JPH03131560A - Production of mixed powder - Google Patents

Production of mixed powder

Info

Publication number
JPH03131560A
JPH03131560A JP1267359A JP26735989A JPH03131560A JP H03131560 A JPH03131560 A JP H03131560A JP 1267359 A JP1267359 A JP 1267359A JP 26735989 A JP26735989 A JP 26735989A JP H03131560 A JPH03131560 A JP H03131560A
Authority
JP
Japan
Prior art keywords
powder
ceramic
mixed
powders
ceramic powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1267359A
Other languages
Japanese (ja)
Inventor
Wataru Komatsu
亘 小松
Ryoji Sedaka
良司 瀬高
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP1267359A priority Critical patent/JPH03131560A/en
Publication of JPH03131560A publication Critical patent/JPH03131560A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the purity of mixed powder by atomizing solutions of compounds containing the constituent elements of ceramic powder or a mixture of ceramic powder and metal powder, separately heating the solutions to form powder by the reaction of the compound and collecting the powder in the form of suspending mixed powder. CONSTITUTION:Compounds containing elements constituting a ceramic raw material and a sintering assistant are used as raw materials and dissolved in a solvent at prescribed concentrations. The obtained solutions 1, 11, 21 are separately atomized with an ultrasonic nebulizer 2 and the atomized liquids 3, 13, 23 are carried on a carrier gas such as O2 and introduced into a reaction furnace 5. The introduced liquids are heated at a prescribed temperature to form suspending ceramic powder and sintering assistant powder 4, 14, 24. The powders are introduced into a mixer 6, mixed with each other and collected in a collector 7 by electrostatic precipitation to obtain a mixed powder composed of ceramic powder mixed with sintering assistant powder. The similar treatment can be applied to a starting raw material composed of plural kinds of ceramic powders and metal powders.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複数のセラミックス粉体が又はセラミックス粉
体と金属粉体とが均一微細に混合した、純度の高い混合
粉体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a highly pure mixed powder in which a plurality of ceramic powders or a ceramic powder and a metal powder are uniformly and finely mixed.

C従来の技術とその課題〕 近年、新素材としてセラミックス材料が注目されテイル
、中でもAet03 、S i C,、S 1sNa等
のセラミックスは高温で使用可能な構造材料として有望
視されているが、信転性のある材料として広く使用され
る為には、微細なセラミックス原料粉体の製造並びにこ
の粉体を焼結助材等と均一微細に混合する技術開発が不
可欠である。
C. Conventional technology and its issues] In recent years, ceramic materials have attracted attention as new materials.Among them, ceramics such as Aet03, SiC, and S1sNa are seen as promising structural materials that can be used at high temperatures. In order to be widely used as a material with transferability, it is essential to develop a technology to produce fine ceramic raw material powder and to uniformly and finely mix this powder with sintering aids and the like.

又最近アルカリ土金属、希土類元素、銅、ビスマス、タ
リウム等の元素及び酸素等からなるセラミックス超電導
体が見出されている。
Recently, ceramic superconductors made of alkaline earth metals, rare earth elements, copper, bismuth, thallium, and other elements and oxygen have been discovered.

これらのセラミックス超電導体は、液体N2温度以上で
超電導となるため従来の液体He温度で超電導を示す金
属超電導体に較べて格段に経済的であり、各分野での利
用が検討されている。
These ceramic superconductors become superconducting at temperatures above the liquid N2 temperature and are therefore much more economical than conventional metal superconductors that exhibit superconductivity at the liquid He temperature, and their use in various fields is being considered.

而して上記のセラミックス超電導体は脆いため金属材料
のように塑性加工ができず、これらを線材等の超電導々
体に加工するには、主に粉末焼結法が用いられている。
However, since the ceramic superconductors mentioned above are brittle, they cannot be plastically worked like metal materials, and powder sintering is mainly used to process them into superconducting bodies such as wire rods.

この粉末焼結法は例えばボールミル等により混合した原
料粉体の仮焼成粉をAg管等に充填して伸延加工し、次
いでこれを02含有雰囲気中で加熱焼結する方法である
が、上記の仮焼成粉は粒子が粗大な為、得られる焼結体
は密度が低く機械的電気的特性に劣るものであった。
This powder sintering method is a method in which a pre-sintered powder of raw material powder mixed using a ball mill or the like is filled into an Ag tube or the like, stretched, and then heated and sintered in an atmosphere containing 02. Since the particles of the calcined powder were coarse, the obtained sintered body had a low density and poor mechanical and electrical properties.

特に超電導々体は、導体内を磁束が移動すると超電導状
態が破壊するので、導体内に磁束をピンニングする為の
ピン止め材を均一微細に分散させて用いるものであるが
、セラミックス超電導々体を前記の粉末焼結法により製
造する場合は、密度が低い上ピン止め材を微細に分散さ
せることが困難であり、従って得られるセラミックス超
4.導々体は高い超電導特性が得られないという問題が
あった。
In particular, the superconducting state of superconducting conductors is destroyed when magnetic flux moves within the conductor, so a pinning material for pinning the magnetic flux is uniformly and finely dispersed within the conductor. When manufacturing by the powder sintering method described above, it is difficult to finely disperse the upper pinning material, which has a low density. The problem with conductors is that high superconducting properties cannot be obtained.

このようなことから微細な粉体を製造する方法として噴
霧熱分解法が捉案された。
For these reasons, the spray pyrolysis method was proposed as a method for producing fine powder.

この方法は例えば複数のセラミックス粉体の構成元素を
含有する化合物をそれぞれ所定量配合しこれを溶媒に解
かして溶液となし、この溶液を霧状化して所定温度に加
熱して所望のセラミックス粉体を合成する方法である。
In this method, for example, a predetermined amount of each compound containing the constituent elements of a plurality of ceramic powders is mixed, dissolved in a solvent to form a solution, and this solution is atomized and heated to a predetermined temperature to form the desired ceramic powder. This is a method of synthesizing.

しかしながらこの方法によると種々の化合物溶液の霧状
体を同じ温度で反応させる為セラミックス粉体ごとに適
正な反応がなされず、その結果セラミックス超電導体を
製造するような場合は炭素や未分解の有害物質が生成し
混入して高い超電導特性が得られないという問題があっ
た。
However, according to this method, atomized bodies of various compound solutions are reacted at the same temperature, which prevents proper reactions from occurring for each ceramic powder, and as a result, when producing ceramic superconductors, carbon and undecomposed harmful substances are produced. There was a problem in that high superconducting properties could not be obtained due to the generation and contamination of substances.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑み鋭意研究を行った結果なされ
たもので、その目的とするところは、複数のセラミック
ス粉体が又はセラミックス粉体と金属粉体とが均一微細
に分散し、且つ高純度の混合粉体を製造する方法を提供
することにある。
The present invention has been made as a result of intensive research in view of the above situation, and its purpose is to provide a system in which a plurality of ceramic powders or ceramic powders and metal powders are uniformly and finely dispersed, and have high purity. An object of the present invention is to provide a method for producing a mixed powder.

即ち本発明は、噴霧熱分解法による複数のセラミックス
粉体又は複数のセラミックス粉体と金属粉体からなる混
合粉体の製造方法であって、複数のセラミックス粉体又
は複数のセラミックス粉体及び金属粉体の構成元素を各
々含有する化合物の溶液をそれぞれ用意し、上記各々の
溶液を各々霧状化したのち、個々の霧状体をそれぞれ所
定温度に加熱した別々の反応炉に導入して加熱反応せし
めてそれぞれを個々のセラミックス粉体又は/及び金属
粉体となしたのち、生成した個々のセラミックス粉体同
士、或いは個々のセラミックス粉体と金属粉体とを浮超
状態で混合して浮遊混合粉体となし、しかるのち上記浮
遊混合粉体を補集することを特徴とするものである。
That is, the present invention is a method for producing a plurality of ceramic powders or a mixed powder consisting of a plurality of ceramic powders and a metal powder by a spray pyrolysis method, the method comprising: a plurality of ceramic powders or a plurality of ceramic powders and a metal powder; Each solution of a compound containing each of the constituent elements of the powder is prepared, each of the above solutions is atomized, and each atomized material is introduced into a separate reactor heated to a predetermined temperature and heated. After reacting to form individual ceramic powders and/or metal powders, the resulting individual ceramic powders or the individual ceramic powders and metal powders are mixed in a suspended state and suspended. The method is characterized in that it is made into a mixed powder, and then the floating mixed powder is collected.

本発明方法においてセラミックスと金属粉体との混合粉
体とは、例えばYBazCuiOtの組成のセラミック
ス超電導粉体とピン止め材となるAg粉の混合粉体など
である。
In the method of the present invention, the mixed powder of ceramics and metal powder is, for example, a mixed powder of ceramic superconducting powder having a composition of YBazCuiOt and Ag powder serving as a pinning material.

而して上記セラミックス超電導粉体の構成元素を各々含
有する溶液とは例えばY、Ba、Cuなどの元素をそれ
ぞれ含有する化合物を各々水等の溶媒に溶解したもので
ある。
The solution containing each of the constituent elements of the ceramic superconducting powder is, for example, a compound containing each of elements such as Y, Ba, Cu, etc., dissolved in a solvent such as water.

上記において上記の如き構成元素を含有する化合物とし
ては酢酸塩、硝酸塩、ハロゲン化物又は有機化合物等が
用いられる。又上記化合物を溶解する溶媒としては水の
他、アルコキシドやキレート等の有N 溶媒も用いられ
る。
In the above, acetates, nitrates, halides, organic compounds, etc. are used as compounds containing the above-mentioned constituent elements. In addition to water, N-containing solvents such as alkoxides and chelates can also be used as solvents for dissolving the above compounds.

本発明において上記化合物の溶液を霧状化する方法には
、超音波ネブライザーや気流式ノズル等が適用される。
In the present invention, an ultrasonic nebulizer, an air flow nozzle, or the like is applied to the method of atomizing the solution of the above compound.

本発明方法において霧状体を反応炉に連続供給する方法
としては、これを空気、0□又はN2、He、Ar等の
キャリアガスにのせて搬送するのが供給量のコントロー
ルが容易にできて好ましいものである。キャリアガスに
オゾン等の活性なガスを用いると反応性の高いセラミッ
クス粉体又は金属粉体を生成することができる。
In the method of the present invention, the method of continuously supplying the atomized material to the reactor is to transport it on a carrier gas such as air, 0□, N2, He, Ar, etc., since the amount of supply can be easily controlled. This is preferable. When an active gas such as ozone is used as a carrier gas, highly reactive ceramic powder or metal powder can be produced.

又上記霧状体をセラミックス粉体等に加熱反応させる反
応炉としては、電気抵抗加熱炉、高周波誘導炉、バーナ
加熱炉等が用いられる。反応炉での加熱温度は、使用す
る原料溶液組成ごとに決定されるもので、少なくとも原
料の塩基の分解温度以上の温度で、通常600’C以」
二、特に無機塩の場合は、800’C以上が必要である
Further, as a reaction furnace for heating and reacting the atomized material with ceramic powder, etc., an electric resistance heating furnace, a high frequency induction furnace, a burner heating furnace, etc. are used. The heating temperature in the reactor is determined depending on the composition of the raw material solution used, and is at least the decomposition temperature of the raw material base, usually 600'C or higher.
2. Especially in the case of inorganic salts, a temperature of 800'C or higher is required.

本発明方法において、霧状化と加熱反応炉との中間過程
に於て凍結乾燥などの処理を行っても良く、原子状にセ
ラミックス粉体成分とAg等の金属粉体成分が混合した
状態を可及的に保持して加熱反応を行い原子状またはコ
ロイド状の混合物を得ることが望ましい。
In the method of the present invention, a process such as freeze-drying may be performed in the intermediate process between atomization and heating reactor, and the state in which the ceramic powder component and the metal powder component such as Ag are atomically mixed is It is desirable to maintain as much as possible and conduct a heating reaction to obtain an atomic or colloidal mixture.

斯くの如くして各々別々の反応炉で合成したそれぞれの
セラミックス粉体又はセラミックス粉体と金属粉体とは
、浮遊状態で混合したのち補集して均一微細な混合粉体
となすものである。而して上記各々のセラミックス粉体
又はセラミックス粉体と金属粉体の混合比は各々の構成
元素含有化合物の溶fLa度、霧状化速度、キャリアガ
ス流量等により制御されるものである。
The respective ceramic powders or ceramic powders and metal powders synthesized in separate reactors in this way are mixed in a suspended state and then collected to form a uniform and fine mixed powder. . The mixing ratio of each of the above-mentioned ceramic powders or ceramic powders and metal powders is controlled by the degree of solubility fLa of each constituent element-containing compound, atomization speed, carrier gas flow rate, etc.

本発明においては、上記構成元素含有化合物の溶液濃度
等の条件を変化させることにより、生成するセラミック
ス粉体等の粒子径を各々別々に制御することができ、粒
子径の異なる粉体を組み合わせて焼結体密度をより向上
させることも可能となる。
In the present invention, by changing the conditions such as the concentration of the solution of the constituent element-containing compound, the particle size of each of the generated ceramic powders, etc. can be controlled separately, and powders with different particle sizes can be combined. It also becomes possible to further improve the density of the sintered body.

〔作用〕[Effect]

本発明方法では、複数のセラミックス粉体又はセラミッ
クス粉体と金属粉体との混合粉体の製造を上記各々の粉
体の構成元素を含有する化合物の溶液をそれぞれ用意し
、これを各々個別に霧状化し、この個別に霧状化した霧
状体を各々別々に加熱反応せしめるので、加熱温度をセ
ラミックス粉体又は金属粉体ごとにそれぞれ適正に設定
することができ、依って得られる粉体は純度の高いもの
となる。
In the method of the present invention, a plurality of ceramic powders or mixed powders of ceramic powders and metal powders can be produced by preparing solutions of compounds containing the constituent elements of each of the above-mentioned powders, and individually dissolving the solutions. Since the individually atomized atomized materials are heated and reacted separately, the heating temperature can be appropriately set for each ceramic powder or metal powder, and the resulting powder becomes highly pure.

又上記複数のセラミックス粉体又はセラミックス粉体と
金属粉体との混合粉体は、各々の霧状体を加熱反応して
それぞれ浮遊セラミックス粉体又は浮遊金属粉末となし
た状態で混合するので、混合が均一になされるとともに
、個々の粉体が凝集したりすることがなく、均一微細な
混合粉体が得られる。
In addition, the plurality of ceramic powders or mixed powders of ceramic powder and metal powder are mixed in a state where each of the atomized bodies is heated and reacted to form floating ceramic powder or floating metal powder, respectively. Mixing is done uniformly, and the individual powders do not aggregate, resulting in a uniform and fine mixed powder.

〔実施例] 以下に本発明を実施例により詳細に説明する。〔Example] The present invention will be explained in detail below using examples.

実施例1 第1図は、本発明例にて用いた装置の要部説明図である
Example 1 FIG. 1 is an explanatory diagram of the main parts of an apparatus used in an example of the present invention.

この装置は、溶液1.11.21を霧状化する為の超音
波ネブライザー2と上記価々の霧状体3,13゜23を
個々のセラミックス粉体4.14.24に加熱反応させ
る為の反応炉5とを連結した粉体製造器を3&ll並列
に配置し、その先番こ浮遊状態の上記セラミックス粉体
を混合する混合器6及び補集器7をそれぞれ1台ずつ連
結配置したものである。
This device consists of an ultrasonic nebulizer 2 for atomizing the solution 1.11.21 and a heating reaction of the above-mentioned atomized bodies 3, 13° 23 to individual ceramic powders 4.14.24. Three powder producing devices connected to a reactor 5 are arranged in parallel, and one mixer 6 and one collector 7 for mixing the above-mentioned ceramic powder in a floating state are connected to each other. It is.

而して上記装置を用いてA l z 03粉体に焼結助
材となるNa01Mg0粉体を混合した混合粉体を製造
した。
Using the above-mentioned apparatus, a mixed powder was produced by mixing Al z 03 powder with Na01Mg0 powder serving as a sintering aid.

出発原料としてAN (NO3)3 、Na NOs、
Mg(No3)zの化合物を用い、これをエタノール−
水系溶媒にそれぞれ0.44.0.09.0.035モ
ル/lの濃度で溶解し、この3種の溶液1.11.21
をそれぞれ超音波ネブライザー2により霧状化し、この
霧状体3.13.23を0□ガスにのせて反応炉5に導
入してそれぞれ1100°C,1050’c、 108
0°Cに加熱して各々の霧状体をAlzOz 、Na 
O,Mgoの浮遊セラミックス粉体となし、次いでこれ
を混合器6に導入して混合したのち補集器7にて静電補
集してA2□0.粉体に焼結助材を混合した混合粉体を
製造した。
As starting materials AN (NO3)3, Na NOs,
Using a compound of Mg(No3)z, it was mixed with ethanol-
These three solutions 1.11.21 were dissolved in an aqueous solvent at a concentration of 0.44.0.09.0.035 mol/l, respectively.
were respectively atomized by an ultrasonic nebulizer 2, and the atomized bodies 3, 13, and 23 were placed on 0□ gas and introduced into the reactor 5 to give 1100°C, 1050'c, and 108°C, respectively.
Heating to 0°C, each atomized material was converted into AlzOz, Na
This is made into floating ceramic powder of O, Mgo, which is then introduced into the mixer 6 and mixed, and then electrostatically collected in the collector 7 to form A2□0. A mixed powder was produced by mixing powder with a sintering aid.

実施例2 粉体製造器を4台並列に配置した他は第1図に示したの
と同し装置を用いて酸化物超電導粉体とピン止め材のA
g粉とが混合した混合粉体を製造した。出発原料として
Y (CH3COO)、・Ba(CHsCOO)z及び
Cu (CH3COO)Z及びAg (CHz COO
) zを用い、上記出発原料を水にとかしてそれぞれ0
.02.0.04.0.06.0.005モル/lの水
溶液となした。
Example 2 Oxide superconducting powder and pinning material A were prepared using the same equipment as shown in Figure 1 except that four powder manufacturing machines were arranged in parallel.
A mixed powder was produced by mixing powder with g powder. Y (CH3COO), .Ba(CHsCOO)z and Cu (CH3COO)Z and Ag (CHz COO) as starting materials.
) Dissolve the above starting materials in water using
.. 0.02.0.04.0.06.0.005 mol/l aqueous solution.

次いで上記水溶液を超音波ネブライザーより霧状化し、
次いでこの霧状体をY:Ba:Cu:Agが原子比で1
72:3:0.5になるようキャリアガスの02流量を
3.0.3.0.3.0.8.0 N /minに調節
して各々別々の電気炉に供給し、それぞれ935.98
0.960.970°Cに加熱して各々霧状体をYtO
,、Ba0z 、CuOlAgの浮遊粉体となし、次い
でこれを混合器に導入して混合したのち補集器にて静電
補集してAg粉及びセラミックス超電導粉体からなる混
合粉体を製造した。
Next, the aqueous solution was atomized using an ultrasonic nebulizer,
Next, this atomized material was mixed with Y:Ba:Cu:Ag in an atomic ratio of 1.
The flow rate of the carrier gas was adjusted to 3.0.3.0.3.0.8.0 N/min so that the ratio was 72:3:0.5, and the flow rate of the carrier gas was adjusted to 3.0.3.0.3.0.8.0 N/min. 98
Heat to 0.960.970°C to convert each atomized body into YtO
, Ba0z, CuOlAg were made into floating powders, which were then introduced into a mixer and mixed, and then electrostatically collected in a collector to produce a mixed powder consisting of Ag powder and ceramic superconducting powder. .

比較例1 市販の平均粒径5μのA 1 gos 、N a O,
、MgO粉体を実施例1で得られた混合粉体と同じ比率
になるように秤量し、これをボールミルで混合してA1
.O,、Na01Mg0の混合粉体となした。
Comparative Example 1 Commercially available A 1 gos, N a O, with an average particle size of 5 μm
, MgO powder was weighed to have the same ratio as the mixed powder obtained in Example 1, and mixed in a ball mill to obtain A1.
.. A mixed powder of O,, Na01Mg0 was prepared.

比較例2 実施例2で用いたと同じ出発原料をY:Ba:Cu:A
gが原子比でi:2:3:o、sになるよう秤量し、こ
れを水に溶解してY B a tc u=A g。、、
の組成で0.06モル/!濃度の水溶液を用意し、この
水溶液を第1図に示した1台の超音波ネプラに供給し、
これを980°Cに加熱してAg粉を含有したセラミッ
クス超電導粉体に合成せしめ、しかるのちこれを実施例
1と同様にして補集した。
Comparative Example 2 The same starting materials used in Example 2 were used as Y:Ba:Cu:A
Weigh so that the atomic ratio of g is i:2:3:o,s, and dissolve it in water to obtain Y B a tc u=A g. ,,
The composition is 0.06 mol/! Prepare a concentrated aqueous solution, supply this aqueous solution to one ultrasonic nebula shown in Figure 1,
This was heated to 980°C to synthesize a ceramic superconducting powder containing Ag powder, which was then collected in the same manner as in Example 1.

斯くの如くして得られた各々の混合粉体を圧粉成形し、
次いでこの成形体を種々条件にて加熱焼結してベレット
となし、それぞれのベレットについて不純物分析、相対
密度の測定、組織観察を行い更に臨界温度(TC)、臨
界電流密度(、JC)又は伸びの測定を適宜行った。結
果は主な製造条件を併記して第1表に示した。
Each of the mixed powders thus obtained was compacted,
Next, this molded body is heated and sintered under various conditions to form pellets, and each pellet is analyzed for impurities, measured relative density, and observed structure, and further evaluated for critical temperature (TC), critical current density (, JC), and elongation. Measurements were made as appropriate. The results are shown in Table 1 along with the main manufacturing conditions.

第1表より明らかなように本発明方法品(実施例1.2
)は、混合粉体の各々の粒子径が極めて微細であり、従
って相対密度が高く且つ焼結助材のNaOやMgO又は
ビン止め材のAgがそれぞれA2□0.ベース中又はセ
ラミックス超電導体中に均一微細に分散しており、従っ
てA 1 z O3焼結体にあっては伸びが、又セラミ
ックス超、14体にあってはTc及びJ、がそれぞれ高
い値のものとなった。
As is clear from Table 1, the method of the present invention (Example 1.2
), the particle size of each of the mixed powders is extremely fine, so the relative density is high, and the sintering aids NaO and MgO or the bottle stopper Ag are A2□0. It is uniformly and finely dispersed in the base or ceramic superconductor, and therefore the A 1 z O3 sintered body has high elongation, and the ceramic superconductor and 14 body have high values of Tc and J, respectively. It became a thing.

これに対し比較例1は原料に市販品の粗大粒子の粉体を
用いこれをボールミルで混合して混合粉体となした為に
ベレットの相対密度が低く又Na01Mg○が偏在して
伸びが低い値のものとなったゆ又比較例2はセラミック
ス超電導体の構成元素を各々含有する化合物を同じ溶液
となし、これを同時に霧状化し、この霧状体を同一加熱
炉にて加熱反応させた為に適正な反応がなされずに有害
物質のCが生成し混入して、得られたベレットの超電導
特性は特にJcが著しく低い値のものとなった。
On the other hand, in Comparative Example 1, commercially available coarse particle powder was used as the raw material and mixed in a ball mill to form a mixed powder, so the relative density of the pellet was low and Na01Mg○ was unevenly distributed, resulting in low elongation. In Yumata Comparative Example 2, which achieved a value of Therefore, the harmful substance C was produced and mixed without an appropriate reaction, and the superconducting properties of the obtained pellets, especially Jc, were extremely low.

〔効果] 以上述べたように、本発明方法によれば複数のセラミッ
クス粉体が又は複数のセラミックス粉体と金属粉体とが
均一微細に混合し且つ高純度の混合粉体が得られ、この
混合粉体を用いて製造した加熱焼結体は相対密度が高く
、依って機械的電気的特性に優れたものとなる。特にセ
ラミンクス超電導々体の場合は、Jc等の超電導特性が
高い値のものとなり、工業上顕著な効果を奏する。
[Effects] As described above, according to the method of the present invention, a plurality of ceramic powders or a plurality of ceramic powders and metal powder are uniformly and finely mixed and a mixed powder of high purity can be obtained. The heated sintered body produced using the mixed powder has a high relative density and therefore has excellent mechanical and electrical properties. In particular, in the case of a ceramic superconductor, the superconducting properties such as Jc have high values, and it has a remarkable effect industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の一例を示す要部説
明図である。 1、11.21・・・溶液、 2・・・超音波ネプライ
ザ、3、13.23・・・霧状体、 4.14.24・
・・粉体、 5・・・反応炉、 6・・・混合器、 7
・・・補集器。
FIG. 1 is an explanatory diagram of essential parts showing an example of an apparatus for carrying out the method of the present invention. 1, 11.21... Solution, 2... Ultrasonic nebulizer, 3, 13.23... Atomized body, 4.14.24.
...Powder, 5...Reactor, 6...Mixer, 7
... compensator.

Claims (1)

【特許請求の範囲】[Claims]  噴霧熱分解法による複数のセラミックス粉体又は複数
のセラミックス粉体と金属粉体からなる混合粉体の製造
方法であって、複数のセラミックス粉体又は複数のセラ
ミックス粉体及び金属粉体の構成元素を各々含有する化
合物の溶液をそれぞれ用意し、上記各々の溶液を各々霧
状化したのち、個々の霧状体をそれぞれ所定温度に加熱
した別々の反応炉に導入して加熱反応せしめてそれぞれ
を個々のセラミックス粉体又は/及び金属粉体となした
のち、生成した個々のセラミックス粉体同士、或いは個
々のセラミックス粉体と金属粉体とを浮遊状態で混合し
て浮遊混合粉体となし、しかるのち上記浮遊混合粉体を
補集することを特徴とする混合粉体の製造方法。
A method for producing a plurality of ceramic powders or a mixed powder consisting of a plurality of ceramic powders and a metal powder by a spray pyrolysis method, the constituent elements of the plurality of ceramic powders or the plurality of ceramic powders and the metal powder After preparing solutions of compounds containing each of the above and atomizing each of the above solutions, the individual atomized bodies are introduced into separate reaction furnaces heated to a predetermined temperature and heated to react. After forming individual ceramic powders and/or metal powders, mixing the produced individual ceramic powders with each other or the individual ceramic powders and metal powders in a suspended state to form a floating mixed powder, A method for producing a mixed powder, characterized in that the floating mixed powder is then collected.
JP1267359A 1989-10-13 1989-10-13 Production of mixed powder Pending JPH03131560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267359A JPH03131560A (en) 1989-10-13 1989-10-13 Production of mixed powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267359A JPH03131560A (en) 1989-10-13 1989-10-13 Production of mixed powder

Publications (1)

Publication Number Publication Date
JPH03131560A true JPH03131560A (en) 1991-06-05

Family

ID=17443728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267359A Pending JPH03131560A (en) 1989-10-13 1989-10-13 Production of mixed powder

Country Status (1)

Country Link
JP (1) JPH03131560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632234A (en) * 2012-04-27 2012-08-15 四川大学 Vacuum thermal evaporation material mixing technique of superfine W-K metal powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632234A (en) * 2012-04-27 2012-08-15 四川大学 Vacuum thermal evaporation material mixing technique of superfine W-K metal powder

Similar Documents

Publication Publication Date Title
US5081102A (en) Preparation of precursor superconductor metal oxide powders by spray calcination from atomized nitrate solution
Goto et al. A new fabrication process of Y1Ba2Cu4O8 superconducting filament by solution spinning method under ambient pressure
Chadda et al. Synthesis of YBa2Cu3O7− γ and YBa2Cu4O8 by aerosol decomposition
EP0326944B1 (en) Superconductive powder and method of making superconductive powder
JPH03131560A (en) Production of mixed powder
JP2517877B2 (en) Method for producing fine particle composite
KR100633671B1 (en) A pb-bi-sr-ca-cu-oxide powder mix with enhanced reactivity and process for its manufacture
JP2835083B2 (en) Manufacturing method of oxide superconductor
EP0366721A4 (en) Improved process for making 90 k superconductors
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
Tohge et al. Preparation of superconducting fine particles in the Bi-(Pb)-Ca-Sr-Cu-O system using the spray-pyrolysis method
JPH02196023A (en) Production of oxide-based superconductor
JP3017777B2 (en) Apparatus and method for producing particles of superconducting material
JPH01192709A (en) Production of superconductin oxide ceramic powder and sintered form therefrom
JPH01179724A (en) Production of oxide superconducting powder
JPH01224208A (en) Method for synthesizing oxide superconductor precursor
Bautista The process synthesis of bulk superconductors
JPH0222164A (en) Production of oxide superconducting material
JPH0383847A (en) Production of oxide superconductor
Vajpei et al. Preparation of Powders
JPH01108157A (en) Production of oxide superconducting material
JPH0193403A (en) Production of ceramic-based superconducting material and apparatus therefor
JPH03183619A (en) Production of oxide superconductor
JPH02137709A (en) Production of oxide superconductor powder
TAKAO et al. Synthesis and properties of Ag-YBa2Cu3O7-x composite superconductor by mist-pyrolysis method