JP2507337Y2 - Electrochemical storage battery - Google Patents

Electrochemical storage battery

Info

Publication number
JP2507337Y2
JP2507337Y2 JP13803689U JP13803689U JP2507337Y2 JP 2507337 Y2 JP2507337 Y2 JP 2507337Y2 JP 13803689 U JP13803689 U JP 13803689U JP 13803689 U JP13803689 U JP 13803689U JP 2507337 Y2 JP2507337 Y2 JP 2507337Y2
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte tube
electrode terminal
battery case
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13803689U
Other languages
Japanese (ja)
Other versions
JPH0377369U (en
Inventor
正彦 永井
健二 植田
昭雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13803689U priority Critical patent/JP2507337Y2/en
Publication of JPH0377369U publication Critical patent/JPH0377369U/ja
Application granted granted Critical
Publication of JP2507337Y2 publication Critical patent/JP2507337Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Secondary Cells (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、電気化学蓄電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to an electrochemical storage battery.

〔従来の技術〕[Conventional technology]

従来の電気化学蓄電池の構造を第8図に示す。 The structure of a conventional electrochemical storage battery is shown in FIG.

第8図に示す従来の装置においては、円筒状の電池ケ
ース08に円筒状の電解質管06が収納され、電池ケース08
と電解質管06の間に形成された環状部には正極活物質07
が充てんされ、電解質管06内には負極活物質05が充てん
されている。この負極活物質05中には上部から負極端子
01が挿入されている。
In the conventional device shown in FIG. 8, the cylindrical electrolyte case 06 is housed in the cylindrical battery case 08, and the battery case 08
The positive electrode active material 07 is formed on the annular portion formed between the electrolyte tube 06 and the electrolyte tube 06.
The electrolyte tube 06 is filled with the negative electrode active material 05. In this negative electrode active material 05, the negative electrode terminal is
01 is inserted.

上記電池ケース08と電解質管06の上部は絶縁リング03
に接着されており、この絶縁リング03は更に負極端子01
と接続されたカバー板02が接着されている。
Insulating ring 03 is on top of battery case 08 and electrolyte tube 06.
This insulating ring 03 is further bonded to the negative electrode terminal 01.
The cover plate 02 connected to is bonded.

次に、上記電気化学蓄電池の作用について説明する。 Next, the operation of the electrochemical storage battery will be described.

電池ケース08を正極端子とし、負極端子01との間に負
荷を接続すると、正極活物質07が硫黄、負極活物質05が
ナトリウムの場合、負極及び正極にそれぞれ次の放電反
応が起り、負荷に電流が流れる。
When the battery case 08 is used as the positive electrode terminal and a load is connected between the negative electrode terminal 01 and the positive electrode active material 07 is sulfur and the negative electrode active material 05 is sodium, the following discharge reactions occur in the negative electrode and the positive electrode, respectively, and the load is applied. An electric current flows.

負極 6Na→6Na++6e 正極 2SCl4+6Na++6e→ S2Cl2+6NaCl 負極反応により発生するナトリウムイオンは電解質管
06内を移動し、正極活物質07側に入り、電子は負極端子
01から負荷に流れる。
Negative electrode 6Na → 6Na + + 6e Positive electrode 2SCl 4 + 6Na + + 6e → S 2 Cl 2 + 6NaCl Sodium ion generated by negative electrode reaction is electrolyte tube
It moves in 06, enters the positive electrode active material 07 side, and electrons are in the negative electrode terminal.
From 01 to load.

正極表面では正極活物質07(SCl4)と負極活物質05側
から移動してきたナトリウムイオンと、負荷から正極端
子に流れてきた電子が反応し、S2Cl2,NaClを生成する。
On the surface of the positive electrode, the sodium ions that have moved from the positive electrode active material 07 (SCl 4 ) and the negative electrode active material 05 sides react with the electrons that have flowed from the load to the positive electrode terminal to generate S 2 Cl 2 and NaCl.

又、正極端子と負極端子01間に直流電源を接続して充
電する場合には、負,正両極においてそれぞれ上記の放
電反応と逆の反応即ち充電反応が起る。この際ナトリウ
ムイオン,電子の移動は放電反応のときの方向と逆方向
になる。
Further, when a DC power supply is connected between the positive electrode terminal and the negative electrode terminal 01 to charge, a reaction opposite to the above-mentioned discharge reaction, that is, a charge reaction occurs at both the negative and positive electrodes. At this time, the movement of sodium ions and electrons is opposite to the direction of the discharge reaction.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

従来の蓄電池において、充、放電時には、各物質の移
動,両電極での電極反応が行われるが、これらの速度が
電池の性能を大きく左右する。
In a conventional storage battery, movement of each substance and electrode reaction at both electrodes are performed at the time of charging and discharging, and these speeds greatly affect the performance of the battery.

負極端子は負極活物質内に挿入されているが、放電,
充電反応に応じてナトリウムイオンが負極端子から電解
質管へ又はその逆方向に移動する。従来の装置について
は、この移動の速度を上げることにより、放電,充電で
の性能向上を図る必要があつた。またナトリウムイオン
の移動速度が全体の反応速度に大きく影響し、中でも電
解質内での移動速度が重要である。電解質内でのナトリ
ウムイオンの移動速度は電解質管の物質,温度に大きく
左右され、厚みを小さくする程移動時間が小さくなり望
ましいが、逆に電解質管の強度が低下するという課題が
あつた。
The negative electrode terminal is inserted in the negative electrode active material,
Depending on the charging reaction, sodium ions move from the negative electrode terminal to the electrolyte tube or in the opposite direction. In the conventional device, it is necessary to improve the performance in discharging and charging by increasing the moving speed. In addition, the moving speed of sodium ions greatly affects the overall reaction speed, and the moving speed in the electrolyte is particularly important. The migration rate of sodium ions in the electrolyte is largely influenced by the substance and temperature of the electrolyte tube, and the smaller the thickness, the shorter the migration time, which is desirable, but the problem is that the strength of the electrolyte tube decreases.

本考案は、上記課題を解決し、高性能の蓄電池を提供
しようとするものである。
The present invention is intended to solve the above problems and provide a high-performance storage battery.

〔課題を解決するための手段〕[Means for solving the problem]

本考案は、正極端子を形成する円筒状の電池ケース内
に電解質管が収納され上記電池ケースと電解質管の間に
正極活物質が充てんされ上記電解質管内には負極活物質
が充てんされ同負極活物質中に棒状の負極端子が挿入さ
れた電気化学蓄電池において、上記負極端子の側面に設
けられた突起部、上記電池ケース内面に設けられた突起
部、および上記電解質管の側面に軸方向に沿つて設けら
れた補強部材を備え上記電解質管を薄肉管としたことを
特徴としている。
According to the present invention, an electrolyte tube is housed in a cylindrical battery case forming a positive electrode terminal, a positive electrode active material is filled between the battery case and the electrolyte tube, and a negative electrode active material is filled in the electrolyte tube. In an electrochemical storage battery in which a rod-shaped negative electrode terminal is inserted into a substance, a protrusion provided on the side surface of the negative electrode terminal, a protrusion provided on the inner surface of the battery case, and a side surface of the electrolyte tube along the axial direction. It is characterized in that the electrolyte tube is a thin-walled tube provided with a reinforcing member provided.

〔作用〕[Action]

上記において、本考案の電気化学蓄電池の放電時の負
極反応は、負極端子及び負極端子に接続された突起部の
全表面で起り、負極活物質がナトリウムからなる場合、
ナトリウムイオンと電子を生成し、ナトリウムイオンは
負極活物質内を拡散して電解質管に向つて移動し、電子
は負荷に流れる。
In the above, the negative electrode reaction during discharge of the electrochemical storage battery of the present invention occurs on the entire surface of the negative electrode terminal and the protrusion connected to the negative electrode terminal, and when the negative electrode active material is sodium,
Sodium ions and electrons are generated, the sodium ions diffuse in the negative electrode active material and move toward the electrolyte tube, and the electrons flow to the load.

上記ナトリウムイオンは電解質管を経て正極端子であ
る電池ケース及び電池ケース内面に設けられた突起部の
全表面に達し、負荷により電子を受け取つてナトリウム
イオンが消滅する正極反応が電池ケース内面にて起る。
The sodium ions reach the entire surface of the battery case, which is the positive electrode terminal, and the protrusions provided on the inner surface of the battery case through the electrolyte tube, and the positive electrode reaction in which the sodium ions disappear by receiving electrons by the load occurs on the inner surface of the battery case. It

また、充電時には、電池ケース内面及び同内面に設け
られた突起部の全表面でナトリウムイオンと電子の生成
反応が起り、電子は電源に流れ、ナトリウムイオンは正
極活物質中を電解質管に向つて拡散し、更に電解質管内
を拡散して負極活物質中に入つて拡散し、負極端子及び
同端子に設けられた突起部に向つて移動し、その全表面
で電源より電子を受け取りナトリウムイオンが消滅する
負極反応が起る。
During charging, sodium ion and electron generation reaction occurs on the inner surface of the battery case and the entire surface of the protrusion provided on the inner surface, the electron flows to the power source, and the sodium ion flows through the positive electrode active material toward the electrolyte tube. It diffuses, further diffuses in the electrolyte tube, enters the negative electrode active material and diffuses, moves toward the negative electrode terminal and the protrusion provided on the same terminal, receives electrons from the power supply on all the surfaces, and sodium ions disappear A negative electrode reaction occurs.

上記負極端子及び電池ケース内面にはそれぞれ突起部
が設けられているため、負極端子と電解質管の間及び電
池ケースと電解質管の間の距離はそれぞれ短縮され、そ
の間のナトリウムイオンの移動時間は短縮される。
Since the projections are provided on the negative electrode terminal and the inner surface of the battery case, respectively, the distance between the negative electrode terminal and the electrolyte tube and between the battery case and the electrolyte tube is shortened, and the transit time of sodium ions between them is shortened. To be done.

上記ナトリウムイオンの移動時間は、上記電解質管を
薄肉管としているために更に短縮され、補強部材を設け
ているため電解質管の強度は保たれる。
The migration time of the sodium ions is further shortened because the electrolyte tube is a thin wall tube, and the strength of the electrolyte tube is maintained because the reinforcing member is provided.

また、上記負荷端子及び電池ケース内面はそれぞれ表
面積が増加しているため単位面積当りの反応の負担が小
さくなり、反応が起り易くなつて活性化電圧が下る。
Further, since the surface areas of the load terminal and the inner surface of the battery case are increased, the reaction load per unit area is reduced, and the reaction easily occurs and the activation voltage decreases.

上記により、ナトリウムイオンの移動時間が短縮し、
正極及び負極における反応が起り易くなるため、電池の
性能を向上させることができる。
By the above, the migration time of sodium ions is shortened,
Since the reaction in the positive electrode and the negative electrode easily occurs, the performance of the battery can be improved.

〔実施例〕〔Example〕

本考案の第1の実施例を第1図に示す。 A first embodiment of the present invention is shown in FIG.

第1図に示す本実施例は、正極端子を形成する円筒状
の電池ケース8内にβ″−アルミナよりなる円筒状の電
解質管6が収納され、上記電池ケース8と電解質管6の
間に形成された環状部にS,Na2SX,グラフアイトフエル
トよりなる正極活物質7が充てんされ、上記電解質管6
内にはNa,金属繊維よりなる負極活物質5が充てんさ
れ、同負極活物質5中に上部より棒状の負極端子1が挿
入され、上記電池ケース8と電解質管6の上部にα−ア
ルミナよりなる絶縁リング3が接着され、同絶縁リング
3の内側に上記負極端子1が貫通するカバー板2が設け
られた電気化学蓄電池において、上記負極端子1の電解
質管6内の部分に金属製円板9が軸方向に複数枚設けら
れている。
In this embodiment shown in FIG. 1, a cylindrical battery case 8 made of β ″ -alumina is housed in a cylindrical battery case 8 forming a positive electrode terminal, and between the battery case 8 and the electrolyte tube 6. The formed annular portion is filled with a positive electrode active material 7 composed of S, Na 2 SX and graphite felt, and the electrolyte tube 6
A negative electrode active material 5 composed of Na and metal fibers was filled in the inside, and a rod-shaped negative electrode terminal 1 was inserted into the negative electrode active material 5 from above, and α-alumina was formed above the battery case 8 and the electrolyte tube 6. In the electrochemical storage battery in which the insulating ring 3 is adhered and the cover plate 2 through which the negative electrode terminal 1 penetrates is provided inside the insulating ring 3, a metal disk is provided in a portion of the negative electrode terminal 1 inside the electrolyte tube 6. A plurality of 9 are provided in the axial direction.

上記において、本実施例の電気化学蓄電池の放電時の
負極反応は、負極端子1及び負極端子1に接続された金
属製円板9の全表面で起り、ナトリウムイオンと電子を
生成する。生成したナトリウムイオンはその濃度勾配に
従つて負極活物質5内を拡散して電解質管6に向つて移
動し、電子が負荷に流れる。
In the above, the negative electrode reaction at the time of discharging of the electrochemical storage battery of the present example occurs on the entire surface of the negative electrode terminal 1 and the metal disk 9 connected to the negative electrode terminal 1 to generate sodium ions and electrons. The generated sodium ions diffuse in the negative electrode active material 5 according to the concentration gradient, move toward the electrolyte tube 6, and electrons flow to the load.

また、充電時には、正極の電池ケース8内面で発生し
たナトリウムイオンは電解質管6内を移動して、負極活
物質5内に入り、その中を拡散して負極端子1及びそれ
に設けられた金属製円板9の表面に向つて移動し、その
表面で電源より電子を受け取りナトリウムイオンが消滅
する負極反応が起る。
During charging, sodium ions generated on the inner surface of the battery case 8 of the positive electrode move in the electrolyte tube 6 and enter the negative electrode active material 5, diffused therein and made of the negative electrode terminal 1 and the metal provided therein. It moves toward the surface of the circular plate 9, receives electrons from the power source on the surface, and causes a negative electrode reaction in which sodium ions disappear.

本実施例においては、負極端子1に金属製円板9を設
けているために負極反応の起る負極端子1表面と電解質
管6の距離が短縮され、ナトリウムイオンの負極活物質
5中での拡散に要する距離が短縮され、その間のナトリ
ウムイオンの移動が早くなる。
In this embodiment, since the negative electrode terminal 1 is provided with the metal disk 9, the distance between the surface of the negative electrode terminal 1 where the negative electrode reaction occurs and the electrolyte tube 6 is shortened, and the negative electrode active material 5 of sodium ions is The distance required for diffusion is shortened, and the sodium ions move faster during that time.

また、負極反応の起る負極表面積が増加し、単位面積
当りの負極反応の負担が小さくなり、負極反応が起り易
くなつて活性化過電圧が下がる。
In addition, the negative electrode surface area where the negative electrode reaction occurs increases, the burden of the negative electrode reaction per unit area becomes small, the negative electrode reaction easily occurs, and the activation overvoltage decreases.

上記により、ナトリウムイオンの移動時間が短縮し、
負極反応が起り易くなるため、蓄電池の性能を向上させ
ることができる。
By the above, the migration time of sodium ions is shortened,
Since the negative electrode reaction easily occurs, the performance of the storage battery can be improved.

本考案の第2の実施例を第2図に示す。 A second embodiment of the present invention is shown in FIG.

第2図に示す本実施例は、上記第1の実施例における
負極端子1に設けられた金属製円板9に替えて金属製螺
旋状板10を設けたものであり、上記第1の実施例と同様
の作用が効果がある。
In this embodiment shown in FIG. 2, a metal spiral plate 10 is provided in place of the metal disk 9 provided on the negative electrode terminal 1 in the first embodiment. The same action as the example is effective.

本考案の第3の実施例を第3図に示す。 A third embodiment of the present invention is shown in FIG.

第3図に示す本実施例は、上記第1、第2の実施例に
おいて負極端子1にそれぞれ設けられた金属製円板9及
び金属製螺旋状板10に替えて負極端子1より突起する複
数本の金属製棒11を設けたものであり、作用及び効果は
第1,第2の実施例と同様である。
In this embodiment shown in FIG. 3, a plurality of protrusions from the negative electrode terminal 1 are used instead of the metal disk 9 and the metal spiral plate 10 provided on the negative electrode terminal 1 in the first and second embodiments. The metal rod 11 of the book is provided, and the operation and effect are similar to those of the first and second embodiments.

本考案の第4の実施例を第4図に示す。 A fourth embodiment of the present invention is shown in FIG.

第4図に示す本実施例は、正極端子を形成する円筒状
の電池ケース8内にβ″−アルミナよりなる円筒状の電
解質管6が収納され、上記電池ケース8と電解質管6の
間に形成された環状部にS,Na2SX,グラフアイトフエル
トよりなる正極活物質7が充てんされ、上記電解質管6
内にはNa,金属繊維よりなる負極活物質5が充てんさ
れ、同負極活物質5中に上部より棒状の負極端子1が挿
入され、上記電池ケース8と電解質管6の上部にα−ア
ルミナよりなる絶縁リング3が接着され、同絶縁リング
3の内側に上記負極端子1が貫通するカバー板2が設け
られた電気化学蓄電池において、上記正極端子を形成す
る電池ケース8の内面に金属製環状板12が軸方向に複数
枚設けられている。
In the present embodiment shown in FIG. 4, a cylindrical electrolyte tube 6 made of β ″ -alumina is housed in a cylindrical battery case 8 forming a positive electrode terminal, and between the battery case 8 and the electrolyte tube 6. The formed annular portion is filled with a positive electrode active material 7 composed of S, Na 2 SX and graphite felt, and the electrolyte tube 6
A negative electrode active material 5 composed of Na and metal fibers was filled in the inside, and a rod-shaped negative electrode terminal 1 was inserted into the negative electrode active material 5 from above, and α-alumina was formed above the battery case 8 and the electrolyte tube 6. In an electrochemical storage battery in which an insulating ring 3 is adhered and a cover plate 2 through which the negative electrode terminal 1 penetrates is provided inside the insulating ring 3, a metal annular plate is formed on the inner surface of a battery case 8 forming the positive electrode terminal. A plurality of 12 are provided in the axial direction.

上記において、本実施例の電気化学蓄電池の放電時に
は、負極反応で生成したナトリウムイオンが電解質管6
を経て正極端子の電池ケース8及び電池ケース8内面に
設けられた金属製環状板12の全表面に達し、負荷より電
子を受け取つてナトリウムイオンが消滅する正極反応が
電池ケース8内面にて起る。
In the above, at the time of discharge of the electrochemical storage battery of the present embodiment, sodium ions generated by the negative electrode reaction are changed to the electrolyte tube 6
Then, the positive electrode reaction, which reaches the entire surface of the battery case 8 of the positive electrode terminal and the metal annular plate 12 provided on the inner surface of the battery case 8 and receives electrons from the load to eliminate sodium ions, occurs on the inner surface of the battery case 8. .

また、充電時には電池ケース8内面及び同内面に設け
られた金属製環状板12の全表面でナトリウムイオンと電
子の生成反応が起り、電子は電源に流れ、ナトリウムイ
オンは正極活物質7中をその濃度勾配に従つて電解質管
6に向つて拡散し、更に電解質管6内を拡散し、負極活
物質5内に入り、更にその中を拡散し、負極端子1表面
に達し電源より電子を受け取る負極反応によりナトリウ
ムイオンが消滅する。
In addition, during charging, a reaction of generating sodium ions and electrons occurs on the inner surface of the battery case 8 and the entire surface of the metal annular plate 12 provided on the inner surface, the electrons flow to the power source, and the sodium ions flow in the positive electrode active material 7. A negative electrode that diffuses toward the electrolyte tube 6 according to the concentration gradient, further diffuses in the electrolyte tube 6, enters the negative electrode active material 5, further diffuses therein, reaches the surface of the negative electrode terminal 1, and receives electrons from the power source. The reaction causes the sodium ions to disappear.

本実施例においては、正極端子である電池ケース8の
内面に金属製環状板12を設けているために正極の表面が
増し、単位面積当りの正極反応の負荷が小さくなり、正
極反応が起り易くなつて活性化過電圧が下る。
In this embodiment, since the metal annular plate 12 is provided on the inner surface of the battery case 8 which is the positive electrode terminal, the surface of the positive electrode is increased, the load of the positive electrode reaction per unit area is reduced, and the positive electrode reaction easily occurs. The activation overvoltage drops.

また、正極反応の起る電池ケース8内面と電解質管6
の距離が縮まりナトリウムイオンの拡散に要する時間が
短縮される。
In addition, the inner surface of the battery case 8 where the positive electrode reaction occurs and the electrolyte tube 6
And the time required for diffusion of sodium ions is shortened.

上記により、ナトリウムイオンの移動時間が短縮し、
正極反応が起り易くなるため、蓄電池の性能を向上させ
ることができる。
By the above, the migration time of sodium ions is shortened,
Since the positive electrode reaction is likely to occur, the performance of the storage battery can be improved.

本考案の第5の実施例を第5図に示す。 A fifth embodiment of the present invention is shown in FIG.

第5図に示す本実施例は、上記第4の実施例における
電池ケース8の内面に設けられた金属製環状板12に替え
て金属製螺旋状板13を設けたものであり、上記第4の実
施例と同様の作用及び効果がある。
In the present embodiment shown in FIG. 5, a metallic spiral plate 13 is provided in place of the metallic annular plate 12 provided on the inner surface of the battery case 8 in the fourth embodiment. The same action and effect as the embodiment of

本考案の第6の実施例を第6図及び第7図に示す。 A sixth embodiment of the present invention is shown in FIGS. 6 and 7.

第6図及第7図に示す本実施例は、正極端子を形成す
る円筒状の電池ケース8内にβ″−アルミナよりなる円
筒状の電解質管6が収納され、上記電池ケース8と電解
質管6の間に形成された環状部にS,Na2SX,グラフアイ
トフエルトよりなる正極活物質7が充てんされ、上記電
解質管6内にはNa,金属繊維よりなる負極活物質5が充
てんされ、同負極活物質5中に上部より棒状の負極端子
1が挿入され、上記電池ケース8と電解質管6の上部に
α−アルミナよりなる絶縁リング3が接着され、同絶縁
リング3の内側に上記負極端子1が貫通するカバー板2
が設けられた電気化学蓄電池において、上記電解質管6
の肉厚を薄くし同電解質管6の軸方向に沿つて補強部材
14が設けられている。
In this embodiment shown in FIGS. 6 and 7, a cylindrical battery case 8 made of β ″ -alumina is housed in a cylindrical battery case 8 forming a positive electrode terminal. The annular portion formed between 6 is filled with the positive electrode active material 7 made of S, Na 2 SX and graphite felt, and the electrolyte tube 6 is filled with the negative electrode active material 5 made of Na and metal fibers. A rod-shaped negative electrode terminal 1 is inserted into the negative electrode active material 5 from above, an insulating ring 3 made of α-alumina is adhered to the upper part of the battery case 8 and the electrolyte tube 6, and the negative electrode is provided inside the insulating ring 3. Cover plate 2 through which terminal 1 penetrates
In the electrochemical storage battery provided with, the electrolyte tube 6
Of the reinforcing member along the axial direction of the electrolyte tube 6
14 are provided.

上記において、本実施例の電気化学蓄電池の充,放電
時における電解質管6内のナトリウムイオンの移動時間
は、電解質管6の肉厚が薄いために短縮される。
In the above, the movement time of sodium ions in the electrolyte tube 6 during charging and discharging of the electrochemical storage battery of this embodiment is shortened because the thickness of the electrolyte tube 6 is thin.

上記電解質管6は振動等により電解質管6の軸と直角
方向の剪断応力や曲げ応力が働き、肉厚を薄くすると破
損しやすいが、補強部材14を設けて強度を保つている。
The electrolyte tube 6 is subjected to shearing stress and bending stress in the direction perpendicular to the axis of the electrolyte tube 6 due to vibrations and the like, and is easily damaged when the wall thickness is reduced, but a reinforcing member 14 is provided to maintain the strength.

上記により、ナトリウムイオンの移動時間が短縮する
ため、蓄電池の性能を向上させることができる。
As described above, the sodium ion migration time is shortened, so that the performance of the storage battery can be improved.

なお、上記第1,第2,第3の実施例における負極端子1
に設けた突起物と上記第4,第5の実施例における電池ケ
ース8に設けた突起物と上記第6の実施例における電解
質管6に設けた補強部材はそれぞれいずれかを選択し組
合せて用いることができる。
Incidentally, the negative electrode terminal 1 in the first, second and third embodiments described above.
One of the protrusions provided on the above, the protrusion provided on the battery case 8 in the fourth and fifth embodiments, and the reinforcing member provided on the electrolyte tube 6 in the sixth embodiment are selected and used in combination. be able to.

〔考案の効果〕[Effect of device]

本考案の電気化学蓄電池は、負極端子の側面及び正極
端子を形成する電池ケース内面に突起部を設け、負極端
子と電池ケースの間に配設される電解質管を補強部材が
設けられた薄肉管としたことによつて、負極活物質がナ
トリウムからなる場合、ナトリウムイオンの移動時間が
短縮し、正極及び負極における反応が起り易くなるた
め、電池の性能を向上させることが可能となる。
The electrochemical storage battery of the present invention is a thin-walled tube provided with protrusions on the side surface of the negative electrode terminal and the inner surface of the battery case forming the positive electrode terminal, and an electrolyte tube disposed between the negative electrode terminal and the battery case with a reinforcing member. Therefore, when the negative electrode active material is made of sodium, the migration time of sodium ions is shortened and the reaction between the positive electrode and the negative electrode easily occurs, so that the performance of the battery can be improved.

【図面の簡単な説明】 第1図は本考案の第1の実施例の断面図、第2図は本考
案の第2の実施例の断面図、第3図は本考案の第3の実
施例の断面図、第4図は本考案の第4の実施例の断面
図、第5図は本考案の第5の実施例の断面図、第6図は
本考案の第6の実施例の断面図、第7図は第6図のVII-
VII矢視図、第8図は、従来の装置の断面図である。 1……負極端子、2……カバー板、3……絶縁リング、
5……負極活物質、6……電解質管、7……正極活物
質、8……電池ケース、9……金属製円板、10……金属
製螺旋状板、11……金属製棒、12……金属製環状板、13
……金属製螺旋状板、14……補強部材。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a first embodiment of the present invention, FIG. 2 is a sectional view of a second embodiment of the present invention, and FIG. 3 is a third embodiment of the present invention. An example sectional view, FIG. 4 is a sectional view of a fourth embodiment of the present invention, FIG. 5 is a sectional view of a fifth embodiment of the present invention, and FIG. 6 is a sixth embodiment of the present invention. Sectional view, FIG. 7 is VII- of FIG.
FIG. 8 is a sectional view of the conventional device, as viewed from the direction of arrow VII. 1 ... Negative electrode terminal, 2 ... Cover plate, 3 ... Insulation ring,
5 ... Negative electrode active material, 6 ... Electrolyte tube, 7 ... Positive electrode active material, 8 ... Battery case, 9 ... Metal disk, 10 ... Metal spiral plate, 11 ... Metal rod, 12 …… Metal ring plate, 13
…… Metal spiral plate, 14 …… Reinforcing member.

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】正極端子を形成する円筒状の電池ケース内
に電解質管が収納され上記電池ケースと電解質管の間に
正極活物質が充てんされ上記電解質管内には負極活物質
が充てんされ同負極活物質中に棒状の負極端子が挿入さ
れた電気化学蓄電池において、上記負極端子の側面に設
けられた突起部、上記電池ケース内面に設けられた突起
部、および上記電解質管の側面に軸方向に沿つて設けら
れた補強部材を備え上記電解質管を薄肉管としたことを
特徴とする電気化学蓄電池。
1. A cylindrical battery case forming a positive electrode terminal, wherein an electrolyte tube is housed, a positive electrode active material is filled between the battery case and the electrolyte tube, and a negative electrode active material is filled in the electrolyte tube. In an electrochemical storage battery in which a rod-shaped negative electrode terminal is inserted into an active material, a protrusion provided on a side surface of the negative electrode terminal, a protrusion provided on an inner surface of the battery case, and an axial direction on a side surface of the electrolyte tube. An electrochemical storage battery comprising a reinforcing member provided along the electrolyte tube, wherein the electrolyte tube is a thin tube.
JP13803689U 1989-11-30 1989-11-30 Electrochemical storage battery Expired - Lifetime JP2507337Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13803689U JP2507337Y2 (en) 1989-11-30 1989-11-30 Electrochemical storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13803689U JP2507337Y2 (en) 1989-11-30 1989-11-30 Electrochemical storage battery

Publications (2)

Publication Number Publication Date
JPH0377369U JPH0377369U (en) 1991-08-02
JP2507337Y2 true JP2507337Y2 (en) 1996-08-14

Family

ID=31685166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13803689U Expired - Lifetime JP2507337Y2 (en) 1989-11-30 1989-11-30 Electrochemical storage battery

Country Status (1)

Country Link
JP (1) JP2507337Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758181B2 (en) * 2005-08-31 2011-08-24 株式会社イノアックコーポレーション Cleaning tool
JP4933957B2 (en) * 2007-05-18 2012-05-16 住友ゴム工業株式会社 Sponge scourer

Also Published As

Publication number Publication date
JPH0377369U (en) 1991-08-02

Similar Documents

Publication Publication Date Title
US2798110A (en) Oxidizable electrode for sealed alkaline storage cells
SE8504345L (en) ELECTROCHEMICAL CELL
SE9100722L (en) ELECTROCHEMICAL ENERGY STORAGE CELL
JP2507337Y2 (en) Electrochemical storage battery
Petrovic et al. History of electrochemistry
DE3768667D1 (en) ELECTROCHEMICAL CELLS.
JPH05258762A (en) Interruption/storage method for fuel cell
JPH0613072A (en) Electrode plate for lead-acid battery and its manufacture
US4731308A (en) Battery component
GB1176485A (en) Improvements in or relating to Methods of Recharging Electrochemical Cells
JPS6298560A (en) Sealed lead-acid battery
JPS6155871A (en) Natrium-sulphur battery
JPH0677449B2 (en) Lead acid battery
JPH07335253A (en) Sodium-sulfur battery
JP2658082B2 (en) Molten carbonate fuel cell
JPS5580269A (en) Cell provided with spiral electrode
KR920004305Y1 (en) Battery
JP2001332294A (en) Sodium/sulfur battery
JPS58111272A (en) Matrix type fuel cell
JP2001332295A (en) Sodium/sulfur battery
JPS5935371A (en) Retainer-type lead storage battery
JPS62249362A (en) Battery
JPS5667173A (en) Manufacture of battery with rolled electrodes
JPS61256574A (en) Sodium-sulfur cell
JPS60148071A (en) Sodium-sulfur battery