JP2521127B2 - Strain-free precision processing method by radical reaction - Google Patents

Strain-free precision processing method by radical reaction

Info

Publication number
JP2521127B2
JP2521127B2 JP63124626A JP12462688A JP2521127B2 JP 2521127 B2 JP2521127 B2 JP 2521127B2 JP 63124626 A JP63124626 A JP 63124626A JP 12462688 A JP12462688 A JP 12462688A JP 2521127 B2 JP2521127 B2 JP 2521127B2
Authority
JP
Japan
Prior art keywords
electrode
workpiece
strain
radical reaction
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63124626A
Other languages
Japanese (ja)
Other versions
JPH01125829A (en
Inventor
勇藏 森
和人 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUUHA MIKAKUTO SEIMITSU KOGAKU KENKYUSHO KK
Original Assignee
YUUHA MIKAKUTO SEIMITSU KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUUHA MIKAKUTO SEIMITSU KOGAKU KENKYUSHO KK filed Critical YUUHA MIKAKUTO SEIMITSU KOGAKU KENKYUSHO KK
Priority to JP63124626A priority Critical patent/JP2521127B2/en
Publication of JPH01125829A publication Critical patent/JPH01125829A/en
Application granted granted Critical
Publication of JP2521127B2 publication Critical patent/JP2521127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ラジカル(遊離基)反応を利用した無歪精
密加工方法に係わり、更に詳しくは半導体製造用のシリ
コン及びゲルマニウム単結晶、又はガリウム−砒素化合
物、又はその他各種のセラミックス材料等の難加工物の
無歪切断、穿孔、研磨加工することの可能な精密加工方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a strain-free precision processing method using a radical (free radical) reaction, and more specifically, a silicon and germanium single crystal for semiconductor production, or gallium. -A precision processing method capable of performing strain-free cutting, perforation, and polishing of a difficult-to-process material such as an arsenic compound or various ceramic materials.

〔従来の技術〕[Conventional technology]

従来の半導体製造用のシリコン及びゲルマニウム単結
晶、又はガリウム−砒素化合物、又はその他各種のセラ
ミックス材料等の難加工脆性材料の精密加工方法は、例
えば切断に関しては、ダイヤモンドホイールによるダイ
シング加工しかなく、その加工原理は微細クラックによ
る脆性破壊であるので、切断面を厚さ100μm程度除去
しなければ、残留するクラックにより使用に耐える表面
とはならない。しかも、クラックによる脆性破壊は、か
なり確率的な所があり残留するクラックの中には非常に
大きなものが存在する場合があり、これは得られた表面
の信頼性を大きく低下させるものである。その為、前記
被加工物の切断面を後工程によって約100μmの厚みわ
たって除去加工しなければならない。それにはラッピン
グ加工が用いられるが、これも加工原理は脆性破壊によ
る加工であるので、前記のダイシング加工と比べれば少
ないが残存変質層はかなり深く、従って更にエッチン
グ、ポリッシング等の後処理工程を必要とするものであ
った。また、被加工物表面の研磨加工の場合も、前記同
様のラッピング加工を行うが、該ラッピング加工はラッ
プ工具の平面度を被加工物に転写することで行ってお
り、この場合砥粒を用いた従来方法では前記同様の脆性
破壊によるので、表面粗さ並びに表面物性とも最終目的
に耐えるものではなかった。更に、穴加工及び溝加工等
においても従来の加工技術ではレーザーによる熱的溶融
現象を利用したものであり、加工面に熱的な変質層又は
熱応力により発生した残留クラックが存在していた。こ
のように、従来の加工技術では、加工面に残留クラック
や熱的変質層が存在するばかりでなく、加工部分をかな
り多く除去していたので、被加工物の歩留りが悪く、更
に加工工程が多くなって高価なシリコン及びゲルマニウ
ム単結晶、又はガリウム−砒素化合物を使用する半導体
素子等のコスト低減の妨げになっていた。
Conventional precision silicon and germanium single crystal for semiconductor manufacturing, or gallium-arsenic compounds, or precision processing method of difficult-to-process brittle materials such as various other ceramic materials, for example, regarding cutting, there is only dicing processing with a diamond wheel, Since the processing principle is brittle fracture due to fine cracks, the remaining cracks do not provide a usable surface unless the cut surface is removed to a thickness of about 100 μm. Moreover, the brittle fracture due to cracks has a fairly probable place, and there may be very large cracks remaining, which greatly reduces the reliability of the obtained surface. Therefore, the cut surface of the workpiece must be removed by a post-process over a thickness of about 100 μm. Lapping is used for this, but since the processing principle is also processing by brittle fracture, the residual alteration layer is considerably deeper than the dicing processing described above, but a post-processing step such as etching and polishing is further required. Was to be. Also, in the case of polishing the surface of the workpiece, the same lapping is performed, but the lapping is performed by transferring the flatness of the lapping tool to the workpiece. In this case, abrasive grains are used. Since the conventional method involves brittle fracture as described above, neither surface roughness nor surface physical properties can withstand the final purpose. Further, in hole processing, groove processing, etc., the conventional processing technique utilizes the thermal melting phenomenon by a laser, and there are residual cracks generated on the processed surface due to a thermally deteriorated layer or thermal stress. As described above, in the conventional processing technique, not only the residual crack and the thermally deteriorated layer are present on the processed surface, but also the processed portion is considerably removed, so that the yield of the workpiece is poor and the processing step is further reduced. This has been a hindrance to cost reduction of semiconductor devices and the like that use more expensive silicon and germanium single crystals or gallium-arsenide compounds.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明が前述の状況に鑑み、解決しようとするところ
は、加工物の表面に確率的要因として製品の信頼性を低
下させていた残留クラック及び熱的変質層等の残留欠陥
を全く生じさせず、しかも後工程として従来は必ず行わ
れていたラッピング加工、即ち被加工物の表面を約100
μm以上の厚みで除去する作業を必要とせず、後工程が
非常に簡単になるばかりでなく、高価な被加工物の材料
の有効利用が可能となるラジカル反応による無歪精密加
工方法を提供する点にある。
In view of the above situation, the present invention is to solve the problem that the surface of the workpiece does not cause residual defects such as residual cracks and thermally deteriorated layers that have reduced the reliability of the product as a stochastic factor. Moreover, as a post-process, the conventional lapping process, that is, the surface of the work piece is about 100
(EN) A strain-free precision processing method by a radical reaction that does not require a work of removing with a thickness of μm or more and not only makes the post-process very simple, but also enables effective use of an expensive work material. In point.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前述の問題解決の為に、ラジカルの供給源
である気体雰囲気中に配した導体、半導体又は絶縁体の
被加工物に対して微小間隔をおいて加工形態に応じた所
定形状の電極を配し、該電極に高周波電圧を印加して、
前記電極と被加工物間に高周波放電を発生させて該被加
工物近傍で選択的にラジカルを生成し、該ラジカルと前
記被加工物を構成する原子又は分子とのラジカル反応に
よって生じた化合物を気化させるとともに、該被加工物
と電極を相対的に移動させて加工してなるラジカル反応
による無歪精密加工方法を構成した。
In order to solve the above-mentioned problems, the present invention provides a conductor, a semiconductor, or an insulator, which is arranged in a gas atmosphere which is a source of radicals, with a predetermined shape depending on the processing form with a minute interval with respect to the workpiece. An electrode is arranged, a high frequency voltage is applied to the electrode,
A high-frequency discharge is generated between the electrode and the workpiece to selectively generate a radical in the vicinity of the workpiece, and a compound generated by a radical reaction between the radical and an atom or molecule forming the workpiece is used. A strain-free precision processing method by a radical reaction, which is formed by vaporizing and moving the workpiece and the electrode relatively, was constructed.

