JPH02194943A - Transparent conductive laminate - Google Patents

Transparent conductive laminate

Info

Publication number
JPH02194943A
JPH02194943A JP1014064A JP1406489A JPH02194943A JP H02194943 A JPH02194943 A JP H02194943A JP 1014064 A JP1014064 A JP 1014064A JP 1406489 A JP1406489 A JP 1406489A JP H02194943 A JPH02194943 A JP H02194943A
Authority
JP
Japan
Prior art keywords
indium oxide
transparent conductive
layer
conductive laminate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1014064A
Other languages
Japanese (ja)
Other versions
JP2525475B2 (en
Inventor
Hitoshi Mikoshiba
均 御子柴
Masao Suzuki
鈴木 将夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11850660&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02194943(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1406489A priority Critical patent/JP2525475B2/en
Publication of JPH02194943A publication Critical patent/JPH02194943A/en
Application granted granted Critical
Publication of JP2525475B2 publication Critical patent/JP2525475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance durability and reliability by setting the crystal particle size of crystalline indium oxide to a specific value or less. CONSTITUTION:In a conductive laminate prepared by forming a transparent conductive layer mainly composed of crystalline indium oxide on an org. poly mer molded body, the crystal particle size of said crystalline indium oxide is set to 0.3mum or less. Therefore, in a sputtering apparatus to be used, a sputtering condition such that the absorptivity coefficient of an indium oxide- containing layer is (1X10<-3>)-(2X10<-3>)[Angstrom <-1>] and the specific resistance thereof becomes 2X10<-2>OMEGAcm or less is calculated experimentally and controlled so that the absorptivity coefficient and specific resistance of the indium oxide- containing layer take the above-mentioned values. The pref. film thickness of the transparent conductive layer composed of indium oxide is 50-500Angstrom .

Description

【発明の詳細な説明】 [利用分野] 本発明は導電性積層体に関し、更に詳しくは有機高分子
成型物上に主として結晶質のインジウム酸化物からなる
透明導電層を形成してなる導電性積層体に関する。
[Detailed Description of the Invention] [Field of Application] The present invention relates to a conductive laminate, and more particularly to a conductive laminate in which a transparent conductive layer mainly made of crystalline indium oxide is formed on an organic polymer molded product. Regarding the body.

[従来技術] 高度情報化社会の到来と共に、光とエレクトロニクスの
両方の特徴を利用した部品、機器の進歩は茗しい。また
マイクロフンピユータの飛曜的酋及にともない、コンピ
ュータ周辺1器の早新はめざましい。これらのコンビ1
−少入力装置としての透明タッチパネルや更に、出力装
置どしての液晶デイスプレィ、エレクトロルミネッセン
スデイスプレィ等には、透明電極が用いられるが、該目
的には、透明電極の耐久付及び信頼性が要求される。
[Prior Art] With the arrival of an advanced information society, parts and devices that utilize the characteristics of both optics and electronics are rapidly progressing. Also, with the rapid popularity of microcomputer computers, the rapid development of new computer peripherals was remarkable. These combinations 1
- Transparent electrodes are used in transparent touch panels as small input devices, as well as liquid crystal displays, electroluminescent displays, etc. as output devices, but for these purposes, durability and reliability of transparent electrodes are required. be done.

透明導電性層としては、金属薄膜(AU 、 Pd等)
タイプ、金属酸化物薄膜タイプ((To、CTo、3n
 02 、Ti Oz等〉、多層薄膜タイプ(Ti O
x /Ag/Ti Qx等)等カアルカ、透明性、導電
性2機械的特性等の基本特性は、金属酸化物薄暎タイプ
が優れている。金属酸化物tgsタイプの中でもI T
o (I ndium T in  0xide)膜は
、透明性、導電性が特に優れており、更に電極のパター
ン化が容易(エツチング特性が優れている)等の特長を
有し、近年注目を浴びて来た。
As a transparent conductive layer, a metal thin film (AU, Pd, etc.)
type, metal oxide thin film type ((To, CTo, 3n
02, TiOz, etc.), multilayer thin film type (TiOz, etc.)
The metal oxide thin type is superior in basic properties such as strength, transparency, conductivity, mechanical properties, etc. Among the metal oxide TGS types, IT
o (Indium Tin Oxide) film has been attracting attention in recent years as it has particularly excellent transparency and conductivity, and also has features such as easy electrode patterning (excellent etching properties). Ta.

本発明者らは、既に有機高分子成型物上にインジウム・
スズ低級酸化物膜を形成した後、ITO膿に転化せしめ
る方法を提案して来た(公開特許公報昭53−1028
81 、昭53−73397.昭54−8670等)。
The present inventors have already developed indium on organic polymer molded products.
We have proposed a method of forming a tin lower oxide film and then converting it into ITO pus (Publication of Patent Publication No. 1028/1983).
81, 1973-73397. (Sho 54-8670, etc.)

又、真空蒸着法によりインジウム・スズ低級酸化物膜を
形成した後熱酸化を行なうと結晶質のITO膜に転化さ
れることを見出した(表面VOI。
We also found that if an indium-tin lower oxide film was formed by vacuum evaporation and then thermally oxidized, it was converted to a crystalline ITO film (surface VOI).

18  No、81)り、440 )。ところで上述の
結晶質のITO膜は耐久性に優れているが、真空蒸着法
によりインジウム・スズ低級酸化物膜を形成するために
工業的にいくつかの問題点がある。例えば、(1)蒸発
源が点状であることがら膜厚の均一な範囲が狭く、広幅
なロール状フィルムへの製膜が困難であること、(2)
蒸発材料を連続的に供給するのが困難であり、長時間に
亘って蒸着を行なうことができないこと、(3)二成分
系の蒸発材料を用いた場合、蒸気圧の違いから組成ずれ
を起こす場合があること等である。
18 No. 81), 440). By the way, although the above-mentioned crystalline ITO film is excellent in durability, there are some industrial problems because the indium tin lower oxide film is formed by vacuum evaporation. For example, (1) since the evaporation source is point-like, the range of uniform film thickness is narrow and it is difficult to form a film into a wide roll-shaped film; (2)
(3) When two-component evaporation materials are used, compositional deviations occur due to differences in vapor pressure. There are some cases.

一方、最近の薄膜形成技術の進歩はめざましく、耐熱性
のあまりない有機高分子成型物上に透明導電性層を形成
できる様になった。中でもスパッタリング法は、長時間
に亘ってIJIIが可能、長時間膜形成を行なっても組
成ずれがない、広幅化が容易等の特長を有し、もっとも
利用されている技術の一つである。そして、上述の!T
Oilllをスパッタリング法で形成することも知られ
ている。そこで、本発明者らも、スパッタリング法で有
様高分子成型物上にITO膜を形成しその実用性を評価
した。しかし、スパッタリング法によりITOIIRを
形成してなる導電性積層体は、耐久性及び信頼性が低い
という欠点があることがわかった。
On the other hand, recent advances in thin film forming technology have been remarkable, and it has become possible to form transparent conductive layers on organic polymer moldings that do not have much heat resistance. Among these, the sputtering method is one of the most used techniques, as it has the following advantages: IJII can be performed for a long time, there is no compositional deviation even after long-time film formation, and it is easy to widen the film width. And as mentioned above! T
It is also known to form oil by a sputtering method. Therefore, the present inventors also formed an ITO film on a shaped polymer molded article using a sputtering method and evaluated its practicality. However, it has been found that the conductive laminate formed by forming ITOIIR using a sputtering method has a drawback of low durability and reliability.

そこで、本発明者らは、先ず有機高分子成型物上に主と
してインジウム酸化物を含む波長550nmの光吸収率
が2〜30%で比抵抗が1,5X10−3Ω・clR以
上の層を形成し、次いで核層を酸素雰囲気下の加熱処理
により主として結晶質のインジウム酸化物からなる透明
導電層に転化せしめる方法を提案した(公開特許公報昭
6l−79647)。該方法により、耐久性及び信頼性
に優れ、透明タッチパネル用途に十分利用できる導電性
積層体の製造が可能となった。
Therefore, the present inventors first formed a layer containing mainly indium oxide and having a light absorption rate of 2 to 30% at a wavelength of 550 nm and a specific resistance of 1.5×10-3Ω・clR or more on an organic polymer molded product. Next, they proposed a method in which the core layer was converted into a transparent conductive layer mainly consisting of crystalline indium oxide by heat treatment in an oxygen atmosphere (Japanese Patent Publication No. 61-79647). This method has made it possible to produce a conductive laminate that has excellent durability and reliability and can be fully used for transparent touch panels.

しかしながら、エレクトロルミネッセンスデイスプレィ
に用いた場合、導電性積層体と発光層の貼合わせ工程で
、しばしば透明導電層に断線が発生するという実用上大
きな問題があることが明らかになった。
However, when used in electroluminescent displays, it has become clear that there is a serious practical problem in that disconnections often occur in the transparent conductive layer during the bonding process of the conductive laminate and the light emitting layer.

[発明の目的] 本発明はかかる現状に鑑みなされたもので、耐久性及び
信頼性に優れた導電性積層体を目的としたものである。
[Object of the Invention] The present invention was made in view of the current situation, and its object is to provide a conductive laminate having excellent durability and reliability.

[発明の構成] 上述の目的は以下の本発明により達成される。[Structure of the invention] The above objects are achieved by the invention as follows.

すなわち、本発明は、有機高分子成型物上に主として、
結晶質のインジウム酸化物からなる透明導電層を形成し
てなる導電性積層体において、該結晶質のインジウム酸
化物の結晶粒径が0.3μm以下であることを特徴とす
る透明導電性積層体である。
That is, the present invention mainly provides the following on an organic polymer molded product:
A conductive laminate formed by forming a transparent conductive layer made of crystalline indium oxide, characterized in that the crystal grain size of the crystalline indium oxide is 0.3 μm or less. It is.

以下、その詳細を発明に到った経過と共に説明する。The details thereof will be explained below along with the progress that led to the invention.

前述の通り従来のスパッタリング法により形成したIT
OIIは実用上大きな問題を有することが分かった。本
発明者らは、透明導電層の断線の原因究明のために、透
明導電層の膜構造を透過型電子顕微鏡で解析した所、結
晶粒径が大きくなる程、耐屈曲性が悪くなり、断線が起
きやすいことが分かった。
As mentioned above, IT formed by conventional sputtering method
It has been found that OII has major practical problems. In order to investigate the cause of wire breakage in the transparent conductive layer, the present inventors analyzed the film structure of the transparent conductive layer using a transmission electron microscope, and found that the larger the crystal grain size, the worse the bending resistance. I found that it is easy to occur.

そこで、本発明者らは、結晶粒径について鋭意研究した
結果、スパッタリング法で形成した直後のITO膜の吸
光係数が大きい程加熱処理後のITo膜の結晶粒径を小
さくできることを見出した。
As a result of intensive research on crystal grain size, the present inventors found that the larger the extinction coefficient of the ITO film immediately after being formed by sputtering, the smaller the crystal grain size of the ITO film after heat treatment.

また、スパッタリング法で形成した直後のITO膜の吸
光係数がlX10”3[入−1]になるまでは吸光係数
の増加に伴い加熱処理後のITO膜の透明性が次第に低
下することから吸光係数が1×10−3 [入−1]を
越えるものは加熱処理後に透明性の良いITO膜を得る
ことができないと考えられていた。ところが、吸光係数
が1X10’[入→]を越えると逆に加熱処理後のIT
O膜の透明性が高くなるという驚くべき事実を見い出し
た。そして、スパッタリング法で形成された直後の膜の
吸光係数が1X10’〜2X10−3[入−11、かつ
比抵抗が2X10−’Ω1以下の範囲のものが、結晶粒
径が0.3μ肌以下のITOvAに転化できることを見
出した。
In addition, the transparency of the ITO film after heat treatment gradually decreases as the extinction coefficient increases until the extinction coefficient of the ITO film immediately after being formed by sputtering reaches lX10"3[in-1]. It was thought that if the extinction coefficient exceeds 1×10-3 [in-1], it would be impossible to obtain a transparent ITO film after heat treatment. However, if the extinction coefficient exceeds 1×10' [in-1], the opposite effect will occur. IT after heat treatment
We have discovered the surprising fact that the transparency of the O film increases. If the film immediately after being formed by sputtering has an extinction coefficient of 1X10' to 2X10-3 [in-11] and a specific resistance of 2X10-'Ω1 or less, the crystal grain size is 0.3μ or less. It was found that it can be converted into ITOvA.

結晶粒径が0.3μm以下のITOIgは耐屈曲性に優
れており、前述の断線を皆無にすることができる。吸光
係数が1x10−’[入−1]未満では結晶粒径が0.
3μ肌を越え、耐屈曲性が悪くなる。また、吸光係数が
2X10−3[Al]を越えると結晶粒径が小さくなり
すぎるためITO膜の導電性が悪くなる。
ITOIg with a crystal grain size of 0.3 μm or less has excellent bending resistance and can completely eliminate the aforementioned disconnection. When the extinction coefficient is less than 1x10-'[in-1], the crystal grain size is 0.
If the thickness exceeds 3μ, the bending resistance will deteriorate. Moreover, when the extinction coefficient exceeds 2×10 −3 [Al], the crystal grain size becomes too small and the conductivity of the ITO film deteriorates.

なお、本発明者らが以前提案して来た真空蒸着法による
インジウム・スズ低級酸化物腰の吸光係数は1,4X1
0−3 U人−1]、比抵抗は4X10−201であり
真空蒸着法では本発明のスパッタリング法で形成された
主としてインジウム酸化物を含む層と異なる層が形成さ
れることが確められた。
The extinction coefficient of the indium tin lower oxide film produced by the vacuum evaporation method previously proposed by the present inventors is 1.4X1.
0-3 U-1], the specific resistance was 4X10-201, and it was confirmed that the vacuum evaporation method formed a layer different from the layer containing mainly indium oxide formed by the sputtering method of the present invention. .

ここで、吸光係数aとは積分球で測定した波長550n
−における基板も含めた透過率T(%)と反射率R(%
)及び基板である有81高分子成型物による吸収率B(
%)とITO膜の膜厚t (入)より次式で定義される
Here, the extinction coefficient a is the wavelength of 550n measured with an integrating sphere.
Transmittance T (%) and reflectance R (%) including the substrate at -
) and the absorption rate B (
%) and the film thickness t (in) of the ITO film, it is defined by the following formula.

a = (1/l ) too  (toO=R−B)
 /T[入−1] なお、本発明者らが以前提案した光吸収率2〜30%の
ITO膜の吸光係数は、I T OIII厚が約200
人の時、5.3X10−5〜9.6X10’ [八−1
]であった。
a = (1/l) too (toO=R-B)
/T[in-1] Note that the extinction coefficient of the ITO film with a light absorption rate of 2 to 30% previously proposed by the present inventors is that the ITOIII thickness is approximately 200%.
When human, 5.3X10-5 ~ 9.6X10' [8-1
]Met.

また結晶粒径とは、透過型電子顕微鏡下で観察される多
角形状または長円形状の各領域における対角線または直
径の中で最大のものと定義する。
Further, the crystal grain size is defined as the largest diagonal line or diameter in each region of a polygonal or elliptical shape observed under a transmission electron microscope.

主としてインジウム酸化物を含む層を形成するスパッタ
リング法には、インジウムを主成分とする合金又は、酸
化インジウムを主成分とする焼結体をターゲットとして
用いることができる。前者においては、アルゴン等の不
活性ガス及び酸素ガス等の反応性ガスを真空槽内に導入
して、反応性スパッタリングを行なう。後者においては
、アルゴン等の不活性ガス単独か或いはアルゴン等の不
活性ガスに微mの酸素ガス等の反応性ガスを混合したも
のを用いてスパッタリングを行なう。スパッタリングの
方式は直流又は高周波二極スパッタ。
In the sputtering method for forming a layer mainly containing indium oxide, an alloy containing indium as a main component or a sintered body containing indium oxide as a main component can be used as a target. In the former, an inert gas such as argon and a reactive gas such as oxygen gas are introduced into a vacuum chamber to perform reactive sputtering. In the latter case, sputtering is performed using an inert gas such as argon alone or a mixture of an inert gas such as argon and a reactive gas such as oxygen gas in a minute amount. The sputtering method is direct current or high frequency bipolar sputtering.

直流又は高周波マグネトロンスパッタ、イオンビームス
パッタ等公知の方式が適用できる。中でもマグネトロン
方式は基板へのプラズマ衝撃が少く、高速製膜が可能で
好ましい。
Known methods such as direct current or high frequency magnetron sputtering, ion beam sputtering, etc. can be applied. Among these, the magnetron method is preferable because it causes less plasma impact on the substrate and allows high-speed film formation.

いずれの場合もスパッタリング法により形成する主とし
てインジウム酸化物を含む層の吸光係数及び比抵抗が目
的の値となる様にスパッタリング条件を制御しなければ
ならない。スパッタリング条件は装置によって異なる。
In either case, the sputtering conditions must be controlled so that the absorption coefficient and specific resistance of the layer mainly containing indium oxide formed by the sputtering method have the desired values. Sputtering conditions vary depending on the device.

スパッタリング条件を決める方法としては、一定の酸素
分圧下で堆楢速度(即ち、投入電力)を変えて堆積され
た膜の特性を調べる方法や投入電力を一定にしておいて
、酸素分圧を変えて堆積された膜の特性を調べる方法等
がある。
The sputtering conditions can be determined by changing the deposition rate (i.e. input power) under a constant oxygen partial pressure and examining the properties of the deposited film, or by keeping the input power constant and changing the oxygen partial pressure. There are methods to investigate the characteristics of films deposited by

要は、使用するスパッタリング装置において、インジウ
ム酸化物を含む層の吸光係数が1X10−3〜2X10
−3[入−1]かつ比抵抗が2X10−2Ω備以下にな
る様なスパッタリング条件を実験的に求め、インジウム
酸化物を含む層の吸光係数及び比抵抗が上記の値となる
様にスパッタリング条件を制御する。
The point is that the absorption coefficient of the layer containing indium oxide is 1X10-3 to 2X10 in the sputtering equipment used.
-3[In-1] and the specific resistance is 2X10-2Ω or less, and the sputtering conditions are experimentally determined so that the absorption coefficient and specific resistance of the layer containing indium oxide are the above values. control.

本発明に用いられる透明導電層は主としてインジウム酸
化物を含む層である。インジウム酸化物層は本来透明な
電気絶縁体であるが、■微量の不純物を含有する場合、
■わずかに酸素不足になっている場合等に半導体になる
。好ましい半導体金属酸化物としては、例えば、不純物
として錫又はフッ素を含む酸化インジウムをあげること
ができる。特に好ましくは、酸化錫を2〜20wt%含
むインジウム酸化物の層である。
The transparent conductive layer used in the present invention is a layer mainly containing indium oxide. The indium oxide layer is originally a transparent electrical insulator, but if it contains trace amounts of impurities,
■Becomes a semiconductor when there is a slight oxygen deficiency. Preferred semiconductor metal oxides include, for example, indium oxide containing tin or fluorine as an impurity. Particularly preferred is an indium oxide layer containing 2 to 20 wt% of tin oxide.

本発明に用いられる主としてインジウム酸化物からなる
透明導電性層の膜厚は十分な導電性を得るためには、5
0Å以上であることが好ましく、100Å以上であれば
更に好ましい。また、十分に透明度の高い被膜を得るた
めには、500Å以下である事が好ましく、400Å以
下がより好ましい。
In order to obtain sufficient conductivity, the thickness of the transparent conductive layer mainly composed of indium oxide used in the present invention must be 5.
It is preferably 0 Å or more, and more preferably 100 Å or more. Further, in order to obtain a film with sufficiently high transparency, the thickness is preferably 500 Å or less, more preferably 400 Å or less.

本発明においてスパッタリング法により主としてインジ
ウム酸化物よりなる層を有機高分子成型物上に必要に応
じて中間層を介して形成した後、酸素雰囲気下の加熱処
理を行なう。酸素雰囲気下とは少なくとも前記スパッタ
リング法で形成した、インジウム酸化物層を結晶質へ転
化せしめるに必要な酸素が存在するものであれば良く、
必要に応じて不活性ガスを導入しても良く、酸素ガス及
び/′又はオゾンを含む常圧雰囲気、酸素ガス及び/又
は酸素プラズマを含む低圧雰囲気、或いは酸素ガス及び
/又はオゾンを含む高田雰囲気等種々の雰囲気があり全
て適用できるが、酸素ガス及び/又番よオゾンを含む常
圧雰囲気が好ましく用いられる。ヌ、加熱温度は、10
0〜250℃が好ましく、特に130〜200℃が好ま
しい。100℃未満では結晶質の酸化インジウムに転化
せしめることができない。又、250℃を越えると有機
高分子成型物に変形やクラックが発生して好ましくない
。なお、加熱処理時間は、加熱温度2層組成等に応じ実
験的に定める。
In the present invention, a layer mainly made of indium oxide is formed by sputtering on an organic polymer molded article, with an intermediate layer interposed therebetween if necessary, and then heat treatment is performed in an oxygen atmosphere. The oxygen atmosphere may be one in which at least enough oxygen is present to convert the indium oxide layer formed by the sputtering method into a crystalline state.
An inert gas may be introduced as necessary, such as a normal pressure atmosphere containing oxygen gas and/or ozone, a low pressure atmosphere containing oxygen gas and/or oxygen plasma, or a Takada atmosphere containing oxygen gas and/or ozone. Although various atmospheres such as the above are applicable, a normal pressure atmosphere containing oxygen gas and/or ozone is preferably used. The heating temperature is 10
The temperature is preferably 0 to 250°C, particularly preferably 130 to 200°C. At temperatures below 100°C, it cannot be converted into crystalline indium oxide. Moreover, if the temperature exceeds 250°C, deformation or cracks will occur in the organic polymer molded product, which is not preferable. Note that the heat treatment time is determined experimentally depending on the heating temperature, two-layer composition, etc.

本発明における有機高分子成型物を構成する有機高分子
化合物としては、耐熱性を有する透明な有機高分子化合
物であれば特に限定しないが、通常耐熱性としては、1
00℃以上、好ましくは130℃1ス上のものであって
、例えば、ポリイミド、ポリエーテルスルホン、ポリス
ルホン、ポリパラバン酸、ポリヒダントインを始めとし
、ポリエチレンテレフタレート、ポリエチレン−2,6
−ナフタレンジカルボキシレート、ポリジアリルフタレ
ート、ポリカーボネート等のポリエステル系樹脂及び芳
香族ポリアミド、セルローストリアセテート等が挙げら
れる。もちろんこれらはホモポリマーコポリマーとして
、又、単独又はブレンドとしても使用しうる。
The organic polymer compound constituting the organic polymer molded product in the present invention is not particularly limited as long as it is a transparent organic polymer compound having heat resistance, but usually the heat resistance is 1.
00°C or higher, preferably 130°C or higher, such as polyimide, polyethersulfone, polysulfone, polyparabanic acid, polyhydantoin, polyethylene terephthalate, polyethylene-2,6
- Polyester resins such as naphthalene dicarboxylate, polydiallyl phthalate, and polycarbonate, aromatic polyamides, cellulose triacetate, and the like. Of course, they can also be used as homopolymers and copolymers, alone or in blends.

かかる有機高分子化合物の成型物の形状は特に限定され
るものではないが、通常シート状、フィルム状のものが
好ましく、中でもフィルム状のものは巻取り可能であり
、又連続生産が可能である為、特に好ましい。更にフィ
ルム状のものが使用される場合においては、フィルムの
厚さは6〜500μが好ましく、更には12〜200μ
が好ましい。
The shape of the molded product of the organic polymer compound is not particularly limited, but sheet-like or film-like products are usually preferred, and among them, film-like products can be rolled up and can be produced continuously. Therefore, it is particularly preferable. Furthermore, when a film-like material is used, the thickness of the film is preferably 6 to 500μ, more preferably 12 to 200μ.
is preferred.

これらのフィルム又はシートは透明性を損わない程度に
おいて顔料を添加したり、又、表面加工例えばサンドマ
ット加工等をほどこしてもよい。
Pigments may be added to these films or sheets to the extent that transparency is not impaired, or surface treatments such as sand matting may be applied.

又、これらのフィルム又はシートは単独でもラミネート
して用いてもよい。
Further, these films or sheets may be used alone or in a laminated manner.

更に、透明導電層との密着性等を向上させるため透明導
電層形成前に有機高分子成型物上に中間層を形成しても
良い。中間層としては例えば有機ケイ素化合物、チタン
アルキルエステル、ジルコニウムアルキルエステル等の
有機金属化合物の加水分解により生成された層が好まし
く用いられる。
Furthermore, in order to improve adhesion with the transparent conductive layer, an intermediate layer may be formed on the organic polymer molding before forming the transparent conductive layer. As the intermediate layer, a layer produced by hydrolysis of an organometallic compound such as an organosilicon compound, a titanium alkyl ester, or a zirconium alkyl ester is preferably used.

該中間層は、多層構成としても良い。The intermediate layer may have a multilayer structure.

該中間層は、右ll高分子成型物上に塗布後、乾燥し、
加熱、イオンボンバード或いは紫外線、β線、γ線など
の放射線により硬化させる。
The intermediate layer is coated on the polymer molded product, dried,
It is cured by heating, ion bombardment, or radiation such as ultraviolet rays, β rays, and γ rays.

また該中間層の塗布には、透明n1高分子成型物や塗工
液の形状、性質に応じてドクターナイフ。
In addition, for coating the intermediate layer, a doctor knife may be used depending on the shape and properties of the transparent N1 polymer molding and coating liquid.

バーコーター、グラビアロールコータ−、カーデンコー
ター、ナイフコーターなどの公知の塗工機械を用いる塗
工法、スプレー沫、浸漬法などが用いられる。
A coating method using a known coating machine such as a bar coater, gravure roll coater, carden coater, knife coater, etc., a spray method, a dipping method, etc. are used.

該中間層の厚さとしては、100〜1000人が好まし
く、特に200〜900人が好ましい。100人未満の
場合には、連続層を形成しないため密着性向上効果がな
い。又、1ooo人をこえると、クラックや剥離を生じ
たりして好ましくない。
The thickness of the intermediate layer is preferably 100 to 1000 people, particularly preferably 200 to 900 people. If there are fewer than 100 people, no continuous layer is formed and there is no effect of improving adhesion. Moreover, if the number exceeds 100, cracks and peeling may occur, which is not preferable.

又、本発明における導電性積層体はインジウム酸化物よ
りなる透明導電層上に耐スクラッチ性を向上させる、あ
るいは、他の塗工層との密着性を向上させる等の目的の
ために保g!層を積層させてもよい。
Further, the conductive laminate of the present invention is applied to a transparent conductive layer made of indium oxide for the purpose of improving scratch resistance or adhesion with other coating layers. The layers may be stacked.

かかる保II層としては、Tf 02 、3n 02 
Such a protective II layer includes Tf 02 , 3n 02
.

Si Oz 、Zr Of 、Zn O等の透明酸化物
Transparent oxides such as SiOz, ZrOf, ZnO.

S! a N4 、Ti N等の窒化物あるいはアクリ
ロニトリル樹脂、スチレン樹脂、アクリレ−1−樹脂。
S! a Nitride such as N4, TiN, acrylonitrile resin, styrene resin, acrylate-1-resin.

ポリエステル樹脂、シアノエチル化プルラン等のシアノ
エチル化多糖類等の透明な有機化合物重合体或いは、有
機ケイ素化合物、チタンアルキルエステル、ジルコニウ
ムアルキルエステル等の有償金属化合物等を用いる事が
できる。
Polyester resins, transparent organic compound polymers such as cyanoethylated polysaccharides such as cyanoethylated pullulan, or paid metal compounds such as organosilicon compounds, titanium alkyl esters, and zirconium alkyl esters can be used.

かかる保i5mの厚さは透明導電層の特性を低下させな
い範囲で任意に設ける事が可能である。
The thickness of the i5m layer can be set arbitrarily within a range that does not deteriorate the characteristics of the transparent conductive layer.

また本発明における導電性積層体は、有機高分子成型物
の両面に必要に応じて中間層を介して透明導電層を積層
した構成にしても良く或いは、有機高分子成型物の片面
に必要に応じて中間層を介して透明導電層を積層した構
成において透明導電層を積層した面と反対面おいて、透
明性を損わない範囲で接着性2表面硬度、光学特性等を
改善する目的で、例えば前述した中間層や保!!!層と
同種の層や、酸化物層、窒化物層、硫化物層、炭化物層
や右機物層を設けても良い。
Furthermore, the conductive laminate of the present invention may have a structure in which transparent conductive layers are laminated on both sides of the organic polymer molded product via an intermediate layer if necessary, or a transparent conductive layer may be laminated on one side of the organic polymer molded product as necessary. Accordingly, in a structure in which a transparent conductive layer is laminated via an intermediate layer, on the opposite side to the side on which the transparent conductive layer is laminated, for the purpose of improving adhesion 2 surface hardness, optical properties, etc. without impairing transparency. , for example, the middle class and Ho! ! ! A layer of the same type as the above layer, an oxide layer, a nitride layer, a sulfide layer, a carbide layer, or a material layer may be provided.

[効果] 以上の、本発明によりスパッタリング法を用いて、極め
て優れた耐久性及び信頼性をイiし、透明タッチパネル
やエレクトロルミネッセンス用に十分利用できる導電性
積層体の¥J造が可能となった。
[Effects] According to the present invention, using the sputtering method as described above, it is possible to manufacture a conductive laminate that has extremely excellent durability and reliability and can be fully used for transparent touch panels and electroluminescence. Ta.

なお、本発明は、スパッタリング法以外の方法は“例え
ばイオンブレーティング法にも適用可能であるが、スパ
ッタリング法の場合に特に本発明の効果が大きい。
Although the present invention can be applied to methods other than sputtering, such as ion blating, the effects of the present invention are particularly large in the case of sputtering.

本発明はスパッタリング法で導電層を形成するので、従
来の真空蒸着法の問題がなく、品質の均一な広巾の導電
性積層体を連続的に安定し′(生産することができ、非
常に生産性の良いプロセスが得られた。
Since the present invention forms a conductive layer using a sputtering method, there are no problems with conventional vacuum evaporation methods, and it is possible to continuously and stably produce a wide conductive laminate of uniform quality, making it extremely easy to produce. A process with good quality was obtained.

なお、本発明で得られる導電性積層体は、透明タッチパ
ネルやエレクトロルミネッセンス用電極どして適しでい
るだ(〕でなく、例えば、電子写真。
The conductive laminate obtained by the present invention is suitable not only for transparent touch panels and electrodes for electroluminescence, but also for electrophotography, for example.

帯電防止材料、面発熱体、固体デイスプレ、イ、光メエ
リー、光電変換素子、光通信9光情報処理。
Antistatic materials, surface heating elements, solid-state displays, optical systems, photoelectric conversion elements, optical communication and optical information processing.

太陽エネルギー利用材料等と広い用途を右する。It has a wide range of uses, including materials that utilize solar energy.

以下、実施例をあげて本発明の効果を更に具体的に説明
する。
EXAMPLES Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.

〔実施例1〜2及び比較例1〕 75μm厚のポリ]チレンテレフタレートフイルムの両
面に、有機ケイ素化合物のブタノール、イソプロパツー
ル混合アルコール系溶液(111度0.6重潰%)をバ
ー・」−ターで塗布し、140℃で1分間乾燥した。乾
燥後の膜厚は300人であった。
[Examples 1 to 2 and Comparative Example 1] Both sides of a 75 μm thick poly]ethylene terephthalate film were coated with a mixed alcoholic solution of organosilicon compounds in butanol and isopropanol (111%, 0.6% crushed). - It was applied with a tar and dried for 1 minute at 140°C. The film thickness after drying was 300.

該フ・イルムを直流マグネトロンスパッタ装置内の基板
保持台に固定1ノ、真空度2×10″5TOrrまで真
空槽を排気した。その後、Ar10z混合ガス(022
5%)を槽内に導入し、真空度を4×1O−3Torr
 ニ保った後、In/3n合金(Sn 5重量%)より
なるターゲットを用い反応性スパッタリング法により堆
積速度を変えて実施例1〜2及び比較例1のサンプルの
吸光係数及び比抵抗を有するインジウム・スズ酸化物膜
を形成した。これらのサンプルを150℃に保った熱風
乾燥器により加熱処理を行なった後、透明導1!l!!
jの膜構造を透過型電子顕微鏡で調べた。
The film was fixed to a substrate holder in a DC magnetron sputtering device, and the vacuum chamber was evacuated to a vacuum level of 2×10″5 TOrr.Then, Ar10z mixed gas (022
5%) into the tank, and the vacuum level was set to 4×1O-3 Torr.
Then, indium having the extinction coefficient and specific resistance of the samples of Examples 1 to 2 and Comparative Example 1 was obtained by changing the deposition rate by reactive sputtering using a target made of In/3n alloy (Sn 5% by weight).・A tin oxide film was formed. After heating these samples in a hot air dryer kept at 150°C, transparent conduction 1! l! !
The membrane structure of J was examined using a transmission electron microscope.

また、加熱処理後の(ノンプルの550nm k:おけ
る透過率、比抵抗、耐屈曲性および発光層ど貼合ゎせた
後の断線の程度を調べた。なJ3、耐屈曲性は、透明導
電層が外側になる様に、直径5φの丸棒の周囲に沿って
10回繰返し変形さゼて元に戻した後の゛抵抗値Rと変
形させる前の抵抗値Roの比R/Ro と定義する。
In addition, we investigated the transmittance, specific resistance, and bending resistance at 550 nm K of non-pull after heat treatment, as well as the degree of disconnection after laminating the luminescent layer. Defined as the ratio R/Ro of the resistance value R after deforming and returning to its original state along the circumference of a round bar with a diameter of 5φ 10 times so that the layer is on the outside and the resistance value Ro before deformation. do.

結果を表1に示す。The results are shown in Table 1.

本発明による実施例1.2の透明導電性積層体は耐屈曲
性に優れ、発光層と貼合わせた後の断線は皆無であった
The transparent conductive laminate of Example 1.2 according to the present invention had excellent bending resistance, and there was no disconnection after lamination with the light emitting layer.

Claims (1)

【特許請求の範囲】 1、有機高分子成型物上に主として結晶質のインジウム
酸化物からなる透明導電層を形成してなる導電性積層体
において、該結晶質のインジウム酸化物の結晶粒径が0
.3μm以下であることを特徴とする透明導電性積層体
。 2、該透明導電層が、先ず、有機高分子成型物上に、主
としてインジウム酸化物を含む波長550nmの吸光係
数が1×10^−^3〜2×10^−^3[Å^−^1
]、比抵抗が2×10^−^2Ωcm以下の層を形成し
、次いで該層を酸素雰囲気下の加熱処理により主として
結晶質のインジウム酸化物からなる層に転化せしめたも
のであることを特徴とする請求項1記載の透明導電性積
層体。 3、加熱処理温度が100〜250℃である請求項2記
載の透明導電性積層体。
[Claims] 1. In a conductive laminate in which a transparent conductive layer mainly made of crystalline indium oxide is formed on an organic polymer molded product, the crystal grain size of the crystalline indium oxide is 0
.. A transparent conductive laminate characterized by having a thickness of 3 μm or less. 2. First, the transparent conductive layer is formed on the organic polymer molded article, and contains mainly indium oxide and has an absorption coefficient of 1 x 10^-^3 to 2 x 10^-^3 [Å^-^] at a wavelength of 550 nm. 1
], characterized by forming a layer with a specific resistance of 2×10^-^2 Ωcm or less, and then converting the layer into a layer mainly consisting of crystalline indium oxide by heat treatment in an oxygen atmosphere. The transparent conductive laminate according to claim 1. 3. The transparent conductive laminate according to claim 2, wherein the heat treatment temperature is 100 to 250°C.
JP1406489A 1989-01-25 1989-01-25 Transparent conductive laminate Expired - Lifetime JP2525475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1406489A JP2525475B2 (en) 1989-01-25 1989-01-25 Transparent conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1406489A JP2525475B2 (en) 1989-01-25 1989-01-25 Transparent conductive laminate

Publications (2)

Publication Number Publication Date
JPH02194943A true JPH02194943A (en) 1990-08-01
JP2525475B2 JP2525475B2 (en) 1996-08-21

Family

ID=11850660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1406489A Expired - Lifetime JP2525475B2 (en) 1989-01-25 1989-01-25 Transparent conductive laminate

Country Status (1)

Country Link
JP (1) JP2525475B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781076A2 (en) 1995-12-20 1997-06-25 Mitsui Toatsu Chemicals, Inc. Transparent conductive laminate and electroluminescence element
JP2002287906A (en) * 2001-03-23 2002-10-04 Mitsubishi Chemicals Corp Touch panel
US6603085B2 (en) 2000-03-28 2003-08-05 Toyo Boseki Kabushiki Kaisha Transparent conductive film, transparent conductive sheet and touchpanel
US6629833B1 (en) 1998-05-15 2003-10-07 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
WO2004065656A1 (en) * 2003-01-24 2004-08-05 Bridgestone Corporation Ito thin film, film-forming method of same, transparent conductive film and touch panel
US6787253B2 (en) 2001-06-27 2004-09-07 Bridgestone Corporation Transparent electroconductive film and touch panel
US6896981B2 (en) 2001-07-24 2005-05-24 Bridgestone Corporation Transparent conductive film and touch panel
JP2005205903A (en) * 2003-12-25 2005-08-04 Toyobo Co Ltd Transparent electroconductive film, transparent electroconductive sheet and touch panel
JP2007133839A (en) * 2005-11-07 2007-05-31 Hs Planning:Kk Conductive film for touch panel and method for manufacturing conductive film for touch panel
WO2007086230A1 (en) * 2006-01-30 2007-08-02 Nitto Denko Corporation Crystalline transparent conductive thin film, method for manufacturing such crystalline transparent conductive thin film, transparent conductive film and touch panel
WO2008007770A1 (en) * 2006-07-14 2008-01-17 Dai Nippon Printing Co., Ltd. Transparent conducting layer coated film and its use
JP2008041640A (en) * 2006-07-14 2008-02-21 Dainippon Printing Co Ltd Transparent conducting layer coated film, substrate for display comprising the film, display, liquid crystal display device and organic el element
EP2053079A2 (en) 2007-10-22 2009-04-29 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
WO2011048996A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Transparent conductive film
US9096921B2 (en) 2008-09-26 2015-08-04 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
JP2015159091A (en) * 2014-02-25 2015-09-03 株式会社カネカ Film provided with transparent conductive layer
KR20150114541A (en) 2013-02-06 2015-10-12 미쓰비시 쥬시 가부시끼가이샤 Transparent stacked film, transparent conductive film, and gas barrier stacked film
JP2015207299A (en) * 2010-12-27 2015-11-19 日東電工株式会社 Transparent conductive film and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753416B2 (en) * 2004-04-30 2011-08-24 日東電工株式会社 Transparent conductive laminate and touch panel
KR100830385B1 (en) 2004-04-30 2008-05-19 닛토덴코 가부시키가이샤 Transparent conductive multilayer body and touch panel
CN1947204B (en) * 2004-04-30 2011-02-23 日东电工株式会社 Transparent conductive multilayer body and touch panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179647A (en) * 1984-09-28 1986-04-23 帝人株式会社 Manufacture of transparent conductive laminate
JPH01100260A (en) * 1987-10-14 1989-04-18 Daicel Chem Ind Ltd Manufacture of laminated body of transparent conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179647A (en) * 1984-09-28 1986-04-23 帝人株式会社 Manufacture of transparent conductive laminate
JPH01100260A (en) * 1987-10-14 1989-04-18 Daicel Chem Ind Ltd Manufacture of laminated body of transparent conductive film

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781076A2 (en) 1995-12-20 1997-06-25 Mitsui Toatsu Chemicals, Inc. Transparent conductive laminate and electroluminescence element
US6351068B2 (en) 1995-12-20 2002-02-26 Mitsui Chemicals, Inc. Transparent conductive laminate and electroluminescence light-emitting element using same
US6629833B1 (en) 1998-05-15 2003-10-07 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
US6603085B2 (en) 2000-03-28 2003-08-05 Toyo Boseki Kabushiki Kaisha Transparent conductive film, transparent conductive sheet and touchpanel
JP2002287906A (en) * 2001-03-23 2002-10-04 Mitsubishi Chemicals Corp Touch panel
US6787253B2 (en) 2001-06-27 2004-09-07 Bridgestone Corporation Transparent electroconductive film and touch panel
US6896981B2 (en) 2001-07-24 2005-05-24 Bridgestone Corporation Transparent conductive film and touch panel
WO2004065656A1 (en) * 2003-01-24 2004-08-05 Bridgestone Corporation Ito thin film, film-forming method of same, transparent conductive film and touch panel
JP2005205903A (en) * 2003-12-25 2005-08-04 Toyobo Co Ltd Transparent electroconductive film, transparent electroconductive sheet and touch panel
JP2007133839A (en) * 2005-11-07 2007-05-31 Hs Planning:Kk Conductive film for touch panel and method for manufacturing conductive film for touch panel
WO2007086230A1 (en) * 2006-01-30 2007-08-02 Nitto Denko Corporation Crystalline transparent conductive thin film, method for manufacturing such crystalline transparent conductive thin film, transparent conductive film and touch panel
JP2007200823A (en) * 2006-01-30 2007-08-09 Nitto Denko Corp Crystalline transparent conductive thin film, manufacturing method therefor, transparent conductive film, and touch panel
US9260777B2 (en) 2006-01-30 2016-02-16 Nitto Denko Corporation Transparent crystalline electrically-conductive thin film, method of production thereof, transparent electrically-conductive film, and touch panel
WO2008007770A1 (en) * 2006-07-14 2008-01-17 Dai Nippon Printing Co., Ltd. Transparent conducting layer coated film and its use
JP2008041640A (en) * 2006-07-14 2008-02-21 Dainippon Printing Co Ltd Transparent conducting layer coated film, substrate for display comprising the film, display, liquid crystal display device and organic el element
EP2053079A2 (en) 2007-10-22 2009-04-29 Nitto Denko Corporation Transparent conductive film, method for production thereof and touch panel therewith
US9096921B2 (en) 2008-09-26 2015-08-04 Toyo Boseki Kabushiki Kaisha Transparent conductive film and touch panel
WO2011048996A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Transparent conductive film
JP2015207299A (en) * 2010-12-27 2015-11-19 日東電工株式会社 Transparent conductive film and method for manufacturing the same
JP2016179686A (en) * 2010-12-27 2016-10-13 日東電工株式会社 Transparent conductive film and method for manufacturing the same
KR20150114541A (en) 2013-02-06 2015-10-12 미쓰비시 쥬시 가부시끼가이샤 Transparent stacked film, transparent conductive film, and gas barrier stacked film
JP2015159091A (en) * 2014-02-25 2015-09-03 株式会社カネカ Film provided with transparent conductive layer

Also Published As

Publication number Publication date
JP2525475B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
JPH02194943A (en) Transparent conductive laminate
JP5432501B2 (en) Transparent conductive film and method for producing the same
WO2014112535A1 (en) Transparent conductive film and production method therefor
WO2014112534A1 (en) Transparent conductive film and production method therefor
JPH0864034A (en) Transparent conductive layered product
WO2021187586A1 (en) Transparent electroconductive film
JPH0315536B2 (en)
JPH02276630A (en) Transparent conductive laminate and manufacture thereof
JPS61183809A (en) Transparent conductive laminate body and manufacture thereof
JP2004255706A (en) Transparent conductive laminated film
KR101165770B1 (en) Method for manufacturing ito thin film with high-transmittance and low-resistance
JP3511337B2 (en) Transparent conductive laminate and method for producing the same
JP3349194B2 (en) Transparent conductive laminate
JP3501820B2 (en) Transparent conductive film with excellent flexibility
JP2019194719A (en) Transparent conductive film for electric field-driven light control element, light control film, and electric field-driven light control element
JPS63454A (en) Production of transparent conductive film
JPH02208627A (en) Light control film
JPH07178863A (en) Transparent conductive film and production thereof
JPH02199428A (en) Light control laminated body
JPH0449724B2 (en)
JPS6143805B2 (en)
JPS61279004A (en) Conducting laminate body
JP7466269B2 (en) Transparent conductive film and crystalline transparent conductive film
JP7240513B2 (en) transparent conductive film
JPS6238432B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13