JP2535752B2 - Carbon dioxide gas-phase reduction method - Google Patents

Carbon dioxide gas-phase reduction method

Info

Publication number
JP2535752B2
JP2535752B2 JP3273274A JP27327491A JP2535752B2 JP 2535752 B2 JP2535752 B2 JP 2535752B2 JP 3273274 A JP3273274 A JP 3273274A JP 27327491 A JP27327491 A JP 27327491A JP 2535752 B2 JP2535752 B2 JP 2535752B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
reaction
hydrogen
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3273274A
Other languages
Japanese (ja)
Other versions
JPH0585713A (en
Inventor
博史 垰田
利彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3273274A priority Critical patent/JP2535752B2/en
Publication of JPH0585713A publication Critical patent/JPH0585713A/en
Application granted granted Critical
Publication of JP2535752B2 publication Critical patent/JP2535752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭酸ガスを還元して一
酸化炭素に転化し、化成品の原料や燃料として利用する
ための炭酸ガス還元方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide reduction method for reducing carbon dioxide to convert it into carbon monoxide and using it as a raw material or fuel for chemical products.

【0002】[0002]

【従来の技術】近年、地球規模の環境汚染が人類の生存
を脅かす問題として大きくクローズアップされている
が、その中で最も対策の難しい問題が炭酸ガスによる地
球温暖化である。炭酸ガスは、これまで問題になってい
た窒素酸化物や硫黄酸化物などと異なり、それ自身には
毒性はない。しかし、全世界で年間約200億トンとい
う膨大な量が排出されており、大気中の炭酸ガス濃度の
上昇に伴い、温室効果による気候変動が起こり、何千万
人もの環境難民が発生すると危ぐされている。これを防
止するため、エネルギー代替や省エネルギーなどによる
炭酸ガス排出の抑制が政策的に推進されようとしている
が、炭酸ガスの排出は経済社会の発展と密接な関係を持
っているため、その大幅な抑制は極めて難しい情勢であ
る。したがって、炭酸ガスによる地球温暖化を阻止する
ためには、炭酸ガスを高速で大量に還元・固定化する技
術の開発が不可欠である。
2. Description of the Related Art In recent years, global environmental pollution has been greatly highlighted as a problem that threatens the survival of human beings. Among them, the most difficult problem to deal with is global warming due to carbon dioxide gas. Carbon dioxide, unlike nitrogen oxides and sulfur oxides, which have been problematic so far, is not toxic in itself. However, an enormous amount of about 20 billion tons is emitted worldwide every year, and with the increase of carbon dioxide concentration in the atmosphere, climate change due to the greenhouse effect will occur, and tens of millions of environmental refugees will be at risk. Has been done. In order to prevent this, reducing carbon dioxide emissions through energy substitution and energy saving is being promoted as a policy, but since carbon dioxide emissions are closely related to economic and social development, they have been significantly reduced. Control is a very difficult situation. Therefore, in order to prevent the global warming caused by carbon dioxide, it is essential to develop a technology for reducing and immobilizing carbon dioxide at high speed in large quantities.

【0003】炭酸ガスを水素と反応させて還元する接触
水素化反応による炭酸ガスの還元・固定化法は、光化学
反応法や電気化学反応法、高分子合成による方法、有機
合成による方法などと比べ、単位時間、単位面積当りの
炭酸ガスの還元・固定化能力が大きく、大量の炭酸ガス
の処理が可能である。また、既存のフィッシャー・トロ
プシュ法炭化水素合成技術などが応用でき、気相反応で
あるため、生成物の分離が容易などの利点も持ってい
る。これまで接触水素化反応による炭酸ガスの還元・固
定化法として、ルテニウムやロジウムなどの貴金属触媒
を用いる方法が研究されてきた(例えば、F. Solymosi
and A. Erdohelyi, J. Mol. Catal., Vol.8, 471 (198
0))。
[0003] The reduction and fixation of carbon dioxide by catalytic hydrogenation, in which carbon dioxide is reduced by reacting carbon dioxide with hydrogen, is compared with methods such as photochemical reaction, electrochemical reaction, polymer synthesis, and organic synthesis. The ability to reduce and immobilize carbon dioxide per unit time per unit area is large, and it is possible to process a large amount of carbon dioxide. In addition, existing Fischer-Tropsch hydrocarbon synthesis technology can be applied, and since it is a gas phase reaction, it also has advantages such as easy separation of products. Until now, a method using a noble metal catalyst such as ruthenium or rhodium has been studied as a reduction / immobilization method of carbon dioxide gas by a catalytic hydrogenation reaction (for example, F. Solymosi
and A. Erdohelyi, J. Mol. Catal., Vol.8, 471 (198
0)).

