JP4746569B2 - Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device - Google Patents

Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device Download PDF

Info

Publication number
JP4746569B2
JP4746569B2 JP2007012061A JP2007012061A JP4746569B2 JP 4746569 B2 JP4746569 B2 JP 4746569B2 JP 2007012061 A JP2007012061 A JP 2007012061A JP 2007012061 A JP2007012061 A JP 2007012061A JP 4746569 B2 JP4746569 B2 JP 4746569B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide purification
material according
purification material
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007012061A
Other languages
Japanese (ja)
Other versions
JP2007222867A (en
Inventor
昌隆 佐野
宏樹 宮松
貴美 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erubu KK
Original Assignee
Erubu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erubu KK filed Critical Erubu KK
Priority to JP2007012061A priority Critical patent/JP4746569B2/en
Publication of JP2007222867A publication Critical patent/JP2007222867A/en
Application granted granted Critical
Publication of JP4746569B2 publication Critical patent/JP4746569B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Description

本発明は、二酸化炭素を好適に除去できる炭酸ガス浄化材料に関し、特に部屋中に滞留などしている二酸化炭素を好適に除去し居室環境を改善できる空気浄化装置などへの応用が期待できる炭酸ガス浄化材料及びその応用装置に関する。   The present invention relates to a carbon dioxide purification material that can suitably remove carbon dioxide, and in particular, carbon dioxide that can be expected to be applied to an air purification device that can suitably remove carbon dioxide retained in a room and improve the living room environment. The present invention relates to a purification material and its application device.

近年、住宅などにおける居室の密閉性が向上した結果、居室内の空気組成がぶれやすくなっている。例えば、居住者の呼吸によって、空気中の酸素が減少したり、二酸化炭素が増加することが問題になる。   In recent years, as a result of improving the sealing performance of a room in a house or the like, the air composition in the room is likely to fluctuate. For example, there is a problem that oxygen in the air decreases or carbon dioxide increases due to resident breathing.

この問題を解決する目的で、居室における換気回数の強化を義務づけることが行われている。ここで、エアコンや空気清浄機など、居室中の空気環境を整える製品が従来から提供されており、これら製品によって、換気による効果に加えて、空気環境を改善することが求められている。   In order to solve this problem, it is required to strengthen the ventilation frequency in the living room. Here, products such as an air conditioner and an air purifier have been provided in the past to improve the air environment in the room, and these products are required to improve the air environment in addition to the effects of ventilation.

酸素濃度の低下に対する直接的な解決方法としては酸素富化膜を応用した酸素を空気中よりも高濃度に含有する空気を製造して、居室内に供給する装置を搭載したエアコンが上市されている(非特許文献1など)As a direct solution to the decrease in oxygen concentration, air conditioners equipped with devices that produce oxygen containing oxygen-enriched membranes at higher concentrations than air and supply them into the living room are marketed. (Non-Patent Document 1, etc.) .

従来、二酸化炭素ガスを分解する方法として、酸素欠陥マグネタイトを応用した方法が開示されている(特許文献1、非特許文献2及び3)。この方法は、酸素欠陥マグネタイトにCO  Conventionally, as a method for decomposing carbon dioxide gas, methods using oxygen-deficient magnetite have been disclosed (Patent Document 1, Non-Patent Documents 2 and 3). This method uses oxygen-deficient magnetite with CO. 22 ガスを通して、加熱して300℃とすると、マグネタイト粒子の周りに炭素原子が付着した新生成物FeWhen heated to 300 ° C. through gas, a new product Fe with carbon atoms attached around the magnetite particles 3Three O 4Four −1/2Cσが出来る反応を利用している(FeUtilizing a reaction that produces -1/2 Cσ (Fe 3Three O 4-Four- σ+1/2σCOσ + 1 / 2σCO 22 →Fe→ Fe 3Three O 4Four +1/2σC)。酸素欠陥マグネタイトはFe+ 1 / 2σC). Oxygen defect magnetite is Fe 3Three O 4Four (マグネタイト)にH(Magnetite) to H 22 を流入し、300℃に加熱することでマグネタイトのOAnd heated to 300 ° C. 22 -- が抜けることで合成できる(FeCan be synthesized by removing (Fe 3Three O 4Four +σH+ ΣH 22 →Fe→ Fe 3Three O 4-Four- σ+σHσ + σH 22 O)。O).

ところで、マグネタイトは化学式Fe  By the way, magnetite has the chemical formula Fe 3Three O 4Four 又はFeO・FeOr FeO · Fe 22 O 3Three で表される。その結晶構造は『スピネル型』で、図7に示すように、酸素原子の面心立方格子の中に鉄原子はAの位置(4個の酸素原子が包囲)とBの位置(6個の酸素原子の包囲)の両方の位置に入る。It is represented by The crystal structure is “spinel type”, and as shown in FIG. 7, in the face-centered cubic lattice of oxygen atoms, iron atoms are located at positions A (4 oxygen atoms are surrounded) and positions B (6 pieces). Oxygen atom siege) enters both positions.

位置AとBは磁子の向きが逆向きになるので、差列した磁化が表れる。差引きして磁化の残る現象をフェリ磁性と言い、フェリ磁性を持つMO・Fe  At positions A and B, the direction of the magnetons is reversed, so that a difference in magnetization appears. The phenomenon of remaining magnetization after subtraction is called ferrimagnetism. 22 O 3Three (MはII価の金属)で表されるものがフェライトと言われるものである。通常Ba位置の方がAよりも大きい磁化を持ち、AはBの反対向きなのでBAの磁化が残る。What is represented by (M is a II-valent metal) is called ferrite. Usually, the position of Ba has a larger magnetization than A, and since A is opposite to B, the magnetization of BA remains.

また、二酸化炭素ガス以外にも酸素欠陥マグネタイトによるNO  In addition to carbon dioxide gas, NO by oxygen-deficient magnetite XX (NO+NO(NO + NO 22 )ガスの分解方法が開示されている(特許文献2)。水冷ディーゼルエンジン排気量1000cc、2気筒から生じる排ガスを直接100gの活性化Fe) A gas decomposition method is disclosed (Patent Document 2). Water-cooled diesel engine displacement 1000 cc, 100 g of activated Fe directly from exhaust gas generated from 2 cylinders 3Three O 4Four に通じたところ、30分間にわたって排ガス中のNO, NO in the exhaust gas for 30 minutes XX (NO+NO(NO + NO 22 )ガスが全く検出されなかった。) No gas was detected.
特開平3−285829号公報Japanese Patent Laid-Open No. 3-285829 特開平3−245845号公報JP-A-3-245845 ”冷暖房タイプ ルームエアコン CS-S255A 商品概要”、[online]、2005年1月21日、松下電器産業、[平成19年4月16日検索]、インターネット〈URL:http://ctlg.national.jp/product/info.do?pg=04&hb=CS-S255AS〉"Air conditioning type room air conditioner CS-S255A product outline", [online], January 21, 2005, Matsushita Electric Industrial, [April 16, 2007 search], Internet <URL: http: //ctlg.national. jp / product / info.do? pg = 04 & hb = CS-S255AS> 玉浦裕、機能材料、1990年12月号、P44〜49Tamaura Hiroshi, Functional Materials, December 1990, P44-49 玉浦裕、機能材料、1991年1月号、P38〜43Tamaura Hiroshi, Functional Materials, January 1991, P38-43

しかしながら、二酸化炭素を常温にて除去する装置は存在しない。そこで、二酸化炭素を常温にて浄化できる装置に応用する目的で、二酸化炭素と常温で反応し継続的に除去できる炭酸ガス浄化材料及びそれを応用した装置を提供することを解決すべき課題とする。 However, there is no apparatus for removing carbon-containing dioxide at room temperature. Therefore, for the purpose of applying to a device capable of purifying carbon dioxide at room temperature, it is an object to be solved to provide a carbon dioxide purification material that can react with carbon dioxide at room temperature and continuously remove it, and a device using the same. .

課題を解決するための手段及び効果Means and effects for solving the problems

(1)上記課題を解決する炭酸ガス浄化材料は、強還元性物質を含み、磁場や電場を印加した状態で炭酸ガスと反応することを特徴とする。   (1) A carbon dioxide purification material that solves the above problems includes a strongly reducing substance and is characterized by reacting with carbon dioxide in a state where a magnetic field or an electric field is applied.

本発明者らは二酸化炭素を強還元性物質によって化学的に還元・浄化する方法について鋭意検討を行った結果、反応場中に磁場を印加することで反応温度を低下できることを発見し、本発明を完成した。通常、水素化チタンなどの強還元性物質は高温でしか二酸化炭素除去効果を発揮しないが、磁場を印加することで室温で反応を進行させることに成功した。また、本炭酸ガス浄化材料によると、一酸化炭素についても二酸化炭素と同様に還元除去できる。   As a result of intensive studies on a method for chemically reducing and purifying carbon dioxide with a strong reducing substance, the present inventors have found that the reaction temperature can be lowered by applying a magnetic field in the reaction field. Was completed. Normally, strongly reducing substances such as titanium hydride exhibit a carbon dioxide removal effect only at high temperatures, but they have succeeded in allowing the reaction to proceed at room temperature by applying a magnetic field. Moreover, according to this carbon dioxide purification material, carbon monoxide can also be reduced and removed in the same manner as carbon dioxide.

前記強還元性物質は水素化チタン又は水素化リチウムであるThe strong reducing substance is water hydride titanium or lithium hydride.

以下、本炭酸ガス浄化材料と炭酸ガスとの間で進行していると推測される反応について説明を行う。主反応としては、2CO2+4TiH2 → 2C+4Ti+4H2Oが進行するものと考えられる。また、反応生成物中にメタンが含有することから、副反応として、2CO2+2TiH2 → C+2TiO2+CH4といった反応が進行することが推測される。 Hereinafter, the reaction that is assumed to proceed between the carbon dioxide purification material and carbon dioxide will be described. As the main reaction, it is considered that 2CO 2 + 4TiH 2 → 2C + 4Ti + 4H 2 O proceeds. Further, since methane is contained in the reaction product, it is presumed that a reaction such as 2CO 2 + 2TiH 2 → C + 2TiO 2 + CH 4 proceeds as a side reaction.

また、酸素欠陥マグネタイトと二酸化炭素とが磁場などを印加した状態で、Fe34-σ+1/2σCO2→Fe34+1/2σCに示すように反応して、二酸化炭素を除去することができる。この酸素欠陥マグネタイトは前述の水素化チタンと後述するフェライトに含まれるマグネタイトとの反応(Fe34+σTiH2→Fe34-σ+σH2O+σTi)によって生成する化合物である。この反応も磁場などの印加により常温で進行可能な反応である。 Further, in a state in which oxygen defects magnetite and carbon dioxide was applied and the magnetic field, and the reaction as shown in Fe 3 O 4- σ + 1 / 2σCO 2 → Fe 3 O 4 + 1 / 2σC, that remove carbon dioxide it can. This oxygen-deficient magnetite is a compound produced by the reaction (Fe 3 O 4 + σTiH 2 → Fe 3 O 4 -σ + σH 2 O + σTi) between the aforementioned titanium hydride and the magnetite contained in the ferrite described later . This reaction can also proceed at room temperature by applying a magnetic field or the like.

ここで、空気中の二酸化炭素濃度は極めて低いので、化学的に還元・除去する方法に用いる強還元性物質の量も比較的少なくすることができる。前記強還元性物質としては、常温で安定な物質である水素化チタンを採用することが望ましい。 Here, since the carbon dioxide concentration in the air is extremely low, the amount of the strongly reducing substance used in the method of chemically reducing and removing can be relatively reduced. As the strong reducing substance, it is desirable to employ a stable substance der Ru water hydride titanium at room temperature.

磁場や電場の印加に代えて(加えて)、強還元性物質を励起できる波長の励起光を照射することによっても強還元性物質と炭酸ガスとの反応を進行させることができる。   Instead of (in addition to) application of a magnetic field or an electric field, the reaction between the strongly reducing substance and carbon dioxide can be advanced by irradiating excitation light having a wavelength capable of exciting the strongly reducing substance.

更に、強磁性体材料を含有することが望ましい。強磁性体材料を含有させることで外部から印加する磁場の効果を増幅することができるからである。また、電場の印加や励起光の照射を行う場合でも、強磁性体材料の存在により磁場が作用することが期待できる。   Furthermore, it is desirable to contain a ferromagnetic material. It is because the effect of the magnetic field applied from the outside can be amplified by containing a ferromagnetic material. Even when applying an electric field or irradiating excitation light, a magnetic field can be expected to act due to the presence of a ferromagnetic material.

強磁性体材料としてはは、Fe系材料、Ni系材料及びCo系材料から選択される1以上の材料を含有するものが例示される。特にFe系材料であるフェライトが安価で且つ高い効果を発揮できるので望ましい。   Examples of the ferromagnetic material include those containing one or more materials selected from Fe-based materials, Ni-based materials, and Co-based materials. In particular, ferrite, which is an Fe-based material, is desirable because it is inexpensive and can exhibit high effects.

そして、多孔質セラミクス材料を含有することで、比表面積が増大でき、炭酸ガス浄化作用の増大が期待できる。多孔質セラミクス材料としてはケイ酸カルシウム又はゼオライトが例示できる。また、形態が粉末状乃至は粒子状にすることで比表面積を増加させることができる。   And by containing a porous ceramic material, the specific surface area can be increased, and an increase in carbon dioxide gas purification action can be expected. Examples of the porous ceramic material include calcium silicate and zeolite. In addition, the specific surface area can be increased by making the form powder or particulate.

前記強磁性体材料を微粉末状とした上で、前記強還元性物質は該強磁性体材料微粉末の周囲を覆うように形成することで、更に効果的に炭酸ガス浄化効果を発揮することができる。その形成方法としては、前記強還元性物質(例えば水素化チタン)を強磁性体材料微粉末表面にスパッタリングにより製膜する方法が挙げられる。   By forming the ferromagnetic material into a fine powder form and forming the strongly reducing substance so as to cover the periphery of the ferromagnetic material fine powder, the carbon dioxide gas purification effect can be more effectively exhibited. Can do. The formation method includes a method in which the strongly reducing substance (for example, titanium hydride) is formed on the surface of the ferromagnetic material fine powder by sputtering.

磁場を印加する手段としては、前記強磁性体材料を永久磁石とする方法が挙げられる。また、永久磁石を含ませる方法も挙げられる。そして、本発明の炭酸ガス浄化材料は炭酸ガスの他、一酸化炭素及び/又は窒素酸化物の還元浄化に利用することもできる。また、酸化チタンを含有させることで光触媒の機能を付与することが可能になる。光触媒は有機物を酸化する作用を発揮するが、その際に発生する炭酸ガスを分解・浄化することができる。   Examples of means for applying a magnetic field include a method in which the ferromagnetic material is a permanent magnet. Moreover, the method of including a permanent magnet is also mentioned. And the carbon dioxide purification material of this invention can also be utilized for the reduction purification of carbon monoxide and / or nitrogen oxide besides carbon dioxide. Moreover, the function of a photocatalyst can be provided by containing titanium oxide. The photocatalyst exhibits an action of oxidizing organic substances, but can decompose and purify the carbon dioxide gas generated at that time.

(2−1)上記炭酸ガス浄化材料を用いて、以下に挙げるような炭酸ガス浄化装置を形成することができる。すなわち、(a)上述のいずれかの炭酸ガス浄化材料と、磁場印加手段とを有する炭酸ガス浄化装置、(b)上述のいずれかのの炭酸ガス浄化材料と、電場印加手段とを有する炭酸ガス浄化装置、(c)上述のいずれかのの炭酸ガス浄化材料と、加熱印加手段とを有する炭酸ガス浄化装置である。   (2-1) A carbon dioxide purification device such as the following can be formed using the carbon dioxide purification material. That is, (a) a carbon dioxide purification device having any one of the carbon dioxide purification materials described above and a magnetic field application means, and (b) a carbon dioxide gas having any one of the carbon dioxide purification materials described above and an electric field application means. A purifying device, (c) a carbon dioxide purifying device having any one of the carbon dioxide purifying materials described above and a heating application means.

(a)〜(c)の装置は互いに組み合わせることもできる。例えば、磁場及び電場を同時に印加する装置、磁場若しくは電場を印加しながら加熱する装置、磁場及び電場を印加しながら加熱する装置である。   The devices (a) to (c) can be combined with each other. For example, a device that applies a magnetic field and an electric field simultaneously, a device that heats while applying a magnetic field or an electric field, and a device that heats while applying a magnetic field and an electric field.

前記電場印加手段としては、前記炭酸ガス浄化材料を介装する1組の電極と、該1組の電極の間に高電圧を印加する電圧印加手段とをもつものが例示できる。また、他の電場印加手段としては、1の電極と、前記炭酸ガス浄化材料と該電極との間で高電圧を印加する電圧印加手段とをもつものが例示できる。   Examples of the electric field applying means include one having a pair of electrodes interposing the carbon dioxide purification material and a voltage applying means for applying a high voltage between the one set of electrodes. As another electric field applying means, one having one electrode and a voltage applying means for applying a high voltage between the carbon dioxide purification material and the electrode can be exemplified.

(2−2)更に、強磁性体材料を永久磁石とした上述の炭酸ガス浄化材料、又は、永久磁石を含有する上述の炭酸ガス浄化材料を表面に担持するフィルターを有する炭酸ガス浄化装置や、(2−1)にて記載した炭酸ガス浄化装置において、炭酸ガス浄化材料を表面に担持するフィルターを有する装置が挙げられる。   (2-2) Further, the above-mentioned carbon dioxide purification material using a ferromagnetic material as a permanent magnet, or a carbon dioxide purification device having a filter carrying the above-mentioned carbon dioxide purification material containing a permanent magnet on the surface, Examples of the carbon dioxide purification device described in (2-1) include a device having a filter that supports a carbon dioxide purification material on the surface.

その場合に前記フィルターに空気を供給する空気供給手段を有することが望ましい。   In that case, it is desirable to have an air supply means for supplying air to the filter.

(3)更に、強磁性体材料を永久磁石とした上述の炭酸ガス浄化材料、又は、永久磁石を含有する上述の炭酸ガス浄化材料を分散させたポリオレフィン基材とからなる繊維状部材が炭酸ガスを浄化させる部材として望ましい。この繊維状部材から製造した織布や不織布である炭酸ガス浄化布はカーテンや壁紙などの形態で応用が期待でき、生活環境における炭酸ガスを効果的に浄化できる。   (3) Further, the above-mentioned carbon dioxide purification material using a ferromagnetic material as a permanent magnet, or a fibrous member comprising a polyolefin base material in which the above-mentioned carbon dioxide purification material containing a permanent magnet is dispersed is carbon dioxide. It is desirable as a member to purify Carbon dioxide purifying cloth, which is a woven fabric or non-woven fabric manufactured from this fibrous member, can be expected to be applied in the form of a curtain or wallpaper, and can effectively purify carbon dioxide in the living environment.

本発明の炭酸ガス浄化材料について、以下実施形態に基づき詳細に説明を行う。本発明の炭酸ガス浄化材料は常温にて炭酸ガスと反応して炭酸ガスを浄化できる材料である。本炭酸ガス浄化材料は加熱により炭酸ガス浄化能の向上が期待できる。この炭酸ガス浄化材料はエアコンや空気清浄機などと組み合わせることで炭酸ガスを浄化する機能を付与することができる。例えば、住居、オフィス、病院などの建造物用のエアコン等に用いるほか、自動車、電車、飛行機などの乗物用のエアコン等にも用いることができる。また、自動車などの内燃機関や、発電所、ゴミ焼却場などからの排ガス流路に配設することで、排ガス中に含まれる炭酸ガスを浄化することも期待できる。また、そのまま、表面への担持、又は、他の材料に練り込んで用いることで雰囲気中の炭酸ガスの浄化に利用できる。塗料に含有させることで用いることもできる。   The carbon dioxide purification material of the present invention will be described in detail based on the following embodiments. The carbon dioxide purification material of the present invention is a material capable of purifying carbon dioxide by reacting with carbon dioxide at room temperature. The carbon dioxide purification material can be expected to improve the carbon dioxide purification ability by heating. This carbon dioxide purification material can be given a function of purifying carbon dioxide by being combined with an air conditioner or an air cleaner. For example, it can be used for an air conditioner for buildings such as a residence, an office, and a hospital, and an air conditioner for vehicles such as an automobile, a train, and an airplane. In addition, it can be expected to purify carbon dioxide contained in the exhaust gas by disposing it in the exhaust gas flow path from an internal combustion engine such as an automobile, a power plant, a garbage incinerator, or the like. Further, it can be used for purification of carbon dioxide in the atmosphere as it is supported on the surface or kneaded into other materials. It can also be used by making it contain in a coating material.

本実施形態の炭酸ガス浄化材料は、強還元性物質を含み、磁場又は電場を印加した状態で炭酸ガスと反応することを特徴とする。更には磁場又は電場に代えて(加えて)加熱することでも炭酸ガス浄化効果が期待できる。本炭酸ガス浄化材料は比表面積が大きい粉末状乃至は粒子状であることが望ましく、特に微粉末上であることが望ましい。また、比表面積を向上するためにビーズ状、ハニカム状などの形態も採用できる。また、比表面積が大きいセラミクス材料を混合して用いることが望ましい。例えば、二酸化炭素との反応が期待できるケイ酸カルシウムや比表面積が大きいゼオライトを含有することが望ましい。これらセラミクス材料も微粉末状にして含有させることが望ましい。   The carbon dioxide purification material of this embodiment contains a strongly reducing substance and is characterized by reacting with carbon dioxide in a state where a magnetic field or an electric field is applied. Furthermore, the carbon dioxide purification effect can be expected by heating instead of (in addition to) the magnetic field or electric field. The carbon dioxide purification material is desirably in the form of powder or particles having a large specific surface area, and particularly desirably on fine powder. Moreover, in order to improve a specific surface area, forms, such as bead shape and honeycomb shape, are also employable. Further, it is desirable to use a mixture of ceramic materials having a large specific surface area. For example, it is desirable to contain calcium silicate that can be expected to react with carbon dioxide or zeolite with a large specific surface area. These ceramic materials are also desirably contained in a fine powder form.

強還元性物質としては水素化チタン又は水素化リチウムであるか、それらが後述のフェライトのうちのマグネタイトと反応して生成する酸素欠陥マグネタイトである。強還元性物質を含有する量としては特に限定しないが、想定する寿命内において二酸化炭素除去効果を持続させるために必要な量を有することが望ましい。水素化金属を担持させる方法としては特に限定しないが、スパッタリングにて行ったり、粉末状にした後、液体中に分散させて塗布したりすることができる。例えば、後述するフェライトなどの強磁性体材料表面上にスパッタリングする方法が好ましい方法として挙げられる。 Or as the strong reducing agent is water hydride titanium or lithium hydride, they are oxygen defects magnetite which reacts with magnetite of ferrite below. Although it does not specifically limit as an amount containing a strong reducing substance, It is desirable to have an amount required in order to maintain a carbon dioxide removal effect within the assumed lifetime. The method for supporting the metal hydride is not particularly limited, but it can be carried out by sputtering or powdered and then dispersed and applied in a liquid. For example, a preferable method is a method of sputtering on the surface of a ferromagnetic material such as ferrite described later.

更に強磁性体材料を含有させることができる。強磁性体材料としては、Fe系材料、Ni系材料及びCo系材料が挙げられる。例えば、金属Fe、金属Ni、金属Coなどやこれらの酸化物などである。望ましい材料としてはフェライトが挙げられる。   Further, a ferromagnetic material can be contained. Examples of the ferromagnetic material include Fe-based materials, Ni-based materials, and Co-based materials. For example, metal Fe, metal Ni, metal Co, etc., and oxides thereof. A desirable material is ferrite.

フェライトは一般的なものが採用できる。具体的には二価遷移金属Mn(II)、Fe(II)、Co(II)、Ni(II)、Cu(II)、Zn(II)などの鉄(III)酸塩であり、マグネタイト(Fe34;Fe(II)の鉄(III)酸塩)などが挙げられる。 A general ferrite can be used. Specifically, it is an iron (III) salt such as divalent transition metals Mn (II), Fe (II), Co (II), Ni (II), Cu (II), Zn (II), and magnetite ( Fe 3 O 4 ; Fe (II) iron (III) acid salt) and the like.

フェライトは、これらの二価遷移金属のうち採用した金属の酸化物と酸化鉄(III)とを押し固めてから焼成することなどにより固溶体として生成できる。フェライトを含有させる量は特に限定しないが、強還元性物質100質量部当たり、50質量部〜200質量部程度、更には50質量部〜100質量部程度とすることができ、多い方が望ましいと推測できる。フェライトは、後述するように、磁化して磁石とすることが望ましい。   Ferrite can be produced as a solid solution by, for example, pressing and compacting the oxide of the metal employed among these divalent transition metals and iron (III) oxide, followed by firing. The amount of ferrite is not particularly limited, but can be about 50 to 200 parts by mass, more preferably about 50 to 100 parts by mass per 100 parts by mass of the strongly reducing substance. I can guess. As described later, the ferrite is preferably magnetized to become a magnet.

本炭酸ガス浄化材料が炭酸ガスと反応するには磁場や電場の印加が必要である。磁場の印加を行う方法としては、外部に独立した磁石(永久磁石、電磁石など、どのような磁石でも構わない)を設けて、その磁石により生成する磁場中に本炭酸ガス浄化材料を挿入する方法が例示できる。また、磁石を微粉末上にした上で、本炭酸ガス浄化材料中に含有させることもできる。また、本炭酸ガス浄化材料が有するフェライトを磁化して磁石とすることもできる。   In order for the carbon dioxide purification material to react with carbon dioxide, it is necessary to apply a magnetic field or an electric field. As a method for applying a magnetic field, an independent magnet (permanent magnet, electromagnet, etc., any magnet may be used) is provided, and the carbon dioxide purification material is inserted into the magnetic field generated by the magnet. Can be illustrated. Moreover, after making a magnet on fine powder, it can also be contained in this carbon dioxide purification material. Moreover, the ferrite which this carbon dioxide purification material has can be magnetized, and it can also be set as a magnet.

印加する磁場の強さとしては特に限定しないが、磁束密度が100mT〜2T程度、特に、500mT〜1T程度とすることができる。磁束密度は高い方が望ましい。磁束密度を高くするには強力な磁石を採用したり、対になる極をもつ磁石を近接して配置するなどの方法にて実現できる。   The strength of the magnetic field to be applied is not particularly limited, but the magnetic flux density can be about 100 mT to 2 T, particularly about 500 mT to 1 T. A higher magnetic flux density is desirable. To increase the magnetic flux density, a strong magnet can be used, or a magnet having a pair of poles can be arranged close to each other.

また、磁石を向かい合わせただけの場合よりも、漏れ磁束が少なくでき、磁力線が増加することから、本装置の周りをヨークによって囲むことが望ましい(例えば、図6)。ヨークは鉄などから形成する。  Further, since the leakage magnetic flux can be reduced and the lines of magnetic force are increased as compared with the case where the magnets are just faced to each other, it is desirable to surround the device with a yoke (for example, FIG. 6). The yoke is made of iron or the like.

電場の印加は高電圧を印加することで行う。高電圧の印加は、対向する1組の電極の間に炭酸ガス浄化材料を介装した上で、電極の間に高電圧を印加する方法や、炭酸ガス浄化材料を一方の電極として、もう1つの電極との間で高電圧を印加する方法が挙げられる。   The electric field is applied by applying a high voltage. The high voltage is applied by a method in which a carbon dioxide gas purification material is interposed between a pair of opposed electrodes and a high voltage is applied between the electrodes, or the carbon dioxide gas purification material is used as one electrode. A method of applying a high voltage between two electrodes can be mentioned.

励起光は強還元性物質の種類によって適正な波長が決定できる。   The appropriate wavelength of the excitation light can be determined depending on the type of strongly reducing substance.

本炭酸ガス浄化材料は酸化チタンを含有させることができる。酸化チタンは光触媒能が発揮できるものであれば特に限定しない。酸化チタンは微粉末状にして含有させることが望ましい。   The carbon dioxide purification material can contain titanium oxide. Titanium oxide is not particularly limited as long as it can exhibit photocatalytic activity. It is desirable to contain titanium oxide in the form of fine powder.

本発明の炭酸ガス浄化材料をフィルター表面に担持させた上で、そのフィルターによる炭酸ガス浄化能を調べた。   The carbon dioxide purification material of the present invention was supported on the filter surface, and the carbon dioxide purification ability of the filter was examined.

(試験1)
・製造:2種類のフィルターを用意した。双方ともコルゲート加工した紙から形成されており、約23.25セル/cm2(150セル/インチ2)であった。そして、一方の大きさを幅60mm×高さ40mm×奥行き40mmとし、他方を幅80mm×高さ20mm×奥行き80mmとした。
(Test 1)
-Manufacture: Two types of filters were prepared. Both were formed from corrugated paper and had a density of about 23.25 cells / cm 2 (150 cells / inch 2 ). One size was 60 mm width × 40 mm height × 40 mm depth, and the other size was 80 mm width × 20 mm height × 80 mm depth.

そして、平均粒径44μm以下の微粉末とした水素化チタンとフェライトとを調製した上で、それぞれのフィルターについて、水素化チタン及びフェライトの双方を担持させたもの(実施例及び;フィルターの表面積1m2あたり、水素化チタンは30g、フェライトは70g)、フェライトのみ担持させたもの(比較例及び;フィルターの表面積1m2あたりフェライトを70g)を作成した。そして、フィルターの流路に垂直の方向に磁場(500mT)を永久磁石にて印加した。なお、乱流の発生による撹拌効果を期待して、フィルターの気体を吸引する側に多数の孔を設けた板状部材である遮蔽板を設けた。
・試験:二酸化炭素濃度が4000ppm、残部が空気である内部の雰囲気をもつ一辺が500mmである立方体の箱中にて、それぞれのフィルターに毎分0.5m3の空気が通過して内部循環するようにファンを作動させ、経時的に二酸化炭素濃度を測定した。結果を表1及び図1に示す。
Then, after preparing titanium hydride and ferrite as fine powder having an average particle size of 44 μm or less, each filter was supported with both titanium hydride and ferrite (Examples 1 and 2 ; 30 g of titanium hydride and 70 g of ferrite per 1 m 2 of surface area), and those carrying only ferrite (Comparative Examples 1 and 2 ; 70 g of ferrite per 1 m 2 of filter surface area) were prepared. A magnetic field (500 mT) was applied by a permanent magnet in a direction perpendicular to the flow path of the filter. In addition, the shielding board which is a plate-shaped member which provided many holes was provided in the side which attracts | sucks the gas of a filter in anticipation of the stirring effect by generation | occurrence | production of a turbulent flow.
Test: In a cubic box having an internal atmosphere with a carbon dioxide concentration of 4000 ppm and the balance being air, and a side of 500 mm, 0.5 m 3 of air passes through each filter and circulates internally. The fan was turned on and the carbon dioxide concentration was measured over time. The results are shown in Table 1 and FIG.

Figure 0004746569
Figure 0004746569

表1及び図1より明らかなように、実施例及びの炭酸ガス浄化材料を適用したフィルターは水素化チタンの添加により大幅な二酸化炭素除去効果を発揮した。水素化チタンを含有しない比較例及びのフィルターは空運転よりも僅かに高い二酸化炭素除去効果を発揮できるものの実施例には及ばなかった。 As is apparent from Table 1 and FIG. 1, the filter to which the carbon dioxide purification material of Examples 1 and 2 was applied exhibited a significant carbon dioxide removal effect by the addition of titanium hydride. The filters of Comparative Examples 1 and 2 that do not contain titanium hydride can exhibit a slightly higher carbon dioxide removal effect than the idle operation, but did not reach the examples.

以上の結果から、二酸化炭素除去効果には水素化チタン(などの強還元性物質)の存在が大きく寄与していることが明らかになった。また、フィルターのサイズとして、空気が流れる流路の長さが80mmと長い実施例が流路の長さが40mmの実施例よりも高い二酸化炭素除去効果を発揮していることが明らかになり、空気を長時間接触させることが望ましいことが分かった。 From the above results, it was clarified that the presence of titanium hydride (such as a strong reducing substance) greatly contributed to the carbon dioxide removal effect. Further, as the filter size, it is clear that Example 2 having a long flow path of 80 mm through which air flows has a higher carbon dioxide removal effect than Example 1 having a flow path length of 40 mm. It was found that it was desirable to keep the air in contact for a long time.

(試験2)
・製造:大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度が、約12.4セル/cm2(80セル/インチ2)、約23.25セル/cm2(150セル/インチ2)及び約46.5セル/cm2(300セル/インチ2)の3種であった。
(Test 2)
-Manufacture: A filter having a size of width 80 mm x height 20 mm x depth 80 mm was prepared. The filter is formed from corrugated paper and has cell densities of about 12.4 cells / cm 2 (80 cells / inch 2 ), about 23.25 cells / cm 2 (150 cells / inch 2 ), and about 46. 3 cells / cm 2 (300 cells / inch 2 ).

そして、平均粒径44μm以下の微粉末とした水素化チタンとフェライトとを調製した上で、それぞれのフィルターについて、水素化チタン及びフェライトの双方を担持させたもの(実施例、比較例;フィルターの表面積1m2あたり、水素化チタンは30g、フェライトは70g)、水素化チタン及びフェライトを担持させていないもの(比較例)とを作成した。そして、実施例、比較例及びのフィルターについてはフィルターの流路に垂直の方向に磁場(500mT)を永久磁石にて印加した。なお、乱流の発生による撹拌効果を期待して、フィルターの気体を吸引する側に多数の孔を設けた板状部材である遮蔽板を設けた。 Then, after preparing titanium hydride and ferrite as fine powder having an average particle size of 44 μm or less, each filter was supported with both titanium hydride and ferrite (Examples 3 to 5 and Comparative Examples) 3 to 5 ; 30 g of titanium hydride and 70 g of ferrite per 1 m 2 of the surface area of the filter, and those not carrying titanium hydride and ferrite (Comparative Examples 6 to 9 ) were prepared. Was then applied Examples 3-8, the magnetic field (500 mT) in a direction perpendicular to the flow path of the filter for the filter of Comparative Example 6 and 7 in the permanent magnet. In addition, the shielding board which is a plate-shaped member which provided many holes was provided in the side which attracts | sucks the gas of a filter in anticipation of the stirring effect by generation | occurrence | production of turbulent flow.

二酸化炭素の初期濃度を4000ppmとして、試験1と同様の試験を行い、二酸化炭素除去能力を経時的に測定した。
・結果:結果を表2及び図2に示す。
The initial concentration of carbon dioxide was set to 4000 ppm, the same test as in Test 1 was performed, and the carbon dioxide removal ability was measured over time.
Results: The results are shown in Table 2 and FIG.

Figure 0004746569
Figure 0004746569

表2及び図2より明らかなように、強還元性物質(水素化チタン)、フェライト及び磁場がすべて揃った実施例のフィルターが高い二酸化炭素除去効果を発揮したのに対し、いずれか一つでも欠いた比較例のフィルターは空運転の場合とほとんど変わらない程度の二酸化炭素除去効果を発揮するに留まった。 As is clear from Table 2 and FIG. 2, the filters of Examples 3 to 5 having all of a strong reducing substance (titanium hydride), ferrite, and magnetic field all exhibited a high carbon dioxide removal effect. The filter of the comparative example which lacked even one showed only the carbon dioxide removal effect of the grade which is hardly different from the case of idling.

従って、二酸化炭素除去効果を発揮するには、強還元性物質が必要なのはもちろん、常温での反応性を向上させるために磁場の印加を行うことも有効であることが明らかになった。   Therefore, in order to exert the carbon dioxide removal effect, it has become clear that it is effective to apply a magnetic field in order to improve the reactivity at room temperature as well as a strongly reducing substance.

(試験3)
・製造:大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約23.25セル/cm2(150セル/インチ2)であった。
(Test 3)
-Manufacture: A filter having a size of width 80 mm x height 20 mm x depth 80 mm was prepared. The filter was formed from corrugated paper and had a cell density of about 23.25 cells / cm 2 (150 cells / inch 2 ).

そして、平均粒径44μm以下の微粉末とした水素化チタンとフェライトとを調製した上で、それぞれのフィルターについて、水素化チタン及びフェライトの双方を担持させた(実施例14;フィルターの表面積1m2あたり、水素化チタン及びフェライトをそれぞれ10g(実施例)、20g(実施例11)、そして30g(実施例1214)とした)。 Then, after preparing titanium hydride and ferrite as fine powder having an average particle size of 44 μm or less, both the titanium hydride and ferrite were supported on each filter (Examples 6 to 14 ; filter surface area). 10 g (Examples 6 to 8 ), 20 g (Examples 9 to 11 ), and 30 g (Examples 12 to 14 ) of titanium hydride and ferrite per 1 m 2 ).

そして、それぞれのフィルターについて、磁場を500mT(実施例及び12)、800mT(実施例10及び13)、そして1000mT(実施例11及び14)として印加した。更に、乱流の発生による撹拌効果を期待して、フィルターの気体を吸引する側に多数の孔を設けた板状部材である遮蔽板を設けた。 And about each filter, the magnetic field was applied as 500 mT (Examples 6 , 9 and 12 ), 800 mT (Examples 7 , 10 and 13 ), and 1000 mT (Examples 8 , 11 and 14 ). Further, in view of the stirring effect due to the generation of turbulent flow, a shielding plate which is a plate-like member provided with a large number of holes on the suction side of the filter gas was provided.

二酸化炭素の初期濃度を4000ppmとして、試験1と同様の試験を行い、二酸化炭素除去能力を経時的に測定した。
・結果:結果を表3及び図3に示す。
The initial concentration of carbon dioxide was set to 4000 ppm, the same test as in Test 1 was performed, and the carbon dioxide removal ability was measured over time.
Results: The results are shown in Table 3 and FIG.

Figure 0004746569
Figure 0004746569

表3及び図3から明らかなように、磁場が大きくなるにつれて二酸化炭素除去効果が高くなった。また、炭酸ガス浄化材料の担持量も多い方が好ましいことが明らかになった。
・次いで、一酸化炭素除去効果についても検討した。一酸化炭素の初期濃度を4000ppmとして、試験1と同様の試験を行い、二酸化炭素除去能力を経時的に測定した。
・結果:結果を表4及び図4に示す。
As apparent from Table 3 and FIG. 3, the carbon dioxide removal effect increased as the magnetic field increased. It has also been found that it is preferable that the amount of carbon dioxide purification material supported is large.
-Next, the carbon monoxide removal effect was also examined. A test similar to Test 1 was performed with an initial concentration of carbon monoxide of 4000 ppm, and the carbon dioxide removal ability was measured over time.
Results: The results are shown in Table 4 and FIG.

Figure 0004746569
Figure 0004746569

表4及び図4から明らかなように、一酸化炭素についても本フィルターにより除去できることが明らかになった。また、二酸化炭素の除去と同様に、磁場が大きくなるにつれて一酸化炭素除去効果が高くなった。また、炭酸ガス浄化材料の担持量も多い方が好ましいことが明らかになった。   As is clear from Table 4 and FIG. 4, it was revealed that carbon monoxide can also be removed by this filter. Similarly to the removal of carbon dioxide, the carbon monoxide removal effect increased as the magnetic field increased. It has also been found that it is preferable that the amount of carbon dioxide purification material supported is large.

(試験4)
・製造:大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約23.25セル/cm2(150セル/インチ2)であった。
(Test 4)
-Manufacture: A filter having a size of width 80 mm x height 20 mm x depth 80 mm was prepared. The filter was formed from corrugated paper and had a cell density of about 23.25 cells / cm 2 (150 cells / inch 2 ).

そして、平均粒径44μm以下の微粉末とした水素化チタン、水素化リチウム、水素化ビスマス、水素化アルミニウム、そしてフェライトを調製した。そして、水素化チタン(実施例15)、水素化リチウム(実施例16)、水素化ビスマス(参考例1)、水素化アルミニウム(参考例2)のうちの1つとフェライトとをそれぞれフィルターの表面積1m2あたり30gずつ担持したフィルターを製造した。 Then, titanium hydride, lithium hydride, bismuth hydride, aluminum hydride, and ferrite were prepared as fine powders having an average particle size of 44 μm or less. Then, one of titanium hydride (Example 15), lithium hydride (Example 16), bismuth hydride ( Reference Example 1 ), aluminum hydride ( Reference Example 2 ) and ferrite are each combined with a filter surface area of 1 m. A filter carrying 30 g per 2 was produced.

そして、それぞれのフィルターについて、磁場を500mT(実施例15−1、16−1、17−1及び18−1)と1000mT(実施例15−2、16−2、17−2及び18−2)として印加した。更に、乱流の発生による撹拌効果を期待して、フィルターの気体を吸引する側に多数の孔を設けた板状部材である遮蔽板を設けた。 Then, for each filter, the magnetic field 500 mT (Examples 15 -1, 16 -1, 17 -1 and 18 -1) and 1000 mT (Example 15 -2, 16 -2, 17 -2 and 18 -2) As applied. Further, in view of the stirring effect due to the generation of turbulent flow, a shielding plate which is a plate-like member provided with a large number of holes on the suction side of the filter gas was provided.

二酸化炭素の初期濃度を4000ppmとして、試験1と同様の試験を行い、二酸化炭素除去能力を経時的に測定した。
・結果:結果を表5及び図5に示す。
The initial concentration of carbon dioxide was set to 4000 ppm, the same test as in Test 1 was performed, and the carbon dioxide removal ability was measured over time.
Results: The results are shown in Table 5 and FIG.

Figure 0004746569
Figure 0004746569

表5及び図5より明らかなように、いずれの水素化金属も二酸化炭素除去能力を発揮するが、特に水素化チタン及び水素化リチウムの能力が際だって大きく、水素化金属としては両者のうちのいずれか又は双方を採用することが望ましいことが分かった。   As is clear from Table 5 and FIG. 5, any of the metal hydrides exerts the carbon dioxide removal ability, but the ability of titanium hydride and lithium hydride is particularly large. It has been found desirable to employ either or both.

(試験5)  (Test 5)
大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約23.25セル/cm  A filter having a size of width 80 mm × height 20 mm × depth 80 mm was prepared. The filter is made of corrugated paper and has a cell density of about 23.25 cells / cm. 22 (150セル/インチ(150 cells / inch 22 )であった。そのフィルターを用いて硫化水素の除去能力を経時的に測定した。結果を表6に示す。)Met. Using the filter, the ability to remove hydrogen sulfide was measured over time. The results are shown in Table 6.

Figure 0004746569
Figure 0004746569

(試験6)  (Test 6)
大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約23.25セル/cm  A filter having a size of width 80 mm × height 20 mm × depth 80 mm was prepared. The filter is made of corrugated paper and has a cell density of about 23.25 cells / cm. 22 (150セル/インチ(150 cells / inch 22 )であった。そのフィルターを用いてメチルメルカプタンの除去能力を経時的に測定した。結果を表7に示す。)Met. Using the filter, the ability to remove methyl mercaptan was measured over time. The results are shown in Table 7.

Figure 0004746569
Figure 0004746569

(試験7)  (Test 7)
大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約23.25セル/cm  A filter having a size of width 80 mm × height 20 mm × depth 80 mm was prepared. The filter is made of corrugated paper and has a cell density of about 23.25 cells / cm. 22 (150セル/インチ(150 cells / inch 22 )であった。そのフィルターを用いてNO)Met. NO using that filter 22 の除去能力を経時的に測定した。結果を表8に示す。The removal ability was measured over time. The results are shown in Table 8.

Figure 0004746569
Figure 0004746569

(試験8)  (Test 8)
大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約31セル/cm  A filter having a size of width 80 mm × height 20 mm × depth 80 mm was prepared. The filter is made of corrugated paper and has a cell density of about 31 cells / cm. 22 (200セル/インチ(200 cells / inch 22 )であった。そのフィルターの1m)Met. 1m of the filter 22 あたり、水素化チタンを30gとフェライト70gとを担持させ500mTの磁気を印加した。そのフィルターを用いて二酸化炭素ガスの除去能力を経時的に測定した。風量は0.1mAt this time, 30 g of titanium hydride and 70 g of ferrite were supported, and a magnetism of 500 mT was applied. The filter was used to measure the ability to remove carbon dioxide gas over time. Air volume is 0.1m 3Three /分とした。結果を表9に示す。/ Min. The results are shown in Table 9.

Figure 0004746569
Figure 0004746569

(試験9)  (Test 9)
二酸化炭素ガスの初期濃度を600ppmにした以外は、試験8と同じフィルターを同じ条件下にて試験を行った。  The same filter as in Test 8 was tested under the same conditions except that the initial concentration of carbon dioxide gas was 600 ppm.

大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約23.25セル/cm  A filter having a size of width 80 mm × height 20 mm × depth 80 mm was prepared. The filter is made of corrugated paper and has a cell density of about 23.25 cells / cm. 22 (150セル/インチ(150 cells / inch 22 )であった。そのフィルターを用いてNO)Met. NO using that filter 22 の除去能力を経時的に測定した。結果を表10及び11に示す。The removal ability was measured over time. The results are shown in Tables 10 and 11.

Figure 0004746569
Figure 0004746569

Figure 0004746569
Figure 0004746569

(試験10)  (Test 10)
大きさを幅60mm×高さ40mm×奥行き40mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約31セル/cm  A filter having a size of width 60 mm × height 40 mm × depth 40 mm was prepared. The filter is made of corrugated paper and has a cell density of about 31 cells / cm. 22 (200セル/インチ(200 cells / inch 22 )であった。そのフィルターに、水素化チタンとフェライトとを担持させ500mTの磁気を印加した。そのフィルターを用いて二酸化炭素ガス(初期濃度1500ppm及び4000ppm)の除去能力を経時的に測定した。風量は0.1m)Met. The filter was loaded with titanium hydride and ferrite, and 500 mT magnetism was applied. Using the filter, the ability to remove carbon dioxide gas (initial concentrations 1500 ppm and 4000 ppm) was measured over time. Air volume is 0.1m 3Three /分とした。結果を表12に示す。/ Min. The results are shown in Table 12.

Figure 0004746569
Figure 0004746569

(試験11)  (Test 11)
大きさを幅40mm×高さ20mm×奥行き60mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約31セル/cm  A filter having a size of width 40 mm × height 20 mm × depth 60 mm was prepared. The filter is made of corrugated paper and has a cell density of about 31 cells / cm. 22 (200セル/インチ(200 cells / inch 22 )であった。そのフィルターに、水素化チタンとフェライトとを担持させ500mTの磁気を印加した。そのフィルターを用いてたばこ(たばこ5本分)及びアンモニアの除去能力を経時的に測定した。風量は0.1m)Met. The filter was loaded with titanium hydride and ferrite, and 500 mT magnetism was applied. Using the filter, the ability to remove tobacco (for 5 tobacco) and ammonia was measured over time. Air volume is 0.1m 3Three /分とした。結果を表13に示す。/ Min. The results are shown in Table 13.

Figure 0004746569
Figure 0004746569

(試験12)  (Test 12)
大きさを幅80mm×高さ20mm×奥行き80mmとしたフィルターを用意した。フィルターはコルゲート加工した紙から形成されており、セル密度は約23.25セル/cm  A filter having a size of width 80 mm × height 20 mm × depth 80 mm was prepared. The filter is made of corrugated paper and has a cell density of about 23.25 cells / cm. 22 (150セル/インチ(150 cells / inch 22 )であった。そのフィルター1m)Met. The filter 1m 22 あたり、水素化チタン30gとフェライト70gとを担持させ400mTの磁気を印加した。そのフィルターを用いて風量0.1mAt this time, 30 g of titanium hydride and 70 g of ferrite were supported, and 400 mT of magnetism was applied. Air volume 0.1m using the filter 3Three /分にて10分間運転した後にマイナスイオンの濃度を測定した。測定は神戸イオン製の測定雄値(KST−900)にて行った。測定雰囲気は常温(25℃±10℃)、湿度50%±10%、無風状態とした。その結果1cmThe concentration of negative ions was measured after driving at 10 minutes per minute. The measurement was performed using a measurement male value (KST-900) manufactured by Kobe Ion. The measurement atmosphere was normal temperature (25 ° C. ± 10 ° C.), humidity 50% ± 10%, and no wind. As a result 1cm 3Three あたり555.20個であった。It was 555.20 per one.

(試験13)  (Test 13)
大きさを幅40mm×高さ20mm×奥行き60mmとしたフィルターを3種類用意した。1つはセラミックス練り込み20%(TiH  Three types of filters having a size of width 40 mm × height 20 mm × depth 60 mm were prepared. One is 20% ceramic kneading (TiH 22 30g、フェライト30g)製のものであり、もう1つはコルゲート加工した紙の表面にコートしたものであり(TiH30g, ferrite 30g), and the other is coated on the surface of corrugated paper (TiH 22 30g、フェライト30g)、最後の1つは水素化チタン及びフェライトを練り込まないセラミックス製のものである。このハニカムについて図6に示すように鉄製のヨークを周囲に配置することにより二酸化炭素ガス除去能力に与える影響について評価した。結果を表14に示す。30 g, ferrite 30 g), and the last one is made of ceramics without kneading titanium hydride and ferrite. As shown in FIG. 6, this honeycomb was evaluated for its influence on the ability to remove carbon dioxide gas by arranging an iron yoke around it. The results are shown in Table 14.

Figure 0004746569
Figure 0004746569

(試験14)  (Test 14)
試験13におけるCのハニカムを用いて二酸化炭素ガス除去能力を評価した。評価時には湿度を35%、55%、そして85%として行った。それぞれの湿度における空運転時の二酸化炭素ガス濃度変化についても測定した(「空」にて示す)。結果を表15に示す。  Carbon dioxide gas removal ability was evaluated using the C honeycomb in Test 13. At the time of evaluation, the humidity was 35%, 55%, and 85%. Changes in carbon dioxide gas concentration during idling at each humidity were also measured (indicated by “empty”). The results are shown in Table 15.

Figure 0004746569
Figure 0004746569

実施例における二酸化炭素除去率の時間依存性を示した図である。It is the figure which showed the time dependence of the carbon dioxide removal rate in an Example. 実施例における二酸化炭素除去率の時間依存性を示した図である。It is the figure which showed the time dependence of the carbon dioxide removal rate in an Example. 実施例における二酸化炭素除去率の時間依存性を示した図である。It is the figure which showed the time dependence of the carbon dioxide removal rate in an Example. 実施例における一酸化炭素除去率の時間依存性を示した図である。It is the figure which showed the time dependence of the carbon monoxide removal rate in an Example. 実施例における二酸化炭素除去率の時間依存性を示した図である。It is the figure which showed the time dependence of the carbon dioxide removal rate in an Example. 実施例にて用いた装置を示した図である。It is the figure which showed the apparatus used in the Example. マグネタイトの結晶構造を示した図である。It is the figure which showed the crystal structure of the magnetite.

Claims (25)

水素化チタン又は水素化リチウムである強還元性物質を含み、磁場若しくは電場を印加、又は、励起光を照射した状態で炭酸ガスと反応することを特徴とする炭酸ガス浄化材料。 A carbon dioxide purification material comprising a strongly reducing substance which is titanium hydride or lithium hydride, and reacts with carbon dioxide in a state where a magnetic field or an electric field is applied or excitation light is irradiated. 更に、強磁性体材料を含有する請求項1に記載の炭酸ガス浄化材料。 The carbon dioxide purification material according to claim 1, further comprising a ferromagnetic material. 前記強磁性体材料は、Fe系材料、Ni系材料及びCo系材料から選択される1以上の材料を含有する請求項に記載の炭酸ガス浄化材料。 3. The carbon dioxide purification material according to claim 2 , wherein the ferromagnetic material contains one or more materials selected from an Fe-based material, a Ni-based material, and a Co-based material. 前記強磁性体材料はフェライトである請求項に記載の炭酸ガス浄化材料。 The carbon dioxide purification material according to claim 3 , wherein the ferromagnetic material is ferrite. 前記フェライトはマグネタイトであり、  The ferrite is magnetite,
前記強還元性物質と前記マグネタイトは反応して酸素欠陥マグネタイトになっている請求項4に記載の炭酸ガス浄化材料。  The carbon dioxide purification material according to claim 4, wherein the strongly reducing substance and the magnetite react to form oxygen-deficient magnetite.
更に、多孔質セラミクス材料を含有する請求項1〜のいずれかに記載の炭酸ガス浄化材料。 Furthermore, the carbon dioxide purification material in any one of Claims 1-5 containing a porous ceramic material. 前記多孔質セラミクス材料はケイ酸カルシウム又はゼオライトである請求項に記載の炭酸ガス浄化材料。 The carbon dioxide purification material according to claim 6 , wherein the porous ceramic material is calcium silicate or zeolite. 一酸化炭素及び/又は窒素酸化物が還元浄化できる請求項1〜のいずれかに記載の炭酸ガス浄化材料。 The carbon dioxide purification material according to any one of claims 1 to 7 , wherein carbon monoxide and / or nitrogen oxides can be reduced and purified. 形態が粉末状乃至は粒子状である請求項1〜のいずれかに記載の炭酸ガス浄化材料。 The carbon dioxide purification material according to any one of claims 1 to 8 , wherein the form is powdery or particulate. 前記強磁性体材料は微粉末状であり、
前記強還元性物質は該強磁性体材料微粉末の周囲を覆っている請求項のいずれかに記載の炭酸ガス浄化材料。
The ferromagnetic material is in the form of fine powder,
The carbon dioxide purification material according to any one of claims 2 to 9 , wherein the strongly reducing substance covers the periphery of the ferromagnetic material fine powder.
前記強還元性物質は水素化金属であり、前記強還元性物質は強磁性体材料微粉末表面にスパッタリングにより製膜されている請求項1に記載の炭酸ガス浄化材料。 The strong reducing substance is a metal hydride, the strong reducing substance is carbon dioxide gas purification material according to claim 1 0, which is film formation by sputtering ferromagnetic material powder surface. 酸化チタンを含有する請求項1〜1のいずれかに記載の炭酸ガス浄化材料。 The carbon dioxide purification material according to any one of claims 1 to 11, comprising titanium oxide. 前記強磁性体材料は永久磁石となっている請求項〜1のいずれかに記載の炭酸ガス浄化材料。 The carbon dioxide purification material according to any one of claims 2 to 12 , wherein the ferromagnetic material is a permanent magnet. 永久磁石を含む請求項1〜1のいずれかに記載の炭酸ガス浄化材料。 Carbonic acid gas purifying material according to any one of claims 1 to 1 3, including a permanent magnet. 請求項1〜1のいずれかに記載の炭酸ガス浄化材料と、磁場印加手段とを有する炭酸ガス浄化装置。 And carbon dioxide purification material according to any one of claims 1 to 1 4, the carbon dioxide gas purifying apparatus and a magnetic field applying means. 請求項1〜1のいずれかに記載の炭酸ガス浄化材料と、電場印加手段とを有する炭酸ガス浄化装置。 A carbon dioxide purification device comprising the carbon dioxide purification material according to any one of claims 1 to 15 , and an electric field applying means. 前記電場印加手段は、前記炭酸ガス浄化材料を介装する1組の電極と、該1組の電極の間に高電圧を印加する電圧印加手段とをもつ請求項1に記載の炭酸ガス浄化装置。 17. The carbon dioxide purification according to claim 16 , wherein the electric field application unit includes a pair of electrodes that interpose the carbon dioxide purification material, and a voltage application unit that applies a high voltage between the pair of electrodes. apparatus. 前記電場印加手段は、1の電極と、前記炭酸ガス浄化材料と該電極との間で高電圧を印加する電圧印加手段とをもつ請求項1に記載の炭酸ガス浄化装置。 The carbon dioxide purification apparatus according to claim 16 , wherein the electric field application means includes one electrode and voltage application means for applying a high voltage between the carbon dioxide purification material and the electrode. 更に加熱手段を有する請求項118のいずれかに記載の炭酸ガス浄化装置。 Further carbon dioxide gas purifying apparatus according to any one of claims 1 5 to 18 with a heating means. 請求項1〜1のいずれかに記載の炭酸ガス浄化材料と、加熱印加手段とを有する炭酸ガス浄化装置。 And carbon dioxide purification material according to any one of claims 1 to 1 4, the carbon dioxide gas purifier and a heating application means. 請求項1又は1に記載の炭酸ガス浄化材料を表面に担持するフィルターを有する炭酸ガス浄化装置。 Carbon dioxide purification apparatus having a filter that carries the carbon dioxide gas purifying material according to the surface to claim 1 3 or 1 4. 前記炭酸ガス浄化材料を表面に担持するフィルターを有する請求項1〜2のいずれかに記載の炭酸ガス浄化装置。 Carbon dioxide purification apparatus according to claim 1 5-2 0 with filter carrying said carbon dioxide cleaning material to the surface. 前記フィルターに空気を供給する空気供給手段を有する請求項2又は2に記載の炭酸ガス浄化装置。 Carbon dioxide purification device according to claim 2 1 or 2 2 having an air supply means for supplying air to the filter. 微粉末状の請求項1又は1に記載の炭酸ガス浄化材料と、該炭酸ガス浄化材料を分散させたポリオレフィン基材とからなる繊維状部材である炭酸ガス浄化繊維。 Fine powder according to claim 1 3 or 1 4 and carbon dioxide purification material according to, carbon dioxide gas purification fiber is fibrous member comprising a polyolefin substrate obtained by dispersing carbon dioxide gas purification material. 請求項2に記載の炭酸ガス浄化繊維からなる炭酸ガス浄化布。 Carbon dioxide purification cloth consisting of carbon dioxide gas purification fiber according to claims 2 to 4.
JP2007012061A 2006-01-20 2007-01-22 Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device Expired - Fee Related JP4746569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012061A JP4746569B2 (en) 2006-01-20 2007-01-22 Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006012734 2006-01-20
JP2006012734 2006-01-20
JP2007012061A JP4746569B2 (en) 2006-01-20 2007-01-22 Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device

Publications (2)

Publication Number Publication Date
JP2007222867A JP2007222867A (en) 2007-09-06
JP4746569B2 true JP4746569B2 (en) 2011-08-10

Family

ID=38545164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012061A Expired - Fee Related JP4746569B2 (en) 2006-01-20 2007-01-22 Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device

Country Status (1)

Country Link
JP (1) JP4746569B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286639A (en) * 1989-04-26 1990-11-26 Agency Of Ind Science & Technol Production of methanol from carbon dioxide using solar energy
JPH03232519A (en) * 1990-02-08 1991-10-16 Takashi Inaga Method for decomposing and removing carbon dioxide or the like
JPH0576723A (en) * 1991-09-25 1993-03-30 Kumagai Gumi Co Ltd Method for reducing greenhouse-effect gas
JPH0585713A (en) * 1991-09-25 1993-04-06 Agency Of Ind Science & Technol Method for gas phase reduction of carbonic acid gas
JPH0741322A (en) * 1993-07-30 1995-02-10 Otsuka Chem Co Ltd Fibrous magnetite and production thereof
JPH0780328A (en) * 1993-09-14 1995-03-28 Mitsubishi Rayon Co Ltd Carbon dioxide decomposing membrane
JPH1163610A (en) * 1997-08-12 1999-03-05 Toshikazu Kawai Local ventilator
JP2000015084A (en) * 1998-06-30 2000-01-18 Toshiba Corp Reaction apparatus and method and thermal-power generation system
JP2001218866A (en) * 1999-11-22 2001-08-14 Hiroshi Kashihara Halide matter decomposing method, harmful matter decomposing and detecting method, and kit for decomposing and detecting harmful matter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520287A (en) * 1979-05-01 1980-02-13 Chiyoo Komori Metal hydride fine powder-adhered fiber and fiber foil, and production thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286639A (en) * 1989-04-26 1990-11-26 Agency Of Ind Science & Technol Production of methanol from carbon dioxide using solar energy
JPH03232519A (en) * 1990-02-08 1991-10-16 Takashi Inaga Method for decomposing and removing carbon dioxide or the like
JPH0576723A (en) * 1991-09-25 1993-03-30 Kumagai Gumi Co Ltd Method for reducing greenhouse-effect gas
JPH0585713A (en) * 1991-09-25 1993-04-06 Agency Of Ind Science & Technol Method for gas phase reduction of carbonic acid gas
JPH0741322A (en) * 1993-07-30 1995-02-10 Otsuka Chem Co Ltd Fibrous magnetite and production thereof
JPH0780328A (en) * 1993-09-14 1995-03-28 Mitsubishi Rayon Co Ltd Carbon dioxide decomposing membrane
JPH1163610A (en) * 1997-08-12 1999-03-05 Toshikazu Kawai Local ventilator
JP2000015084A (en) * 1998-06-30 2000-01-18 Toshiba Corp Reaction apparatus and method and thermal-power generation system
JP2001218866A (en) * 1999-11-22 2001-08-14 Hiroshi Kashihara Halide matter decomposing method, harmful matter decomposing and detecting method, and kit for decomposing and detecting harmful matter

Also Published As

Publication number Publication date
JP2007222867A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
Jampaiah et al. Ceria–zirconia modified MnO x catalysts for gaseous elemental mercury oxidation and adsorption
Yang et al. Magnetic iron–manganese binary oxide supported on carbon nanofiber (Fe3− xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas
Kong et al. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3
CN103316544B (en) Wastewater treatment filtering material, and preparation method and use thereof
Wang et al. Synthesis and characterization of single‐crystalline MnFe2O4 ferrite nanocrystals and their possible application in water treatment
Du et al. α-Fe 2 O 3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic
Khurshid et al. Anionic azo dyes removal from water using amine-functionalized cobalt–iron oxide nanoparticles: a comparative time-dependent study and structural optimization towards the removal mechanism
US20100021559A1 (en) Zeolite supported metallic nanodots
JP5674952B2 (en) Magnetite-bernite mixture, synthesis method thereof and water treatment method
JP4820575B2 (en) Ozonolysis agent
Li et al. A three-dimensional bimetallic oxide NiCo2O4 derived from ZIF-67 with a cage-like morphology as an electrochemical platform for Hg2+ detection
JPWO2016208718A1 (en) Carbon dioxide absorbers, pellets and filters
JP4746569B2 (en) Carbon dioxide purification material, carbon dioxide purification fiber, carbon dioxide purification cloth, and carbon dioxide purification device
CN114425305A (en) Mercury adsorption material, preparation method thereof and application thereof in flue gas or solution demercuration
JP7263097B2 (en) Selenium removal method
Park et al. Facile synthesis of silica–manganese oxide nanocomposites with core–shell structure using surfactant and cosurfactant
JP2009013044A5 (en)
JP2010042413A (en) Ozone decomposing agent
Yuan et al. Porous layered ZnFe2O4/ZnO heterostructure for enhanced triethylamine detection
JP2002233718A (en) Filtering material for air filter
Téllez-Salazar et al. Synthesis of superficially modified Ce1− x (Zr+ Y) xO2− δ solid solutions and thermogravimetric analysis of their performance in the catalytic soot combustion
Jethave et al. Fe0. 26Mn0. 26O4. 5 Binary oxide Nanoparticles as a Promising Adsorbent for Phosphate from Aqueous Medium
Hiremath et al. Enhanced humidity sensing stability of Dy3+-doped Mg-Rb ferrites for room temperature operatable humidity sensor applications
JPH04346832A (en) Production of air-purifying material
JP2579177B2 (en) Composite iron oxide particle powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4746569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees