール、およびポリビニルホルマールは、加熱によりエポキシ樹脂に容易に可溶し、硬化物の耐熱性を損なうことなく炭素繊維との接着性を改善すると共に、粘度調整が可能であるため、本発明における熱可塑性樹脂として特に好ましい。   Of the thermoplastic resins having hydrogen-bonding functional groups in the molecule, polyamide is particularly effective in improving toughness and impact resistance without substantially impairing the elastic modulus of the cured product. In particular, polyetherimide and polyethersulfone are effective in improving the adhesion to the carbon fiber without impairing the heat resistance of the cured product. Furthermore, polyvinyl acetal and polyvinyl formal are easily soluble in epoxy resins by heating, improve adhesion with carbon fibers without impairing the heat resistance of the cured product, and can adjust the viscosity. Particularly preferred as the thermoplastic resin in the invention.

本発明において、構成要素[A]のエポキシ樹脂100重量部に対して、熱可塑性樹脂は0.1〜10重量部含まれることが好ましく、0.1〜8重量部、さらには、0.1〜5重量部であることが好ましい。10重量部を超えると、プリプレグ製造工程において、強化繊維への樹脂の含浸性が不十分となり、繊維強化複合材料の物性が低下する場合がある。   In this invention, it is preferable that 0.1-10 weight part is contained with respect to 100 weight part of epoxy resins of component [A], 0.1-8 weight part, Furthermore, 0.1 weight part is 0.1. It is preferably ˜5 parts by weight. If it exceeds 10 parts by weight, the impregnation property of the resin to the reinforcing fiber becomes insufficient in the prepreg manufacturing process, and the physical properties of the fiber-reinforced composite material may be lowered.

本発明において、硬化性を向上させるために、硬化促進剤を用いることができる。硬化促進剤としてはイミダゾール化合物、ウレア化合物、3級アミン等を挙げることができるが、本発明ではウレア化合物を用いる。樹脂組成物の貯蔵安定性を高めるために、表面が樹脂被覆されているマイクロカプセル型の硬化促進剤を用いても良い。中でも硬化促進剤としてウレア化合物を含むことが、樹脂組成物の貯蔵安定性をほとんど損なうこと無く、十分な促進効果が得られるという理由から、好ましく用いられる。ウレア化合物として具体的には、3−(3,4−ジクロロフェニル)1,1−ジメチルウレア、商品名“DCMU99”保土谷化学製やトルエンビス(ジメチルウレア)、商品名“オミキュア24”PTIジャパン製などがあげられるがこれに限定されるものではない。 In the present invention, a curing accelerator can be used to improve curability. As the curing accelerator, an imidazole compound, a urea compound, there may be mentioned tertiary amines such as, in the present invention using a urea compound. In order to increase the storage stability of the resin composition, a microcapsule type curing accelerator whose surface is coated with a resin may be used. Among these, inclusion of a urea compound as a curing accelerator is preferably used because a sufficient accelerating effect can be obtained without substantially impairing the storage stability of the resin composition. Specific examples of urea compounds include 3- (3,4-dichlorophenyl) 1,1-dimethylurea, trade name “DCMU99” manufactured by Hodogaya Chemical Co., Ltd., toluene bis (dimethylurea), and trade name “OMICURE 24” manufactured by PTI Japan. However, it is not limited to this.

ウレア化合物は、構成要素[A]のエポキシ樹脂100重量部に対して、1〜10重量部用いる1重量部未満では、促進効果が弱くなる為、樹脂組成物が135℃、2時間程度の加熱では、十分硬化しない場合があり、逆に10重量部を超えると、促進効果が強くなりすぎて、高温時の樹脂組成物の貯蔵安定性が不十分となる場合がある。 The urea compound is used in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin of the component [A] . If the amount is less than 1 part by weight, the accelerating effect is weakened. Therefore, the resin composition may not be sufficiently cured by heating at 135 ° C. for about 2 hours. Conversely, if the amount exceeds 10 parts by weight, the accelerating effect is too strong. The storage stability of the resin composition at high temperatures may be insufficient.

本発明のプリプレグは、強化繊維に本発明のエポキシ樹脂組成物を含浸せしめたものである。   The prepreg of the present invention is obtained by impregnating a reinforcing fiber with the epoxy resin composition of the present invention.

本発明のプリプレグに用いる強化繊維は、特に限定されないが炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が使用できる。これらの繊維を2種以上混在させることもできるが、より軽量かつ高耐久性の成形品を得るために、炭素繊維を用いるのが好ましい。中でも引張弾性率が150〜650GPaであることが好ましく、200〜550GPaがより好ましく、300〜500GPaの炭素繊維を用いることが、軽量性能と力学特性に優れた材料を得るのに特に好ましい。   The reinforcing fiber used in the prepreg of the present invention is not particularly limited, and carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber, and the like can be used. Two or more of these fibers can be mixed, but it is preferable to use carbon fibers in order to obtain a lighter and more durable molded product. Among them, the tensile elastic modulus is preferably 150 to 650 GPa, more preferably 200 to 550 GPa, and the use of carbon fibers of 300 to 500 GPa is particularly preferable for obtaining a material excellent in lightweight performance and mechanical properties.

本発明のプリプレグに含まれる強化繊維の形態及び配列は、例えば、一方向に引き揃えたもの、織物(クロス)、トウ、マット、ニット等が用いられる。中でも、積層構成によって容易に強度特性を設計可能であることから、一方向に引き揃えられたものを採用するのが好ましい。   As the form and arrangement of the reinforcing fibers contained in the prepreg of the present invention, for example, those aligned in one direction, woven fabric (cross), tow, mat, knit and the like are used. Among them, it is preferable to adopt one that is aligned in one direction because the strength characteristics can be easily designed by the laminated structure.

本発明のプリプレグ、および繊維強化複合材料の強化繊維重量含有率は60〜90重量%、より好ましくは70〜85重量%である。本発明のエポキシ樹脂組成物を用いた場合、このように繊維含有率の高い領域において、プリプレグの成形性、特に管状体(円筒状繊維強化複合材料)を成形する際の成形性向上効果が一段と明確に現れ優れたものになる。また前記樹脂組成とすることで、プリプレグにおける取り扱い性(タック性、ドレープ性等)の経時変化制御を行うこともできる。さらには得られる繊維強化複合材料の品位・性能も優れたものとすることができる。   The reinforced fiber weight content of the prepreg of the present invention and the fiber-reinforced composite material is 60 to 90% by weight, more preferably 70 to 85% by weight. When the epoxy resin composition of the present invention is used, the effect of improving the moldability of the prepreg, in particular, the moldability when molding a tubular body (cylindrical fiber reinforced composite material) is further enhanced in such a high fiber content region. It becomes clear and excellent. Further, by using the resin composition, it is possible to control the change with time of the handling property (tackiness, drapeability, etc.) in the prepreg. Furthermore, the quality and performance of the fiber-reinforced composite material obtained can be made excellent.

本発明のプリプレグは単位面積あたりの繊維重量が40〜250g/mであることが好ましく、さらには50〜200g/mであることが好ましい。単位面積あたりの繊維重量が40g/m未満であるとプリプレグの形状保持性が低下し、やや取扱いにくくなる。また単位面積あたりの繊維重量が250g/mを超えると、プリプレグ内部の繊維アライメントが乱れやすく、高性能な繊維強化複合材料となりにくい場合がある。 The prepreg of the present invention preferably has a fiber weight per unit area of 40 to 250 g / m 2 , more preferably 50 to 200 g / m 2 . When the fiber weight per unit area is less than 40 g / m 2 , the shape retention of the prepreg is lowered and the handling becomes somewhat difficult. Moreover, when the fiber weight per unit area exceeds 250 g / m < 2 >, the fiber alignment inside a prepreg tends to be disturb | confused and it may become difficult to become a high performance fiber reinforced composite material.