【0004】しかしこの方法は、1)使用する触媒が高
価である、2)この反応では炭酸ガスがメタンに還元さ
れるが、この反応は原料よりも生成物のエネルギーが低
くなる発熱反応であるため、エネルギー歩留まりが悪
い、3)高圧にしないと反応がうまく進行しないことが
多い、4)一般に、反応が高温で行われ、その温度を得
るのに化石燃料を使用するため、実質的に炭酸ガスの排
出抑制にならない、などの欠点を持っていた。
However, in this method, 1) the catalyst used is expensive, and 2) carbon dioxide is reduced to methane in this reaction, but this reaction is an exothermic reaction in which the energy of the product is lower than that of the raw material. Therefore, the energy yield is poor, 3) the reaction often does not proceed well unless the pressure is high, and 4) the reaction is generally carried out at a high temperature, and since fossil fuel is used to obtain the temperature, carbon dioxide is substantially generated. It had drawbacks such as not suppressing gas emission.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、炭酸ガスによる地球温暖化に対処して、未利用の低
温廃熱や無公害の太陽エネルギーを利用した、低温かつ
常圧という温和な条件で炭酸ガスを高速で選択的に一酸
化炭素に還元する経済的な炭酸ガス還元方法の提供を目
的とするものである。
SUMMARY OF THE INVENTION In view of the above points, the present invention deals with global warming caused by carbon dioxide gas, and uses low temperature waste heat that has not yet been used and pollution-free solar energy as low temperature and atmospheric pressure. It is an object of the present invention to provide an economical carbon dioxide gas reduction method for rapidly and selectively reducing carbon dioxide gas to carbon monoxide under mild conditions.

【0006】[0006]

【課題を解決するための手段】この目的は本発明によれ
ば、酸化鉄上に炭酸ガスと水素を導入し、加熱あるいは
太陽光を照射することによって達成される。炭酸ガスは
酸化鉄上で水素ガスと反応して一酸化炭素に転化される
が、一酸化炭素はそのまま燃料としても使用できるし、
既存の合成ガス(一酸化炭素と水素)からのメタノール
製造プロセスやC1化学技術などを利用して、最近、自
動車用燃料として脚光を浴びているメタノールや化成品
の原料に変換して利用することもできる。
According to the present invention, this object is achieved by introducing carbon dioxide gas and hydrogen onto iron oxide and heating or irradiating it with sunlight. Carbon dioxide gas is converted to carbon monoxide by reacting with hydrogen gas on iron oxide, but carbon monoxide can be used as it is as fuel,
Utilizing existing methanol production process (carbon monoxide and hydrogen), C1 chemical technology, etc., to convert it into raw materials for methanol and chemical products, which have recently been spotlighted as fuel for automobiles. You can also

