JP2517877B2 - Method for producing fine particle composite - Google Patents

Method for producing fine particle composite

Info

Publication number
JP2517877B2
JP2517877B2 JP5304614A JP30461493A JP2517877B2 JP 2517877 B2 JP2517877 B2 JP 2517877B2 JP 5304614 A JP5304614 A JP 5304614A JP 30461493 A JP30461493 A JP 30461493A JP 2517877 B2 JP2517877 B2 JP 2517877B2
Authority
JP
Japan
Prior art keywords
fine particles
superconductor
fine particle
charged
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5304614A
Other languages
Japanese (ja)
Other versions
JPH07132223A (en
Inventor
泰正 高尾
正信 淡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5304614A priority Critical patent/JP2517877B2/en
Publication of JPH07132223A publication Critical patent/JPH07132223A/en
Application granted granted Critical
Publication of JP2517877B2 publication Critical patent/JP2517877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微粒子複合体の新規な製
造方法に関するものである。さらに詳しくいえば、本発
明は、超電導体用原料粉体の製造方法として好適な、均
一分散性に優れ、かつ静電気力によって複合状態が制御
された微粒子複合体の製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a novel method for producing a fine particle composite. More specifically, the present invention relates to a method for producing a fine particle composite which is suitable as a method for producing a raw material powder for a superconductor and has excellent uniform dispersibility and whose composite state is controlled by electrostatic force.

【0002】[0002]

【従来の技術】酸化物系超電導体を使用する際には通
常、内部に侵入する磁束をトラップするピニングセンタ
ーを超電導体内部に導入したり、焼結助剤を添加するこ
とが必要であり、従来、そのための方法として固相合成
プロセス及び化学液相プロセスなどが知られている。
2. Description of the Related Art When using an oxide-based superconductor, it is usually necessary to introduce a pinning center for trapping a magnetic flux penetrating into the superconductor or to add a sintering aid, Conventionally, solid-phase synthesis processes and chemical liquid-phase processes are known as methods for that purpose.

【0003】この中の固相合成プロセスは、セラミック
スの製造における一般的な助剤添加方法を用いるもの
で、超電導体用原料粉体の調製時に、ピニングセンター
や焼結助剤となる粉体の成分を添加してその後の処理を
行うものである。しかしながら、このプロセスは操作が
簡単であるものの、均一分散化には限界があり、添加成
分の微細な制御は難しく、熱処理後の超電導体中で添加
成分が大きく成長して、ピニングセンターなどとして有
効に働きにくくなるという欠点がある。
The solid-phase synthesis process in this method uses a general method for adding an auxiliary agent in the production of ceramics. During the preparation of a raw material powder for superconductors, a powder to be a pinning center or a sintering auxiliary agent is prepared. The components are added and the subsequent treatment is performed. However, although this process is easy to operate, there is a limit to uniform dispersion, and it is difficult to finely control the additive component, and the additive component grows significantly in the superconductor after heat treatment and is effective as a pinning center or the like. There is a drawback that it becomes difficult to work.

【0004】一方、化学液相プロセスは、ゾルゲル法、
噴霧乾燥法、噴霧熱分解法などを用いるもので、合成に
用いる原料溶液に添加成分を溶解又は分散させ、溶液中
の均質性を利用して添加成分の均一分散化を図る方法で
ある。しかしながら、このプロセスにおいては、均一分
散性は良好になるものの、原料溶液に添加成分を加えて
超電導体微粒子合成と分散とを同時に行うために、その
添加成分によって超電導体の生成が阻害されないように
反応を制御する必要があり、プロセスが複雑になるのを
免れない。
On the other hand, the chemical liquid phase process is a sol-gel method,
A method using a spray drying method, a spray pyrolysis method, or the like is a method of dissolving or dispersing an additive component in a raw material solution used for synthesis and utilizing the homogeneity in the solution to uniformly disperse the additive component. However, in this process, although the uniform dispersibility is improved, the additive component is added to the raw material solution to simultaneously synthesize and disperse the superconductor fine particles, so that the additive component does not inhibit the generation of the superconductor. The reaction has to be controlled and the process is inevitably complicated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来技術がもつ欠点を克服し、超電導体用原料粉体とし
て好適な、操作が簡便で均一分散性に優れ、かつ複合状
態を制御も可能な微粒子複合体の製造方法を提供するこ
とを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of the prior art and is suitable as a raw material powder for superconductors, is easy to operate, has excellent uniform dispersibility, and controls the composite state. The present invention has been made for the purpose of providing a method for producing a fine particle composite.

【0006】[0006]

【課題を解決するための手段】本発明者らは超電導体微
粒子とセラミックス又は金属の微粒子とが均一に分散さ
れた複合体を製造するために鋭意研究を重ねた結果、こ
れらの微粒子それぞれに、正負の静電気を帯電させたの
ち、それらを混合することにより、均一分散性に優れ、
かつ静電気の大きさや極性に応じて付着・分散混合する
割合などの複合状態が制御された微粒子複合体が得られ
ることを見出した。本発明は、かかる知見に基づいて完
成したものである。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to produce a composite in which superconductor fine particles and fine particles of ceramics or metal are uniformly dispersed. After charging positive and negative static electricity, by mixing them, excellent uniform dispersion,
Moreover, they have found that a fine particle composite is obtained in which the composite state such as the ratio of adhering / dispersing and mixing is controlled according to the magnitude and polarity of static electricity. The present invention has been completed based on such findings.

【0007】すなわち、本発明は、エアロゾル状態の超
電導体微粒子とセラミックス又は金属の微粒子に対し、
双方向衝突荷電により一方に正の静電気を、他方に負の
静電気をそれぞれ帯電させたのち、両者を混合し、電気
的に結合させることを特徴とする微粒子複合体の製造方
法を提供するものである。
That is, the present invention relates to superconductor fine particles in an aerosol state and fine particles of ceramics or metal,
To provide a method for producing a fine particle composite, which comprises charging one side with positive static electricity and the other side with negative static electricity by bidirectional collision charging, and then mixing the two and electrically coupling them. is there.

【0008】本発明方法においては、まず噴霧熱分解法
等によりエアロゾル状態にある超電導体微粒子とセラミ
ックス又は金属の微粒子を別々に調製する。この際の超
電導体微粒子の種類については、静電気を帯電しうるも
のであればよく、特に制限はないが、セラミックス又は
金属微粒子としてはピニングセンターや焼結助剤となる
物質の微粒子を用いる。
In the method of the present invention, first, fine particles of superconductor and fine particles of ceramics or metal in an aerosol state are separately prepared by a spray pyrolysis method or the like. The type of the superconductor fine particles at this time is not particularly limited as long as it can be charged with static electricity, but fine particles of a substance serving as a pinning center or a sintering aid are used as the ceramic or metal fine particles.

【0009】超電導体微粒子は、例えば超電導体の組成
となるように調製した硝酸塩の溶液を公知の方法によ
り、噴霧熱分解することによって調製することができ、
一方のピニングセンターや焼結助剤となるセラミックス
や金属の微粒子は、例えば銀の硝酸塩溶液を前記と同様
に噴霧熱分解することにより、調製することができる。
このようにして得られた各微粒子はエアロゾル状態を形
成し、高分散性を有している。このような微粒子の平均
粒径は、通常0.1〜1μmの範囲にある。
The superconductor fine particles can be prepared, for example, by spray pyrolysis of a solution of nitrate prepared so as to have a composition of the superconductor by a known method.
On the other hand, the fine particles of ceramics or metal to serve as the pinning center or the sintering aid can be prepared, for example, by spray pyrolyzing a silver nitrate solution in the same manner as described above.
The fine particles thus obtained form an aerosol state and have high dispersibility. The average particle size of such fine particles is usually in the range of 0.1 to 1 μm.

【0010】次に、このようにして得られたエアロゾル
状態にある超電導体微粒子とセラミックス又は金属の微
粒子それぞれに、任意の大きさ及び極性の静電気を双方
向衝突荷電法により帯電させたのち、それらを混合す
る。各微粒子は帯電した静電気の大きさや、極性に応じ
て付着・分散混合し、均一分散性に優れ、かつ複合状態
が制御された微粒子複合体が得られる。
Next, the superconducting fine particles in the aerosol state and the fine particles of ceramics or metal thus obtained are charged with static electricity of an arbitrary size and polarity by the bidirectional collision charging method, and then they are charged. To mix. The respective fine particles are attached / dispersed and mixed according to the magnitude of the charged static electricity and the polarity to obtain a fine particle composite having excellent uniform dispersibility and a controlled composite state.

【0011】次に、本発明の実施態様の1例を添付図面
に従って説明する。図1は本発明方法によって超電導体
用原料粉体を製造する場合の装置の1例の説明図であっ
て、噴霧熱分解法による超電導体微粒子、及びピニング
センターや焼結助剤となるセラミックス又は金属の微粒
子の2種類の微粒子の合成室、及び微粒子荷電装置、荷
電粒子の混合室及び静電捕集室などから構成されてい
る。
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an explanatory view of an example of an apparatus for producing a raw material powder for a superconductor by the method of the present invention, which comprises superconductor fine particles by a spray pyrolysis method, and a ceramic serving as a pinning center or a sintering aid. It is composed of a chamber for synthesizing two types of metal fine particles, a particle charging device, a mixing chamber for charged particles, an electrostatic collection chamber, and the like.

【0012】まず、一方の合成室では溶液霧化器1に超
電導体の組成となるように調製した硝酸塩などの溶液を
入れ、溶液を微小な液滴となし、これにキャリアガス2
を導入して、反応炉3にて所定の温度、雰囲気、流量条
件で極めて短時間内に乾燥−反応−結晶化を起こさせて
エアロゾル状態の超電導体微粒子を調製する。
First, in one of the synthesis chambers, a solution such as a nitrate prepared to have a composition of a superconductor is put into the solution atomizer 1 to form fine droplets of the carrier gas 2.
Is introduced into the reaction furnace 3 to cause dry-reaction-crystallization within a very short time under a predetermined temperature, atmosphere and flow rate conditions to prepare aerosol superconductor fine particles.

【0013】また、他方の合成室では溶液霧化器1′に
ピニングセンターや焼結助剤の組成となるように調製し
た硝酸塩などの溶液を入れ、前記と同様にしてエアロゾ
ル状態のピニングセンターや焼結助剤となる物質の微粒
子を調製する。
In the other synthesis chamber, a solution such as a pinning center or a solution of nitrate prepared to have a composition of a sintering aid is put in the solution atomizer 1 ', and an aerosol-state pinning center or a pinning center is prepared in the same manner as described above. Fine particles of a substance to be a sintering aid are prepared.

【0014】次に、このようにして得られたエアロゾル
状態の各微粒子を、それぞれ粒子荷電装置4,4′へ導
き、双方向衝突荷電法などにより、任意の大きさ及び極
性の静電気荷電を行い、次いで荷電された微粒子それぞ
れを、粒子表面に帯電した電荷を利用して混合する交流
電場により構成された荷電粒子混合器5へ送る。ここで
各粒子は帯電した静電気の大きさや極性に応じて付着・
分散混合して微粒子複合体を形成する。この微粒子複合
体は静電捕集部6によって捕集される。
Next, each of the thus obtained fine particles in an aerosol state is guided to a particle charging device 4, 4 ', and electrostatically charged to an arbitrary size and polarity by a bidirectional collision charging method or the like. Then, each of the charged fine particles is sent to a charged particle mixer 5 constituted by an alternating electric field that mixes by utilizing the charges charged on the particle surface. Here, each particle adheres according to the magnitude and polarity of the charged static electricity.
Disperse and mix to form a particulate composite. The fine particle complex is collected by the electrostatic collection unit 6.

【0015】このようにして、均一分散性に優れた超電
導体用原料粉体が得られる。なお、7は排ガス処理器、
8は真空ポンプである。
In this way, a raw material powder for superconductor having excellent uniform dispersibility can be obtained. In addition, 7 is an exhaust gas treatment device,
8 is a vacuum pump.

【0016】前記複合微粒子集合体において、付着・分
散混合する割合などの複合状態は、荷電する静電気の大
きさや極性で制御することが可能であり、したがって、
本発明方法によると複合状態の制御性に優れる微粒子複
合体を製造することができる。
In the composite fine particle aggregate, the composite state such as the ratio of adhering / dispersing and mixing can be controlled by the magnitude and polarity of the charged static electricity.
According to the method of the present invention, it is possible to produce a fine particle composite having excellent controllability of the composite state.

【0017】[0017]

【発明の効果】本発明によると、簡便な方法で均一分散
性及び複合状態の制御性が優れた微粒子複合体を容易に
製造することができ、超電導体用原料粉体の製造方法と
して好適である。
EFFECTS OF THE INVENTION According to the present invention, a fine particle composite having excellent uniform dispersibility and controllability of the composite state can be easily produced by a simple method, which is suitable as a method for producing a raw material powder for a superconductor. is there.

【0018】[0018]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこの例によってなんら限定されるも
のではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0019】実施例 イットリウム系超電導体について、超電導体−銀の微粒
子複合体を製造した。
Example A superconductor-silver fine particle composite was produced for an yttrium-based superconductor.

【0020】まず、イットリウム:バリウム:銅原子比
が1:2:3となるように、濃度0.05モル/リット
ルの硝酸塩溶液を調製した。次いで、反応炉において、
該溶液を反応温度950℃、酸素ガス(キャリアガス)
流量1リットル/分の条件で噴霧熱分解を行い、イット
リウム系超電導体微粒子を調製した。
First, a nitrate solution having a concentration of 0.05 mol / liter was prepared so that the atomic ratio of yttrium: barium: copper was 1: 2: 3. Then, in the reactor,
The solution was treated at a reaction temperature of 950 ° C. and oxygen gas (carrier gas)
Spray pyrolysis was performed at a flow rate of 1 liter / min to prepare yttrium-based superconductor fine particles.

【0021】同時に、もう1つの反応炉において、銀の
0.04モル/リットル硝酸塩溶液を、反応温度950
℃、酸素ガス(キャリアガス)流量3リットル/分の条
件で噴霧熱分解を行い、銀微粒子を調製した。
At the same time, in another reactor, a 0.04 mol / liter nitrate solution of silver was added at a reaction temperature of 950.
Spray pyrolysis was performed under the conditions of a temperature of 3 ° C. and an oxygen gas (carrier gas) flow rate of 3 liters / minute to prepare fine silver particles.

【0022】このようにして得た各微粒子を荷電部へ送
り、双方向衝突荷電法により、イットリウム系超電導体
微粒子には負極性、銀微粒子には正極性のそれぞれ大き
さの等しい静電気を帯電させた。次いで帯電された微粒
子それぞれを、交流電場により構成された混合部へ送
り、ここで反対の極性に帯電した粒子が静電気力によっ
て引き合う力を利用して微粒子複合体を形成させた。次
いでこの微粒子複合体を、静電捕集器で捕集した。
The fine particles thus obtained are sent to a charging unit, and the yttrium-based superconductor fine particles are charged with a negative polarity and the silver fine particles are charged with a static electricity having the same magnitude by a bidirectional collision charging method. It was Then, each of the charged fine particles was sent to a mixing section constituted by an AC electric field, and here, a fine particle complex was formed by utilizing a force in which the particles charged in opposite polarities are attracted by an electrostatic force. Then, the fine particle complex was collected by an electrostatic collector.

【0023】得られた複合微粒子集合体の電子顕微鏡観
察結果を図2に示す。黒色の大粒子がイットリウム系超
電導体微粒子、白色の小粒子が銀微粒子である。
The results of electron microscopic observation of the obtained composite fine particle aggregate are shown in FIG. The black large particles are yttrium-based superconductor particles, and the white small particles are silver particles.

【0024】他法や、気相プロセスでも荷電を行わずに
単にエアロゾル状態の微粒子を混合した場合は、不均一
に凝集したところが確認されたが、本発明方法によりこ
れを均一化し、粒子表面に帯電した電荷に応じた微粒子
複合体を作製することができた。
When the fine particles in the aerosol state were simply mixed without charging even in the other method or in the gas phase process, it was confirmed that the particles were non-uniformly aggregated. It was possible to prepare a fine particle composite according to the charged electric charge.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法を実施するための装置の1例の説
明図。
FIG. 1 is an explanatory view of an example of an apparatus for carrying out the method of the present invention.

【図2】 本発明方法により得られたイットリウム系超
電導体微粒子と銀微粒子との微粒子複合体の粒子構造を
示す電子顕微鏡写真図。
FIG. 2 is an electron micrograph showing a particle structure of a fine particle composite of yttrium-based superconductor fine particles and silver fine particles obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1,1′ 溶液霧化器 2,2′ キャリアガス 3,3′ 反応炉 4,4′ 粒子荷電装置 5 荷電粒子混合器 6 静電捕集器 7 排ガス処理器 8 真空ポンプ 1,1 'Solution atomizer 2,2' Carrier gas 3,3 'Reactor 4,4' Particle charging device 5 Charged particle mixer 6 Electrostatic collector 7 Exhaust gas processor 8 Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/00 ZAA H01B 12/00 ZAA ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location // H01B 12/00 ZAA H01B 12/00 ZAA

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エアロゾル状態の超電導体微粒子とセラ
ミックス又は金属の微粒子に対し、双方向衝突荷電によ
り一方に正の静電気を、他方に負の静電気をそれぞれ帯
電させたのち、両者を混合し、電気的に結合させること
を特徴とする微粒子複合体の製造方法。
1. The superconductor fine particles in the aerosol state and the fine particles of ceramics or metal are charged with positive static electricity on one side and negative static electricity on the other side by bidirectional collision charging, and then the both are mixed to produce an electric charge. A method for producing a fine particle complex, characterized in that the fine particles are bonded together.
JP5304614A 1993-11-09 1993-11-09 Method for producing fine particle composite Expired - Lifetime JP2517877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304614A JP2517877B2 (en) 1993-11-09 1993-11-09 Method for producing fine particle composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5304614A JP2517877B2 (en) 1993-11-09 1993-11-09 Method for producing fine particle composite

Publications (2)

Publication Number Publication Date
JPH07132223A JPH07132223A (en) 1995-05-23
JP2517877B2 true JP2517877B2 (en) 1996-07-24

Family

ID=17935137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304614A Expired - Lifetime JP2517877B2 (en) 1993-11-09 1993-11-09 Method for producing fine particle composite

Country Status (1)

Country Link
JP (1) JP2517877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148643A1 (en) 2006-06-22 2007-12-27 Sharp Kabushiki Kaisha Dust condensing passage, charging draft member, frictional charging resin pipe, electric vacuum cleaner
WO2008044468A1 (en) 2006-10-06 2008-04-17 Sharp Kabushiki Kaisha Dust flocculating passage, dust flocculating method, and vacuum cleaner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681561B2 (en) * 1997-12-26 2005-08-10 日本碍子株式会社 Method and apparatus for uniformly mixing substances
JP2005126348A (en) * 2003-10-22 2005-05-19 National Institute Of Advanced Industrial & Technology Metal-based inorganic antibacterial and antifungal agent, method for producing the same and use
EP2444984B1 (en) * 2009-06-18 2018-04-18 Toyota Jidosha Kabushiki Kaisha Method and apparatus for producing magnetic powder
US20190160439A1 (en) * 2016-07-28 2019-05-30 National University Corporation Toyohashi University Of Technology Composite particle manufacturing device and composite particle manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526398B2 (en) * 1993-07-07 1996-08-21 工業技術院長 Method for producing composite ultrafine particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148643A1 (en) 2006-06-22 2007-12-27 Sharp Kabushiki Kaisha Dust condensing passage, charging draft member, frictional charging resin pipe, electric vacuum cleaner
WO2008044468A1 (en) 2006-10-06 2008-04-17 Sharp Kabushiki Kaisha Dust flocculating passage, dust flocculating method, and vacuum cleaner

Also Published As

Publication number Publication date
JPH07132223A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
EP1370486B1 (en) Method for producing multinary metal oxide powders in a pulsed reactor
JP2517877B2 (en) Method for producing fine particle composite
JPS62294435A (en) Cryogenic systesis
CN112920001A (en) Method for preparing nano aluminum/porous copper oxide nano thermite by self-assembly of P4VP
CN108557863A (en) A kind of preparation method of lanthana
JPH10509942A (en) Vanadium oxide having an average vanadium oxidation state of at least +4 but lower than +5, essentially free of V 2 O 5, preferably essentially V 6 O 13 Vanadium oxide consisting of ▼, VO 2 or any mixture thereof from NH 4 VO 3
JPH05311212A (en) Production of fine powder of ag-pd alloy powder
Harris et al. Morphology control in precursor ceramic powder production by the electrical dispersion reactor
JP4483389B2 (en) Method for producing glass particles
JPH03131560A (en) Production of mixed powder
JP2614810B2 (en) Method for producing single-phase magnetite powder
Tohge et al. Preparation of superconducting fine particles in the Bi-(Pb)-Ca-Sr-Cu-O system using the spray-pyrolysis method
JP2835083B2 (en) Manufacturing method of oxide superconductor
JPH0474810A (en) Manufacture of nickel base metal fine powder
JPH02212308A (en) Manufacture of ceramic oxide having supercondctivity
RU2093468C1 (en) Method or preparing uranium dioxide for oxide composition based thereon
JPH01192709A (en) Production of superconductin oxide ceramic powder and sintered form therefrom
JPH0572332B2 (en)
Devi et al. Low-temperature preparation and characterization of phase-pure lanthanide chromates (V) by the citrate gel process
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
JPH01197318A (en) Production of oxide superconducting powder
JPH02196023A (en) Production of oxide-based superconductor
Matsuzawa et al. Magnetic Properties of SrO⋅ nFe2O3 (n= 1-6) Synthesized by Self-combustion Process
JPH026327A (en) Synthesis of oxide based super conductor powder
JPH0763633B2 (en) Method for supporting fine noble metal particles or noble metal oxide particles on the surface of metal oxide powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term