JP2512986B2 - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JP2512986B2
JP2512986B2 JP63089404A JP8940488A JP2512986B2 JP 2512986 B2 JP2512986 B2 JP 2512986B2 JP 63089404 A JP63089404 A JP 63089404A JP 8940488 A JP8940488 A JP 8940488A JP 2512986 B2 JP2512986 B2 JP 2512986B2
Authority
JP
Japan
Prior art keywords
temperature
valve
flow rate
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63089404A
Other languages
Japanese (ja)
Other versions
JPH01263461A (en
Inventor
純一 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63089404A priority Critical patent/JP2512986B2/en
Publication of JPH01263461A publication Critical patent/JPH01263461A/en
Application granted granted Critical
Publication of JP2512986B2 publication Critical patent/JP2512986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

この発明は、能力制御を行うヒートポンプ装置に関す
るものである。
The present invention relates to a heat pump device that controls capacity.

【従来の技術】[Prior art]

従来、能力制御を行うヒートポンプ装置としては、第
6図に示す方式のものが知られている。 図において、1は冷媒ガスを圧縮し、高圧の冷媒ガス
として出力する圧縮機、2は圧縮機1からの冷媒ガスを
放熱し液化する凝縮器、3は液化された冷媒を減圧する
温度式膨張弁、4は減圧されて低温低圧となった冷媒を
吸熱してガス化する蒸発器である。この蒸発器4でガス
化された冷媒ガスが圧縮機1に吸入されて、循環冷凍サ
イクルを構成する。また、5は感温筒5aにより水循環回
路6の温度を検出し、予め設定された温度に達すると装
置を停止するよう指示する温度調節器である。 前記水循環回路6は、蒸発器4と熱交換される熱交換
部6aと、ファンコイル等の放熱器6bと、水等の媒体を熱
交換部6a及び放熱器6bに循環させるポンプ6cとから構成
されている。 このような装置(チリングユニット等)において、冷
凍サイクルを構成する圧縮機1,凝縮器2,膨張弁3および
蒸発器4(以下、ヒートポンプ装置と称す)の出力と、
放熱器6b側(負荷側)の能力が同等であれば、冷凍サイ
クルの平衡状態を維持することができる。しかし、負荷
側の能力が減少すると、ヒートポンプ装置の出力が過大
となり、蒸発器4と熱交換する熱交換部6aの水入口温度
が設定温度を超してしまうので、温度調節器5によりヒ
ートポンプ装置を停止する。その後、装置の停止により
再び負荷側の水温が上昇し、水温が温度調節器5の再起
動の設定温度になり、再び運転が再開される。このよう
に、ヒートポンプ装置の運転・停止を繰り返すことによ
り、水温が一定になるように制御を行う。 ところで、一般に、運転・停止により水循環回路6の
入口側と出口側間に温度差が生じる。この場合、従来方
式では、運転中のヒートポンプ装置により熱交換された
水循環回路6の入口−出口温度差が5degに設定されてお
り、そして温度調節器5の再起動温度はヒートポンプ装
置の頻繁な運転−停止を防止するため、停止温度より3d
eg高めとしている。このため、運転・停止の際の水循環
回路6の温度変化は入口−出口温度差に3degを加算した
ものとなり、温度差は8degとなってしまう。
Conventionally, as a heat pump device for performing capacity control, a system shown in FIG. 6 has been known. In the figure, 1 is a compressor that compresses a refrigerant gas and outputs it as a high-pressure refrigerant gas, 2 is a condenser that radiates and liquefies the refrigerant gas from the compressor 1, and 3 is a thermal expansion that depressurizes the liquefied refrigerant Valves 4 are evaporators that absorb heat of the refrigerant that has been decompressed to become low temperature and low pressure and gasify it. The refrigerant gas gasified by the evaporator 4 is sucked into the compressor 1 to form a circulation refrigeration cycle. Reference numeral 5 denotes a temperature controller that detects the temperature of the water circulation circuit 6 by the temperature sensing cylinder 5a and instructs the apparatus to stop when the temperature reaches a preset temperature. The water circulation circuit 6 is composed of a heat exchange section 6a for exchanging heat with the evaporator 4, a radiator 6b such as a fan coil, and a pump 6c for circulating a medium such as water through the heat exchange section 6a and the radiator 6b. Has been done. In such a device (chilling unit or the like), the outputs of the compressor 1, the condenser 2, the expansion valve 3 and the evaporator 4 (hereinafter, referred to as a heat pump device) that constitute the refrigeration cycle,
If the radiator 6b side (load side) has the same capability, the equilibrium state of the refrigeration cycle can be maintained. However, when the capacity on the load side decreases, the output of the heat pump device becomes excessively large, and the water inlet temperature of the heat exchange part 6a that exchanges heat with the evaporator 4 exceeds the set temperature. To stop. After that, the water temperature on the load side again rises due to the stop of the device, the water temperature reaches the set temperature for restarting the temperature controller 5, and the operation is restarted again. In this way, the water temperature is controlled to be constant by repeating the operation / stop of the heat pump device. By the way, generally, a temperature difference occurs between the inlet side and the outlet side of the water circulation circuit 6 due to the operation / stop. In this case, in the conventional method, the inlet-outlet temperature difference of the water circulation circuit 6 that has been heat-exchanged by the operating heat pump device is set to 5 deg, and the restart temperature of the temperature controller 5 is the frequent operation of the heat pump device. − 3d above the stop temperature to prevent a stop
eg high. Therefore, the temperature change of the water circulation circuit 6 at the time of operation / stop is the inlet-outlet temperature difference plus 3 deg, resulting in a temperature difference of 8 deg.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

このように前述した従来の装置では、運転・停止によ
る水循環回路の温度変化が大きいという問題があった。 このような水循環回路の温度変化を小さくする手段と
して水循環回路6の配管途中にタンクを設け、これによ
り水循環回路6の容量を大きくして、水循環回路6の流
量制御を行うという方法があるが、装置全体のシステム
が複雑となり、価格が大巾に上昇する等、実用上問題が
あった。 また、他の方法としては、ヒートポンプ装置側に能力
制御機能を持たせるように、例えば圧縮機をインバータ
で駆動し、その電源周波数を可変にすることで、能力制
御を行うこともできるが、その実現化は技術的にも困難
であり、価格も大巾に上昇するという問題があった。 この発明は以上のような問題点を解消するためになさ
れたもので、水循環回路の温度変化を小さくする能力制
御を可能にし、かつ吐出ガス温度の上昇を抑制できるヒ
ートポンプ装置を提供することを目的とする。
As described above, the conventional device described above has a problem that the temperature of the water circulation circuit greatly changes due to the start / stop. As a means for reducing such a temperature change in the water circulation circuit, there is a method in which a tank is provided in the middle of the piping of the water circulation circuit 6 to increase the capacity of the water circulation circuit 6 and control the flow rate of the water circulation circuit 6. There was a practical problem such that the system of the entire device became complicated and the price rose significantly. As another method, the capacity control can be performed by, for example, driving the compressor with an inverter and changing the power supply frequency so that the heat pump device side has the capacity control function. Realization is technically difficult, and there has been a problem that the price will rise significantly. The present invention has been made to solve the above problems, and an object of the present invention is to provide a heat pump device capable of controlling the ability to reduce the temperature change of the water circulation circuit and suppressing the rise of the discharge gas temperature. And

【課題を解決するための手段】[Means for Solving the Problems]

この発明は、圧縮機,凝縮器,膨張装置及び蒸発器を
閉ループにより結合して冷凍サイクルを構成し、かつ蒸
発器により冷却される被冷却負荷を有するヒートポンプ
装置において、前記圧縮機の吸入側と蒸発器の出口側間
に接続した流量制御装置と、一端を前記圧縮機の吸入側
に他端を前記膨張装置の入口側高圧配管に接続した開閉
弁および減圧装置を有するバイパス流路と、前記蒸発器
で冷却される被冷却負荷側への被冷却媒体の出口温度を
検出し、この検出温度と設定温度との差に応じて前記流
量制御装置の開度を制御すると共に、この流量制御装置
の制御値を検出し流量制御装置の開度が所定値以下にな
る場合に前記開閉弁の開放制御を行い前記バイパス流路
に冷媒を流通させる制御器とを備えたものである。
The present invention relates to a heat pump device having a refrigeration cycle in which a compressor, a condenser, an expansion device, and an evaporator are connected by a closed loop, and having a cooled load cooled by the evaporator. A flow rate control device connected between the outlet side of the evaporator, a bypass flow path having an on-off valve and a pressure reducing device, one end of which is connected to the suction side of the compressor and the other end of which is connected to the inlet side high pressure pipe of the expansion device; The outlet temperature of the cooled medium to the cooled load side cooled by the evaporator is detected, and the opening degree of the flow rate control device is controlled according to the difference between the detected temperature and the set temperature. And a controller for controlling the opening of the on-off valve to allow the refrigerant to flow through the bypass passage when the control value is detected and the opening of the flow rate control device becomes equal to or less than a predetermined value.

【作用】[Action]

この発明は、制御器により蒸発器の出口の水温度を検
出し、予め設定された基準温度との差温に応じて、流量
制御装置の弁開度を制御し、ヒートポンプ装置内を循環
している冷媒の流量を調節し、設定された水温に保つ。
さらに設定された水温に近づくと、流量制御装置の弁開
度が小さくなって、ヒートポンプ装置内を循環する冷媒
の流量を一定値に保持するよう制御する。このとき、流
量制御装置の弁開度が最小となって、減圧すると、圧縮
機吸入部の過熱度(スーパーヒート)が上昇し吐出ガス
温度が上昇する傾向となるが、このとき流量制御装置の
制御値を検出し、バイパス流路の開閉弁を開くことによ
り、バイパス流路を通じて圧縮機吸入部に冷媒が供給さ
れ、過熱度を抑制する作用を行う。
This invention detects the water temperature at the outlet of the evaporator by the controller, controls the valve opening of the flow rate control device in accordance with the temperature difference from the preset reference temperature, and circulates it in the heat pump device. Adjust the flow rate of the existing refrigerant to maintain the set water temperature.
When the set water temperature is further approached, the valve opening of the flow rate control device becomes smaller, and the flow rate of the refrigerant circulating in the heat pump device is controlled to be maintained at a constant value. At this time, when the valve opening of the flow rate control device is minimized and the pressure is reduced, the superheat degree (superheat) of the compressor suction part tends to rise and the discharge gas temperature tends to rise. By detecting the control value and opening the opening / closing valve of the bypass flow passage, the refrigerant is supplied to the compressor suction portion through the bypass flow passage, and the superheat degree is suppressed.

【実施例】【Example】

以下、この発明の実施例を図面に基づいて詳細に説明
する。 第1図は、この発明の実施例におけるヒートポンプ装
置の構成図である。 図において、第6図と同一又は相当部分には同一符号
を付してその説明を省略し、第6図と異なる部分を重点
に述べる。 図からも明らかなように流量制御装置である電気駆動
制御弁7,制御器8及びバイパス流路9を有する点が第6
図と異なり、電気駆動制御弁7は、圧縮器1と蒸発器4
間を結ぶ配管10に介在され、その弁開度を調節すること
により水循環回路6側の水温を調節し、冷却能力を制御
する。 制御器8は、蒸発器4の出口側の水温度を検出する検
出素子8aからの信号を受けて、予め設定されている水出
口設定温度との比較を行い、その差温に応じて制御信号
を出力し、電気駆動制御弁7の弁開度を制御する。ま
た、電気駆動制御弁7の弁開度制御値である弁開度制御
電圧が一定以上(本実施例では7V)になれば後述のバイ
パス回路9に接続された開閉弁である電磁開閉弁11に
「開」の信号を出力するようになっている。なお、圧縮
機1,凝縮器2,温度式膨張弁3,蒸発器4および電気駆動制
御弁7によりヒートポンプ装置が構成される。 また、温度式膨張弁3は圧縮機1における吸入の過熱
度を適正に維持するための圧力補償機能を有している。 バイパス流路9は、温度式膨張弁3の入口側高圧配管
12と圧縮機1の吸入側配管10間に接続されるもので、減
圧機能を有する減圧装置であるキャピラリチューブ9aお
よび制御器8により制御される電磁開閉弁11で構成され
る。 第2図は前記電気駆動制御弁7の詳細を示す断面図で
ある。この制御系7は、弁匣体7aと、この弁匣体7a内を
冷媒流入側と冷媒流出側に区画する隔壁7bに形成した流
量調節用の弁孔7cと、この弁孔7cを開閉する弁体7dと、
この弁体7dを開閉動作するソレノイド7eとから構成され
ている。 次に、上記のように構成された本実施例の動作を第3
図乃至第5図を参照しながら説明する。 まず、第3図は電気駆動制御弁7の弁開度と水循環回
路6の水出口温度との関係を示すもので、制御器8の設
定水温Taが検出素子8aにより測定される水出口温度Tbよ
り高い場合は、電気駆動制御弁7の弁7dを開け、又、逆
に設定水温Taが水出口温度Tbに近づいた場合は弁7dを閉
めて、設定水温Taに近くなるように制御される。 弁開度を閉じていくと、冷却する能力および、蒸発器
4内の冷媒温度である蒸発温度が下がっていく。この様
子を示したのが第4図(B),(C)である。ヒートポ
ンプ装置に要求される能力が小さいときは、弁開度を絞
り、蒸発温度を低下させて、ヒートポンプ装置を循環す
る冷媒の流量を減少させて、能力を小さくする。 この場合、蒸発器4の蒸発圧力が低下し、かつ冷却能
力も小さくなるが、同時に圧縮機1の吸入圧力も低下す
るため、圧縮機吸入部の過熱度が一気に増大し、やがて
は圧縮機1の吐出ガス温度が上昇し、上限許容値をオー
バする危険性が生じる。 即ち、バイパス流路9が組込まれていない場合、吐出
ガス温度は第4図(A)の破線に示すように蒸発圧力の
低下に伴う分だけ上昇し上限許容値をオーバするが、バ
イパス流路9がある場合は、これにより冷媒が減圧され
て圧縮機1の吸入側へバイパスされ、かつ冷却されるこ
とにより吐出ガス温度の上昇を抑え、第4図(A)の実
線に示すようになる。 第5図は、バイパス流路9を有するヒートポンプ装置
の絶対圧力とエンタルピとの関係を示したモリエル線図
であり、この図から明らかな如くカルノーサイクル上で
の断熱圧縮はA点からB点へ移り、吐出ガス温度の上昇
が抑えられることになる。 このバイパス流路9の制御は電磁開閉弁11によって行
われる。電磁開閉弁11の開/閉は第4図に示すように吐
出ガス温度は弁開度に反比例して上昇するため、吐出温
度が上昇を越える直前に開いてやればよく、この弁開度
すなわち電気駆動制御弁7の制御電圧を検出して行う。
この実施例では制御電圧7V以上で開/閉を制御してい
る。 このように、この実施例では制御器8により電気駆動
制御弁7の開度を制御し、圧縮機1の吸入圧力を可変す
るとともに、能力可変時に問題となる吐出ガス温度の上
昇を、電気駆動制御弁7の弁開度制御値である弁開度制
御電圧を検出して制御されるバイパス流路9により対応
するようにしたので、信頼性の高いヒートポンプ装置能
力の制御を可能とし、水温調節が適正にできる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a heat pump device according to an embodiment of the present invention. In the figure, parts that are the same as or correspond to those in FIG. 6 are assigned the same reference numerals and explanations thereof are omitted, and parts different from FIG. 6 will be mainly described. As is apparent from the figure, the sixth point is that the electric drive control valve 7, which is a flow rate control device, the controller 8 and the bypass passage 9 are provided.
Unlike the figure, the electric drive control valve 7 includes a compressor 1 and an evaporator 4.
The cooling water is controlled by adjusting the valve opening of the pipe 10 which connects between the pipes 10 to adjust the water temperature on the water circulation circuit 6 side. The controller 8 receives a signal from the detection element 8a that detects the water temperature on the outlet side of the evaporator 4, compares the signal with a preset water outlet set temperature, and outputs a control signal according to the temperature difference. Is output to control the valve opening of the electric drive control valve 7. Further, when the valve opening control voltage, which is the valve opening control value of the electric drive control valve 7, becomes equal to or higher than a certain value (7 V in this embodiment), the solenoid opening / closing valve 11 which is an opening / closing valve connected to a bypass circuit 9 described later. It outputs an "open" signal. The compressor 1, the condenser 2, the thermal expansion valve 3, the evaporator 4, and the electric drive control valve 7 constitute a heat pump device. Further, the thermal expansion valve 3 has a pressure compensation function for appropriately maintaining the superheat degree of suction in the compressor 1. The bypass flow passage 9 is a high pressure pipe on the inlet side of the thermal expansion valve 3.
It is connected between 12 and the suction side pipe 10 of the compressor 1, and is composed of a capillary tube 9a which is a pressure reducing device having a pressure reducing function and an electromagnetic opening / closing valve 11 controlled by a controller 8. FIG. 2 is a sectional view showing the details of the electric drive control valve 7. The control system 7 opens and closes the valve housing 7a, a valve hole 7c for adjusting the flow rate formed in a partition wall 7b that divides the valve housing 7a into a refrigerant inflow side and a refrigerant outflow side. Valve body 7d,
It is composed of a solenoid 7e that opens and closes the valve body 7d. Next, the third embodiment of the operation of the present embodiment configured as described above will be described.
This will be described with reference to FIGS. First, FIG. 3 shows the relationship between the valve opening degree of the electric drive control valve 7 and the water outlet temperature of the water circulation circuit 6. The set water temperature Ta of the controller 8 is the water outlet temperature Tb measured by the detection element 8a. When the temperature is higher, the valve 7d of the electric drive control valve 7 is opened, and conversely, when the set water temperature Ta approaches the water outlet temperature Tb, the valve 7d is closed to control the temperature close to the set water temperature Ta. . As the valve opening is closed, the cooling capacity and the evaporation temperature which is the refrigerant temperature in the evaporator 4 decrease. This is shown in FIGS. 4 (B) and 4 (C). When the capacity required for the heat pump device is small, the valve opening is narrowed to reduce the evaporation temperature, and the flow rate of the refrigerant circulating in the heat pump device is reduced to reduce the capacity. In this case, the evaporation pressure of the evaporator 4 is reduced and the cooling capacity is also reduced, but at the same time, the suction pressure of the compressor 1 is also reduced, so that the superheat degree of the compressor suction portion is increased at once, and eventually the compressor 1 is reduced. There is a risk that the discharge gas temperature of will rise and exceed the upper limit allowable value. That is, when the bypass passage 9 is not incorporated, the discharge gas temperature rises by the amount associated with the decrease in the evaporation pressure as shown by the broken line in FIG. 4 (A) and exceeds the upper limit allowable value. When there is 9, the refrigerant is decompressed by this, bypassed to the suction side of the compressor 1, and cooled to suppress the rise in the discharge gas temperature, as shown by the solid line in FIG. 4 (A). . FIG. 5 is a Mollier diagram showing the relationship between the absolute pressure and the enthalpy of the heat pump device having the bypass flow passage 9. As is clear from this diagram, the adiabatic compression on the Carnot cycle is from point A to point B. Then, the rise in the discharge gas temperature can be suppressed. The control of the bypass passage 9 is performed by the electromagnetic opening / closing valve 11. As shown in FIG. 4, the opening / closing of the solenoid on-off valve 11 causes the discharge gas temperature to rise in inverse proportion to the valve opening. Therefore, it may be opened just before the discharge temperature exceeds the rise. This is performed by detecting the control voltage of the electric drive control valve 7.
In this embodiment, opening / closing is controlled by a control voltage of 7 V or higher. As described above, in this embodiment, the controller 8 controls the opening degree of the electric drive control valve 7 to change the suction pressure of the compressor 1 and to increase the discharge gas temperature which is a problem when the capacity is changed. Since the bypass flow path 9 controlled by detecting the valve opening control voltage which is the valve opening control value of the control valve 7 responds to the control, it is possible to control the heat pump device capacity with high reliability and adjust the water temperature. Can be done properly.

【発明の効果】【The invention's effect】

上述したように、この発明によれば、圧縮機および蒸
発器との間に流量制御装置を設け制御器により流量制御
装置を制御するように構成したので、予め設定された基
準温度との差温に応じて減圧装置としての流量制御装置
に開度を自動的に調節することにより設定水温に保つよ
う能力制御を行うことができ、且つ、バイパス流路を設
けて、能力制御時の圧縮機の吐出ガス温度の上昇を抑え
るために、流量制御装置の特性を応用して能力制御時に
流量制御装置の開度が所定値以下になる場合にのみバイ
パス流路に冷媒を流通させるようにしたので、信頼性が
高く高効率なヒートポンプ装置を提供することが可能と
なる。 そして、共通の制御器により、蒸発器で冷却される被
冷却負荷側への被冷却媒体の出口温度と設定温度との差
に応じて前記流量制御装置の開度を制御すると共に、こ
の流量制御装置の制御値を検出しこの制御値に応じてバ
イパス流路を設けた開閉弁の制御を行って流量制御装置
の開度が所定値以下になる場合に前記開閉弁の開放制御
を行いバイパス流路に冷媒を流通させるよう相互の関連
をもって作動させるようにしたので、前記制御器の制御
により流量制御装置の開度が所定値以下となる場合には
前記開閉弁は流量制御装置の制御電圧などの制御値によ
り直接的に制御され迅速的確に圧縮機の吐出ガス温度を
抑制することができると共に、前記流量制御装置と開閉
弁とは密接な連係をもって円滑に作動されるものであ
る。
As described above, according to the present invention, since the flow rate control device is provided between the compressor and the evaporator and the flow rate control device is controlled by the controller, the temperature difference from the preset reference temperature is set. According to the above, it is possible to perform capacity control so as to maintain the set water temperature by automatically adjusting the opening degree in the flow rate control device as a pressure reducing device, and by providing a bypass flow passage, the compressor during capacity control is controlled. In order to suppress the rise in the discharge gas temperature, the characteristics of the flow rate control device are applied so that the refrigerant is circulated in the bypass flow passage only when the opening of the flow rate control device becomes a predetermined value or less during capacity control. It is possible to provide a highly reliable and highly efficient heat pump device. Then, the common controller controls the opening degree of the flow rate control device according to the difference between the outlet temperature of the cooled medium to the cooled load side cooled by the evaporator and the set temperature, and the flow rate control is performed. By detecting the control value of the device and controlling the on-off valve provided with a bypass flow path according to this control value, and controlling the opening of the on-off valve when the opening degree of the flow rate control device falls below a predetermined value, the bypass flow is controlled. Since the refrigerant is circulated through the passages so as to operate in a mutually related manner, when the opening degree of the flow rate control device becomes a predetermined value or less by the control of the controller, the opening / closing valve is controlled by the control voltage of the flow rate control device or the like. The discharge gas temperature of the compressor can be promptly and accurately controlled by the control value of 1), and the flow rate control device and the on-off valve are smoothly operated in close cooperation.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示すヒートポンプ装置の構
成図、第2図は本実施例における電気駆動制御弁の断面
図、第3図は本実施例における電気駆動制御弁の弁開度
と水出口温度との関係を示す説明図、第4図は本実施例
における能力制御時の能力と吐出ガス温度,弁開度及び
蒸発温度との関係を示す説明図、第5図は本実施例のモ
リエル線図、第6図は従来のヒートポンプ装置の構成図
である。 1……圧縮機、2……凝縮器、3……膨張弁、4……蒸
発器、6……水循環回路、7……電気駆動制御弁、8…
…制御器、9……バイパス流路、9a……キャピラリチュ
ーブ、11……電磁開閉弁。 なお、図中同一符号は同一又は相当部分を示す。
FIG. 1 is a configuration diagram of a heat pump device showing an embodiment of the present invention, FIG. 2 is a sectional view of an electric drive control valve in the present embodiment, and FIG. 3 is a valve opening degree of the electric drive control valve in the present embodiment. FIG. 4 is an explanatory view showing the relationship with the water outlet temperature, FIG. 4 is an explanatory view showing the relationship between the capacity at the time of capacity control in this embodiment, the discharge gas temperature, the valve opening and the evaporation temperature, and FIG. 5 is this embodiment. FIG. 6 is a configuration diagram of a conventional heat pump device. 1 ... Compressor, 2 ... Condenser, 3 ... Expansion valve, 4 ... Evaporator, 6 ... Water circulation circuit, 7 ... Electric drive control valve, 8 ...
… Controller, 9 …… Bypass flow path, 9a …… Capillary tube, 11 …… Solenoid on-off valve. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機,凝縮器,膨張装置及び蒸発器を閉
ループにより結合して冷凍サイクルを構成し、かつ蒸発
器により冷却される被冷却負荷を有するヒートポンプ装
置において、前記圧縮機の吸入側と蒸発器の出口側間に
接続した流量制御装置と、一端を前記圧縮機の吸入側に
他端を前記膨張装置の入口側高圧配管に接続した開閉弁
および減圧装置を有するバイパス流路と、前記蒸発器で
冷却される被冷却負荷側への被冷却媒体の出口温度を検
出し、この検出温度と設定温度との差に応じて前記流量
制御装置の開度を制御すると共に、この流量制御装置の
制御値を検出しこの制御値に応じて前記開閉弁の制御を
行って流量制御装置の開度が所定値以下になる場合に前
記開閉弁の開放制御を行い前記バイパス流路に冷媒を流
通させる制御器とを備えたことを特徴とするヒートポン
プ装置。
1. A heat pump apparatus comprising a compressor, a condenser, an expander and an evaporator connected in a closed loop to form a refrigeration cycle, and having a cooled load cooled by the evaporator, the suction side of the compressor. And a flow rate control device connected between the outlet side of the evaporator, a bypass flow path having an on-off valve and a pressure reducing device, one end of which is connected to the suction side of the compressor and the other end of which is connected to the inlet side high pressure pipe of the expansion device, The outlet temperature of the cooled medium to the cooled load side cooled by the evaporator is detected, and the opening degree of the flow rate control device is controlled according to the difference between the detected temperature and the set temperature, and the flow rate control is performed. The control value of the device is detected, and the on-off valve is controlled according to this control value to control the opening of the on-off valve when the opening degree of the flow rate control device becomes a predetermined value or less, and the refrigerant is supplied to the bypass passage. With the controller to distribute Heat pump apparatus characterized by comprising.
JP63089404A 1988-04-12 1988-04-12 Heat pump device Expired - Lifetime JP2512986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089404A JP2512986B2 (en) 1988-04-12 1988-04-12 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089404A JP2512986B2 (en) 1988-04-12 1988-04-12 Heat pump device

Publications (2)

Publication Number Publication Date
JPH01263461A JPH01263461A (en) 1989-10-19
JP2512986B2 true JP2512986B2 (en) 1996-07-03

Family

ID=13969705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089404A Expired - Lifetime JP2512986B2 (en) 1988-04-12 1988-04-12 Heat pump device

Country Status (1)

Country Link
JP (1) JP2512986B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087315Y2 (en) * 1990-12-03 1996-03-04 オリオン機械株式会社 Refrigerator control device
JPH0490857U (en) * 1990-12-03 1992-08-07
JPH087314Y2 (en) * 1990-12-03 1996-03-04 オリオン機械株式会社 refrigerator
JP3121619B2 (en) * 1990-12-11 2001-01-09 松下電器産業株式会社 Image processing method for scanning tunneling microscope
JP2838443B2 (en) * 1990-12-11 1998-12-16 松下電器産業株式会社 Image processing method and apparatus
JPH04215006A (en) * 1990-12-11 1992-08-05 Matsushita Electric Ind Co Ltd Scanning tunneling microscope
JP3110848B2 (en) * 1992-03-16 2000-11-20 日本碍子株式会社 Air-fuel ratio detector
JPH0618868U (en) * 1992-08-18 1994-03-11 日世冷機株式会社 Frozen dessert making equipment
US10655895B2 (en) 2017-05-04 2020-05-19 Weiss Technik North America, Inc. Climatic test chamber with stable cascading direct expansion refrigeration system
CN114779848A (en) * 2022-03-18 2022-07-22 北京京仪自动化装备技术股份有限公司 Semiconductor temperature control equipment with precooling function and temperature control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825964U (en) * 1981-08-14 1983-02-18 株式会社日立製作所 Compressor anti-seize device
JPS6176853A (en) * 1984-09-19 1986-04-19 富士電機株式会社 Control system of operation of refrigerator
JPS61213553A (en) * 1985-03-20 1986-09-22 富士電機株式会社 Refrigerant circuit for refrigerator

Also Published As

Publication number Publication date
JPH01263461A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
US6418737B1 (en) Heat pump type hot-water supply system capable of performing defrosting operation
JPH11193967A (en) Refrigerating cycle
JP2512986B2 (en) Heat pump device
JP3457743B2 (en) Air conditioner
JPH10141831A (en) Circulation apparatus for constant temperature refrigerant fluid
JPH10103834A (en) Refrigerator
JP2004286266A (en) Refrigeration device and heat pump type cooling and heating machine
JP3082560B2 (en) Dual cooling system
JP2904525B2 (en) Method of controlling refrigerant flow rate in heat pump air conditioner and heat pump air conditioner
JP3353367B2 (en) Air conditioner
JPH04217754A (en) Air conditioner
JP3505209B2 (en) Refrigeration equipment
JPH06194008A (en) Discharge superheat degree control valve
JPH0349034B2 (en)
JPH01123966A (en) Refrigerator
JP6549403B2 (en) Cooling system
JP7444189B2 (en) air conditioner
JP2002081793A (en) Temperature regulator
US20240175614A1 (en) Heat pump device and hot water supply device
JP7098513B2 (en) Environment forming device and cooling device
JPH0135261B2 (en)
JPH01256761A (en) Heat pump device
JPH09159287A (en) Refrigerator
JP2539680Y2 (en) Air conditioner
JP2002048381A (en) Refrigerating unit