【0007】本発明に用いられる酸化鉄は三二酸化鉄や
四三酸化鉄、一酸化鉄、あるいはそれらの混合物などが
挙げられるが、特に多孔質で表面積の大きなα型三二酸
化鉄や四三酸化鉄、または超微粒子のα型三二酸化鉄や
四三酸化鉄が好ましい。またそれらを担体に担持したも
のでもよいし、酸化鉄の中に金属の鉄が混入していても
良い。酸化鉄は鉄錆であり、極めてありふれた物質で、
無毒で資源的にも問題がなく、大量供給可能で、極めて
安価など、数多くの特長を持っている。酸化鉄は、鉄屑
や鉄の切削屑などの廃棄物から簡単に製造することがで
きる。
Examples of the iron oxide used in the present invention include iron sesquioxide, ferrosoferric oxide, iron monoxide, and mixtures thereof. Particularly, α-type iron sesquioxide and tetroxide having a large surface area are porous. Iron, or ultrafine α-type iron sesquioxide or triiron tetraoxide is preferred. Further, they may be supported on a carrier, or iron oxide may be mixed with metallic iron. Iron oxide is iron rust, an extremely common substance,
It is non-toxic, has no problems in terms of resources, can be supplied in large quantities, and is extremely inexpensive. Iron oxide can be easily produced from waste materials such as iron scraps and iron cuttings.

【0008】本発明の方法において、酸化鉄は前処理な
しで、そのまま用いてもよいが、予め水素気流中で加熱
還元したり、減圧下で加熱還元したものを用いた方が効
率が良い。酸化鉄を水素気流中で加熱還元する場合、水
素気流の代わりにアルゴンやヘリウムなどの不活性ガス
と水素との混合ガスを用いてもよい。酸化鉄を加熱還元
する際の加熱温度は300〜550℃、特に350℃程
度が最も好ましく、温度がそれ以上になると焼結が進
み、触媒の表面積が小さくなるため、触媒活性が低下す
る。加熱時間は1時間程度が望ましく、加熱温度を高く
するにつれて短くした方がよい。加熱時間が長くなりす
ぎると焼結が進み、触媒の表面積が小さくなるため、触
媒活性が低下する。また、減圧下で加熱還元する場合に
は、加熱温度は575〜650℃が最も好ましい。
In the method of the present invention, iron oxide may be used as it is without pretreatment, but it is more efficient to use one which has been previously heat-reduced in a hydrogen stream or heat-reduced under reduced pressure. When iron oxide is heated and reduced in a hydrogen flow, a mixed gas of hydrogen and an inert gas such as argon or helium may be used instead of the hydrogen flow. The heating temperature at the time of heat-reducing iron oxide is preferably 300 to 550 ° C., especially about 350 ° C., and if the temperature is higher than that, sintering proceeds and the surface area of the catalyst becomes small, so that the catalytic activity decreases. The heating time is desirably about one hour, and it is better to shorten the heating time as the heating temperature is increased. If the heating time is too long, sintering proceeds, and the surface area of the catalyst becomes small, so that the catalytic activity decreases. In the case of heat reduction under reduced pressure, the heating temperature is most preferably 575 to 650 ° C.

【0009】こうして得られた加熱還元した酸化鉄や前
処理なしの酸化鉄に、炭酸ガスと水素を含んだガスを流
通させながら廃熱や集光した太陽光の照射などで加熱す
ることにより、炭酸ガスは触媒上で水素と反応し、ほぼ
100%の選択率で一酸化炭素に転化される。このと
き、炭素などの生成は見られない。また、酸化鉄に炭酸
ガスと水素を含んだ加熱されたガスを流通させ反応させ
てもよい。同様に炭酸ガスは触媒上で水素と反応し、ほ
ぼ100%の選択率で一酸化炭素に転化される。
By heating the heat-reduced iron oxide and the iron oxide without pretreatment obtained as described above by circulating waste gas or concentrated sunlight while circulating a gas containing carbon dioxide and hydrogen, Carbon dioxide reacts with hydrogen on the catalyst and is converted to carbon monoxide with a selectivity of almost 100%. At this time, generation of carbon etc. is not seen. Further, a heated gas containing carbon dioxide and hydrogen may be circulated in iron oxide to cause a reaction. Similarly, carbon dioxide reacts with hydrogen on the catalyst and is converted to carbon monoxide with a selectivity of almost 100%.

【0010】本発明に用いられる反応ガスは炭酸ガスと
水素の混合ガスであるが、アルゴンやヘリウムなどの不
活性ガスや窒素ガス、窒素酸化物などを含んでいてもよ
い。また、煙突からの高温廃ガスに水素ガスを添加した
ものでも良い。炭酸ガス対水素のモル比は1に近い方が
好ましい。
The reaction gas used in the present invention is a mixed gas of carbon dioxide gas and hydrogen, but may contain an inert gas such as argon or helium, a nitrogen gas, a nitrogen oxide or the like. Further, the high temperature waste gas from the chimney to which hydrogen gas is added may be used. The molar ratio of carbon dioxide gas to hydrogen is preferably close to 1.

【0011】本発明の方法において太陽エネルギーを熱
源として用いる場合には、樋型平面鏡集光集熱器や樋型
複合放物面鏡集光集熱器、樋型放物面鏡集光集熱器、樋
型放物面鏡を平面鏡で疑似した集光集熱器、回転放物面
鏡集光集熱器、線型フレネルレンズ集光集熱器、円型フ
レネルレンズ集光集熱器等の集光集熱器が使用され、そ
の集熱管内あるいは焦点付近に酸化鉄が置かれ、導入さ
れた炭酸ガスと水素が触媒上で反応し、一酸化炭素に転
化される。加熱還元された酸化鉄や一酸化鉄、四三酸化
鉄は黒色で太陽光をよく吸収し、しかも、半導体である
ため光の照射によって励起され、炭酸ガスと水素との反
応が促進される。
When solar energy is used as a heat source in the method of the present invention, a gutter-shaped flat mirror collector collector, a gutter-shaped compound parabolic mirror collector collector, and a gutter-shaped parabolic mirror collector heat collector are used. Collectors, collectors that simulate a gutter type parabolic mirror with a plane mirror, rotating parabolic mirror collectors, linear Fresnel lens collectors, circular Fresnel lens collectors, etc. A light collecting collector is used, and iron oxide is placed in the heat collecting tube or near the focal point, and the introduced carbon dioxide gas and hydrogen react on the catalyst to be converted into carbon monoxide. Heat-reduced iron oxide, iron monoxide, and triiron tetraoxide are black and well absorb sunlight, and because they are semiconductors, they are excited by light irradiation, and the reaction between carbon dioxide and hydrogen is accelerated.

【0012】本発明の方法によって得られる反応生成物
である一酸化炭素は、そのまま燃料としても使用できる
し、既存のC1化学技術などを利用して化成品の原料に
変換して利用することもできる。この炭酸ガスを一酸化
炭素に転化する反応は吸熱反応であるため、エネルギー
歩留まりが良く、生成物である一酸化炭素は太陽エネル
ギーや廃熱など、熱源の熱を蓄えたことになる。
Carbon monoxide, which is a reaction product obtained by the method of the present invention, can be used as a fuel as it is, or can be used by converting it into a raw material of a chemical product by using the existing C1 chemical technology. it can. Since the reaction of converting the carbon dioxide gas into carbon monoxide is an endothermic reaction, the energy yield is good, and the carbon monoxide as a product has stored heat from a heat source such as solar energy or waste heat.

【0013】[0013]

【実施例】本発明の実施例の内で特に代表的なものを以
下に示す。
EXAMPLES Among the examples of the present invention, particularly representative ones are shown below.

【0014】実施例1 粒径0.5μmのα型三二酸化鉄280mgを直径1c
mの石英製U字型反応管に充填し、水素気流中、350
℃で1時間加熱した後、所定の温度で炭酸ガスと水素
1:1の混合ガスを20ml/minの流量で流通させ
て反応させ、得られた反応生成物をガスクロマトグラフ
を用いて分析した。その結果、250℃で1.2%、3
00℃で6%、350℃で16%、400℃で23%、
450℃で27%、500℃で32%の炭酸ガスが一酸
化炭素に転化していた。また、200℃という極めて低
い温度条件でも少量ではあるが炭酸ガスが一酸化炭素に
転化していた。一酸化炭素以外の反応生成物は見られな
かった。350℃以上の反応温度で得られたこれらの転
化率は、炭酸ガスが水素と反応して一酸化炭素と水蒸気
に転化する逆水性ガスシフト反応の平衡値から得られる
値とほぼ同じであり、この反応条件での理論的な限界値
である。
Example 1 280 mg of α-type iron sesquioxide having a particle diameter of 0.5 μm was added to a diameter of 1 c.
m in a quartz U-shaped reaction tube and charged in a hydrogen stream at 350
After heating at 0 ° C. for 1 hour, a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 was passed at a predetermined temperature at a flow rate of 20 ml / min to cause reaction, and the obtained reaction product was analyzed using a gas chromatograph. As a result, at 250 ℃ 1.2%, 3
6% at 00 ° C, 16% at 350 ° C, 23% at 400 ° C,
27% at 450 ° C. and 32% at 500 ° C. were converted to carbon monoxide. Further, carbon dioxide gas was converted to carbon monoxide although it was a small amount even under an extremely low temperature condition of 200 ° C. No reaction products other than carbon monoxide were found. These conversion rates obtained at a reaction temperature of 350 ° C. or higher are almost the same as those obtained from the equilibrium value of the reverse water gas shift reaction in which carbon dioxide gas reacts with hydrogen to be converted into carbon monoxide and water vapor. It is a theoretical limit value under reaction conditions.

【0015】実施例2 粒径10mmの多孔質の四三酸化鉄300mgを直径1
cmのパイレックスガラス製U字型反応管に充填し、炭
酸ガスと水素とアルゴン5:5:1の混合ガスを25m
l/minの流量で流通させて反応させ、反応生成物を
ガスクロマトグラフを用いて分析した。その結果、30
0℃で4%、350℃で10%、400℃で18%、4
50℃で24%、500℃で30%の炭酸ガスが一酸化
炭素に転化していた。一酸化炭素以外の反応生成物は見
られなかった。
Example 2 300 mg of porous iron (III) tetroxide having a particle diameter of 10 mm was used as the diameter 1
cm Pyrex glass U-shaped reaction tube filled with carbon dioxide, hydrogen and argon 5: 5: 1 mixed gas 25m
It was circulated at a flow rate of 1 / min for reaction, and the reaction product was analyzed using a gas chromatograph. As a result, 30
4% at 0 ° C, 10% at 350 ° C, 18% at 400 ° C, 4
24% at 50 ° C. and 30% at 500 ° C. were converted to carbon monoxide. No reaction products other than carbon monoxide were found.

【0016】実施例3 市販の粒径0.7μmの一酸化鉄5gを石英ガラス製の
透明容器内に充填し、炭酸ガスと水素1:1の混合ガス
を3ml/minの流量で流通させながら、直径1.5
mのフレネルレンズによって集光した太陽光を照射して
反応させ、得られた反応生成物をガスクロマトグラフを
用いて分析した。その結果、5%の炭酸ガスが一酸化炭
素に転化していた。一酸化炭素以外の反応生成物は見ら
れなかった。
Example 3 5 g of commercially available iron monoxide having a particle size of 0.7 μm was filled in a transparent container made of quartz glass, and a mixed gas of carbon dioxide gas and hydrogen at a ratio of 1: 1 was circulated at a flow rate of 3 ml / min. , Diameter 1.5
The reaction product was analyzed by using a gas chromatograph by irradiating sunlight condensed by a Fresnel lens of m to cause a reaction. As a result, 5% of carbon dioxide was converted to carbon monoxide. No reaction products other than carbon monoxide were found.

【0017】実施例4 粒径0.3μmのγ型三二酸化鉄10gを減圧下、59
0℃で1.5時間加熱した。得られた触媒10gを長さ
1m幅20cmの樋型複合放物面鏡集光集熱器の中の石
英ガラス製の集熱管内に充填し、炭酸ガスと水素1:1
の混合ガスを2ml/minの流量で流通させながら集
光した太陽光を照射して反応させ、得られた反応生成物
をガスクロマトグラフを用いて分析した。その結果、8
%の炭酸ガスが一酸化炭素に転化していた。
Example 4 10 g of γ-type iron sesquioxide having a particle size of 0.3 μm was subjected to 59% under reduced pressure.
Heated at 0 ° C. for 1.5 hours. 10 g of the obtained catalyst was filled in a heat collecting tube made of quartz glass in a gutter-shaped composite parabolic mirror collector having a length of 1 m and a width of 20 cm, and carbon dioxide and hydrogen were mixed at a ratio of 1: 1.
The mixed gas of was flowed at a flow rate of 2 ml / min to irradiate it with the sunlight that was collected to cause a reaction, and the obtained reaction product was analyzed using a gas chromatograph. As a result, 8
% Carbon dioxide was converted to carbon monoxide.

【0018】[0018]

【発明の効果】本発明は以上説明したように、低温かつ
常圧という温和な条件で炭酸ガスを高速で選択的に一酸
化炭素に還元できる、経済的な炭酸ガス還元方法を提供
するものである。酸化鉄はありふれた物質であり、無毒
で資源的にも問題がなく、大量供給可能で極めて安価な
ど、数多くの特長を持っている。また、触媒として使用
された後、廃棄される際も公害を引き起こさないし、何
度でも繰り返し使用できる。本発明の方法により、炭酸
ガスは逆水性ガスシフト反応を起こして高速で選択的に
一酸化炭素に還元される。この反応は気相反応であり、
連続的に行われるため、大量の炭酸ガスの処理が可能で
あり、吸熱反応であるためエネルギーの歩留まりが良
く、熱源として太陽熱や廃熱を利用すれば、生成物であ
る一酸化炭素はそれらの熱を蓄えたことになるし、ヒー
トポンプとしての利用も可能である。また、反応生成物
である一酸化炭素はそのまま燃料としても利用できる
し、既存のC1化学技術を用いて自動車用燃料として脚
光を浴びているメタノールや化成品の原料などに変換し
て利用することもできるため、地球環境保全の面からも
エネルギー対策の面からも非常に効果が大きい。
INDUSTRIAL APPLICABILITY As described above, the present invention provides an economical carbon dioxide reduction method capable of selectively reducing carbon dioxide to carbon monoxide at high speed under mild conditions of low temperature and atmospheric pressure. is there. Iron oxide is a common substance, and it has many features such as nontoxicity, no resource problems, large-scale supply, and extremely low cost. Further, after being used as a catalyst, it does not cause pollution even when it is discarded, and can be used as many times as desired. By the method of the present invention, carbon dioxide gas undergoes a reverse water gas shift reaction to be selectively reduced to carbon monoxide at a high speed. This reaction is a gas phase reaction,
Since it is carried out continuously, it is possible to process a large amount of carbon dioxide gas, and the energy yield is good because it is an endothermic reaction.If solar heat or waste heat is used as a heat source, the product carbon monoxide It has accumulated heat and can be used as a heat pump. In addition, the reaction product, carbon monoxide, can be used as it is as a fuel, or it can be used by converting it to methanol, which is in the spotlight as a fuel for automobiles, or a raw material for chemical products, using existing C1 chemical technology. Since it is also possible, it is very effective from the aspect of global environment conservation and energy measures.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化鉄上に炭酸ガスと水素1:1の混合
ガスを導入し、加熱あるいは太陽光の照射により、炭酸
ガスを水素と反応させて一酸化炭素に選択的に転化する
ことを特徴とする炭酸ガスの気相還元方法。
1. A mixture of carbon dioxide gas and hydrogen 1: 1 on iron oxide.
A gas- phase reduction method for carbon dioxide gas, which comprises introducing gas and reacting the carbon dioxide gas with hydrogen by heating or irradiation of sunlight to selectively convert the carbon dioxide gas into carbon monoxide.
【請求項2】 酸化鉄として、四三酸化鉄を用いること
を特徴とする請求項1の炭酸ガスの気相還元方法。
2. The method for reducing vapor phase of carbon dioxide according to claim 1, wherein ferrosoferric oxide is used as iron oxide.
【請求項3】 酸化鉄として、還元した三二酸化鉄を用
いることを特徴とする請求項1の炭酸ガスの気相還元方
法。
3. The method for reducing vapor phase of carbon dioxide according to claim 1, wherein reduced iron sesquioxide is used as iron oxide.
JP3273274A 1991-09-25 1991-09-25 Carbon dioxide gas-phase reduction method Expired - Lifetime JP2535752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273274A JP2535752B2 (en) 1991-09-25 1991-09-25 Carbon dioxide gas-phase reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273274A JP2535752B2 (en) 1991-09-25 1991-09-25 Carbon dioxide gas-phase reduction method

Publications (2)

Publication Number Publication Date
JPH0585713A JPH0585713A (en) 1993-04-06
JP2535752B2 true JP2535752B2 (en) 1996-09-18

Family

ID=17525559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273274A Expired - Lifetime JP2535752B2 (en) 1991-09-25 1991-09-25 Carbon dioxide gas-phase reduction method

Country Status (1)

Country Link
JP (1) JP2535752B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2806073B1 (en) * 2000-03-07 2002-06-07 Air Liquide PROCESS FOR PRODUCING CARBON MONOXIDE BY REVERSE RETROCONVERSION WITH AN ADAPTED CATALYST
JP4746569B2 (en) * 2006-01-20 2011-08-10 株式会社エルブ Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device
WO2013062304A1 (en) * 2011-10-24 2013-05-02 서강대학교산학협력단 Apparatus and method for reducing carbon dioxide using solar light

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532641A (en) * 1978-08-31 1980-03-07 Nippon Ester Co Ltd Mehtod of manufacturing polyester pipe
JPS5815456B2 (en) * 1980-08-23 1983-03-25 井上 博之 Method for producing white flame retardant composite
JPH03170316A (en) * 1989-11-28 1991-07-23 Alpha Kuresuto:Kk Decomposition of carbon dioxide gas
JPH04100517A (en) * 1990-03-16 1992-04-02 Iseki & Co Ltd Apparatus for decomposing carbon dioxide

Also Published As

Publication number Publication date
JPH0585713A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
Guan et al. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight
US5720858A (en) Method for the photocatalytic conversion of methane
Fletcher Solarthermal processing: a review
US5346679A (en) Method for reduction of carbon dioxide, catalyst for the reduction, and method for production of the catalyst
US5904880A (en) One step conversion of methanol to hydrogen and carbon dioxide
Kodama et al. Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst
CN1047363C (en) Method for producing oxygen and hydrogen
JP2003275599A (en) Composite photocatalyst for reducing carbon dioxide and carbon dioxide photo-reducing method using the same
JP2535752B2 (en) Carbon dioxide gas-phase reduction method
US4113590A (en) Photoreduction of nitrogen
US6297189B1 (en) Sulfide catalysts for reducing SO2 to elemental sulfur
AU686189B2 (en) Process to produce methanol
JP2600091B2 (en) Molybdenum sulfide catalyst for carbon dioxide reduction and method for producing carbon monoxide
JP2010037229A (en) Method for synthesizing methanol from carbon dioxide
JPH0696442B2 (en) Carbon dioxide reduction method
JPH0780309A (en) Catalyst for production of hydrocarbon and production of hydrocarbon
JPH0679178A (en) Molybdenum sulfide catalyst for reducing carbon dioxide gas
JPH0723207B2 (en) Carbon dioxide reduction method
US4869795A (en) Method for gasification of aqueous acetone solution
JPS62195339A (en) Conversion of methane into methanol at ordinary temperature
JPH0773676B2 (en) Tungsten sulfide catalyst for carbon dioxide reduction
JPH0685874B2 (en) Tungsten sulfide catalyst for carbon dioxide reduction and method for producing the same
Lichtin et al. Photoassisted solid-catalyzed reduction of air by aqueous organic materials: A potentially practical method of fixing nitrogen
JPH05245A (en) Conversion of carbon dioxide, carbonic ion or hydrocarbonic ion to high value added substance by photocatalytic action
JPH07165630A (en) Formation of (11c) methyl iodide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term