ここでいう単位面積あたりの繊維重量及び繊維含有量はプリプレグから有機溶媒などにより樹脂を溶出し、繊維重量を計量することにより求めることができる。   The fiber weight per unit area and the fiber content mentioned here can be determined by eluting the resin from the prepreg with an organic solvent and measuring the fiber weight.

本発明の炭素繊維は、炭素繊維表面にエポキシ基、水酸基、アクリレート基、メタクリレート基、カルボキシル基、カルボン酸無水物基から選ばれる少なくとも一種の官能基を有するサイジング剤を付着させることで、炭素繊維表面の官能基、および樹脂硬化物のポリマーネットワーク中の官能基との間で化学結合、あるいは水素結合などの共有結合による相互作用を生じ、炭素繊維と樹脂硬化物との接着性を高めることができる。   The carbon fiber of the present invention is obtained by attaching a sizing agent having at least one functional group selected from an epoxy group, a hydroxyl group, an acrylate group, a methacrylate group, a carboxyl group, and a carboxylic acid anhydride group to the carbon fiber surface. The bond between the functional group on the surface and the functional group in the polymer network of the cured resin can be enhanced by the chemical bond or covalent bond such as hydrogen bond to improve the adhesion between the carbon fiber and the cured resin. it can.

また、本発明に使用する炭素繊維には、ポリエチレンオキシド骨格を有する化合物を含むサイジング剤を付与する事が好ましい。ポリエチレンオキシド骨格を有する化合物を含むサイジング剤を用いることにより、フラーレン類を配合した際のねじり向上効果が大きくなり好ましい。ポリエチレンオキシド骨格を有する化合物としては、ポリエチレングリコール、ポリエチレングリコールとビスフェノールA型エポキシ樹脂や、ビスフェノールF型エポキシ樹脂との反応物、ポリエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルとビスフェノールAやビスフェノールFとの反応物などが挙げられる。前記サイジング剤が付着した炭素繊維を製造する方法としては、例えば、サイジング剤を溶解又は分散させたサイジング液中に炭素繊維を通過させることで炭素繊維表面に付着させ、その後、加熱して溶媒を除去する方法がある。   Moreover, it is preferable to give the carbon fiber used for this invention the sizing agent containing the compound which has a polyethylene oxide frame | skeleton. By using a sizing agent containing a compound having a polyethylene oxide skeleton, the effect of improving torsion when blending fullerenes is increased, which is preferable. Examples of the compound having a polyethylene oxide skeleton include polyethylene glycol, a reaction product of polyethylene glycol and bisphenol A type epoxy resin, a reaction product of bisphenol F type epoxy resin, polyethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, bisphenol A and bisphenol F And the like. As a method for producing the carbon fiber to which the sizing agent is adhered, for example, the carbon fiber is allowed to pass through a sizing solution in which the sizing agent is dissolved or dispersed to adhere to the surface of the carbon fiber, and then heated to remove the solvent. There is a way to remove it.

本発明のエポキシ樹脂組成物は、構成要素[C]を予め液状エポキシ樹脂など分散媒に分散する工程と、構成要素[C]が分散したエポキシ樹脂に、さらにエポキシ樹脂、構成要素[B]の硬化剤、その他の硬化促進剤や熱可塑性樹脂などの成分を配合して製造することが好ましい。   In the epoxy resin composition of the present invention, the component [C] is dispersed in advance in a dispersion medium such as a liquid epoxy resin, and the epoxy resin in which the component [C] is dispersed is further added to the epoxy resin and the component [B]. It is preferable to manufacture by blending components such as a curing agent, other curing accelerators, and a thermoplastic resin.

本発明のプリプレグは、上記の製造方法により調製された繊維強化複合材料用エポキシ樹脂組成物を強化繊維に含浸することで、プリプレグを作製するプリプレグ化工程によって製造されることが好ましい。   The prepreg of the present invention is preferably produced by a prepreg forming step for producing a prepreg by impregnating a reinforcing fiber with the epoxy resin composition for fiber reinforced composite material prepared by the above production method.

分散処理方法としては、ニーダー、プラネタリーミキサー、二軸押出機、三本ロール、ホモミキサー、ディゾルバー、ボールミル、ビーズミル、超音波等を挙げることができるが、本発明の分散工程ではホモミキサー分散を行った後、超音波分散を用いる。かかる方法を用いることで、[C]の最大粒径が小さくなる分散媒100重量部に対して[C]を0.003〜20重量部で分散することが好ましく、さらに0.01〜10重量部であると好ましく、0.02〜3部重量部であることが最も好ましい。0.003重量部未満では、エポキシ樹脂組成物とした際にフラーレン類の配合量が少なくなり物性の向上効果が小さい可能性や、配合量を増やすために液状エポキシ樹脂成分が多くなり、プリプレグの取り扱い性が悪くなる場合があるため好ましくない。20重量部より多くなると、分散工程で多大な時間を要したり、最大粒径が小さくならない場合があるため、好ましくない。 The distributed processing method, a kneader, a planetary mixer, twin-screw extruder, three-roll, a homomixer, a dissolver, a ball mill, a bead mill, may be mentioned an ultrasonic wave or the like, a homomixer dispersion in the dispersion step of the present invention Once done, ultrasonic dispersion is used . By using this method, the maximum particle size of [C] is reduced . [C] is preferably dispersed by 0.003 to 20 parts by weight, more preferably 0.01 to 10 parts by weight, and 0.02 to 3 parts by weight with respect to 100 parts by weight of the dispersion medium. Is most preferred. If the amount is less than 0.003 parts by weight, the amount of fullerenes may be reduced when the epoxy resin composition is used, and the effect of improving the physical properties may be small. Since the handleability may deteriorate, it is not preferable. If it exceeds 20 parts by weight, it is not preferable because it takes a long time in the dispersion step and the maximum particle size may not be reduced.

ビーズミル分散においては、ビーズの直径は小さいものを使用することが分散性の観点から好ましい。ビーズ直径は1mm以下が好ましく、0.5mm以下であるとより好ましく、0.3mm以下であるとさらに好ましい。   In the bead mill dispersion, it is preferable from the viewpoint of dispersibility to use beads having a small diameter. The bead diameter is preferably 1 mm or less, more preferably 0.5 mm or less, and even more preferably 0.3 mm or less.

超音波分散装置の周波数は10kHz以上、100kHz以下であることが好ましく、20kHz以上、50kHz以下であることがさらに好ましい。10kHz未満では分散能力が小さく粒径が小さくなりにくい場合があり好ましくない。100kHzより大きいと化学作用が起き、エポキシ樹脂の分子鎖が切断されるなど物性の低下に繋がる可能性があるため好ましくない。超音波分散装置の振幅は1μm以上、100μm以下であることが好ましい。1μm未満であると粒径が小さくなりにくい場合があり好ましくない。100μmを超えるとエポキシ樹脂の分子が切断されるなどの物性低下に繋がる可能性があるため好ましくない。   The frequency of the ultrasonic dispersion device is preferably 10 kHz or more and 100 kHz or less, and more preferably 20 kHz or more and 50 kHz or less. If it is less than 10 kHz, the dispersion ability is small and the particle size is difficult to be reduced, which is not preferable. If it is higher than 100 kHz, a chemical action occurs, which may lead to a decrease in physical properties such as the molecular chain of the epoxy resin being cleaved. The amplitude of the ultrasonic dispersion apparatus is preferably 1 μm or more and 100 μm or less. If it is less than 1 μm, the particle size may be difficult to be reduced. If it exceeds 100 μm, it is not preferable because it may lead to a decrease in physical properties such as the cleavage of epoxy resin molecules.

分散工程で使用する分散媒としては、粘度が小さいことが好ましい。高い粘度の分散媒を用いると、[C]の粒度分布がブロードになり最大粒径が小さくならず、物性の低下に繋がる可能性が有るため好ましくない。効率的に粒径を小さくする為には、分散媒の粘度をある一定値以下にすることが好ましい。具体的には、25℃における粘度が10000mPa・s以下が良く、好ましくは、4000mPa・s以下、さらに好ましくは1000mPa・s以下が良く、最も好ましくは400mPa・s以下が良い。   The dispersion medium used in the dispersion step preferably has a low viscosity. Use of a dispersion medium having a high viscosity is not preferable because the particle size distribution of [C] becomes broad and the maximum particle size is not reduced, leading to a decrease in physical properties. In order to efficiently reduce the particle size, it is preferable to set the viscosity of the dispersion medium to a certain value or less. Specifically, the viscosity at 25 ° C. is preferably 10,000 mPa · s or less, preferably 4000 mPa · s or less, more preferably 1000 mPa · s or less, and most preferably 400 mPa · s or less.

分散媒としては、エポキシ樹脂、もしくは硬化剤と反応しうる官能基を有する化合物であることが好ましく、特にエポキシ樹脂であることが好ましい。エポキシ樹脂組成物を硬化する際に、分散媒がエポキシ樹脂もしくは硬化剤と反応し系中に取り込まれないと、耐熱性や物性低下の可能性があるため好ましくない。   The dispersion medium is preferably an epoxy resin or a compound having a functional group capable of reacting with a curing agent, and particularly preferably an epoxy resin. When the epoxy resin composition is cured, it is not preferable that the dispersion medium reacts with the epoxy resin or the curing agent and is not taken into the system because heat resistance and physical properties may be deteriorated.

分散媒は2種類以上の化合物の混合品でも良く、高粘度の分散媒と低粘度の分散媒との組み合わせによって低粘度化しても良い。その場合、常圧における沸点は200℃以上の化合物であることが好ましい。沸点200℃未満の化合物と混合し低粘度化した場合、硬化時にボイドの原因となり物性低下に繋がるため好ましくない。   The dispersion medium may be a mixture of two or more kinds of compounds, and the viscosity may be lowered by a combination of a high viscosity dispersion medium and a low viscosity dispersion medium. In that case, the boiling point at normal pressure is preferably a compound having a temperature of 200 ° C. or higher. Mixing with a compound having a boiling point of less than 200 ° C. to lower the viscosity is undesirable because it causes voids during curing and leads to a decrease in physical properties.

分散媒の官能基としては、グリシジルアミノ基を有する化合物であることが好ましい。グリシジルアミノ基を有する化合物の粘度も低いことが好ましく、25℃における粘度が10000mPa・s以下が良く、好ましくは4000mPa・s以下、さらにこのましくは1000mPa・s以下、最も好ましくは400mPa・s以下が良い。グリシジルアミノ基を有する化合物としては、MY0500(Vantico Inc製、5000mPa・s)、Ep630(ジャパンエポキシレジン(株)製、1000mPa・s)、MY0510(Vantico Inc製、800mPa・s)、GAN(日本化薬(株)製、160mPa・s)、GOT(日本化薬(株)製、80mPa・s)などが挙げられる。   The functional group of the dispersion medium is preferably a compound having a glycidylamino group. The viscosity of the compound having a glycidylamino group is preferably low, and the viscosity at 25 ° C. is preferably 10000 mPa · s or less, preferably 4000 mPa · s or less, more preferably 1000 mPa · s or less, and most preferably 400 mPa · s or less. Is good. As compounds having a glycidylamino group, MY0500 (manufactured by Vantico Inc, 5000 mPa · s), Ep630 (manufactured by Japan Epoxy Resin Co., Ltd., 1000 mPa · s), MY0510 (manufactured by Vantico Inc, 800 mPa · s), GAN (Nipponization) And YOT (manufactured by Nippon Kayaku Co., Ltd., 80 mPa · s).

ここで分散媒にエポキシ樹脂を用いた場合、構成要素[A]は構成要素[C]を予め分散させたエポキシ樹脂とさらに分散媒としてのエポキシ樹脂とを加えた成分となりうる。   Here, when an epoxy resin is used as the dispersion medium, the component [A] can be a component obtained by adding an epoxy resin in which the component [C] is dispersed in advance and an epoxy resin as a dispersion medium.

なお、本発明における、樹脂調製工程では、ニーダー、プラネタリーミキサー、二軸押出機を用いることが好ましい。   In the resin preparation step in the present invention, it is preferable to use a kneader, a planetary mixer, or a twin screw extruder.

次に、本発明のプリプレグ化工程では、ホットメルト法を用いることが好ましい。プリプレグの製造方法は、マトリックス樹脂をメチルエチルケトン、メタノールなどの溶媒に溶解して低粘度化し、含浸させるウエット法と、加熱により低粘度化し、含浸させるホットメルト法などの方法により製造される。   Next, in the prepreg process of the present invention, it is preferable to use a hot melt method. The prepreg is produced by a wet method in which a matrix resin is dissolved in a solvent such as methyl ethyl ketone or methanol to lower the viscosity and impregnated, and a hot melt method in which the viscosity is lowered by heating and impregnated.

ウェット法は、炭素繊維等をエポキシ樹脂組成物からなる液体に浸漬した後、引き上げ、オーブンなどを用いて溶媒を蒸発させてプリプレグを得る方法である。   The wet method is a method of obtaining a prepreg by dipping carbon fiber or the like in a liquid made of an epoxy resin composition, then pulling it up and evaporating the solvent using an oven or the like.

ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接炭素繊維等に含浸させる方法、あるいは一旦エポキシ樹脂組成物を離型紙などの上にコーティングしたフィルムをまず作成し、ついで炭素繊維等の両側あるいは片側から該フィルムを重ね、加熱加圧することにより樹脂を含浸させたプリプレグを製造する方法である。ホットメルト法には、プリプレグ中に残留する溶媒がないため好ましい。   The hot melt method is a method of directly impregnating carbon fiber or the like with an epoxy resin composition whose viscosity has been reduced by heating, or a film in which an epoxy resin composition is once coated on release paper or the like, and then creating a carbon fiber or the like. Is a method for producing a prepreg impregnated with a resin by overlapping the film from both sides or one side and heating and pressing. The hot melt method is preferable because there is no solvent remaining in the prepreg.

本発明の繊維強化複合材料の成形は、例えば以下の要領で行われる。プリプレグを裁断して得たパターンを積層後、積層物に圧力を付与しながら、樹脂を加熱硬化させることにより、繊維強化複合材料が得られる。熱および圧力を付与する方法には、プレス成型法、オートクレーブ成型法、真空圧成形法、シートワインディング法、および内圧成形法などがあり、特にスポーツ用品に関しては、シートワインディング法あるいは内圧成形法が好ましく採用される。   For example, the fiber-reinforced composite material of the present invention is molded in the following manner. After laminating the pattern obtained by cutting the prepreg, the fiber reinforced composite material is obtained by heat curing the resin while applying pressure to the laminate. Methods for applying heat and pressure include a press molding method, an autoclave molding method, a vacuum pressure molding method, a sheet winding method, and an internal pressure molding method. Especially for sports equipment, the sheet winding method or the internal pressure molding method is preferable. Adopted.

シートワインディング法は、マンドレルにプリプレグを巻いて円筒状物を成形する方法であり、ゴルフシャフトや釣竿などの棒状体を作成する際に好適である。具体的には、マンドレルにプリプレグを巻き付け、プリプレグがマンドレルから剥離しないように固定したり、または、プリプレグに成形圧力を付与するために、プリプレグの外側にテープ状の熱可塑性樹脂フィルム(ラッピングテープ)を巻き付け、オーブンで樹脂を加熱硬化させた後に、芯金を抜き取って円筒状成形物を得る方法である。   The sheet winding method is a method of forming a cylindrical object by winding a prepreg around a mandrel, and is suitable for producing a rod-shaped body such as a golf shaft or a fishing rod. Specifically, a prepreg is wound around a mandrel and fixed so that the prepreg does not peel off from the mandrel, or a tape-like thermoplastic resin film (wrapping tape) is provided on the outside of the prepreg in order to apply molding pressure to the prepreg. Is wound and the resin is heated and cured in an oven, and then the core metal is removed to obtain a cylindrical molded product.

内圧成形法は、熱可塑性樹脂よりなる内圧付与体の外側にプリプレグを巻き付けたプリフォームを金型内にセットし、内圧付与体に高圧空気を導入して加圧し、同時に金型を加熱することにより繊維強化複合材料を成形する方法である。この内圧成形法は、特殊形状のゴルフシャフトやバット、特にテニスやバトミントンなどのラケットのような複雑な形状を成形する際に好適に用いられる。   In the internal pressure molding method, a preform in which a prepreg is wound around an internal pressure applying body made of a thermoplastic resin is set in a mold, high pressure air is introduced into the internal pressure applying body, and the mold is heated at the same time. This is a method for forming a fiber-reinforced composite material. This internal pressure molding method is suitably used when molding a complicated shape such as a specially shaped golf shaft or bat, particularly a racket such as tennis or badminton.

本発明の繊維強化複合材料は、ガラス転移温度が100〜150℃であることが好ましく、100〜140℃がより好ましい。100℃未満であると、スポーツ用途などにおいて耐熱性が不足することがある。150℃を超えると、残留熱応力が大きく、加熱硬化後の繊維強化複合材料の機械物性が低くなることがある。   The fiber reinforced composite material of the present invention preferably has a glass transition temperature of 100 to 150 ° C, more preferably 100 to 140 ° C. If it is lower than 100 ° C., heat resistance may be insufficient in sports applications. When it exceeds 150 ° C., the residual thermal stress is large, and the mechanical properties of the fiber-reinforced composite material after heat curing may be lowered.

以下、本発明を実施例によりさらに具体的に説明する。なお、実施例中の評価方法は以下に示す通りである。表1、表2、表3、表4、表5、および表6に各実施例の樹脂組成、プリプレグ特性、繊維強化複合材料特性をまとめて示す。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the evaluation method in an Example is as showing below. Table 1, Table 2, Table 3, Table 4, Table 5, and Table 6 collectively show the resin composition, prepreg characteristics, and fiber reinforced composite material characteristics of each example.

A.樹脂調製
表1〜6に示す構成要素[A]の欄に示すエポキシ樹脂のうち任意に選んだ液状のエポキシ樹脂と[C]フラーレン類を用いて分散処理を行った。得られたフラーレン配合エポキシ樹脂と残りの樹脂原料および[B]硬化剤、その他添加剤等をニーダー混練によって調製した。
A. Resin Preparation Dispersion treatment was performed using a liquid epoxy resin arbitrarily selected from the epoxy resins shown in the column of the constituent elements [A] shown in Tables 1 to 6 and [C] fullerenes. The obtained fullerene-blended epoxy resin, the remaining resin raw materials, [B] curing agent, other additives and the like were prepared by kneader kneading.

B.硬化物中に分散するフラーレン類の最大粒径測定
A.にて得られたエポキシ樹脂組成物を80℃に加熱して真空ポンプにて脱泡後、モールドに注入し、130℃で90分間、加熱処理することにより、樹脂硬化物の板を作製した。得られたエポキシ樹脂硬化物の断面を、日立株式会社製System S−4100走査型電子顕微鏡(SEM)を用いて、以下の測定条件にて観察した。樹脂硬化物中に存在するフラーレン類の凝集粒子100個の粒径の最長径を測定し、その中で最も大きい粒子径を本発明における最大粒径とした。
加速電圧:3kV
蒸着:Pt−Pd 約4μm
C.プリプレグの作製
a.バイアス材の作製
エポキシ樹脂組成物を、リバースロールコーターを用いて離型紙状に塗布して樹脂フィルムを作製した。次に、一方向に配列させた引張弾性率392GPaの炭素繊維“トレカ”(登録商標)M40SC−12K(東レ(株)社製)の両側面に樹脂フィルムを重ね、加熱加圧(130℃、0.4MPa)することによって、樹脂を含浸させ、プリプレグの単位面積あたりの繊維重量が125g/m、繊維重量含有率が76%の一方向プリプレグを作製した。
B. Measurement of maximum particle size of fullerenes dispersed in cured product The epoxy resin composition obtained in (1) was heated to 80 ° C., defoamed with a vacuum pump, poured into a mold, and heat-treated at 130 ° C. for 90 minutes to prepare a cured resin plate. The cross section of the obtained cured epoxy resin was observed under the following measurement conditions using a System S-4100 scanning electron microscope (SEM) manufactured by Hitachi, Ltd. The longest diameter of 100 aggregated particles of fullerenes present in the cured resin was measured, and the largest particle diameter was taken as the maximum particle diameter in the present invention.
Acceleration voltage: 3 kV
Deposition: Pt-Pd approx. 4μm
C. Preparation of prepreg a. Production of Bias Material The epoxy resin composition was applied to a release paper using a reverse roll coater to produce a resin film. Next, a resin film is stacked on both sides of carbon fiber “Treca” (registered trademark) M40SC-12K (manufactured by Toray Industries, Inc.) having a tensile modulus of elasticity of 392 GPa arranged in one direction, and heated and pressurized (130 ° C., 0.4 MPa), the resin was impregnated to produce a unidirectional prepreg having a fiber weight per unit area of 125 g / m 2 and a fiber weight content of 76%.

b.ストレート材の作製
エポキシ樹脂組成物を、リバースロールコーターを用いて離型紙上に塗布して樹脂フィルムを作製した。次に、一方向に配列させた引張弾性率295GPaの炭素繊維“トレカ”(登録商標)T800H−12K(東レ(株)社製)の両側面に樹脂フィルムを重ね、加熱加圧(130℃、0.4MPa)することによって、樹脂を含浸させ、プリプレグ単位面積あたりの繊維重量が125g/m、繊維重量含有率が76%の一方向プリプレグを作製した。
b. Production of Straight Material The epoxy resin composition was applied onto release paper using a reverse roll coater to produce a resin film. Next, a resin film is laminated on both sides of carbon fiber “Treca” (registered trademark) T800H-12K (manufactured by Toray Industries, Inc.) having a tensile elastic modulus of 295 GPa arranged in one direction, and heated and pressurized (130 ° C., 0.4 MPa), the resin was impregnated, and a unidirectional prepreg having a fiber weight per prepreg unit area of 125 g / m 2 and a fiber weight content of 76% was produced.

D.含浸性
できあがったプリプレグの含浸性を目視および触感で4段階評価した。表には極めて良好を○○、良好を○、若干未含浸部があったものを△、含浸不良を×で表した。
D. Impregnation property The impregnation property of the finished prepreg was evaluated on a four-point scale by visual and tactile sensation. In the table, “Excellent” is indicated by “Good”, “Good” is indicated by “Good”, “Slightly unimpregnated part” is indicated by “△”, and Impregnation failure is indicated by “X”.

E.円筒状繊維強化複合材料の作製
下記(a)〜(e)の操作により、円筒軸方向に対して[0/±45](すなわち、円筒内側より、+45°の繊維方向と−45°の繊維方向を交互に各3層した外側に0°の繊維方向を3層)の積層構成を有し、内径が10mmの円筒状繊維強化複合材料を作製した。マンドレルには直径10mm(いずれも長さ1000mm)のステンレス製丸棒を使用した。
(a)一方向プリプレグを繊維の方向がマンドレルの軸方向に対して45°になるように、縦800mm×横103mmの長方形に2枚切り出した。この2枚の離型フィルムを剥いだ直後に繊維方向が互いに交差するように、かつ横方向に16mm(マンドレル半周分に対応)ずらして貼り合わせた。
(b)貼り合わせたプリプレグ(バイアス材)の離型紙をはぎ取り、離型処理したマンドレルに、プリプレグの縦方向とマンドレルの軸方向が一致するように巻き付けた。
(c)その上に、プリプレグ(ストレート材)を繊維の方向が縦方向になるように、縦800mm×横112mmの長方形に切り出したものをプリプレグの縦方向とマンドレルの軸方向が一致するように巻き付けた。
(d)ラッピングテープ(耐熱性フィルムテープ)を巻きつけ、硬化炉中で130℃、2時間加熱成形した。
(e)成形後、マンドレルを抜き取り、ラッピングテープを除去して円筒状繊維強化複合材料を得た。
E. Production of Cylindrical Fiber Reinforced Composite Material [0 3 / ± 45 3 ] (ie, + 45 ° fiber direction and −45 ° from the inside of the cylinder) with respect to the cylindrical axis direction by the following operations (a) to (e). A cylindrical fiber reinforced composite material having a laminated structure of three layers each of which is alternately arranged and three layers of 0 ° fiber directions on the outside and having an inner diameter of 10 mm was produced. A stainless steel round bar having a diameter of 10 mm (both 1000 mm in length) was used for the mandrel.
(A) Two unidirectional prepregs were cut into a rectangle of length 800 mm × width 103 mm so that the fiber direction was 45 ° with respect to the axial direction of the mandrel. Immediately after the two release films were peeled, they were bonded so that the fiber directions intersected each other and shifted by 16 mm in the lateral direction (corresponding to the half circumference of the mandrel).
(B) The release paper of the bonded prepreg (bias material) was peeled off and wound around the release mandrel so that the longitudinal direction of the prepreg and the axial direction of the mandrel coincided.
(C) On top of that, a prepreg (straight material) cut into a rectangle of 800 mm in length and 112 mm in width so that the fiber direction is in the longitudinal direction so that the longitudinal direction of the prepreg and the axial direction of the mandrel coincide with each other. I wrapped it.
(D) Wrapping tape (heat-resistant film tape) was wound, and heat-molded in a curing furnace at 130 ° C. for 2 hours.
(E) After molding, the mandrel was extracted and the wrapping tape was removed to obtain a cylindrical fiber reinforced composite material.

F.円筒繊維強化複合材料のねじり強さの測定
内径10mmの円筒状繊維強化複合材料から長さ350mmの試験片を切り出し、「ゴルフクラブ用シャフトの認定基準及び基準確認方法」(製品安全協会編、通商産業大臣承認5産第2087号、1993年)に記載の方法に従い、ねじり試験を行った。試験片ゲージ長は250mmとし、試験片両端の50mmを固定治具で把持した。ねじり強さは次式により求めた。
F. Measurement of torsional strength of cylindrical fiber reinforced composite material A test piece of 350 mm length was cut out from a cylindrical fiber reinforced composite material having an inner diameter of 10 mm, and “Golf Club Shaft Certification Criteria and Standard Confirmation Method” (Product Safety Association, Trade) The torsion test was conducted according to the method described in the Minister of Industry 5th No. 2087 (1993). The test piece gauge length was 250 mm, and 50 mm at both ends of the test piece was held with a fixing jig. The torsional strength was obtained by the following formula.

ねじり強さ(N・m・deg)=破壊トルク(N・m)×破壊時のねじれ角(deg)
G.ガラス転移温度(Tg)
E.で作製した円筒状繊維強化複合材料を用い、JIS K7121−1987に従い、示差走査熱量計(DSC)によりガラス転移温度測定を行った。容量50μlの密閉型サンプル容器に15〜20mgの試料を詰め、昇温速度40℃/分で30〜200℃まで昇温し、測定した。尚、ここでは、測定装置としてPerkinElmer社製Pyris1DSCを使用した。
Torsional strength (N · m · deg) = Breaking torque (N · m) × Torsion angle at break (deg)
G. Glass transition temperature (Tg)
E. Using the cylindrical fiber-reinforced composite material prepared in step 1, the glass transition temperature was measured by a differential scanning calorimeter (DSC) according to JIS K7121-1987. A sealed sample container having a capacity of 50 μl was packed with 15 to 20 mg of sample, heated to 30 to 200 ° C. at a heating rate of 40 ° C./min, and measured. In this case, Pyris1DSC manufactured by PerkinElmer was used as a measuring device.

具体的には、得られたDSC曲線の階段状変化を示す部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度をガラス転移温度とした。   Specifically, in the portion showing the step change of the obtained DSC curve, the straight line equidistant from the extended straight line of each baseline in the vertical axis direction and the curve of the step change portion of the glass transition intersect. The temperature at the point was taken as the glass transition temperature.

(比較例1)
表1に示すエピコート807の内15重量部(分散媒)中にナノムミックス(0.03重量部)を配合し、60℃でニーダー分散を行った。その後、残りのエポキシ樹脂原料およびビニレックK(熱可塑性樹脂)を配合し加熱溶融した後、60℃でジシアンジアミド、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレアを配合しエポキシ樹脂組成物を作製した。得られたエポキシ樹脂組成物を用いて前記方法によりエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂硬化物中の最大粒径は20μmと大きく、得られたプリプレグは樹脂の含浸不良があった。円筒状繊維強化複合材料のねじり強さは1716N・m・degと低いものであった。
(実施例1)
表1に示すエピコート807の内15重量部(分散媒)中にナノムミックス(0.03重量部)を配合し60℃、ホモミキサー分散を行った後、超音波分散(振幅1μm)を行った以外は比較例1と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られたエポキシ樹脂硬化物中の最大粒径は10μmと小さく、得られたプリプレグは若干の樹脂未含浸部があったが、円筒状繊維強化複合材料のねじり強さは2123N・m・degと高いものであった。
(実施例2)
超音波分散時に振幅を10μmに変更した以外は比較例1と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。結果、表1に示す通り、得られたエポキシ樹脂硬化物中の最大粒径は5μmと小さく、得られたプリプレグの含浸性は良好であった。円筒状繊維強化複合材料のねじり強さは2309N・m・degと高いものであった。
(実施例3)
超音波分散時に振幅を20μmに変更した以外は比較例1と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。結果、表1に示す通り、得られたエポキシ樹脂硬化物中の最大粒径は1μmと小さく、得られたプリプレグの含浸性は極めて良好であった。円筒状繊維強化複合材料のねじり強さは2512N・m・degと高いものであった。
(実施例4)
超音波分散時に振幅を50μmに変更した以外は比較例1と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。結果、表1に示す通り、得られたエポキシ樹脂硬化物中の最大粒径は0.5μmと小さく、得られたプリプレグの含浸性は極めて良好であった。円筒状繊維強化複合材料のねじり強さは2562N・m・degと高いものであった。
(Comparative Example 1)
Nanomumix (0.03 parts by weight) was blended in 15 parts by weight (dispersion medium) of Epicoat 807 shown in Table 1, and kneader dispersion was performed at 60 ° C. Then, the remaining epoxy resin raw material and vinylec K (thermoplastic resin) are blended and heated and melted, and then dicyandiamide and 3- (3,4-dichlorophenyl) -1,1-dimethylurea are blended at 60 ° C. to form an epoxy resin composition A product was made. A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced by the above method using the obtained epoxy resin composition. The maximum particle size in the obtained cured epoxy resin was as large as 20 μm, and the obtained prepreg had poor resin impregnation. The torsional strength of the cylindrical fiber reinforced composite material was as low as 1716 N · m · deg.
Example 1
Nanomix (0.03 parts by weight) was blended in 15 parts by weight (dispersion medium) of Epicoat 807 shown in Table 1, and homomixer dispersion was performed at 60 ° C., followed by ultrasonic dispersion (amplitude 1 μm). Except that, a cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Comparative Example 1. The maximum particle size in the obtained cured epoxy resin was as small as 10 μm, and the obtained prepreg had some resin unimpregnated portions, but the torsional strength of the cylindrical fiber reinforced composite material was 2123 N · m · deg. It was expensive.
(Example 2)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Comparative Example 1 except that the amplitude was changed to 10 μm during ultrasonic dispersion. As a result, as shown in Table 1, the maximum particle size in the obtained cured epoxy resin was as small as 5 μm, and the impregnation property of the obtained prepreg was good. The torsional strength of the cylindrical fiber reinforced composite material was as high as 2309 N · m · deg.
(Example 3)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Comparative Example 1 except that the amplitude was changed to 20 μm during ultrasonic dispersion. As a result, as shown in Table 1, the maximum particle size in the obtained cured epoxy resin was as small as 1 μm, and the impregnation property of the obtained prepreg was extremely good. The torsional strength of the cylindrical fiber reinforced composite material was as high as 2512 N · m · deg.
Example 4
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Comparative Example 1 except that the amplitude was changed to 50 μm during ultrasonic dispersion. As a result, as shown in Table 1, the maximum particle size in the obtained cured epoxy resin was as small as 0.5 μm, and the impregnation property of the obtained prepreg was extremely good. The torsional strength of the cylindrical fiber reinforced composite material was as high as 2562 N · m · deg.

Figure 0004843932
Figure 0004843932

(比較例2)
表2に示す通り、ナノムミックスを未配合に変更した以外は実施例4と同様の方法でプリプレグ、円筒状繊維強化複合材料を作製した。結果、表1に示す通り、得られたプリプレグの含浸性は極めて良好であったが、円筒状繊維強化複合材料のねじり強さは1905N・m・degと実施例と比較すると低いものであった。
(実施例5および6)
表2に示す配合比でナノムミックスを配合した以外は実施例4と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径はいずれも0.5μmと小さく、得られたプリプレグの含浸性も極めて良好であった。円筒状繊維強化複合材料のねじり強さはいずれも高いものであった。
(実施例7〜9)
表2に示す配合比でナノムミックスを配合した以外は実施例4と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径はいずれも0.5μmと小さく、得られたプリプレグは[C]の配合量が多くなると樹脂の未含浸部が増える傾向があった。円筒状繊維強化複合材料のねじり強さも高いものであったが、構成要素[C]の配合量が多くなると、ねじり強さが低下する傾向あった。
(Comparative Example 2)
As shown in Table 2, a prepreg and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 4 except that the nanome mix was changed to unblended. As a result, as shown in Table 1, the impregnation property of the obtained prepreg was extremely good, but the torsional strength of the cylindrical fiber reinforced composite material was 1905 N · m · deg, which was low compared to the examples. .
(Examples 5 and 6)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 4 except that nanomix was blended at a blending ratio shown in Table 2. The obtained cured resin had a maximum particle size as small as 0.5 μm, and the impregnation property of the obtained prepreg was extremely good. The torsional strength of the cylindrical fiber reinforced composite material was high.
(Examples 7 to 9)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 4 except that nanomix was blended at a blending ratio shown in Table 2. The maximum particle size of the obtained cured resin was all as small as 0.5 μm, and the obtained prepreg tended to increase the number of unimpregnated portions of the resin as the amount of [C] was increased. The torsional strength of the cylindrical fiber reinforced composite material was also high, but when the amount of component [C] was increased, the torsional strength tended to decrease.

Figure 0004843932
Figure 0004843932

(実施例10)
分散媒としてエピコート828の内15重量部を使用した以外は実施例7と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。結果、表3に示す通り、得られた樹脂硬化物の最大粒径はいずれも10μmと大きく、得られたプリプレグは、若干、樹脂の未含浸部があった。円筒状繊維強化複合材料のねじり強さは2079N・m・degであり、比較例と比べると高いものであったが、実施例7と比較すると低下した。耐熱性は向上した。
(実施例11)
分散媒としてエピコート826の内15重量部を使用した以外は実施例7と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。結果、表3に示す通り、得られた樹脂硬化物の最大粒径はいずれも5μmと大きく、得られたプリプレグの含浸性は良好であったが実施例7と比較すると若干、低下した。円筒状繊維強化複合材料のねじり強さは2268N・m・degと比較例と比べると高いものであったが、実施例7と比較すると若干、低下した。耐熱性は向上した。
(実施例12)
分散媒としてデナコールEx146の内15重量部を使用した以外は実施例7と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。結果、表3に示す通り、得られた樹脂硬化物の最大粒径は0.4μmと小さく、得られたプリプレグの含浸性は極めて良好であった。円筒状繊維強化複合材料のねじり強さも2828N・m・degと高いものであったが、耐熱性が低下した。
(実施例13)
分散媒としてGANの内15重量部を使用した以外は実施例7と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。結果、表3に示す通り、得られた樹脂硬化物の最大粒径は0.2μmと非常に小さく、得られたプリプレグの含浸性も極めて良好であった。円筒状繊維強化複合材料のねじり強さも2945N・m・degと高いものであったが、耐熱性が低下した。
(Example 10)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 7 except that 15 parts by weight of Epicoat 828 was used as a dispersion medium. As a result, as shown in Table 3, the maximum particle diameter of the obtained resin cured product was as large as 10 μm, and the obtained prepreg had some unimpregnated portions of resin. The torsional strength of the cylindrical fiber reinforced composite material was 2079 N · m · deg, which was higher than that of the comparative example, but decreased compared to that of Example 7. Heat resistance was improved.
(Example 11)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 7 except that 15 parts by weight of Epicoat 826 was used as a dispersion medium. As a result, as shown in Table 3, the maximum particle size of the obtained resin cured product was all as large as 5 μm, and the impregnation property of the obtained prepreg was good, but it was slightly lowered as compared with Example 7. The torsional strength of the cylindrical fiber reinforced composite material was 2268 N · m · deg, which was higher than that of the comparative example, but was slightly lower than that of Example 7. Heat resistance was improved.
(Example 12)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 7 except that 15 parts by weight of Denacol Ex146 was used as a dispersion medium. As a result, as shown in Table 3, the maximum particle size of the obtained resin cured product was as small as 0.4 μm, and the impregnation property of the obtained prepreg was extremely good. The torsional strength of the cylindrical fiber reinforced composite material was as high as 2828 N · m · deg, but the heat resistance was lowered.
(Example 13)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 7 except that 15 parts by weight of GAN was used as a dispersion medium. As a result, as shown in Table 3, the maximum particle size of the obtained resin cured product was as very small as 0.2 μm, and the impregnation property of the obtained prepreg was very good. The torsional strength of the cylindrical fiber reinforced composite material was as high as 2945 N · m · deg, but the heat resistance was lowered.

Figure 0004843932
Figure 0004843932

(実施例14および15)
表4に示す配合比でエポキシ樹脂を配合した以外は実施例13と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径は0.2μmと非常に小さく、得られたプリプレグの含浸性も極めて良好であった。円筒状繊維強化複合材料のねじり強さも高いものであったが、実施例13と比較し平均エポキシ当量が小さくなるとねじり強さが低下する傾向がみられた。一方、耐熱性は向上した。
(実施例16)
表4に示す配合比でエポキシ樹脂を配合した以外は実施例13と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径は0.2μmと非常に小さかった。得られたプリプレグの含浸性は良好であったが若干、低下した。円筒状繊維強化複合材料のねじり強さも高いものであったが、耐熱性が若干、低下した。
(実施例17および18)
表4に示す配合比でエポキシ樹脂を配合した以外は実施例13と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径は0.2μmと非常に小さかった。得られたプリプレグの含浸性は良好であった。円筒状繊維強化複合材料のねじり強さも高く優れものであったが、平均エポキシ当量が増えるに従い若干、耐熱性が低下傾向がみられた。
(Examples 14 and 15)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 13 except that the epoxy resin was blended at the blending ratio shown in Table 4. The maximum particle size of the obtained cured resin was as very small as 0.2 μm, and the impregnation property of the obtained prepreg was extremely good. Although the torsional strength of the cylindrical fiber reinforced composite material was also high, there was a tendency for the torsional strength to decrease when the average epoxy equivalent was smaller than in Example 13. On the other hand, the heat resistance was improved.
(Example 16)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 13 except that the epoxy resin was blended at the blending ratio shown in Table 4. The maximum particle size of the obtained resin cured product was as small as 0.2 μm. Although the impregnation property of the obtained prepreg was good, it slightly decreased. The torsional strength of the cylindrical fiber reinforced composite material was high, but the heat resistance was slightly lowered.
(Examples 17 and 18)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 13 except that the epoxy resin was blended at the blending ratio shown in Table 4. The maximum particle size of the obtained resin cured product was as small as 0.2 μm. The obtained prepreg had good impregnation properties. Although the torsional strength of the cylindrical fiber reinforced composite material was high and excellent, the heat resistance tended to decrease slightly as the average epoxy equivalent increased.

Figure 0004843932
Figure 0004843932

(実施例19)
表5に示す配合比でオキサゾリドン環含有エポキシ樹脂を配合した以外は実施例16と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径は0.2μmと非常に小さかった。得られたプリプレグの含浸性は極めて良好であった。円筒状繊維強化複合材料のねじり強さも実施例16と同様に高く、また、耐熱性にも優れたものであった。
(実施例20)
表5に示す配合比でビフェニル骨格含有エポキシ樹脂を配合した以外は実施例16と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径は0.2μmと非常に小さかった。得られたプリプレグの含浸性は極めて良好であった。円筒状繊維強化複合材料のねじり強さも実施例16と比べてさらに高く、また、耐熱性にも優れたものであった。
(実施例21)
表5に示す配合比でジシクロペンタジエン型エポキシ樹脂を配合した以外は実施例16と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径は0.2μmと非常に小さかった。得られたプリプレグの含浸性は極めて良好であった。円筒状繊維強化複合材料のねじり強さも実施例16と比べて特に高く、また、耐熱性にも特に優れたものであった。
(Example 19)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 16 except that the oxazolidone ring-containing epoxy resin was blended at a blending ratio shown in Table 5. The maximum particle size of the obtained resin cured product was as small as 0.2 μm. The resulting prepreg had very good impregnation properties. The torsional strength of the cylindrical fiber reinforced composite material was also high as in Example 16, and it was excellent in heat resistance.
(Example 20)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 16 except that the biphenyl skeleton-containing epoxy resin was blended at the blending ratio shown in Table 5. The maximum particle size of the obtained resin cured product was as small as 0.2 μm. The resulting prepreg had very good impregnation properties. The torsional strength of the cylindrical fiber reinforced composite material was higher than that of Example 16, and the heat resistance was excellent.
(Example 21)
A cured epoxy resin, a prepreg, and a cylindrical fiber reinforced composite material were produced in the same manner as in Example 16 except that the dicyclopentadiene type epoxy resin was blended at a blending ratio shown in Table 5. The maximum particle size of the obtained resin cured product was as small as 0.2 μm. The resulting prepreg had very good impregnation properties. The torsional strength of the cylindrical fiber reinforced composite material was particularly high as compared with Example 16, and the heat resistance was particularly excellent.

Figure 0004843932
Figure 0004843932

(実施例22)
炭素繊維のサイジング剤としてポリエチレンオキシド骨格を有するサイジング剤(ビスフェノールA型樹脂/ポリエチレングリコール=50/50重量%)を1.0重量%を付着させた以外は、実施例4と同様の方法でエポキシ樹脂硬化物、プリプレグ、円筒状繊維強化複合材料を作製した。得られた樹脂硬化物の最大粒径は0.2μmと非常に小さかった。得られたプリプレグの含浸性は極めて良好であった。円筒状繊維強化複合材料のねじり強さも実施例4と比較して高く、耐熱性にも優れたものであった。
(Example 22)
Epoxy was prepared in the same manner as in Example 4 except that 1.0% by weight of a sizing agent having a polyethylene oxide skeleton (bisphenol A type resin / polyethylene glycol = 50/50% by weight) was attached as a carbon fiber sizing agent. A cured resin, a prepreg, and a cylindrical fiber reinforced composite material were produced. The maximum particle size of the obtained resin cured product was as small as 0.2 μm. The resulting prepreg had very good impregnation properties. The torsional strength of the cylindrical fiber reinforced composite material was also higher than that of Example 4 and excellent in heat resistance.

Figure 0004843932
Figure 0004843932

Claims (10)

次の構成要素[A]、[B]、[C]、および[D]を含み、かつ、構成要素[A]、[C]、[D]が次の(1)〜(3)を満たす繊維強化複合材料用エポキシ樹脂組成物の製造方法であって、構成要素[A]に構成要素[C]を、ホモミキサー分散を行った後、超音波分散させる分散工程と、調製されたエポキシ樹脂混合物に構成要素[B]ならびに構成要素[D]を配合し、繊維強化複合材料用エポキシ樹脂組成物を調製する樹脂調製工程を有する、繊維強化複合材料用エポキシ樹脂組成物の製造方法
[A]平均エポキシ当量が200〜400のエポキシ樹脂
[B]硬化剤
[C]最大粒径が10μm以下のフラーレン
[D]ウレア化合物
(1)構成要素[A]に、25℃における粘度が10000mPa・s以下のエポキシ樹脂が5〜80重量%含まれている。
(2)構成要素[C]は、C60、C70またはこれらの混合物であって、構成要素[A]100重量部に対し、0.001〜10重量部含まれている。
(3)構成要素[D]は、構成要素[A]100重量部に対し、1〜10重量部含まれている。
The following constituent elements [A], [B], [C], and [D] are included, and the constituent elements [A], [C], and [D] satisfy the following (1) to (3) A method for producing an epoxy resin composition for a fiber-reinforced composite material , in which a component [C] is dispersed in a component [A] by homomixing and then ultrasonically dispersed, and the prepared epoxy resin The manufacturing method of the epoxy resin composition for fiber reinforced composite materials which has a resin preparation process which mix | blends component [B] and component [D] with a mixture, and prepares the epoxy resin composition for fiber reinforced composite materials .
[A] Epoxy resin having an average epoxy equivalent of 200 to 400 [B] Curing agent [C] Fullerene having a maximum particle size of 10 μm or less [D] Urea compound (1) The component [A] has a viscosity at 25 ° C. of 10,000 mPa -5-80 weight% of epoxy resins below s are contained.
(2) Component [C] is C60, C70 or a mixture thereof, and is contained in an amount of 0.001 to 10 parts by weight with respect to 100 parts by weight of component [A].
(3) The component [D] is included in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the component [A].
前記25℃における粘度が10000mPa・s以下のエポキシ樹脂がグリシジルアミノ基を有するエポキシ樹脂である、請求項1に記載の繊維強化複合材料用エポキシ樹脂組成物の製造方法The method for producing an epoxy resin composition for a fiber-reinforced composite material according to claim 1, wherein the epoxy resin having a viscosity at 25 ° C of 10,000 mPa · s or less is an epoxy resin having a glycidylamino group. 構成要素[A]に平均エポキシ当量450以上10000以下の2官能エポキシ樹脂が5〜60重量%含まれている、請求項1または2に記載の繊維強化複合材料用エポキシ樹脂組成物の製造方法 The manufacturing method of the epoxy resin composition for fiber reinforced composite materials of Claim 1 or 2 with which 5-60 weight% of bifunctional epoxy resins with an average epoxy equivalent of 450-10000 are contained in component [A]. 構成要素[A]に、ビフェニル、ナフタレン、フルオレン、ジシクロペンタジエン、およびオキサゾリドン環から選ばれる少なくとも1つの骨格を有する1種以上のエポキシ樹脂が5〜50重量%含まれている、請求項1〜3のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物の製造方法The component [A] contains 5 to 50% by weight of one or more epoxy resins having at least one skeleton selected from biphenyl, naphthalene, fluorene, dicyclopentadiene, and an oxazolidone ring. 4. A method for producing an epoxy resin composition for fiber-reinforced composite materials according to any one of 3 above. 構成要素[A]100重量部に対し、ポリアミド、ポリエーテルイミド、ポリエーテルスルホン、ポリビニルアセタール、およびポリビニルホルマールからなる群から選択される少なくとも1種の熱可塑性樹脂が0.1〜10重量部含まれている、請求項1〜4のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物の製造方法0.1 to 10 parts by weight of at least one thermoplastic resin selected from the group consisting of polyamide, polyetherimide, polyethersulfone, polyvinyl acetal, and polyvinyl formal is included with respect to 100 parts by weight of component [A]. The manufacturing method of the epoxy resin composition for fiber reinforced composite materials in any one of Claims 1-4. 請求項1〜5のいずれかに記載の方法で製造された繊維強化複合材料用エポキシ樹脂組成物を強化繊維に含浸してなるプリプレグであって、単位面積あたりの繊維重量が40〜250mであるプリプレグ。 A prepreg obtained by impregnating reinforcing fibers with the epoxy resin composition for fiber-reinforced composite material produced by the method according to claim 1, wherein the fiber weight per unit area is 40 to 250 m 2 . A prepreg. 前記強化繊維が、ポリエチレンオキシド骨格を有する化合物を含むサイジング剤が付与された強化繊維である、請求項6記載のプリプレグ。 The prepreg according to claim 6, wherein the reinforcing fiber is a reinforcing fiber to which a sizing agent containing a compound having a polyethylene oxide skeleton is added. 請求項6または7に記載のプリプレグを硬化せしめてなる繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the prepreg according to claim 6 or 7 . 硬化物のガラス転移温度が100〜150℃である、請求項に記載の繊維強化複合材料。 The fiber reinforced composite material according to claim 8 , wherein the glass transition temperature of the cured product is 100 to 150 ° C. 請求項8または9に記載の繊維強化複合材料を用いてなる繊維強化複合材料製管状体。 A tubular body made of a fiber reinforced composite material using the fiber reinforced composite material according to claim 8 or 9 .
JP2004315960A 2004-10-29 2004-10-29 Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material Expired - Fee Related JP4843932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315960A JP4843932B2 (en) 2004-10-29 2004-10-29 Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315960A JP4843932B2 (en) 2004-10-29 2004-10-29 Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JP2006124555A JP2006124555A (en) 2006-05-18
JP4843932B2 true JP4843932B2 (en) 2011-12-21

Family

ID=36719594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315960A Expired - Fee Related JP4843932B2 (en) 2004-10-29 2004-10-29 Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP4843932B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244840B2 (en) 2009-04-09 2013-07-24 ダンロップスポーツ株式会社 Tubular body and manufacturing method thereof
RU2455323C2 (en) * 2010-03-16 2012-07-10 Закрытое акционерное общество "Инновации ленинградских институтов и предприятий" (ЗАО "ИЛИП") Epoxy composite material
CN105255112B (en) * 2015-10-29 2017-11-21 国家纳米科学中心 A kind of epoxy resin fulvene compounding material and preparation method thereof
KR101802631B1 (en) 2016-02-04 2017-11-28 도레이첨단소재 주식회사 Tow-Preg Comprising Low Viscosity Liquid Epoxy Resin Composition and Method For Producing The Same and Pressure Vessels Using The Tow-Preg
CN111378333B (en) * 2020-05-17 2022-02-15 广西大学 Preparation method of composite modified polytetrafluoroethylene coating

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412975B2 (en) * 1995-07-25 2003-06-03 日本化薬株式会社 Method for producing fullerene-containing fine particles
US5750615A (en) * 1996-11-26 1998-05-12 The Goodyear Tire & Rubber Company Use of fullerene carbon in curable rubber compounds
KR20040030553A (en) * 2001-03-26 2004-04-09 에이코스 인코포레이티드 Coatings containing carbon nanotubes
JP2003201388A (en) * 2002-01-08 2003-07-18 Toray Ind Inc Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP2003277471A (en) * 2002-03-27 2003-10-02 Toray Ind Inc Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP2004018658A (en) * 2002-06-14 2004-01-22 Toyo Ink Mfg Co Ltd Resin composition for laser marking use, molded product and marking method
JP2004075933A (en) * 2002-08-21 2004-03-11 Toray Ind Inc Thermoplastic resin composition and manufacturing method therefor
JP4385591B2 (en) * 2002-11-29 2009-12-16 三菱化学株式会社 Resin composition and method for producing the same
JP4257181B2 (en) * 2003-09-30 2009-04-22 東邦テナックス株式会社 Fullerene-containing prepreg
JP2005325198A (en) * 2004-05-13 2005-11-24 Ideal Star Inc Fluorinated fullerene-containing resin composition and molded product using the same

Also Published As

Publication number Publication date
JP2006124555A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
KR101318093B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
KR102081662B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
EP2551288B1 (en) Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
WO2015083714A1 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
JP6497027B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
KR20100133963A (en) Epoxy resin composition, prepreg, abd fiber-reinforced composite material
KR20110113663A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP4687224B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2010059225A (en) Epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material
JP2016132709A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6573029B2 (en) Manufacturing method of fiber reinforced composite material
JP2010095557A (en) Prepreg and fiber-reinforced composite material
JP4843932B2 (en) Method for producing epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP4506189B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2003103519A (en) Prepreg sheet, tubular article, and golf club shaft
JP2003277471A (en) Epoxy resin composition, prepreg and carbon fiber- reinforced composite material
JP6555006B2 (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JP2008231288A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg and fiber-reinforced composite material
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2009215481A (en) Prepreg and fiber-reinforced composite material
JP2003183476A (en) Resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JP2015108052A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2005298810A (en) Epoxy resin composition, prepreg, fiber-reinforced composite material and method for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees