JP2525475B2 - Transparent conductive laminate - Google Patents

Transparent conductive laminate

Info

Publication number
JP2525475B2
JP2525475B2 JP1406489A JP1406489A JP2525475B2 JP 2525475 B2 JP2525475 B2 JP 2525475B2 JP 1406489 A JP1406489 A JP 1406489A JP 1406489 A JP1406489 A JP 1406489A JP 2525475 B2 JP2525475 B2 JP 2525475B2
Authority
JP
Japan
Prior art keywords
layer
indium oxide
transparent conductive
film
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1406489A
Other languages
Japanese (ja)
Other versions
JPH02194943A (en
Inventor
均 御子柴
将夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11850660&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2525475(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1406489A priority Critical patent/JP2525475B2/en
Publication of JPH02194943A publication Critical patent/JPH02194943A/en
Application granted granted Critical
Publication of JP2525475B2 publication Critical patent/JP2525475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 [利用分野] 本発明は導電性積層体に関し、更に詳しくは有機高分
子成型物上に主として結晶質のインジウム酸化物からな
る透明導電層を形成してなる導電性積層体に関する。
TECHNICAL FIELD The present invention relates to a conductive laminate, and more specifically, a conductive laminate obtained by forming a transparent conductive layer mainly made of crystalline indium oxide on an organic polymer molded product. Regarding the body

[従来技術] 高度情報化社会の到来と共に、光とエレクトロニクス
の両方の特徴を利用した部品、機器の進歩は著しい。ま
たマイクロコンピュータの飛躍的普及にともない、コン
ピュータ周辺機器の革新はめざましい。これらのコンピ
ュータ入力装置としての透明タッチパネルや更に、出力
装置としての液晶ディスプレイ,エレクトロルミネッセ
ンスディスプレイ等には、透明電極が用いられるが、該
目的には、透明電極の耐久性及び信頼性が要求される。
[Prior Art] With the advent of the advanced information society, the progress of parts and devices utilizing both the characteristics of light and electronics is remarkable. In addition, with the dramatic spread of microcomputers, the innovation of computer peripherals is remarkable. Transparent electrodes are used in these transparent touch panels as computer input devices, liquid crystal displays, electroluminescent displays, etc. as output devices, and the durability and reliability of the transparent electrodes are required for this purpose. .

透明導電性層としては、金属薄膜(Au,Pd等)タイ
プ,金属酸化物薄膜タイプ(ITO,CTO,SnO2,TiO2等)、
多層薄膜タイプ(TiOx/Ag/TiOx等)等があるが、透明
性,導電性,機械的特性等の基本特性は、金属酸化物薄
膜タイプが優れている。金属酸化物薄膜タイプの中でも
ITO(Indiumu Tin Oxide)膜は、透明性,導電性が特に
優れており、更に電極のパターン化が容易(エッチング
特性が優れている)等の特長を有し、近年注目を浴びて
来た。
As the transparent conductive layer, metal thin film (Au, Pd, etc.) type, metal oxide thin film type (ITO, CTO, SnO 2 , TiO 2, etc.),
There are multi-layer thin film types (TiOx / Ag / TiOx, etc.), but the metal oxide thin film type is superior in basic properties such as transparency, conductivity, and mechanical properties. Among metal oxide thin film types
The ITO (Indiumu Tin Oxide) film is particularly excellent in transparency and conductivity, and further has features such as easy patterning of electrodes (excellent etching characteristics), and has recently attracted attention.

本発明者らは、既に有機高分子成型物上にインジウム
・スズ低級酸化物膜を形成した後、ITO膜に転化せしめ
る方法を提案して来た(公開特許公報昭53−102881,昭5
3−73397,昭54−8670等)。
The present inventors have already proposed a method of forming an indium tin lower oxide film on an organic polymer molded product and then converting it into an ITO film (Japanese Patent Laid-Open Publication No. 102881/53).
3-73397, Sho 54-8670, etc.).

又、真空蒸着法によりインジウム・スズ低級酸化物膜
を形成した後熱酸化を行なうと結晶質のITO膜に転化さ
れることを見出した(表面Vol.18 No.8 pp.440)。とこ
ろで上述の結晶質のITO膜は耐久性に優れているが、真
空蒸着法によりインジウム・スズ低級酸化物膜を形成す
るために工業的にいくつかの問題点がある。例えば、
(1)蒸発源が点状であることから膜厚の均一な範囲が
狭く、広幅なロール状フイルムへの製膜が困難であるこ
と、(2)蒸発材料を連続的に供給するのが困難であ
り、長時間に亘って蒸着を行なうことができないこと、
(3)二成分系の蒸発材料を用いた場合、蒸気圧の違い
から組成ずれを起こす場合があること等である。
It was also found that when a lower oxide film of indium / tin was formed by a vacuum deposition method and then subjected to thermal oxidation, it was converted into a crystalline ITO film (Surface Vol.18 No.8 pp.440). By the way, although the above-mentioned crystalline ITO film is excellent in durability, there are some industrial problems because the indium / tin lower oxide film is formed by the vacuum deposition method. For example,
(1) Since the evaporation source is point-shaped, the uniform range of the film thickness is narrow, and it is difficult to form a film on a wide roll film. (2) It is difficult to continuously supply the evaporation material. And that vapor deposition cannot be performed for a long time,
(3) When a two-component evaporation material is used, compositional deviation may occur due to difference in vapor pressure.

一方、最近の薄膜形成技術の進歩はめざましく、耐熱
性のあまりない有機高分子成型物上に透明導電性層を形
成できる様になった。中でもスパッタリング法は、長時
間に亘って製膜が可能、長時間膜形成を行なっても組成
ずれがない。広幅化が容易等の特長を有し、もっとも利
用されている技術の一つである。そして、上述のITO膜
をスパッタリング法で形成することも知られている。そ
こで、本発明者らも、スパッタリング法で有機高分子成
型物上にITO膜を形成しその実用性を評価した。しか
し、スパッタリング法によりITO膜を形成してなる導電
性積層体は、耐久性及び信頼性が低いという欠点がある
ことがわかった。
On the other hand, the recent progress in thin film forming technology has made it possible to form a transparent conductive layer on an organic polymer molded product having little heat resistance. Among them, the sputtering method can form a film for a long time, and there is no compositional deviation even if the film is formed for a long time. It is one of the most used technologies because it has features such as easy widening. It is also known to form the above ITO film by a sputtering method. Therefore, the present inventors also formed an ITO film on the organic polymer molded product by the sputtering method and evaluated its practicality. However, it has been found that the conductive laminated body formed by forming the ITO film by the sputtering method has the drawback of low durability and reliability.

そこで、本発明者らは、先ず有機高分子成型物上に主
としてインジウム酸化物を含む波長550nmの光吸収率が
2〜30%で比抵抗が1.5×10-3Ω・cm以上の層を形成
し、次いで該層を酸素雰囲気下の加熱処理により主とし
て結晶質のインジウム酸化物からなる透明導電層に転化
せしめる方法を提案した(公開特許公報昭61−7964
7)。該方法により、耐久性及び信頼性に優れ、透明タ
ッチパネル用途に十分利用できる導電性積層体の製造が
可能となった。
Therefore, the present inventors first formed a layer containing mainly indium oxide on the organic polymer molded product having a light absorption rate of 2 to 30% at a wavelength of 550 nm and a specific resistance of 1.5 × 10 −3 Ω · cm or more. Then, a method of converting the layer into a transparent conductive layer mainly composed of crystalline indium oxide by heat treatment in an oxygen atmosphere was proposed (Japanese Patent Laid-Open No. 61-7964).
7). By this method, it is possible to manufacture a conductive laminate that has excellent durability and reliability and can be sufficiently used for transparent touch panel applications.

しかしながら、エレクトロルミネッセンスディスプレ
イに用いた場合、導電性積層体と発光層の貼合わせ工程
で、しばしば透明導電層に断線が発生するという実用上
大きな問題があることが明らかになった。
However, when used in an electroluminescence display, it has been revealed that there is a practically serious problem that disconnection often occurs in the transparent conductive layer in the step of laminating the conductive laminate and the light emitting layer.

[発明の目的] 本発明はかかる現状に鑑みなされたもので、耐久性及
び信頼性に優れた導電性積層体を目的としたものであ
る。
[Object of the Invention] The present invention has been made in view of the above circumstances, and is directed to a conductive laminate having excellent durability and reliability.

[発明の構成] 上述の目的は以下の本発明により達成される。すなわ
ち、本発明は、有機高分子成型物上に主として、結晶質
のインジウム酸化物からなる透明導電層を形成してなる
導電性積載体において、該透明導電層が、先ず、有機高
分子成型物上に、主としてインジウム酸化物を含む550n
mの吸光係数が1×10-3〜2×10-3[Å-1]、比抵抗が
2×10-2Ωcm以下の層を形成し、次いで該層を酸素雰囲
気下の加熱処理により主として結晶質のインジウム酸化
物からなる層に転化せしめたものであり、かつ該結晶質
のインジウム酸化物の結晶粒径が0.3μm以下であるこ
とを特徴とする透明導電性積層体である。
[Structure of the Invention] The above-mentioned object is achieved by the present invention described below. That is, the present invention provides a conductive loading body mainly comprising a transparent conductive layer made of crystalline indium oxide on an organic polymer molded product, wherein the transparent conductive layer is the organic polymer molded product. On top, 550n mainly containing indium oxide
A layer having an absorption coefficient of m of 1 × 10 -3 to 2 × 10 -3-1 ] and a specific resistance of 2 × 10 -2 Ωcm or less is formed, and then the layer is mainly heat-treated in an oxygen atmosphere. A transparent conductive laminate obtained by converting a crystalline indium oxide layer into a layer, wherein the crystalline indium oxide has a crystal grain size of 0.3 μm or less.

以下、その詳細を発明に到った経過と共に説明する。 The details will be described below along with the progress of the invention.

前述の通り従来のスパッタリング法により形成したIT
O膜は実用上大きな問題を有することが分かった。本発
明者らは、透明導電層の断線の原因究明のために、透明
導電層の膜構造を透過型電子顕微鏡で解析した所、結晶
粒径が大きくなる程、耐屈曲性が悪くなり、断線が起き
やすいことが分かった。
As described above, the IT formed by the conventional sputtering method
It was found that the O film has a big problem in practical use. The inventors of the present invention analyzed the film structure of the transparent conductive layer with a transmission electron microscope in order to investigate the cause of the disconnection of the transparent conductive layer. Was found to be likely to occur.

そこで、本発明者らは、結晶粒径について鋭意研究し
た結果、スパッタリング法で形成した直後のITO膜の吸
光係数が大きい程加熱処理後のITO膜の結晶粒径を小さ
くできることを見出した。
Therefore, as a result of intensive studies on the crystal grain size, the present inventors have found that the crystal grain size of the ITO film after the heat treatment can be made smaller as the absorption coefficient of the ITO film immediately after formed by the sputtering method is larger.

また、スパッタリング法で形成した直後のITO膜の吸
光係数が1×10-3[Å-1]になるまでは吸光係数の増加
に伴い加熱処理後のITO膜の透明性が次第に低下するこ
とから吸光係数が1×10-3[Å-1]を越えるものは加熱
処理後に透明性の良いITO膜を得ることができないと考
えられていた。ところで、吸光係数が1×10-3[Å-1
を越えると逆に加熱処理後のITO膜の透明性が高くなる
という驚くべき事実を見い出した。そして、スパッタリ
ング法で形成された直後の膜の吸光係数が1×10-3〜2
×10-3[Å-1]、かつ比抵抗が2×10-2Ωcm以下の範囲
のものが、結晶粒径が0.3μm以下のITO膜に転化できる
ことを見出した。
In addition, until the extinction coefficient of the ITO film immediately after being formed by the sputtering method becomes 1 × 10 −3−1 ], the transparency of the ITO film after heat treatment gradually decreases as the extinction coefficient increases. It has been considered that an ITO film having an extinction coefficient exceeding 1 × 10 -3-1 ] cannot obtain an ITO film having good transparency after heat treatment. By the way, the extinction coefficient is 1 × 10 -3-1 ]
On the contrary, it was discovered that the transparency of the ITO film after the heat treatment becomes high when the temperature exceeds the range. The extinction coefficient of the film immediately after being formed by the sputtering method is 1 × 10 −3 to 2
× 10 -3-1], and specific resistance is in the range of 2 × 10 -2 Ωcm or less, the crystal grain size was found to be converted into the following ITO film 0.3 [mu] m.

結晶粒径が0.3μm以下のITO膜は耐屈曲性に優れてお
り、前述の断線を皆無にすることができる。吸光係数が
1×10-3[Å-1]未満では結晶粒径が0.3μmを越え、
耐屈曲性が悪くなる。また、吸光係数が2×10
-3[Å-1]を越えると結晶粒径が小さくなりすぎるため
ITO膜の導電性が悪くなる。
The ITO film having a crystal grain size of 0.3 μm or less has excellent bending resistance and can eliminate the above-mentioned disconnection. When the extinction coefficient is less than 1 × 10 -3-1 ], the crystal grain size exceeds 0.3 μm,
Flex resistance deteriorates. Also, the extinction coefficient is 2 x 10
If it exceeds -3-1 ], the crystal grain size becomes too small.
The conductivity of the ITO film deteriorates.

なお、本発明者らが以前提案して来た真空蒸着法によ
るインジウム・スズ低級酸化物膜の吸光係数は1.4×10
-3[Å-1]、比抵抗は4×10-2Ωcmであり真空蒸着法で
は本発明のスパッタリング法で形成された主としてイン
ジウム酸化物を含む層と異なる層が形成されることが確
められた。
In addition, the extinction coefficient of the indium-tin lower oxide film by the vacuum deposition method that the present inventors have previously proposed is 1.4 × 10 5.
-3-1 ], the specific resistance is 4 × 10 -2 Ωcm, and it is confirmed that a layer different from the layer mainly containing indium oxide formed by the sputtering method of the present invention is formed by the vacuum evaporation method. Was given.

ここで、吸光係数aとは積分球で測定した波長550nm
における基板も含めた透過率T(%)と反射率R(%)
及び基板である有機高分子成型物による吸収率B(%)
とITO膜の膜厚t(Å)より次式で定義される。
Here, the extinction coefficient a is a wavelength of 550 nm measured with an integrating sphere.
T (%) and reflectance R (%) including the substrate in
And absorption rate B (%) by the organic polymer molding that is the substrate
And the film thickness t (Å) of the ITO film are defined by the following equation.

a=(1/t)log(100−R−B)/T[Å-1] なお、本発明者らが以前提案した光吸収率2〜30%の
ITO膜の球光係数は、ITO膜が約200Åの時、5.3×10-5
9.6×10-4[Å-1]であった。
a = (1 / t) log (100−R−B) / T [Å −1 ] In addition, the light absorptivity of 2 to 30% previously proposed by the present inventors was proposed.
The spherical light coefficient of the ITO film is 5.3 × 10 -5 ~ when the ITO film is about 200Å.
It was 9.6 × 10 -4-1 ].

また結晶粒径とは、透過型電子顕微鏡下で観察される
多角形状または長円形状の各領域における対角線または
直径の中で最大のものと定義する。
The crystal grain size is defined as the maximum of the diagonal lines or diameters in each polygonal or elliptical region observed under a transmission electron microscope.

主としてインジウム酸化物を含む層を形成するスパッ
タリング法には、インジウムを主成分とする合金又は、
酸化インジウムを主成分とする焼結体をターゲットとし
て用いることができる。前者においては、アルゴン等の
不活性ガス及び酸素ガス等の反応性ガスを真空槽内に導
入して、反応性スパッタリングを行なう。後者において
は、アルゴン等の不活性ガス単独か或いはアルゴン等の
不活性ガスに微量の酸素ガス等の反応性ガスを混合した
ものを用いてスパッタリングを行なう。スパッタリング
の方式は直流又は高周波二極スパッタ,直流又は高周波
マグネトロンスパッタ,イオンビームスパッタ等公知の
方式が適用できる。中でもマグネトロン方式は基板への
プラズマ衝撃が少く、高速製膜が可能で好ましい。
In the sputtering method for forming a layer containing mainly indium oxide, an alloy containing indium as a main component, or
A sintered body containing indium oxide as a main component can be used as a target. In the former case, an inert gas such as argon and a reactive gas such as oxygen gas are introduced into a vacuum chamber for reactive sputtering. In the latter, sputtering is performed using an inert gas such as argon alone or a mixture of an inert gas such as argon and a trace amount of a reactive gas such as oxygen gas. As the sputtering method, known methods such as direct current or high frequency bipolar sputtering, direct current or high frequency magnetron sputtering, and ion beam sputtering can be applied. Among them, the magnetron method is preferable because it has less plasma impact on the substrate and enables high-speed film formation.

いずれの場合もスパッタリング法により形成する主と
してインジウム酸化物を含む層の吸光係数及び比抵抗が
目的の値となる様にスパッタリング条件を制御しなけれ
ばならない。スパッタリング条件は装置によって異な
る。スパッタリング条件を決める方法としては、一定の
酸素分圧下で堆積速度(即ち、投入電力)を変えて堆積
された膜の特性を調べる方法や投入電力を一定にしてお
いて、酸素分圧を変えて堆積された膜の特性を調べる方
法等がある。
In either case, the sputtering conditions must be controlled so that the extinction coefficient and the specific resistance of the layer mainly containing indium oxide formed by the sputtering method have the desired values. The sputtering conditions vary depending on the equipment. The sputtering conditions can be determined by changing the deposition rate (that is, the input power) under a constant oxygen partial pressure to investigate the characteristics of the deposited film, or by setting the input power constant and changing the oxygen partial pressure. There is a method of examining the characteristics of the deposited film.

要は、使用するスパッタリング装置において、インジ
ウム酸化物を含む層の吸光係数が1×10-3〜2×10
-3[Å-1]かつ比抵抗が2×10-2Ωcm以下になる様なス
パッタリング条件を実験的に求め、インジウム酸化物を
含む層の吸光係数及び比抵抗が上記の値となる様にスパ
ッタリング条件を制御する。
In short, in the sputtering apparatus used, the absorption coefficient of the layer containing indium oxide is 1 × 10 −3 to 2 × 10 5.
-3-1 ] and the sputtering conditions were determined experimentally so that the specific resistance was 2 × 10 -2 Ωcm or less, so that the extinction coefficient and specific resistance of the layer containing indium oxide would be the above values. Control the sputtering conditions.

本発明に用いられる透明導電層は主としてインジウム
酸化物を含む層である。インジウム酸化物層は本来透明
な電気絶縁体であるが、微量の不純物を含有する場
合、わずかに酸素不足になっている場合等に半導体に
なる。好ましい半導体金属酸化物としては、例えば、不
純物として錫又はフッ素を含む酸化インジウムをあげる
ことができる。特に好ましくは、酸化錫を2〜20wt%含
むインジウム酸化物の層である。
The transparent conductive layer used in the present invention is a layer mainly containing indium oxide. Although the indium oxide layer is originally a transparent electric insulator, it becomes a semiconductor when it contains a trace amount of impurities or when it is slightly oxygen-deficient. Examples of preferable semiconductor metal oxides include indium oxide containing tin or fluorine as an impurity. Particularly preferred is a layer of indium oxide containing 2 to 20 wt% tin oxide.

本発明に用いられる主としてインジウム酸化物からな
る透明導電性層の膜圧は十分な導電性を得るためには、
50Å以上であることが好ましく、100Å以上であれば更
に好ましい。また、十分い透明度の高い被膜を得るため
には、500Å以下である事が好ましく、400Å以下がより
好ましい。
In order to obtain sufficient conductivity, the film pressure of the transparent conductive layer mainly composed of indium oxide used in the present invention is
It is preferably 50 Å or more, and more preferably 100 Å or more. Further, in order to obtain a sufficiently highly transparent film, it is preferably 500 Å or less, more preferably 400 Å or less.

本発明においてスパッタリング法により主としてイン
ジウム酸化物よりなる層を有機高分子成型物上に必要に
応じて中間層を介して形成した後、酸素雰囲気下の加熱
処理を行なう。酸素雰囲気下とは少なくとも前記スパッ
タリング法で形成したインジウム酸化物層を結晶質へ転
化せしめるに必要な酸素が存在するものであれば良く、
必要に応じて不活性ガスを導入しても良く、酸素ガス及
び/又はオゾンを含む常圧雰囲気、酸素ガス及び/又は
酸素プラズマを含む低圧雰囲気、或いは酸素ガス及び/
又はオゾンを含む高圧雰囲気等種々の雰囲気があり全て
適用できるが、酸素ガス及び/又はオゾンを含む常圧雰
囲気が好ましく用いられる。又、加熱温度は、100〜250
℃が好ましく、特に130〜200℃が好ましい。100℃未満
では結晶質の酸化インジウムに転化せしめることができ
ない。又、250℃を越えると有機高分子成型物に変形や
クラックが発生して好ましくない。なお、加熱処理時間
は、加熱温度,層組成等に応じ実験的に定める。
In the present invention, a layer mainly composed of indium oxide is formed by a sputtering method on an organic polymer molded article with an intermediate layer if necessary, and then heat treatment is performed in an oxygen atmosphere. The oxygen atmosphere is sufficient if at least oxygen necessary for converting the indium oxide layer formed by the sputtering method to crystalline is present,
If necessary, an inert gas may be introduced, a normal pressure atmosphere containing oxygen gas and / or ozone, a low pressure atmosphere containing oxygen gas and / or oxygen plasma, or oxygen gas and / or
Alternatively, there are various atmospheres such as a high-pressure atmosphere containing ozone, all of which are applicable, but an atmospheric pressure atmosphere containing oxygen gas and / or ozone is preferably used. The heating temperature is 100-250.
C is preferable, and 130 to 200 C is particularly preferable. Below 100 ° C, it cannot be converted to crystalline indium oxide. On the other hand, if the temperature exceeds 250 ° C, the organic polymer molded product may be deformed or cracked, which is not preferable. The heat treatment time is experimentally determined according to the heating temperature, layer composition and the like.

本発明における有機高分子成型物を構成する有機高分
子化合物としては、耐熱性を有する透明な有機高分子化
合物であれば特に限定しないが、通常耐熱性としては、
100℃以上、好ましく130℃以上のものであって、例え
ば、ポリイミド,ポリエーテルスルホン,ポリスルホ
ン,ポリパラバン酸,ポリヒダントインを始めとし、ポ
リエチレンテレフタレート,ポリエチレン−2,6−ナフ
タレンジカルボキシレート,ポリジアリルフタレート,
ポリカーボネート等のポリエステル系樹脂及び芳香族ポ
リアミド,セルローストリアセテート等が挙げられる。
もちろんこれはホモポリマー,コポリマーとして、又、
単独又はブレンドとしても使用しうる。
The organic polymer compound constituting the organic polymer molded product in the present invention is not particularly limited as long as it is a transparent organic polymer compound having heat resistance, but usually as heat resistance,
100 ° C or higher, preferably 130 ° C or higher, for example, polyimide, polyether sulfone, polysulfone, polyparabanic acid, polyhydantoin, polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, polydiallyl phthalate ,
Examples thereof include polyester resins such as polycarbonate, aromatic polyamide, and cellulose triacetate.
Of course, this is a homopolymer, a copolymer,
It may be used alone or as a blend.

かかる有機高分子化合物の成型物の形状は特に限定さ
れるものではないが、通常シート状,フイルム状のもの
が好ましく、中でもフイルム状のものは巻取り可能であ
り、又連続生産が可能である為、特に好ましい。更にフ
イルム状のものが使用される場合においては、フイルム
の厚さは6〜500μが好ましく、更には12〜200μが好ま
しい。
The shape of such a molded product of the organic polymer compound is not particularly limited, but usually a sheet-like or film-like one is preferable, and among them, the film-like one can be wound or continuously produced. Therefore, it is particularly preferable. Further, when a film-shaped material is used, the thickness of the film is preferably 6 to 500 µ, more preferably 12 to 200 µ.

これらのフイルム又はシートは透明性を損わない程度
において顔料を添加したり、又、表面加工例えばサンド
マット加工等をほどこしてもよい。
Pigments may be added to these films or sheets to the extent that transparency is not impaired, and surface treatment such as sand matting may be applied.

又、これらのフイルム又はシートは単独でもラミネー
トして用いてもよい。
Further, these films or sheets may be used alone or laminated.

更に、透明導電層との密着性等を向上させるため透明
導電層形成前に有機高分子成型物上に中間層を形成して
も良い。中間層としては例えば有機ケイ素化合物、チタ
ンアルキルエステル,ジルコニウムアルキルエステル等
の有機金属化合物の加水分解により生成された層が好ま
しく用いられる。該中間層は、多層構成としても良い。
Further, an intermediate layer may be formed on the organic polymer molded product before forming the transparent conductive layer in order to improve the adhesion with the transparent conductive layer. As the intermediate layer, for example, a layer formed by hydrolysis of an organosilicon compound, an organometallic compound such as a titanium alkyl ester, a zirconium alkyl ester or the like is preferably used. The intermediate layer may have a multilayer structure.

該中間層は、有機高分子成型物上に塗布後、乾燥し、
加熱,イオンボンバード或いは紫外線,β線,γ線など
の放射線により硬化させる。
The intermediate layer is coated on an organic polymer molded article and then dried,
It is cured by heating, ion bombardment or radiation such as ultraviolet rays, β rays, γ rays.

また該中間層の塗布には、透明有機高分子成型物や塗
工液の形状,性質に応じてドクターナイフ,バーコータ
ー,グラビアロールコーター,カーテンコーター,ナイ
フコーターなどの公知の塗工機械を用いる塗工法,スプ
レー法,浸漬法などが用いられる。
For coating the intermediate layer, a known coating machine such as a doctor knife, a bar coater, a gravure roll coater, a curtain coater, or a knife coater is used depending on the shape and properties of the transparent organic polymer molding or the coating liquid. The coating method, spray method, dipping method, etc. are used.

該中間層の厚さとしては、100〜1000Åが好ましく、
特に200〜900Åが好ましい。100Å未満の場合には、連
続層を形成しないため密着性向上効果がない。又、1000
Åをこえると、クラックや剥離を生じたりして好ましく
ない。
The thickness of the intermediate layer is preferably 100 to 1000Å,
Particularly, 200 to 900Å is preferable. If it is less than 100Å, the continuous layer is not formed, so that there is no effect of improving the adhesion. Also 1000
If it exceeds Å, cracking or peeling may occur, which is not preferable.

又、本発明における導電性積層体はインジウム酸化物
よりなる透明導電層上に耐スクラッチ性を向上させる、
あるいは、他の塗工層との密着性を向上させる等の目的
のために保護層を積層させてもよい。
Further, the conductive laminate in the present invention improves scratch resistance on a transparent conductive layer made of indium oxide,
Alternatively, a protective layer may be laminated for the purpose of improving the adhesion with other coating layers.

かかる保護層としては、TIO2,SnO2,SiO2,ZrO2,ZnO等
の透明酸化物,Si3N4,TiN等の窒化物あるいはアクリロニ
トリル樹脂,スチレン樹脂,アクリレート樹脂,ポリエ
ステル樹脂,シアノエチル化プルラン等のシアノエチル
化多糖類等の透明な有機化合物重合体或いは、有機ケイ
素化合物,チタンアルキルエステル,ジルコニウムアル
キルエステル等の有機金属化合物等を用いる事ができ
る。
Examples of such a protective layer include transparent oxides such as TIO 2 , SnO 2 , SiO 2 , ZrO 2 and ZnO, nitrides such as Si 3 N 4 and TiN, or acrylonitrile resin, styrene resin, acrylate resin, polyester resin, cyanoethylated Transparent organic compound polymers such as cyanoethylated polysaccharides such as pullulan or organometallic compounds such as organosilicon compounds, titanium alkyl esters, zirconium alkyl esters and the like can be used.

かかる保護層の厚さは透明導電層の特性を低下させな
い範囲で任意に設ける事が可能である。
The thickness of the protective layer can be arbitrarily set within a range that does not deteriorate the characteristics of the transparent conductive layer.

また本発明における導電性積層体は、有機高分子成型
物の両面に必要に応じて中間層を介して透明導電層を積
層した構成にしても良く或いは、有機高分子成型物の片
面に必要に応じて中間層を介して透明導電層を積層した
構成において透明導電層を積層した面と反対面におい
て、透明性を損わない範囲で接着性,表面硬度,光学特
性等を改善する目的で、例えば前述した中間層や保護層
と同種の層や、酸化物層,窒化物層,硫化物層,炭化物
層や有機物層を設けても良い。
Further, the conductive laminate in the present invention may have a structure in which transparent conductive layers are laminated on both sides of the organic polymer molded product with an intermediate layer as necessary, or on one side of the organic polymer molded product. In order to improve adhesiveness, surface hardness, optical characteristics, etc. within a range that does not impair transparency, on the surface opposite to the surface on which the transparent conductive layers are stacked in the structure in which the transparent conductive layers are stacked via the intermediate layer. For example, a layer of the same kind as the above-mentioned intermediate layer or protective layer, an oxide layer, a nitride layer, a sulfide layer, a carbide layer or an organic layer may be provided.

[効果] 以上の、本発明によりスパッタリング法を用いて、極
めて優れた耐久性及び信頼性を有し、透明タッチパネル
やエレクトロルミネッセンス用に十分利用できる導電性
積層体の製造が可能となった。
[Effect] As described above, according to the present invention, it is possible to manufacture a conductive laminate having extremely excellent durability and reliability, which can be sufficiently used for a transparent touch panel and electroluminescence, by using the sputtering method.

なお、本発明は、スパッタリング法以外の方法は例え
ばイオンプレーティング法にも適用可能であるが、スパ
ッタリング法の場合に特に本発明の効果が大きい。
Although the present invention can be applied to methods other than the sputtering method, such as the ion plating method, the effect of the present invention is particularly great in the case of the sputtering method.

本発明はスパッタリング法で導電層を形成するので、
従来の真空蒸着法の問題がなく、品質の均一な広巾の導
電性積層体を連続的に安定して生産することができ、非
常に生産性の良いプロセスが得られた。
Since the present invention forms the conductive layer by the sputtering method,
There was no problem of the conventional vacuum deposition method, and it was possible to continuously and stably produce a wide conductive laminate with uniform quality, and a highly productive process was obtained.

なお、本発明で得られる導電性積層体は、透明タッチ
パネルやエレクトロルミネッセンス用電極として適して
いるだけでなく、例えば、電子写真,帯電防止材料,面
発熱体,固体ディスプレイ,光メモリー,光電変換素
子,光通信,光情報処理,太陽エネルギー利用材料等と
広い用途を有する。
The conductive laminate obtained in the present invention is not only suitable as a transparent touch panel or an electrode for electroluminescence, but also used in, for example, electrophotography, antistatic materials, surface heating elements, solid-state displays, optical memories, photoelectric conversion elements. , Has a wide range of applications such as optical communication, optical information processing, solar energy utilization materials, etc.

以下、実施例をあげて本発明の効果を更に具体的に説
明する。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.

[実施例1〜2及び比較例1] 75μm厚のポリエチレンテレフタレートフイルムの両
面に、有機ケイ素化合物のブタノール,イソプロパノー
ル混合アルコール系溶液(濃度0.6重量%)をバーコー
ターで塗布し、140℃で1分間乾燥した。乾燥後の膜厚
は300Åであった。
Examples 1 and 2 and Comparative Example 1 A butanol / isopropanol mixed alcoholic solution of an organosilicon compound (concentration: 0.6% by weight) was applied to both surfaces of a 75 μm-thick polyethylene terephthalate film with a bar coater, and the temperature was 140 ° C. for 1 minute. Dried. The film thickness after drying was 300Å.

該フイルムを直流マグネトロンスパッタ装置内の基板
保持台に固定し、真空度2×10-5Torrまで真空槽を排気
した。その後、Ar/O2混合ガス(O225%)を槽内に導入
し、真空度を4×10-3Torrに保った後、In/Sn合金(Sn5
重量%)よりなるターゲットを用い反応性スパッタリン
グ法により体積速度を変えて実施例1〜2及び比較例1
のサンプルの吸光係数及び比抵抗を有するインジウム・
スズ酸化物膜を形成した。これらのサンプルを150℃に
保った熱風乾燥器により加熱処理を行なった後、透明導
電層の膜構造を透過型電子顕微鏡で調べた。
The film was fixed on a substrate holder in a DC magnetron sputtering apparatus, and the vacuum chamber was evacuated to a vacuum degree of 2 × 10 −5 Torr. After that, Ar / O 2 mixed gas (O 2 25%) was introduced into the tank, the vacuum degree was maintained at 4 × 10 −3 Torr, and then the In / Sn alloy (Sn5
Examples 1 to 2 and Comparative Example 1 using a target composed of 100 wt%) and varying the volume velocity by the reactive sputtering method.
With the extinction coefficient and resistivity of the sample of
A tin oxide film was formed. These samples were heat-treated with a hot air dryer kept at 150 ° C., and then the film structure of the transparent conductive layer was examined with a transmission electron microscope.

また、加熱処理後のサンプルの550nmにおける透過
率,比抵抗,耐屈曲性および発光層と貼合わせた後の断
線の程度を調べた。なお、耐屈曲性は、透明導電層が外
側になる様に、直径5φの丸棒の周囲に沿って10回繰返
し変形させて元に戻した後の抵抗値Rと変形させる前の
抵抗値R0の比R/R0と定義する。
The heat-treated sample was examined for the transmittance at 550 nm, the specific resistance, the bending resistance, and the degree of disconnection after bonding with the light-emitting layer. The bending resistance is such that the resistance value R after being repeatedly deformed 10 times along the circumference of a round bar having a diameter of 5φ and the resistance value R before being deformed are such that the transparent conductive layer is on the outside. It is defined as the ratio R / R 0 of 0 .

結果を表1に示す。 Table 1 shows the results.

本発明による実施例1,2の透明導電性積層体は耐屈曲
性に優れ、発光層と貼合わせた後の断線は皆無であっ
た。
The transparent conductive laminates of Examples 1 and 2 according to the present invention were excellent in bending resistance, and there was no disconnection after being bonded to the light emitting layer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機高分子成型物上に主として結晶質のイ
ンジウム酸化物からなる透明導電層を形成してなる導電
性積層体において、該透明導電層が、先ず、有機高分子
成型物上に、主としてインジウム酸化物を含む波長550n
mの吸光係数が1×10-3〜2×10-3[Å-1]、比抵抗が
2×10-2Ωcm以下の層を形成し、次いで該層を酸素雰囲
気下の加熱処理により主として結晶質のインジウム酸化
物からなる層に転化せしめたものであり、かつ該結晶質
のインジウム酸化物の結晶粒径が0.3μm以下であるこ
とを特徴とする透明導電性積層体。
1. A conductive laminate comprising a transparent conductive layer mainly composed of crystalline indium oxide formed on an organic polymer molded product, wherein the transparent conductive layer is first formed on the organic polymer molded product. , 550n mainly containing indium oxide
A layer having an absorption coefficient of m of 1 × 10 -3 to 2 × 10 -3-1 ] and a specific resistance of 2 × 10 -2 Ωcm or less is formed, and then the layer is mainly heat-treated in an oxygen atmosphere. A transparent conductive laminate, wherein the crystalline indium oxide is converted to a layer made of crystalline indium oxide, and the crystalline grain size of the crystalline indium oxide is 0.3 μm or less.
【請求項2】加熱処理温度が100〜250℃である請求項1
記載の透明導電性積層体。
2. The heat treatment temperature is 100 to 250 ° C.
The transparent electroconductive laminate described.
JP1406489A 1989-01-25 1989-01-25 Transparent conductive laminate Expired - Lifetime JP2525475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1406489A JP2525475B2 (en) 1989-01-25 1989-01-25 Transparent conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1406489A JP2525475B2 (en) 1989-01-25 1989-01-25 Transparent conductive laminate

Publications (2)

Publication Number Publication Date
JPH02194943A JPH02194943A (en) 1990-08-01
JP2525475B2 true JP2525475B2 (en) 1996-08-21

Family

ID=11850660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1406489A Expired - Lifetime JP2525475B2 (en) 1989-01-25 1989-01-25 Transparent conductive laminate

Country Status (1)

Country Link
JP (1) JP2525475B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106897A1 (en) * 2004-04-30 2005-11-10 Nitto Denko Corporation Transparent conductive multilayer body and touch panel
JP2006139750A (en) * 2004-04-30 2006-06-01 Nitto Denko Corp Transparent conductive laminate and touch panel
KR100830385B1 (en) 2004-04-30 2008-05-19 닛토덴코 가부시키가이샤 Transparent conductive multilayer body and touch panel

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351068B2 (en) 1995-12-20 2002-02-26 Mitsui Chemicals, Inc. Transparent conductive laminate and electroluminescence light-emitting element using same
KR100544562B1 (en) 1998-05-15 2006-01-23 도요 보세키 가부시키가이샤 Transparent conductive film and touch panel
DE60128508D1 (en) 2000-03-28 2007-07-05 Toyo Boseki Transparent conductive film, transparent conductive sheet and touch-sensitive panel
JP2002287906A (en) * 2001-03-23 2002-10-04 Mitsubishi Chemicals Corp Touch panel
US6787253B2 (en) 2001-06-27 2004-09-07 Bridgestone Corporation Transparent electroconductive film and touch panel
US6896981B2 (en) 2001-07-24 2005-05-24 Bridgestone Corporation Transparent conductive film and touch panel
EP1591554A4 (en) * 2003-01-24 2010-04-07 Bridgestone Corp Ito thin film, film-forming method of same, transparent conductive film and touch panel
JP4986100B2 (en) * 2003-12-25 2012-07-25 東洋紡績株式会社 Transparent conductive film, transparent conductive sheet and touch panel
JP4754955B2 (en) * 2005-11-07 2011-08-24 有限会社エイチエスプランニング Conductive film for touch panel and conductive film manufacturing method for touch panel
JP5166700B2 (en) 2006-01-30 2013-03-21 日東電工株式会社 Crystalline transparent conductive thin film, manufacturing method thereof, transparent conductive film and touch panel
US20090291293A1 (en) * 2006-07-14 2009-11-26 Dai Nippon Printing Co., Ltd. Film with transparent electroconductive membrane and its use
JP5114961B2 (en) * 2006-07-14 2013-01-09 大日本印刷株式会社 Film with transparent conductive film and display substrate, display, liquid crystal display device and organic EL element comprising the film with transparent conductive film
JP5099893B2 (en) 2007-10-22 2012-12-19 日東電工株式会社 Transparent conductive film, method for producing the same, and touch panel provided with the same
KR101277433B1 (en) 2008-09-26 2013-06-20 도요보 가부시키가이샤 Transparent conductive film and touch panel
WO2011048996A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Transparent conductive film
JP6031559B2 (en) * 2010-12-27 2016-11-24 日東電工株式会社 Transparent conductive film and method for producing the same
CN104969305B (en) 2013-02-06 2017-03-22 三菱树脂株式会社 Transparent stacked film, transparent conductive film, and gas barrier stacked film
JP6298321B2 (en) * 2014-02-25 2018-03-20 株式会社カネカ Film with transparent conductive layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179647A (en) * 1984-09-28 1986-04-23 帝人株式会社 Manufacture of transparent conductive laminate
JPH01100260A (en) * 1987-10-14 1989-04-18 Daicel Chem Ind Ltd Manufacture of laminated body of transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179647A (en) * 1984-09-28 1986-04-23 帝人株式会社 Manufacture of transparent conductive laminate
JPH01100260A (en) * 1987-10-14 1989-04-18 Daicel Chem Ind Ltd Manufacture of laminated body of transparent conductive film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106897A1 (en) * 2004-04-30 2005-11-10 Nitto Denko Corporation Transparent conductive multilayer body and touch panel
JP2006139750A (en) * 2004-04-30 2006-06-01 Nitto Denko Corp Transparent conductive laminate and touch panel
KR100830385B1 (en) 2004-04-30 2008-05-19 닛토덴코 가부시키가이샤 Transparent conductive multilayer body and touch panel
CN1947204B (en) * 2004-04-30 2011-02-23 日东电工株式会社 Transparent conductive multilayer body and touch panel
US8097330B2 (en) 2004-04-30 2012-01-17 Nitto Denko Corporation Transparent conductive multilayer body and touch panel
US8481150B2 (en) 2004-04-30 2013-07-09 Nitto Denko Corporation Transparent conductive multilayer body and touch panel

Also Published As

Publication number Publication date
JPH02194943A (en) 1990-08-01

Similar Documents

Publication Publication Date Title
JP2525475B2 (en) Transparent conductive laminate
EP0030732B1 (en) Transparent electrically conductive film and process for production thereof
US5225273A (en) Transparent electroconductive laminate
JP5432501B2 (en) Transparent conductive film and method for producing the same
JPH0864034A (en) Transparent conductive layered product
Kim et al. Highly transparent tin oxide films prepared by DC magnetron sputtering and its liquid crystal display application
JPS6179647A (en) Manufacture of transparent conductive laminate
JPH02276630A (en) Transparent conductive laminate and manufacture thereof
WO2021060139A1 (en) Transparent electroconductive film and method for producing same
JPH06136159A (en) Transparent conductive film and its production
JPS61183809A (en) Transparent conductive laminate body and manufacture thereof
JP3349194B2 (en) Transparent conductive laminate
JP6713079B2 (en) Transparent conductive film for electric field drive type light control element, light control film, and electric field drive type light control element
JP3511337B2 (en) Transparent conductive laminate and method for producing the same
JP3501820B2 (en) Transparent conductive film with excellent flexibility
JPH02208627A (en) Light control film
JP3489844B2 (en) Transparent conductive film and method for producing the same
JPH0449724B2 (en)
TW202035128A (en) Transparent conductive film
JPH0666124B2 (en) Conductive laminate
JPS6143805B2 (en)
JPH02199428A (en) Light control laminated body
JP2001283645A (en) Transparent conductive film and its production
JP7466269B2 (en) Transparent conductive film and crystalline transparent conductive film
JP7378938B2 (en) Light-transparent conductive film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13