JPH01123966A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH01123966A
JPH01123966A JP28170387A JP28170387A JPH01123966A JP H01123966 A JPH01123966 A JP H01123966A JP 28170387 A JP28170387 A JP 28170387A JP 28170387 A JP28170387 A JP 28170387A JP H01123966 A JPH01123966 A JP H01123966A
Authority
JP
Japan
Prior art keywords
temperature
pressure side
heat storage
side heat
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28170387A
Other languages
Japanese (ja)
Inventor
Isao Sakagami
阪上 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28170387A priority Critical patent/JPH01123966A/en
Publication of JPH01123966A publication Critical patent/JPH01123966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To prevent the rise of the temperature of a heat storage agent and the heat storage agent from boiling by providing temperature detectors at the outlet and inlet of the high pressure side heat exchanger passage of a heat storage tank and a bypass solenoid valve in the intermediate part of a bypass piping which is closed when the temperature difference between the inlet and outlet of the high pressure side heat exchanger passage reaches a prescribed value or lower. CONSTITUTION: Temperature detectors are provided in the outlet and inlet sides of the high pressure side heat exchanger passage 10 of a heat storage tank 1. In a bypass piping 31 for bypassing the high pressure side heat exchanger passage 10, is provided a bypass solenoid valve 32 opened/closed based on temperature difference between the inlet temperature detector and the outlet temperature detector. When a defrosting start signal is supplied and inside temperature is higher by 4 deg.C than setting temperature, an off-cycle defrosting operation is performed. Upon finish of defrosting, a cooling operation is restarted. When the cooling operation is continued and the temperature of heat storage agent rises, the quantity of heat exchanging is decreased in the high pressure side heat exchanger passage 10, so that the outlet temperature of the heat exchanger paste 10 rises. Thus, the temperature difference between the outlet and inlet of the heat exchanger passage 10 is decreased. With a prescribed temperature difference, the bypass solenoid valve 32 is opened to bypass the high temperature and high pressure gas from the high pressure side heat exchanger passage 10. Accordingly, the temperature of heat storage agent is lowered due to natural radiation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、サーモバンク式ホットガスデフロストとオ
フサイクルデフロストの切替機能を有した冷凍装置にお
いて、サーモバンク内温度の上昇を防止するようにした
冷凍装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is a refrigeration system having a switching function between thermobank type hot gas defrost and off-cycle defrost, which prevents the temperature inside the thermobank from rising. This relates to refrigeration equipment.

〔従来の技術〕[Conventional technology]

第5図は従来の冷凍装置の構成図であり、図において1
は圧縮機、2は凝縮器、3は絞り装置、4は蒸発器、5
はサクションアキュムレータ、6は圧縮機1と蓄熱器9
の高圧側熱交換路10とを連結する吐出管、7は凝縮器
2絞り装置3間を逆止弁13と第2の電磁弁14とを介
して連結する液管、8は蒸発器4とサクションアキュム
レータ5間を第4の電磁弁16を介して接続するととも
に、吸入圧力調整弁17を介して蓄熱槽9の低圧側熱交
換路11に接続する吸入管である。9aは蓄熱槽9の内
部に充填された蓄熱剤である。
Figure 5 is a block diagram of a conventional refrigeration system.
is a compressor, 2 is a condenser, 3 is a throttle device, 4 is an evaporator, 5
is a suction accumulator, 6 is a compressor 1 and a heat storage device 9
7 is a liquid pipe that connects the condenser 2 and the throttle device 3 via the check valve 13 and the second electromagnetic valve 14; 8 is the liquid pipe that connects the evaporator 4 and This is a suction pipe that connects the suction accumulators 5 via a fourth electromagnetic valve 16 and connects to the low-pressure side heat exchange path 11 of the heat storage tank 9 via a suction pressure regulating valve 17. 9a is a heat storage agent filled inside the heat storage tank 9.

低圧側熱交換路11は吸入バイパス管8aを介してサク
ションアキュムレータ5に連結されている。
The low pressure side heat exchange path 11 is connected to the suction accumulator 5 via a suction bypass pipe 8a.

12は三方電磁弁であり、その入口側は蓄熱槽9の高圧
側熱交換路10に連絡され、一方の出口側は上記凝縮器
2に、他方の出口側は吐出バイパス管6aを介して液管
7に連結されている。
12 is a three-way solenoid valve, the inlet side of which is connected to the high-pressure side heat exchange path 10 of the heat storage tank 9, one outlet side to the condenser 2, and the other outlet side to the liquid via the discharge bypass pipe 6a. It is connected to pipe 7.

15は第3の電磁弁で、その入口側は液バイパス管7a
を介して液管7に連結され、出口側は蒸発器4の入口側
に連結されている。18は凝縮器用送風機、19は冷却
器用送風機である。
15 is a third solenoid valve, the inlet side of which is connected to the liquid bypass pipe 7a.
The outlet side is connected to the inlet side of the evaporator 4. 18 is a condenser blower, and 19 is a cooler blower.

従来、圧縮機1の運転を停止するとともに冷却器用送風
機19を運転するオフサイクルデフロストと、上記三方
電磁弁12および第2〜第4の電磁弁14〜16の切換
によるホットガスデフロストの双方を備え、蒸発器4の
霜をオフサイクルまたはホットガスデフロストの何れが
一方により除霜する場合実開昭51−81445号公報
には、庫内温度を検知して、所定温度以上のときはオフ
サイクルによる除霜と、所定温度以下のときはホットガ
スデフロストによる除霜とを切り換える冷蔵庫用冷凍装
置が開示されている。
Conventionally, the system includes both an off-cycle defrost operation in which the compressor 1 is stopped and the cooler blower 19 is operated, and a hot gas defrost operation in which the three-way solenoid valve 12 and the second to fourth solenoid valves 14 to 16 are switched. When the frost in the evaporator 4 is to be defrosted by either the off cycle or the hot gas defrost, Japanese Utility Model Application Publication No. 51-81445 states that the temperature inside the refrigerator is detected, and when the temperature is higher than a predetermined temperature, the off cycle is used. A freezing device for a refrigerator is disclosed that switches between defrosting and defrosting using hot gas defrost when the temperature is below a predetermined temperature.

次にホットガスデフロスト装置の動作について説明する
。まず、冷却運転中は冷媒糸路図中、実線矢印のごとく
冷媒が流れて冷却運転を行なう。
Next, the operation of the hot gas defrost device will be explained. First, during the cooling operation, the refrigerant flows as shown by the solid arrow in the refrigerant path diagram to perform the cooling operation.

すなわち、第2の電磁弁14と第4の電磁弁16が通電
されて開路し、三方電磁弁12は通電されない状態で高
圧側熱交換路10と凝縮器2を連通し、第3の電磁弁1
5は通電されない状態で閉路している。
That is, the second solenoid valve 14 and the fourth solenoid valve 16 are energized and open, the three-way solenoid valve 12 is not energized and communicates between the high pressure side heat exchange path 10 and the condenser 2, and the third solenoid valve 1
5 is closed in a non-energized state.

一方、蓄熱槽9の蓄熱剤9aは、圧縮機1からの吐出冷
媒ガスが高圧側熱交換路10を通過することにより加熱
される。
On the other hand, the heat storage agent 9a of the heat storage tank 9 is heated by the refrigerant gas discharged from the compressor 1 passing through the high-pressure side heat exchange path 10.

蓄熱槽9には低圧側熱交換路11が収納されていて、ホ
ットガス除霜時、上記吸入圧力調整弁17との併用で再
蒸発装置として使用されるが、次にこの除霜運転につい
て説明する。
The heat storage tank 9 houses a low-pressure side heat exchange path 11, which is used as a re-evaporation device in conjunction with the suction pressure regulating valve 17 during hot gas defrosting.Next, this defrosting operation will be explained. do.

上記蒸発器4の着霜を除霜検出器(図示せず)により検
出して、ホットガス除霜を開始すると、三方電磁弁12
、第3の電磁弁15が通電され、第2および第4の電磁
弁14.16は通電されずに図中の破線矢印の冷媒流れ
となる。
When frost formation on the evaporator 4 is detected by a defrost detector (not shown) and hot gas defrost is started, the three-way solenoid valve 12
, the third solenoid valve 15 is energized, and the second and fourth solenoid valves 14, 16 are not energized, resulting in the refrigerant flow as indicated by the dashed arrow in the figure.

すなわち、圧縮機1にて吐出された高圧冷媒ガスは、高
圧側熱交換路10、三方電磁弁12、吐出バイパス管5
a、液管7、液バイパス管7a。
That is, the high-pressure refrigerant gas discharged from the compressor 1 passes through the high-pressure side heat exchange path 10, the three-way solenoid valve 12, and the discharge bypass pipe 5.
a, liquid pipe 7, liquid bypass pipe 7a.

第3の電磁弁15を経て蒸発器4にて除霜を行なうと、
高圧のまま液化冷媒となる。そしてこの液化した高圧液
冷媒はまず吸入圧力調整弁17にて減圧されて後、低圧
側熱交換路11で気化されて圧縮機1へ吸入される。
When defrosting is performed in the evaporator 4 via the third solenoid valve 15,
It becomes a liquefied refrigerant while remaining under high pressure. The liquefied high-pressure liquid refrigerant is first reduced in pressure by the suction pressure regulating valve 17, then vaporized by the low-pressure side heat exchange path 11 and sucked into the compressor 1.

この際、吸入圧力調整弁17は圧縮機1の吸入圧力が許
容圧力値を越えないように、使用上限の吸入圧力以下に
設定される。
At this time, the suction pressure regulating valve 17 is set to a value below the upper limit of suction pressure for use so that the suction pressure of the compressor 1 does not exceed an allowable pressure value.

なお、蒸発器4の除霜を終えると、除霜検出器(図示せ
ず)により冷却運転に切換えられる。
Note that when the defrosting of the evaporator 4 is completed, the defrost detector (not shown) switches to cooling operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷凍装置は以上のように構成されているので、例
えば、庫内温度が所定温度以上に上昇している際に除霜
を迎えることが複数回連続して重なったときには、毎回
オフサイクルによる除霜が開始されることになり、低圧
側熱交換路内を冷媒が流通することなく、高圧側熱交換
路のみを流通するようになる。
Conventional refrigeration equipment is configured as described above, so for example, if defrosting occurs multiple times in a row while the internal temperature rises above a predetermined temperature, the off-cycle is activated each time. Defrosting is started, and the refrigerant no longer flows through the low-pressure heat exchange path, but only through the high-pressure heat exchange path.

すなわち、圧縮機1にて吐出された高温高圧冷媒ガスに
て蓄熱槽内の蓄熱剤は加熱されるのみとなり、蓄熱剤は
沸騰し、蓄熱槽内の圧力が上昇し、安全弁(図示せず)
が作動し、蓄熱剤が吹き出してしまうという問題点があ
った。
That is, the heat storage agent in the heat storage tank is only heated by the high-temperature, high-pressure refrigerant gas discharged by the compressor 1, the heat storage agent boils, the pressure in the heat storage tank increases, and the safety valve (not shown)
There was a problem that the heat storage agent would blow out when activated.

この発明は、上記のような問題点を解消するためになさ
れたもので、連続オフサイクル除霜による蓄熱剤の沸騰
を防止し得る冷凍装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a refrigeration system that can prevent boiling of a heat storage agent due to continuous off-cycle defrosting.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍装置は、蓄熱槽の高圧側熱交換路の
出入口に設けた温度検出器と高圧側熱交換路を側路する
バイパス配管の途中に配設され高圧側熱交換路の出入口
温度差が所定値以下になると開路するバイパス電磁弁と
を設けたものである。
The refrigeration system according to the present invention includes a temperature detector provided at the entrance and exit of the high-pressure side heat exchange path of the heat storage tank, and a temperature sensor installed in the middle of bypass piping that bypasses the high-pressure side heat exchange path. A bypass solenoid valve that opens when the difference becomes less than a predetermined value is provided.

〔作 用〕[For production]

この発明における蓄熱槽の高圧側熱交換路の出入口に設
けた温度検出器によって検出された高圧側熱交換路の出
入口温度差が所定値以下となれば、バイパス電磁弁を開
路させるので、高圧側熱交換路へ流れる高温・高圧冷媒
ガスは少なくなるため、蓄熱剤の温度上昇がなくなり、
蓄熱剤の沸騰するのを防止する。
In this invention, if the temperature difference between the entrance and exit of the high-pressure side heat exchange path, which is detected by the temperature detector installed at the entrance and exit of the high-pressure side heat exchange path of the heat storage tank, becomes less than a predetermined value, the bypass solenoid valve is opened. As the amount of high-temperature, high-pressure refrigerant gas flowing into the heat exchange path is reduced, the temperature of the heat storage agent no longer increases.
Prevents heat storage agent from boiling.

〔実施例〕〔Example〕

以下、この発明の冷凍装置の実施例を図に基づいて説明
する。第1図はその一実施例による冷凍装置の冷凍サイ
クル構成回である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the refrigeration system of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigeration cycle configuration of a refrigeration system according to one embodiment.

この第1図において、構成の説明に際し、第5図と同一
部分には同一符号を付してその重複説明を避は第5図と
は異なる部分を述べる。
In FIG. 1, when describing the configuration, parts that are the same as those in FIG. 5 are given the same reference numerals to avoid redundant explanation, and only parts that are different from those in FIG. 5 will be described.

この第1図では、蓄熱槽1の高圧側熱交換路1゜の出入
口側に温度検出器(第1図では図示せず)が設けられて
おり、又、この高圧側熱交換路1゜を側路するバイパス
配管31が設けられている。
In FIG. 1, a temperature detector (not shown in FIG. 1) is provided on the inlet/outlet side of the high-pressure side heat exchange path 1° of the heat storage tank 1, and the high-pressure side heat exchange path 1° is Bypass piping 31 is provided.

このバイパス配管31には、バイパス電磁弁32が設け
られている。バイパス電磁弁32は入口温度検出器と出
口温度検出器の温度差に基づいて開閉されるものである
。その他の構成は第5図と同様である。
This bypass piping 31 is provided with a bypass solenoid valve 32 . The bypass solenoid valve 32 is opened and closed based on the temperature difference between the inlet temperature detector and the outlet temperature detector. The other configurations are the same as in FIG. 5.

第2図はこの実施例の除霜制御回路にマイクロコンピュ
ータを用いた場合のブロック図である。
FIG. 2 is a block diagram when a microcomputer is used in the defrosting control circuit of this embodiment.

この第2図において20は、比較回路28、演算回路2
9、選択回路30より構成されるマイクロコンピュータ
、21は高圧側熱交換路1oの上記入口温度検出器、2
1aは上記出口温度検出器、22は庫内温度検出器、2
3は除霜開始信号発生回路、24はオフサイクルデフロ
スト用リレー回路、25はホットガスデフロスト用リレ
ー回路、26.27は除霜終了信号発生回路である。
In this FIG. 2, 20 is a comparison circuit 28, an arithmetic circuit 2
9, a microcomputer consisting of a selection circuit 30; 21, the above-mentioned inlet temperature detector of the high-pressure side heat exchange path 1o; 2;
1a is the outlet temperature detector, 22 is the internal temperature detector, 2
3 is a defrost start signal generation circuit, 24 is an off-cycle defrost relay circuit, 25 is a hot gas defrost relay circuit, and 26.27 is a defrost end signal generation circuit.

以下、このブロック図について、第3図の庫内温度と蓄
熱剤温度の関係図および第4図のフローチャートに基づ
いて説明する。第3図で時刻T1に除霜開始信号が出る
とすると、この場合は庫内温度が設定温度(4℃)より
高いため、オフサイクルデフロストを行ない、除霜終了
信号発生回路26により信号が出ると時刻T2で除霜が
終了し、再び冷却運転に入る。
Hereinafter, this block diagram will be explained based on the relationship diagram between the internal temperature and the heat storage agent temperature shown in FIG. 3 and the flowchart shown in FIG. 4. Assuming that the defrost start signal is output at time T1 in FIG. 3, in this case, the internal temperature is higher than the set temperature (4°C), so off-cycle defrost is performed and the defrost end signal generation circuit 26 outputs a signal. Defrosting ends at time T2, and cooling operation begins again.

冷却運転が続き、蓄熱剤温度が上昇してくる。Cooling operation continues and the temperature of the heat storage agent rises.

蓄熱剤温度が上昇すると、高圧側熱交換路10内での熱
交換量が減少するため、高圧側熱交換路10の出口温度
が上昇し、高圧側熱交換路10で出入口温度差が縮まり
、ステップS1で所定温度差(ΔT)になると、バイパ
ス電磁弁32が開き(ステップS2)、高温・高圧ガス
を高圧側熱交換路10をバイパスさせる。
When the heat storage agent temperature rises, the amount of heat exchanged within the high-pressure side heat exchange path 10 decreases, so the outlet temperature of the high-pressure side heat exchange path 10 increases, and the temperature difference between the entrance and exit of the high-pressure side heat exchange path 10 decreases. When a predetermined temperature difference (ΔT) is reached in step S1, the bypass solenoid valve 32 opens (step S2), causing the high temperature and high pressure gas to bypass the high pressure side heat exchange path 10.

したがって、蓄熱剤温度は自然放熱により低下する。時
刻T、にステップS3で除霜開始信号が出ると、この場
合は庫内温度が設定温度(4℃)より低いため、ステッ
プS4からステップS5に移行して、ホットガスデフロ
ストを行ないステップS6で除霜終了信号発生回路27
により信号が出ると時刻T4で除霜終了する。
Therefore, the temperature of the heat storage agent decreases due to natural heat radiation. When the defrosting start signal is issued in step S3 at time T, in this case, the temperature inside the refrigerator is lower than the set temperature (4°C), so the process moves from step S4 to step S5, hot gas defrosting is performed, and step S6 Defrost end signal generation circuit 27
When a signal is issued, defrosting ends at time T4.

時刻T4で除霜終了後、再び冷却運転に入り、蓄熱剤温
度が上昇し、出入口温度差が所定温度差(ΔT)になる
と、バイパス電磁弁32を開け、蓄熱剤温度の上昇を防
止する。
After defrosting is completed at time T4, the cooling operation is started again, and when the temperature of the heat storage agent increases and the temperature difference between the entrance and exit reaches a predetermined temperature difference (ΔT), the bypass solenoid valve 32 is opened to prevent the temperature of the heat storage agent from increasing.

なお、ステップS4において、庫内温度が設定温度(4
℃)より高いときには、ステップS7のオフサイクルデ
フロストを経てステップS6に進み、ステップS6で除
霜が終了しなければ、ステップS8でオフサイクルデフ
ロストであればステップS7に戻りオフサイクルデフロ
ストでなければステップS5に戻る。
In addition, in step S4, the temperature inside the refrigerator reaches the set temperature (4
℃), the process proceeds to step S6 via off-cycle defrost in step S7, and if defrosting is not completed in step S6, the process returns to step S7 if off-cycle defrost is detected in step S8, and step S7 is resumed if not off-cycle defrost. Return to S5.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、蓄熱槽の高圧側熱交
換路の出入口に温度検出器を設けるとともに高圧側熱交
換路を側路するバイパス配管を設け、そのバイパス配管
の途中に高圧側熱交換路の出入口温度差により開閉する
バイパス電磁弁を設けるように構成したので、連続オフ
サイクル除霜により蓄熱剤温度が上昇した場合でも、高
圧側熱交換路の出入口温度差が所定値以下になれば、バ
イパス電磁弁を開路させて、高圧側熱交換路には高温・
高圧冷媒ガスは流れなくなり、蓄熱剤の温度上昇を防止
する。
As described above, according to the present invention, a temperature detector is provided at the entrance and exit of the high-pressure side heat exchange path of the heat storage tank, and a bypass pipe that bypasses the high-pressure side heat exchange path is provided, and the high-pressure side Since the structure is equipped with a bypass solenoid valve that opens and closes depending on the temperature difference between the entrance and exit of the heat exchange path, even if the temperature of the heat storage agent increases due to continuous off-cycle defrosting, the temperature difference between the entrance and exit of the high-pressure side heat exchange path remains below a predetermined value. If so, open the bypass solenoid valve to prevent high temperature and
High-pressure refrigerant gas stops flowing, preventing the temperature of the heat storage agent from rising.

これにともない、蓄熱剤の温度上昇により蓄熱槽内の圧
力を上昇させ、蓄熱剤が吹き出すという不具合が解消さ
れ、安定した運転を行なうことができる効果がある。
This eliminates the problem of the heat storage agent blowing out due to the increase in the temperature of the heat storage agent, which increases the pressure in the heat storage tank, and has the effect of making it possible to perform stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による冷凍装置の冷凍サイ
クル構成図、第2図は同上実施例における除霜制御開路
を示すブロック図、第3図は同上実施例における制御動
作を説明するための庫内温度と蓄熱剤温度・バイパスの
電磁弁の開閉状態を示す関係図、第4図は同上実施例の
動作を示すフローチャート図、第5図は従来の冷凍装置
の冷凍サイクル構成図である。 1・・・圧縮機、2・・・凝縮器、3・・・絞り装置、
4・・・蒸発器、10・・・高圧側熱交換路、9・・・
蓄熱槽、9a・・・蓄熱剤、11・・・低圧側熱交換路
、20・・・マイクロコンピュータ、21・・・入口温
度検出器、21a・・・出口温度検出器、22・・・庫
内温度検出器、23・・・除霜開始信号発生回路、30
・・・選択回路、31・・・バイパス配管、32・・・
バイパス電磁弁。 なお、図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a refrigeration cycle configuration diagram of a refrigeration system according to an embodiment of the present invention, Fig. 2 is a block diagram showing defrosting control opening in the embodiment as described above, and Fig. 3 is for explaining the control operation in the embodiment as described above. FIG. 4 is a flowchart showing the operation of the above embodiment, and FIG. 5 is a refrigeration cycle configuration diagram of a conventional refrigeration system. . 1... Compressor, 2... Condenser, 3... Squeezing device,
4... Evaporator, 10... High pressure side heat exchange path, 9...
Heat storage tank, 9a... Heat storage agent, 11... Low pressure side heat exchange path, 20... Microcomputer, 21... Inlet temperature detector, 21a... Outlet temperature detector, 22... Warehouse Internal temperature detector, 23...defrosting start signal generation circuit, 30
...Selection circuit, 31...Bypass piping, 32...
Bypass solenoid valve. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、凝縮器、絞り装置、蒸発器、および高圧側と
低圧側とにそれぞれ設けられた熱交換路ならびに蓄熱剤
を内蔵する蓄熱槽を備えた冷凍装置において、除霜開始
信号発生回路の出力によって、上記絞り装置を側路し上
記圧縮機から吐出される高温の冷媒を上記蒸発器に供給
して除霜を行ない、かつ上記蒸発器から送出される液冷
媒を上記低圧側熱交換路に供給して上記蓄熱剤を冷却す
るホットガスデフロスト手段、除霜開始信号発生回路の
出力によって上記圧縮機の運転を停止して除霜を行なう
オフサイクルデフロスト手段、上記高圧側熱交換路の入
口と出口温度を検出する温度検出器、冷凍庫又は冷蔵庫
の庫内温度が予め設定された設定温度以上で、上記蓄熱
剤温度が所定温度以下のとき、上記除霜開始信号発生回
路の出力によってオフサイクルデフロストを選択し、上
記庫内温度が所定値以下のとき上記ホットガスデフロス
トを選択する選択回路、上記高圧側熱交換路を側路し、
途中にバイパス電磁弁を有するバイパス配管、上記出口
温度検出器の出力信号により上記高圧側熱交換路の出入
口温度差を計算し、一定の温度差になると上記バイパス
電磁弁を開閉制御するマイクロコンピュータを備えたこ
とを特徴とする冷凍装置。
In a refrigeration system equipped with a compressor, a condenser, a throttle device, an evaporator, heat exchange paths provided on the high-pressure side and low-pressure side, and a heat storage tank containing a heat storage agent, the output of the defrost start signal generation circuit By bypassing the expansion device, the high-temperature refrigerant discharged from the compressor is supplied to the evaporator for defrosting, and the liquid refrigerant sent from the evaporator is sent to the low-pressure side heat exchange path. a hot gas defrost means for supplying hot gas to cool the heat storage agent; an off-cycle defrost means for defrosting by stopping the operation of the compressor according to the output of a defrost start signal generating circuit; an inlet of the high-pressure side heat exchange path; A temperature detector detects the outlet temperature, and when the temperature inside the freezer or refrigerator is above a preset temperature and the temperature of the heat storage agent is below a predetermined temperature, off-cycle defrost is performed by the output of the defrost start signal generation circuit. a selection circuit that selects the hot gas defrost when the temperature inside the refrigerator is below a predetermined value, and bypasses the high-pressure side heat exchange path;
Bypass piping having a bypass solenoid valve in the middle, and a microcomputer that calculates the temperature difference at the entrance and exit of the high-pressure side heat exchange path based on the output signal of the outlet temperature detector, and controls the opening and closing of the bypass solenoid valve when a certain temperature difference is reached. A refrigeration device characterized by:
JP28170387A 1987-11-07 1987-11-07 Refrigerator Pending JPH01123966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28170387A JPH01123966A (en) 1987-11-07 1987-11-07 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28170387A JPH01123966A (en) 1987-11-07 1987-11-07 Refrigerator

Publications (1)

Publication Number Publication Date
JPH01123966A true JPH01123966A (en) 1989-05-16

Family

ID=17642802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28170387A Pending JPH01123966A (en) 1987-11-07 1987-11-07 Refrigerator

Country Status (1)

Country Link
JP (1) JPH01123966A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068001A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Outdoor unit and air conditioning device
JP2013185808A (en) * 2012-03-12 2013-09-19 Rinnai Corp Heat pump
JP2015206587A (en) * 2015-07-07 2015-11-19 三菱重工冷熱株式会社 Method for defrosting load cooler
JP2018189340A (en) * 2017-05-11 2018-11-29 ホシザキ株式会社 Cooling storage box
US11262114B2 (en) * 2016-04-11 2022-03-01 Begafrost S.R.L. System for deicing an external evaporator for heat pump systems
CN117469764A (en) * 2023-12-26 2024-01-30 珠海格力电器股份有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068001A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Outdoor unit and air conditioning device
JP2013185808A (en) * 2012-03-12 2013-09-19 Rinnai Corp Heat pump
JP2015206587A (en) * 2015-07-07 2015-11-19 三菱重工冷熱株式会社 Method for defrosting load cooler
US11262114B2 (en) * 2016-04-11 2022-03-01 Begafrost S.R.L. System for deicing an external evaporator for heat pump systems
JP2018189340A (en) * 2017-05-11 2018-11-29 ホシザキ株式会社 Cooling storage box
CN117469764A (en) * 2023-12-26 2024-01-30 珠海格力电器股份有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium
CN117469764B (en) * 2023-12-26 2024-03-22 珠海格力电器股份有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
KR102049426B1 (en) Cooler using hot gas injection effect and defrost system including thereof
JPH01123966A (en) Refrigerator
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JP3082560B2 (en) Dual cooling system
JPH01208674A (en) Heat pump type hot water, heating and cooling machine
JPH0260950B2 (en)
JPH04217754A (en) Air conditioner
JP2504416B2 (en) Refrigeration cycle
JPH06341741A (en) Defrosting controller for refrigerating device
JPH065572Y2 (en) Refrigeration equipment
JPH02106662A (en) Freezer device
JPH01179876A (en) Refrigerating device
JPH0233108Y2 (en)
JPS63129286A (en) Refrigerator
JPS6222396B2 (en)
JPS6139258Y2 (en)
JPH0263152B2 (en)
JPS63223458A (en) Solar heat utilizing hot water heater
JPS5952171A (en) Cooling device
JPH05172408A (en) Refrigerator
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS60597Y2 (en) Refrigerator defrost device
JPS6130131Y2 (en)
JPH07151467A (en) Cold air dryer
JPH08240348A (en) Refrigerator