〔作用〕[Action]

以上の如き内容からなる本発明のラジカル反応による
無歪精密加工方法は、気体雰囲気中に配した被加工物の
加工部分近傍の気体のみを、被加工物が導体、半導体又
は絶縁体であるかを問わずその近傍に配した電極に高周
波電圧を印加して放電励起により選択的に活性化させて
反応性に富んだラジカルを発生させ、該ラジカルと前記
被加工物を構成する原子又は分子とのラジカル反応によ
って生じた化合物を気化させて、加工部分から除去する
とともに、被加工物と電極とを相対的に移動させること
により難加工物等からなる被加工物の切断、平滑化、穿
孔及び横切り加工を行うことのできるものである。
The strain-free precision processing method by the radical reaction of the present invention having the above contents, whether only the gas in the vicinity of the processed portion of the workpiece placed in a gas atmosphere is a conductor, a semiconductor or an insulator. Regardless of which, a high-frequency voltage is applied to the electrodes arranged in the vicinity thereof to generate radicals rich in reactivity by being selectively activated by discharge excitation, and the radicals and the atoms or molecules constituting the workpiece. The compound produced by the radical reaction of is vaporized to be removed from the processed portion, and the workpiece and the electrode are relatively moved to cut, smoothen, perforate, and perforate the workpiece. It is capable of cross-cutting.

〔実施例〕〔Example〕

本発明は、不対電子を有する反応性に富んだラジカル
(遊離基)と被加工物を構成する原子又は分子とのラジ
カル反応(遊離基反応)を利用して無歪精密加工を行う
ものである。
INDUSTRIAL APPLICABILITY The present invention is to perform strain-free precision processing by utilizing a radical reaction (free radical reaction) between a highly reactive radical having an unpaired electron (free radical) and an atom or molecule constituting a workpiece. is there.

ここで、ラジカルを発生させる方法としては、1Torr
以下(10-3〜1Torr)程度の真空度で放電により容易に
生成できるプラズマ(plasma)を利用することも考慮さ
れるが、発生するラジカルの密度が低く加工速度も遅い
ことから、本発明では1気圧以上の高圧下で高周波電界
により荷電粒子を振動させることによって高密度のプラ
ズマ状態を作り、これを加工に用いる。本発明の加工原
理は、雰囲気気体を励起して生成したラジカルと、被加
工物を構成する原子又は分子との化学的なラジカル反応
であるので、対象とする被加工物が導体、半導体又は絶
縁体であるとを問わず適用できるのである。特に、高周
波電界を利用してラジカルを生成する場合には、ラジカ
ルの生成過程においても被加工物が導体であるか絶縁体
であるかを問わないのである。以下の実施例では、残留
クラックや熱的変質層の存在がその特性に大きく影響を
及ぼす半導体の加工について主に説明するが、導体又は
絶縁体の被加工物でも同様に適用できる。
Here, as a method of generating radicals, 1 Torr
The use of plasma, which can be easily generated by discharge at a vacuum degree of (10 −3 to 1 Torr) or less, is also considered, but in the present invention, the density of generated radicals is low and the processing speed is slow. A high-density plasma state is created by vibrating charged particles by a high-frequency electric field under a high pressure of 1 atm or more, and this is used for processing. Since the processing principle of the present invention is a chemical radical reaction between a radical generated by exciting an atmospheric gas and an atom or a molecule constituting the object to be processed, the object to be processed is a conductor, a semiconductor or an insulator. It can be applied to any body. In particular, when radicals are generated using a high-frequency electric field, it does not matter whether the workpiece is a conductor or an insulator even in the radical generation process. In the following examples, the processing of semiconductors in which the presence of residual cracks or the presence of a thermally altered layer greatly affects their characteristics will be mainly described, but the same can be applied to a conductor or insulator work piece.

具体的には、半導体製造用のシリコン及びゲルマニウ
ム単結晶、又はガリウム−砒素化合物、又はその他各種
セラミックス材料等の難加工脆性材料の被加工物を塩素
(Cl2)又はフッ素(F2)等の雰囲気気体中に配し、被
加工物と微小間隔をおいて配したタングステン(W)又
は白金(Pt)等の塩素ガスとの反応温度の比較的高い材
料の電極との間に高周波電圧を印加して、被加工物の表
面近傍で放電を起こさせて雰囲気気体から化学的に反応
性に富んだラジカルを発生させ、例えば被加工物として
シリコンを用い、気体として塩素ガスを用いた場合、シ
リコンの加工部分表面でラジカル反応が起こりシリコン
塩化物が発生し、該シリコン塩化物を常温又は200℃以
下で気化させて除去することにより無歪精密加工を行う
のである。本発明の加工方法は、被加工物の近傍でラジ
カルを生成する手段として高周波電界を使用する限り、
被加工物が導体又は絶縁体であっても、更に半導体であ
っても、その材質に応じた反応ガスを選択することによ
って加工することができるのである。
Specifically, silicon and germanium single crystals for semiconductor manufacturing, or gallium-arsenic compounds, or other difficult-to-process brittle materials such as various ceramic materials are processed with chlorine (Cl 2 ) or fluorine (F 2 ) etc. A high-frequency voltage is applied between an electrode made of a material having a relatively high reaction temperature with a chlorine gas such as tungsten (W) or platinum (Pt), which is placed in an atmosphere gas and is placed at a minute distance from the work piece. Then, a discharge is caused in the vicinity of the surface of the workpiece to generate radicals having a high chemical reactivity from the atmospheric gas. For example, when silicon is used as the workpiece and chlorine gas is used as the gas, silicon A radical reaction occurs on the surface of the processed portion to generate silicon chloride, and the silicon chloride is vaporized and removed at room temperature or 200 ° C. or less to perform strain-free precision processing. The processing method of the present invention, as long as a high frequency electric field is used as a means for generating radicals in the vicinity of the workpiece,
Whether the object to be processed is a conductor or an insulator, or even a semiconductor, it can be processed by selecting a reaction gas according to its material.

次に添付図面に示した実施例に基づき更に本発明の詳
細を説明する。第1図は、本発明の加工方法の原理を図
解的に示したもので、図中1は被加工物、2は気体分
子、3はラジカル(遊離基)、4は被加工物1の構成原
子又は分子、5は化合物である。雰囲気気体2中に配し
た被加工物1の表面近傍で該気体分子2を高周波放電で
励起させてラジカル3を発生させ、該ラジカル3と被加
工物1の構成原子又は分子4とのラジカル反応により比
較的低温で気化し得る化合物5を生成し、該化合物5を
常温で又は図示しないヒーター等によって被加工物1を
比較的低温、例えば200℃以下の設定温度まで昇温させ
て気化させて、加工表面から除去して被加工物1に原子
又は分子単位の空所6を順次形成してマクロ的な凹所と
なし無歪切断、穿孔及び溝掘り加工等を行うのである。
同様に無歪平滑化加工においても、被加工物1の表面か
ら突出した微小部分で確率的に最もラジカル反応が起こ
り易いので、結果的にこの突出部分が選択的に除去され
て原子又は分子レベルで平滑化されるのである。
Next, the details of the present invention will be described based on the embodiments shown in the accompanying drawings. FIG. 1 schematically shows the principle of the processing method of the present invention. In the figure, 1 is a workpiece, 2 is a gas molecule, 3 is a radical (free radical), and 4 is a structure of the workpiece 1. Atom or molecule, 5 is a compound. The gas molecules 2 are excited near the surface of the workpiece 1 placed in the atmosphere gas 2 by high-frequency discharge to generate radicals 3, and the radicals 3 react with the constituent atoms or molecules 4 of the workpiece 1. To produce a compound 5 that can be vaporized at a relatively low temperature, and vaporize the compound 5 at a room temperature or by heating the workpiece 1 to a relatively low temperature, for example, a set temperature of 200 ° C. or less by a heater or the like (not shown). Then, the cavities 6 in atomic or molecular units are sequentially formed on the workpiece 1 after being removed from the processed surface to form macroscopic recesses, and strainless cutting, piercing and grooving are performed.
Similarly, even in the strain-free smoothing process, the radical reaction is stochastically most likely to occur in a minute portion protruding from the surface of the workpiece 1, and as a result, the protruding portion is selectively removed and is thus removed at the atomic or molecular level. Is smoothed by.

第2図は、被加工物1を放電により発生したラジカル
3を用いて無歪切断加工する装置の原理図であり、タン
グステン又は白金等のワイヤー電極7を所定間隔をおい
て設置した供給用と巻取用のリール8,8に巻回するとと
もに、複数の案内用ローラ9,…によって、該ワイヤー電
極7を被加工物1に対して微小間隔を隔てて張設し、被
加工物1が導体、絶縁体又は半導体のいずれの場合に
も、該被加工物1とワイヤー電極7との微小隙間に、図
示しないRF(高周波)電源によって印加された高周波電
圧により放電を起こさせて、雰囲気気体2(図示せず)
を活性化させ、発生したラジカル3と被加工物1の構成
原子又は分子4とのラジカル反応により、第一図中に示
したようにラジカル3の存在する領域のみで空所6を発
生させ、更にワイヤー電極7と被加工物1の距離を相対
的に変化させて切断するものである。ここで、精密加工
において前記ワイヤー電極7は、通常数μmから数十μ
mの細線が使用されるので、前記リール8を回転させて
一方に巻きつけて常時供給し、同一箇所での放電によっ
て該ワイヤー電極7が切断するのを防止している。そし
て、前記被加工物1とワイヤー電極7とをコンピュータ
ー制御等で相対的に移動させて、順次ラジカル反応領域
を変化させて被加工物1を切断するのである。
FIG. 2 is a principle diagram of an apparatus for performing strain-free cutting of a workpiece 1 by using radicals 3 generated by electric discharge. A wire electrode 7 made of tungsten or platinum is provided at a predetermined interval for supply. The wire electrode 7 is wound around the winding reels 8, 8 and is stretched by a plurality of guide rollers 9, ... In any case of a conductor, an insulator or a semiconductor, an electric discharge is caused by a high frequency voltage applied by an RF (high frequency) power source (not shown) in a minute gap between the work piece 1 and the wire electrode 7 to generate an atmosphere gas. 2 (not shown)
Is activated, and by the radical reaction between the generated radical 3 and the constituent atom or molecule 4 of the workpiece 1, as shown in FIG. 1, a void 6 is generated only in the region where the radical 3 exists, Further, the distance between the wire electrode 7 and the workpiece 1 is relatively changed and the workpiece 1 is cut. Here, in the precision processing, the wire electrode 7 is usually several μm to several tens μm.
Since the thin wire of m is used, the reel 8 is rotated and wound around one side to be constantly supplied, and the wire electrode 7 is prevented from being cut by the discharge at the same location. Then, the workpiece 1 and the wire electrode 7 are relatively moved by computer control or the like, and the radical reaction region is sequentially changed to cut the workpiece 1.

また、第3図は前記と同様に放電により発生したラジ
カル3を用いて被加工物1の表面を無歪平滑化加工する
装置の原理図であり、定盤10上に固定した平面状被加工
物1の上面に対して平衡でしかも微小間隔dをおいて平
面形状のラップ状電極11を配し、該ラップ状電極11と被
加工物1との間に、前記同様に高周波電圧を印加し、放
電を起こさせてラジカル3を発生させて該被加工物1の
構成原子又は分子4を除去するものである。ここで、前
記ラップ状電極11と被加工物1との間で、該被加工物1
の表面に存在する凸部12の部分で尖端効果により選択的
に放電が起こり、この部分でラジカル反応による構成原
子又は分子4の除去が進行して、被加工物1表面の平滑
化加工を行えるのである。尚、前記ラップ状電極11と被
加工物1との間隔dは、ギャップセンサー等によって最
適な間隔を維持し、加工効率の向上を図ることもでき、
またラップ状電極11の放電によるダメージを軽減する為
及び広い面積の面を加工する為に、該ラップ状電極11と
被加工物1を相対的に移動させることも可能である。ま
た、曲面状被加工物1に対しては、その曲面に応じた曲
面形状のラップ状電極11を用いて、該被加工物1の曲面
を平滑化加工することも可能である。
Further, FIG. 3 is a principle view of an apparatus for performing the strain-free smoothing processing on the surface of the workpiece 1 by using the radicals 3 generated by the electric discharge similarly to the above, and it is a planar workpiece fixed on the surface plate 10. A planar lap-shaped electrode 11 is arranged equilibrium to the upper surface of the object 1 at a minute interval d, and a high-frequency voltage is applied between the lap-shaped electrode 11 and the workpiece 1 as described above. , To generate radicals 3 to remove constituent atoms or molecules 4 of the workpiece 1. Here, between the lap-shaped electrode 11 and the workpiece 1, the workpiece 1
Electric discharge is selectively generated at the convex portion 12 existing on the surface of the surface by the tip effect, and the constituent atoms or molecules 4 are removed by radical reaction at this portion, so that the surface of the workpiece 1 can be smoothed. Of. The gap d between the lap-shaped electrode 11 and the workpiece 1 can be maintained at an optimum gap by a gap sensor or the like to improve the machining efficiency.
It is also possible to move the lap-shaped electrode 11 and the workpiece 1 relatively in order to reduce the damage of the lap-shaped electrode 11 due to the discharge and to process the surface of a large area. Further, for the curved work piece 1, it is possible to smooth the curved surface of the work piece 1 by using a lap-shaped electrode 11 having a curved shape corresponding to the curved surface.

次に、前述した放電による加工原理を利用して更に各
種の加工方法の実施例を述べる。
Next, examples of various processing methods will be described using the above-described processing principle by electric discharge.

第4図は、第2図に示したものと同様に切断加工する
方法を示し、平面状の被加工物1に平行に配したワイヤ
ー電極7をX方向に繰り送るとともに、該ワイヤー電極
7と被加工物1をZ方向に相対的に移動させて該被加工
物1を切断加工し、更にY方向に移動させて新たな箇所
の切断加工又は溝切り加工する方法を示している。尚、
その切断面は張設したワイヤー電極7の直線性により平
面出しが行われている。
FIG. 4 shows a cutting method similar to that shown in FIG. 2, in which the wire electrode 7 arranged parallel to the flat work piece 1 is fed in the X direction and It shows a method of relatively moving the workpiece 1 in the Z direction to cut the workpiece 1, and further moving it in the Y direction to perform cutting or grooving at a new location. still,
The cut surface is planarized due to the linearity of the stretched wire electrode 7.

第5図は、被加工物1に対して直交状態となしてその
先端を近接配した針状電極19を、Z方向に移動させて被
加工物1を穿孔加工する方法を示し、また針状電極19又
は被加工物1をX方向及びY方向に移動させて溝切り加
工する方法を示している。
FIG. 5 shows a method for piercing the workpiece 1 by moving the needle-shaped electrode 19 in a state orthogonal to the workpiece 1 and having its tip closely arranged in the Z direction, and also the needle-shaped electrode 19. A method of moving the electrode 19 or the workpiece 1 in the X direction and the Y direction to perform grooving processing is shown.

第6図は、所定の断面形状を有する柱状電極20(図示
したものは三角柱形状)を被加工物1に対して直交状態
となして配し、Z方向に移動させて被加工物1に該柱状
電極20と同じ断面形状の凹所を形成する加工方法、即ち
転写加工する方法を示している。
FIG. 6 shows that a columnar electrode 20 (shown in a triangular prism shape) having a predetermined cross-sectional shape is arranged so as to be orthogonal to the work piece 1 and is moved in the Z direction so that the work piece 1 is A processing method for forming a recess having the same sectional shape as the columnar electrode 20, that is, a transfer processing method is shown.

第7図〜第9図は、回転対称形状の被加工物1を回転
させて、その外周面を加工する方法を示している。第7
図は、円柱状の被加工物1の外周近傍に平面を有するバ
イト状電極21を平行配し、前記被加工物1を回転させる
とともに、バイト状電極21を軸方向、即ちZ方向に移動
させ、更にX方向に移動させてその間隔を調節して被加
工物1の外周面を平滑化加工する方法を示し、また第8
図は、先端がポイント形状に近いバイド状電極21を用い
て被加工物1の外周面を任意の回転対称形状に前記同様
に平滑化加工する方法を示し、更に第9図は、直線的に
一定間隔の突起22,…を有する鋸歯状電極23を用い、被
加工物1の回転角速度ωと同調して該鋸歯状電極23を軸
方向に速度vで移動させて該被加工物1の外周にネジ切
り加工する方法を示している。
7 to 9 show a method of rotating the workpiece 1 having a rotationally symmetrical shape and processing the outer peripheral surface thereof. Seventh
The drawing shows that the bite-shaped electrode 21 having a flat surface is arranged in parallel in the vicinity of the outer periphery of the cylindrical work piece 1, the work piece 1 is rotated, and the bite-shaped electrode 21 is moved in the axial direction, that is, the Z direction. , A method of further smoothing the outer peripheral surface of the workpiece 1 by moving it in the X direction and adjusting the interval, and
The figure shows a method of smoothing the outer peripheral surface of the workpiece 1 into an arbitrary rotationally symmetrical shape in the same manner as described above by using the bidet-shaped electrode 21 whose tip is close to a point shape. Further, FIG. A saw-toothed electrode 23 having protrusions 22 at regular intervals is used to move the saw-toothed electrode 23 in the axial direction at a velocity v in synchronism with the rotational angular velocity ω of the workpiece 1, and the outer periphery of the workpiece 1 is moved. Shows the method of thread cutting.

第10図及び第11図は、回転対称形状の中空被加工物1
を回転させて、その内周面を加工する方法を示してい
る。第10図は、中空円筒の被加工物1の内周面近傍に平
面を有するバイト状電極21を平行配し、前記被加工物1
を回転させるとともに、バイト状電極21を軸方向、即ち
Z方向に移動させ、更にX方向に移動させてその間隔を
調節して被加工物1の内周面を平滑化加工する方法を示
し、また第11図は、先端がポイント形状に近いバイト状
電極21を用いて被加工物1の内周面を任意の回転対称形
状に前記同様に平滑化加工する方法を示している。
10 and 11 show a rotationally symmetrical hollow work piece 1
The figure shows a method of rotating the inner peripheral surface to process the inner peripheral surface thereof. FIG. 10 shows that the bite-shaped electrode 21 having a flat surface is arranged in parallel in the vicinity of the inner peripheral surface of the hollow cylindrical workpiece 1,
While rotating the tool, the bite-shaped electrode 21 is moved in the axial direction, that is, the Z direction, and further moved in the X direction so as to adjust the interval thereof, and a method for smoothing the inner peripheral surface of the workpiece 1 will be described. Further, FIG. 11 shows a method for smoothing the inner peripheral surface of the workpiece 1 into an arbitrary rotationally symmetrical shape in the same manner as described above by using the bite-shaped electrode 21 whose tip is close to a point shape.

第12図は、円板の外周に一定間隔の突起24,…を有す
る歯車状電極25と円板形状の被加工物1を互いの外周が
接近し且つ互いの軸を同一方向となして配し、該歯車状
電極25の角速度ω1で一方向に回転させるとともに、被
加工物1を角速度ω2で逆方向に回転させて、該被加工
物1の外周を歯車加工する方法を示している。ここで、
前記角速度ω1及びω2を調節することにより、被加工物
1に形成する歯車のピッチを適宜設定できる。
FIG. 12 shows that a gear-shaped electrode 25 having projections 24, ... At regular intervals on the outer circumference of a disk and a disk-shaped workpiece 1 are arranged such that their outer circumferences are close to each other and their axes are in the same direction. Then, while rotating the gear-shaped electrode 25 in one direction at the angular velocity ω 1 and rotating the workpiece 1 in the opposite direction at the angular velocity ω 2 , a method for gear-machining the outer periphery of the workpiece 1 will be described. There is. here,
By adjusting the angular velocities ω 1 and ω 2 , the pitch of gears formed on the workpiece 1 can be set appropriately.

第13図は、第6図に示した加工方法と同様の転写加工
を示し、内周面に加工に必要な適宜形状の凹凸26を形成
したリング状電極27を用い、該リング状電極27の中空内
に配した円柱又は角柱形状の被加工物1を軸方向に移動
させることで、該被加工物1の外周面に軸方向に沿って
前記凹凸26の形状を転写し、もってリング状電極27の断
面形状を被加工物1に転写加工する方法を示している。
FIG. 13 shows a transfer processing similar to the processing method shown in FIG. 6, in which a ring-shaped electrode 27 having irregularities 26 of an appropriate shape necessary for processing is formed on the inner peripheral surface, and the ring-shaped electrode 27 By moving the cylindrical or prismatic work piece 1 arranged in the hollow in the axial direction, the shape of the unevenness 26 is transferred to the outer peripheral surface of the work piece 1 along the axial direction, so that the ring electrode is formed. The method of transferring the cross-sectional shape of 27 to the workpiece 1 is shown.

第14図は、先端に被加工物1の部分的な形状補正が可
能な形状及び大きさを有する補正電極28を用いて、被加
工物1の加工面上の各点で所定の取りしろだけ加工を行
いながら加工面全体の形状補正する加工法を示してい
る。尚、この加工法は、従来加工法の一つであるフライ
ス加工におけるエンドミル様な加工法に対応するもので
ある。
FIG. 14 shows a correction electrode 28 having a shape and size capable of partially correcting the shape of the work piece 1 at the tip, and only a predetermined margin for each point on the work surface of the work piece 1 is used. A processing method for correcting the shape of the entire processing surface while performing processing is shown. This processing method corresponds to a processing method such as an end mill in milling, which is one of conventional processing methods.

第15図は、先端を半球面となした棒状電極29を用い、
被加工物1を複雑な形状に加工する方法を示している。
尚、この加工法は、従来のボールミル様な加工法に対応
するものである。
FIG. 15 uses a rod-shaped electrode 29 having a hemispherical tip,
The method of processing the workpiece 1 into a complicated shape is shown.
It should be noted that this processing method corresponds to a conventional ball mill-like processing method.

このように、本発明は雰囲気気体2中で高周波放電に
よって発生したラジカル3により被加工物1を原子又は
分子レベルで除去して加工するものであり、被加工物1
の材質及び加工面積により、最適な条件設定が必要であ
る。例えば、高周波放電を利用して加工する場合、雰囲
気気体2の圧力に関しては、低圧の場合は放電範囲が広
いので大面積でゆっくりとした加工をすることが可能で
平滑化加工に適しており、また高圧の場合は放電範囲が
狭くラジカル3の発生確率が高いので局部的で加工効率
のよい加工が可能でワイヤー電極7による切断加工及び
針状電極19による穿孔加工に適している。また、被加工
物1の材質に対して最も適した雰囲気気体2を選択する
必要があり、更に発生したラジカル3と構成原子又は分
子4とのラジカル反応が起こり易い温度及び該ラジカル
反応により生じた化合物5の気化温度によっては、被加
工物1を熱変質しない程度の温度に加熱することも必要
になる。例えば、被加工物1として半導体素子の材料と
して最も多く使用されているシリコン端結晶を選べば、
雰囲気気体2として通常塩素ガスが使用され、比較的低
温でラジカル反応が起こり、昇華性のあるシリコン塩化
物が生成し、該シリコン塩化物を常温又は200℃以下の
温度で気化させることができる。
As described above, according to the present invention, the work piece 1 is processed by removing the work piece 1 at the atomic or molecular level by the radicals 3 generated by the high frequency discharge in the atmosphere gas 2.
It is necessary to set the optimal conditions depending on the material and processing area. For example, in the case of machining using high-frequency discharge, with respect to the pressure of the atmosphere gas 2, when the pressure is low, the discharge range is wide, so that it is possible to perform slow machining in a large area and is suitable for smoothing machining. Further, in the case of high voltage, the discharge range is narrow and the probability of generation of radicals 3 is high, so that local and highly efficient machining is possible, which is suitable for cutting by the wire electrode 7 and perforating by the needle electrode 19. Further, it is necessary to select the atmosphere gas 2 most suitable for the material of the workpiece 1, and the temperature at which the radical reaction between the generated radicals 3 and the constituent atoms or molecules 4 is likely to occur and the temperature caused by the radical reaction. Depending on the vaporization temperature of the compound 5, it is also necessary to heat the work piece 1 to a temperature at which the material is not thermally altered. For example, if the silicon edge crystal most used as the material of the semiconductor element is selected as the workpiece 1,
Chlorine gas is usually used as the atmosphere gas 2, a radical reaction occurs at a relatively low temperature to generate sublimable silicon chloride, and the silicon chloride can be vaporized at room temperature or at a temperature of 200 ° C. or lower.

〔発明の効果〕〔The invention's effect〕

以上にしてなる本発明のラジカル反応による無歪精密
加工方法によれば、ラジカルの供給源である気体雰囲気
中に配した被加工物近傍で、高周波放電により選択的に
気体を活性化させ、それにより生成したラジカルと前記
被加工物を構成する原子又は分子とのラジカル反応によ
って生じた化合物を気化させてなるので、原理的に無接
触な加工を行うことができ、従って従来の微細クラック
による脆性破壊を用いた加工では回避するこができず確
率的要因として加工面の信頼性を下げていたクラック等
の残留欠陥及び熱的変質層が全くない無歪加工ができ、
加工製品の信頼性を著しく向上させることができる。ま
た、被加工物の加工部分近傍のみで発生させたラジカル
を利用して該加工部分を構成原子又は分子レベルで空間
限定的に除去する加工であるので、原理的に非常に微細
な部分の加工を比較的簡単に超精密に行うことができる
ものである。更に、被加工物に全くダメージを与えない
ことから、従来切断面を100μm以上の厚みにわたって
除去していた後加工を必要としないことから、後工程が
非常に簡単になるばかりでなく、材料の有効利用が可能
である。以上のように優れた無歪精密加工にもかかわら
ず、その加工方法は気体雰囲気中に配した被加工物の加
工部分近傍の気体のみを、被加工物が導体、半導体又は
絶縁体であるかを問わずその近傍に配した電極に高周波
電圧を印加して放電励起により選択的に活性化させて反
応性に富んだラジカルを発生させ、該ラジカルと前記被
加工物を構成する原子又は分子とのラジカル反応によっ
て生じた化合物を、自発的又は被加工物を変質させない
程度の加熱により気化させて、加工部分から除去するだ
けの簡単なものであり、被加工物と加工形態に応じた所
定形状の電極とを相対的に移動させることによって無歪
切断、平滑化、穿孔及び溝切り加工等の精密加工を行う
ことのできるものである。
According to the strain-free precision processing method by radical reaction of the present invention as described above, the gas is selectively activated by high-frequency discharge in the vicinity of the workpiece arranged in the gas atmosphere that is the source of radicals, and Since it is formed by vaporizing the compound generated by the radical reaction between the radicals generated by the above and the atoms or molecules constituting the workpiece, it is possible in principle to perform non-contact processing, and thus the conventional brittleness due to microcracks. Strain-free processing that does not have residual defects such as cracks and thermally deteriorated layers that could not be avoided by processing using fracture and had reduced reliability of the processed surface as a probabilistic factor,
The reliability of the processed product can be significantly improved. Further, since it is a process for removing the processed part spatially at a constituent atom or molecular level using radicals generated only in the vicinity of the processed part of the workpiece, in principle, processing of a very fine part is performed. Can be performed with relative precision relatively easily. Furthermore, since it does not damage the work piece at all, it does not require post-processing that was conventionally used to remove the cut surface over a thickness of 100 μm or more, which not only greatly simplifies the post-process but also It can be effectively used. In spite of the excellent strain-free precision machining as described above, the machining method is to determine whether the workpiece is a conductor, a semiconductor or an insulator only in the gas in the vicinity of the processed portion of the workpiece placed in a gas atmosphere. Regardless of which, a high-frequency voltage is applied to the electrodes arranged in the vicinity thereof to generate radicals rich in reactivity by being selectively activated by discharge excitation, and the radicals and the atoms or molecules constituting the workpiece. The compound generated by the radical reaction is volatilized spontaneously or by heating to the extent that it does not deteriorate the workpiece, and it is simply removed by removing it from the machined part. It is possible to perform precision processing such as strain-free cutting, smoothing, piercing and grooving by moving the electrode of the above relative to each other.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のラジカル反応による無歪精密加工方法
の原理を図解的に示した説明用断面図、第2図はワイヤ
ー電極を用いた切断加工を示した簡略断面図、第3図は
ラップ状電極を用いた平滑化加工を示した簡略断面図、
第4図は第2図と同様にワイヤー電極を用いた切断及び
溝切り加工を示した簡略斜視図、第5図は針状電極を用
いた穿孔加工を示した簡略斜視図、第6図は柱状電極を
用いてその断面形状を被加工物に転写する転写加工を示
した簡略斜視図、第7図はバイト状電極を用いた円柱状
被加工物外周面の平滑化加工を示した簡略側面図、第8
図はバイト状電極を用いて被加工物外周面を回転対称形
状に加工する平滑化加工を示した簡略側面図、第9図は
鋸歯状電極を用いた円筒状被加工物のネジ切り加工を示
す簡略側面図、第10図はバイト状電極を用いた円筒状被
加工物内周面の平滑化加工を示した簡略斜視図、第11図
はバイト状電極を用いて円筒状被加工物の内周面を任意
の回転対称形状に加工する平滑化加工を示した簡略斜視
図、第12図は歯車状電極を用いた歯車加工を示した簡略
斜視図、第13図はリング状電極を用いた第6図と同様な
転写加工を示した簡略斜視図、第14図は補正電極を用い
た形状補正加工を示した簡略斜視図、第15図は先端に半
球面を有する棒状電極を用いた任意形状加工を示した簡
略斜視図である。 1:被加工物、2:気体分子、3:ラジカル、4:構成原子又は
分子、5:化合物、6:空所、7:ワイヤー電極、8:リール、
9:ローラ、10:定盤、11:ラップ状電極、19:針状電極、2
0:柱状電極、21:バイト状電極、22:突起、23:鋸歯状電
極、24:突起、25:歯車状電極、26:凹凸、27:リング状電
極、28:補正電極、29:棒状電極。
FIG. 1 is an explanatory sectional view schematically showing the principle of the strain-free precision processing method by radical reaction of the present invention, FIG. 2 is a simplified sectional view showing cutting processing using a wire electrode, and FIG. 3 is A simplified cross-sectional view showing a smoothing process using a lap-shaped electrode,
FIG. 4 is a simplified perspective view showing cutting and grooving using a wire electrode as in FIG. 2, FIG. 5 is a simplified perspective view showing piercing using a needle electrode, and FIG. 6 is FIG. 7 is a simplified perspective view showing a transfer process for transferring the cross-sectional shape to a workpiece by using a columnar electrode, and FIG. 7 is a simplified side view showing a smoothing process of a cylindrical workpiece outer peripheral surface using a bite-shaped electrode. Figure, 8th
The figure shows a simplified side view showing the smoothing process of machining the outer peripheral surface of the work piece into a rotationally symmetrical shape using a bite-shaped electrode, and Fig. 9 shows the threading process of a cylindrical work piece using a serrated electrode. FIG. 10 is a simplified side view, FIG. 10 is a simplified perspective view showing the smoothing process of the inner peripheral surface of the cylindrical work piece using the bite-shaped electrode, and FIG. 11 is a cylindrical work piece using the bite-shaped electrode. A simplified perspective view showing a smoothing process for processing the inner peripheral surface into an arbitrary rotationally symmetric shape, FIG. 12 is a simplified perspective view showing a gear processing using a gear-shaped electrode, and FIG. 13 is a ring-shaped electrode. 6 is a simplified perspective view showing a transfer process similar to that shown in FIG. 6, FIG. 14 is a simplified perspective view showing a shape correction process using a correction electrode, and FIG. 15 is a rod-shaped electrode having a hemispherical end. It is a simplified perspective view which showed arbitrary shape processing. 1: Work piece, 2: Gas molecule, 3: Radical, 4: Constituent atom or molecule, 5: Compound, 6: Vacancy, 7: Wire electrode, 8: Reel,
9: Roller, 10: Surface plate, 11: Lap electrode, 19: Needle electrode, 2
0: columnar electrode, 21: bite-shaped electrode, 22: protrusion, 23: sawtooth electrode, 24: protrusion, 25: gear-shaped electrode, 26: unevenness, 27: ring-shaped electrode, 28: correction electrode, 29: rod-shaped electrode .

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ラジカルの供給源である気体雰囲気中に配
した導体、半導体又は絶縁体の被加工物に対して微小間
隔をおいて加工形態に応じた所定形状の電極を配し、該
電極に高周波電圧を印加して、前記電極と被加工物間に
高周波放電を発生させて該被加工物近傍で選択的にラジ
カルを生成し、該ラジカルと前記被加工物を構成する原
子又は分子とのラジカル反応によって生じた化合物を気
化させるとともに、該被加工物と電極を相対的に移動さ
せて加工してなるラジカル反応による無歪精密加工方
法。
1. An electrode having a predetermined shape according to a processing form is arranged at a minute interval with respect to a work piece of a conductor, a semiconductor or an insulator arranged in a gas atmosphere which is a source of radicals, and the electrode. By applying a high-frequency voltage to the electrode to generate a high-frequency discharge between the electrode and the workpiece to selectively generate radicals in the vicinity of the workpiece, and the radicals and atoms or molecules forming the workpiece. A method for strain-free precision processing by a radical reaction, which comprises vaporizing a compound generated by the radical reaction and performing processing by relatively moving the workpiece and the electrode.
【請求項2】前記電極としてワイヤー電極を用い、被加
工物を切断加工してなる特許請求の範囲第1項記載のラ
ジカル反応による無歪精密加工方法。
2. The strain-free precision machining method by radical reaction according to claim 1, wherein a wire electrode is used as the electrode, and the workpiece is cut.
【請求項3】前記電極として平面又は曲面を有するラッ
プ状電極を用い、被加工物を平滑化加工してなる特許請
求の範囲第1項記載のラジカル反応による無歪精密加工
方法。
3. A strain-free precision machining method by radical reaction according to claim 1, wherein a lap-shaped electrode having a flat surface or a curved surface is used as the electrode, and the workpiece is smoothed.
【請求項4】前記電極として被加工物に対して直交状態
となした針状電極を用い、被加工物を穿孔加工してなる
特許請求の範囲第1項記載のラジカル反応による無歪精
密加工方法。
4. A strain-free precision machining by radical reaction according to claim 1, wherein a needle-shaped electrode in a state orthogonal to the workpiece is used as the electrode, and the workpiece is perforated. Method.
【請求項5】前記電極として所定の断面形状を有する柱
状又はリング状電極を用い、被加工物に前記形状を転写
する転写加工してなる特許請求の範囲第1項記載のラジ
カル反応による無歪精密加工方法。
5. A strain-free strain due to a radical reaction according to claim 1, wherein a columnar or ring-shaped electrode having a predetermined cross-sectional shape is used as the electrode, and transfer processing is performed to transfer the shape to a workpiece. Precision processing method.
【請求項6】前記電極としてバイト状電極を用い、被加
工物を回転させるとともに、該バイト状電極を軸方向に
移動させて被加工物を回転対称形状に平滑化加工してな
る特許請求の範囲第1項記載のラジカル反応による無歪
精密加工方法。
6. A bite-shaped electrode is used as the electrode, the work piece is rotated, and the work piece electrode is axially moved to smooth the work piece into a rotationally symmetrical shape. A strain-free precision processing method by radical reaction according to claim 1.
【請求項7】前記電極として直線的に一定間隔の突起を
有する鋸歯状電極を用い、回転対称形状の被加工物を回
転させるとともに、該被加工物と電極を軸方向に相対的
に移動させて被加工物をネジ切り加工してなる特許請求
の範囲第1項記載のラジカル反応による無歪精密加工方
法。
7. A saw-toothed electrode having linearly spaced projections is used as the electrode, and a workpiece having a rotationally symmetrical shape is rotated, and the workpiece and the electrode are relatively moved in the axial direction. A method for strain-free precision processing by radical reaction according to claim 1, wherein the workpiece is threaded.
【請求項8】前記電極として円板の外周に一定間隔の突
起を有する歯車状電極を用い、円板形状の被加工物と該
鋸歯状電極を互いに逆回転させて被加工物を歯車加工し
てなる特許請求の範囲第1項記載のラジカル反応による
無歪精密加工方法。
8. A gear-shaped electrode having protrusions at regular intervals on the outer circumference of a disk is used as the electrode, and the disk-shaped workpiece and the sawtooth electrode are rotated in opposite directions to gear the workpiece. A strain-free precision processing method by a radical reaction according to claim 1.
【請求項9】前記電極として先端を半球面となした棒状
電極を用い、被加工物を任意形状に加工してなる特許請
求の範囲第1項記載のラジカル反応による無歪精密加工
方法。
9. The strain-free precision machining method according to claim 1, wherein a rod-shaped electrode having a hemispherical tip is used as the electrode, and the workpiece is machined into an arbitrary shape.
JP63124626A 1987-06-26 1988-05-20 Strain-free precision processing method by radical reaction Expired - Fee Related JP2521127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63124626A JP2521127B2 (en) 1987-06-26 1988-05-20 Strain-free precision processing method by radical reaction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16076087 1987-06-26
JP62-160760 1987-06-26
JP63124626A JP2521127B2 (en) 1987-06-26 1988-05-20 Strain-free precision processing method by radical reaction

Publications (2)

Publication Number Publication Date
JPH01125829A JPH01125829A (en) 1989-05-18
JP2521127B2 true JP2521127B2 (en) 1996-07-31

Family

ID=26461278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63124626A Expired - Fee Related JP2521127B2 (en) 1987-06-26 1988-05-20 Strain-free precision processing method by radical reaction

Country Status (1)

Country Link
JP (1) JP2521127B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120039001A (en) 2009-07-23 2012-04-24 가부시키가이샤 니토무즈 Pressure-sensitive adhesive sheet
KR20120039000A (en) 2009-07-09 2012-04-24 가부시키가이샤 니토무즈 Adhesive tape roll

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816365B2 (en) * 1990-09-19 1998-10-27 株式会社 ユーハ味覚糖精密工学研究所 Strain-free precision processing equipment by radical reaction
JPH06103676B2 (en) * 1990-10-25 1994-12-14 株式会社ユーハ味覚糖精密工学研究所 Strain-free precision cutting method and apparatus by radical reaction
JP2962583B2 (en) * 1991-01-28 1999-10-12 株式会社 ユーハ味覚糖精密工学研究所 Strain-free precision numerical control processing method and apparatus by radical reaction
US5735451A (en) * 1993-04-05 1998-04-07 Seiko Epson Corporation Method and apparatus for bonding using brazing material
JP2592191Y2 (en) * 1993-04-22 1999-03-17 科学技術振興事業団 Precision processing equipment by radical reaction
JPH08279495A (en) * 1995-02-07 1996-10-22 Seiko Epson Corp Method and system for plasma processing
JP3598602B2 (en) * 1995-08-07 2004-12-08 セイコーエプソン株式会社 Plasma etching method, liquid crystal display panel manufacturing method, and plasma etching apparatus
JPH09312545A (en) 1996-03-18 1997-12-02 Seiko Epson Corp Piezoelectric element, its producing method and mount device of piezoelectric oscillator bar
JP4665503B2 (en) * 2004-12-14 2011-04-06 森 勇蔵 Dielectric substrate pattern transfer processing method
US7776228B2 (en) 2006-04-11 2010-08-17 Ebara Corporation Catalyst-aided chemical processing method
JP5115466B2 (en) * 2008-12-17 2013-01-09 セイコーエプソン株式会社 Plasma processing equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126836A (en) * 1983-12-13 1985-07-06 Matsushita Electric Ind Co Ltd Dry etching method
JPS60260131A (en) * 1984-06-06 1985-12-23 Pioneer Electronic Corp Anisotropic dry-etching
JPS6179229A (en) * 1984-09-27 1986-04-22 Pioneer Electronic Corp Formation of electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120039000A (en) 2009-07-09 2012-04-24 가부시키가이샤 니토무즈 Adhesive tape roll
KR20120039001A (en) 2009-07-23 2012-04-24 가부시키가이샤 니토무즈 Pressure-sensitive adhesive sheet

Also Published As

Publication number Publication date
JPH01125829A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
JP2521127B2 (en) Strain-free precision processing method by radical reaction
JP3069271B2 (en) High-efficiency processing method and device using high-density radical reaction using rotating electrode
JP2014159369A (en) Method and apparatus for producing glass sheet
US20140235061A1 (en) Ductile mode machining methods for hard and brittle components of plasma processing apparatuses
KR101273209B1 (en) Free-standing silicon carbide articles formed by chemical vapor deposition and methods for their manufacture
CN110976914A (en) Ultra-precision machining method for tungsten alloy complex curved surface part
Oliaei et al. Polycrystalline diamond end mill cutting edge design to improve ductile-mode machining of silicon
US4960495A (en) Process for precise processing of workpiece using free radicals
JP2011192687A (en) Processing apparatus for semiconductor substrate, method for manufacturing semiconductor substrate, and semiconductor substrate
KR100231742B1 (en) Wire drawing die blank and die therewith
JPH05110206A (en) Method and apparatus for producing light emitting semiconductor element
KR930007149B1 (en) Industrial diamond coating and method of manufacturing the same
JPH07232319A (en) Method for slicing ingot
JP2004063883A (en) Method for manufacturing semiconductor wafer
JP4665503B2 (en) Dielectric substrate pattern transfer processing method
US20210394275A1 (en) Machining method and machining apparatus
JPH04162523A (en) Method and apparatus for undistorted precision cutting by radical reaction
US20240105511A1 (en) Processing method of substrate and manufacturing method of chips
JP2003013226A (en) Method for forming elastic diamond-like carbon with ultrahigh strength
JPH11236292A (en) Plasma etching method of diamond
JPH1072224A (en) Scriber and its cutting blade
JP6692010B2 (en) Processing method and apparatus using radical adsorption transport
JP2017160089A (en) Diamond substrate and method for manufacturing the same
JP3216214B2 (en) Ultra-precision mirror processing method and apparatus
Ueda et al. Effect of substrate heating in thickness correction of quartz crystal wafer by plasma chemical vaporization machining

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees