JPS6155871A - Natrium-sulphur battery - Google Patents

Natrium-sulphur battery

Info

Publication number
JPS6155871A
JPS6155871A JP59178763A JP17876384A JPS6155871A JP S6155871 A JPS6155871 A JP S6155871A JP 59178763 A JP59178763 A JP 59178763A JP 17876384 A JP17876384 A JP 17876384A JP S6155871 A JPS6155871 A JP S6155871A
Authority
JP
Japan
Prior art keywords
anode
active material
sodium
container
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59178763A
Other languages
Japanese (ja)
Inventor
Hajime Wada
元 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP59178763A priority Critical patent/JPS6155871A/en
Publication of JPS6155871A publication Critical patent/JPS6155871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enlarge effective capacity of a battery by making an anode active material consisting of molten sulphur and molten natrium polysulfide to circulate a circulation flow path formed inside an anode container housing said material by thermal convection. CONSTITUTION:A cylindrical inner anode 14 and an inner heater 15 inserted into the inside of said inner anode are attached to the inside of an anode container 5. In a battery reaction region A, heat due to an electric resistance loss is generated both in the charging and discharging time while the temperature of an anode active material at said part rises reducing its specific gravity due to expansion for traveling to the upper part of the anode container 5 because of a connection effect. The expanded anode material collected in the upper part is cooled by the wall surface of the anode container 5 while going down through the space between the anode container 5 and the inner anode electrode 14 in the direction of gravity for entering the space inside the inner anode electrode 14 in the part of the container bottom and returning again to the battery reaction region A. The inner heater 15 is used for assisting in the convection circulation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は陽極活物質として硫黄、陰極活物質としてナト
リウム、また電解体としてナトリウムイオンの伝導性を
有する固体電解質を用いるす) IJウムー硫黄電池に
係り、特に小さな固体電解質表面で大きな容量を持つ電
池構造に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses sulfur as an anode active material, sodium as a cathode active material, and a solid electrolyte having sodium ion conductivity as an electrolyte. In particular, the present invention relates to a battery structure having a large capacity with a small solid electrolyte surface.

〔発明の背景〕[Background of the invention]

ナトリウム−硫黄電池は、ナトリウムイオンのみを透過
させる固体電解質を介して、一方に陰極活物質である溶
融ナトリウム、他方に陽極活物質である溶融硫黄を配し
、300〜350℃程度の温度で充放電を行なう高温作
Dfb型の二次電池である0充放電に伴う電池反応は、 充電 である。すなわち、放電時にはナトリウムが電子を放出
してナトリウムイオンとなシ、固体電解質隔壁を透過し
て硫黄と反応し、多硫化ナトリウムNJL 2 SXな
る放電生成物を生成する。また充電時には電池開路電圧
よシ大きな逆電圧を印加することにより、前記放電時と
逆の過程をとる。
Sodium-sulfur batteries are charged at a temperature of about 300 to 350°C, with molten sodium as the cathode active material on one side and molten sulfur as the anode active material on the other side, through a solid electrolyte that allows only sodium ions to pass through. The battery reaction that accompanies zero charging and discharging in a high-temperature operation Dfb type secondary battery that performs discharging is charging. That is, during discharge, sodium emits electrons and becomes sodium ions, which pass through the solid electrolyte partition wall and react with sulfur, producing a discharge product called sodium polysulfide NJL 2 SX. Furthermore, during charging, a reverse voltage greater than the battery open circuit voltage is applied, thereby performing a process opposite to that during discharging.

第3図はす) IJウムー硫黄電池の従来例を示す(E
PRI EM−1341,Development o
f AdvancedBattery for Uti
lity Application (1980)  
よシ引用)。
Figure 3 shows a conventional example of an IJ Umu sulfur battery (E
PRI EM-1341, Development o
f Advanced Battery for Uti
Application (1980)
(quote).

第3図に於て、袋管状の固体電解質(成る種のセラミッ
クス又はガラス)1の内部にはナトリウム2が満されて
お)、外部には硫黄3が充填されている。硫黄には電子
伝導性がないので、電池反応により生成された多硫化ナ
トリウムイオンに電子を与えて中性化するために陽極領
域内は電子伝導性を持った多孔質物質(例えば炭素繊維
マ) IJワックス4により満たされている。クロマイ
ズド9鋼等よシなる陽極容器5および陰極容器6は活物
質を密封保持し、且つ外部回路と接続する為の電極とし
ても機能している。7および13は、陰極容器および陽
極容器を夫々密封する陰極キャップおよび陽極キャップ
である。ナトリウムリザーバ8は、固体電解質管1が破
壊した際にナトリウムが硫黄と急激に反応する事を抑制
する為の金属細管であシ、その端蓋9の細孔10で固体
電解質管1と連絡し、ナトリウムはリザーバ8と固体電
解質管1との間のクイックを通じて、徐々に固体電解質
管1の表面に供給される。ナ) IJウム注入管11は
電池を組み立てた後にナトリウムを電池内部に注入する
為のものであシ、電池容器の密閉はナトリウムの注入と
、多孔質導電材4に硫黄3を含浸した陽極体の組み入れ
後に溶接やプレスにより行なわれる。αアルミナリング
12は陰極容器6と陽極容器5の絶縁と、固体電解質管
1の保持の為のものである。
In FIG. 3, the inside of a bag-tubular solid electrolyte (made of ceramic or glass) 1 is filled with sodium 2), and the outside is filled with sulfur 3. Since sulfur does not have electron conductivity, a porous material with electron conductivity (e.g. carbon fiber material) is used in the anode region to neutralize the sodium polysulfide ions generated by the battery reaction by giving them electrons. Filled with IJ wax 4. An anode container 5 and a cathode container 6 made of chromized 9 steel or the like keep the active material hermetically sealed and also function as electrodes for connection to an external circuit. 7 and 13 are a cathode cap and an anode cap that seal the cathode container and the anode container, respectively. The sodium reservoir 8 is a metal capillary tube for suppressing rapid reaction of sodium with sulfur when the solid electrolyte tube 1 is broken, and is connected to the solid electrolyte tube 1 through a pore 10 in the end cap 9. , sodium is gradually supplied to the surface of the solid electrolyte tube 1 through the quick between the reservoir 8 and the solid electrolyte tube 1. n) The IJ injection tube 11 is for injecting sodium into the inside of the battery after the battery is assembled, and the battery container is sealed by injecting sodium and by using an anode body made of porous conductive material 4 impregnated with sulfur 3. This is done by welding or pressing after assembly. The α-alumina ring 12 is used to insulate the cathode container 6 and the anode container 5 and to hold the solid electrolyte tube 1.

このナトリウム−硫黄電池はエネルギー密度が高く、固
体電解質以外の材料が安価であるので低コストの大量生
産が期待できる等の利点があシ、電気自動車用、電力貯
蔵用への応用が可能である。
This sodium-sulfur battery has high energy density, and materials other than the solid electrolyte are inexpensive, so it can be mass-produced at low cost, and can be applied to electric vehicles and power storage. .

しかし固体電解質は安価でなく、不純物、特に水を吸収
する事により劣化する為に取シ扱いが難しく、更に機械
的な強度を大きくできる程の厚みを取れない等の問題を
有する。特に、大きな固体電解質の製造は高度の技術を
必要とし、大容量のナトリウム−硫黄電池の製作におい
てのコスト増加につながる。
However, solid electrolytes are not cheap, are difficult to handle because they deteriorate due to absorption of impurities, especially water, and have problems such as being unable to be thick enough to increase mechanical strength. In particular, the production of large solid electrolytes requires advanced technology, leading to increased costs in the production of large capacity sodium-sulfur batteries.

他方、固体電解質管1の大きさが小さいままで陽極活物
質の量を増やしても、電池反応が固体電解質1表面に集
中し、この部分の多孔質導電物質4の表面が充電時に硫
黄原子を多く含む層で被われる。多孔質導電材4表面の
硫黄濃度がNa2S5,5以上になると、多孔質導電材
と多硫化ナトリウムの間にこの硫黄原子層に起因した大
きな分極抵抗が生ずるようになシ、逆電池反応を抑制し
て充電ができなくなる。すなわち、陽極容器内に再充電
の行なえるNa 2 S xが残っていても、固体電解
質管の表面積が小さい場合には、局部的な充電反応の為
にある程度以上の充電が不可能となる。それ故、陽極活
物質の容器を単に大きくして陽極活物質の量を増やして
も電池の実質容量の増大にならない。
On the other hand, even if the amount of anode active material is increased while the size of the solid electrolyte tube 1 remains small, the battery reaction will concentrate on the surface of the solid electrolyte 1, and the surface of the porous conductive material 4 in this area will generate sulfur atoms during charging. covered with a layer containing a lot of When the sulfur concentration on the surface of the porous conductive material 4 exceeds Na2S5.5, a large polarization resistance due to this sulfur atomic layer will occur between the porous conductive material and the sodium polysulfide, suppressing the reverse battery reaction. and cannot be charged. That is, even if Na 2 S x that can be recharged remains in the anode container, if the surface area of the solid electrolyte tube is small, charging beyond a certain level is impossible due to local charging reactions. Therefore, simply increasing the amount of the anode active material by enlarging the container for the anode active material does not increase the actual capacity of the battery.

更に、陽極反応部の電気伝導率は低いので、陽極活物質
の量を増やすべくこの部分の厚みを増す事は電池の内部
抵抗の増加につながシ、この部分での抵抗損失が増して
電池全体の実容量の損失となる。以上の理由により、固
体電解質管の大きさを増す事なく陽極活物質の量と増や
しても電池の実容量を増加させる事は困難である。
Furthermore, since the electrical conductivity of the anode reaction area is low, increasing the thickness of this area to increase the amount of anode active material will lead to an increase in the internal resistance of the battery, increasing the resistance loss in this area and reducing the overall battery. This results in a loss of real capacity. For the above reasons, it is difficult to increase the actual capacity of the battery even if the amount of anode active material is increased without increasing the size of the solid electrolyte tube.

小さな固体電解質管を用いて、内部抵抗による損失を増
加させる事なくナトリウム硫黄電池の実容量の増大を実
現する為には、充電時に反応生成した硫黄濃度の高い陽
極活物質を取シ除いてやる必要がある。これを行うよう
にした装置に関するものに特開昭52−25229があ
るが、この装置では、硫黄をガス化するので電池容積が
大きくなること、構造が複雑になること等の欠点がある
In order to increase the actual capacity of a sodium-sulfur battery using a small solid electrolyte tube without increasing loss due to internal resistance, the anode active material with a high sulfur concentration that is generated by reaction during charging is removed. There is a need. Japanese Patent Laid-Open No. 52-25229 discloses an apparatus for this purpose, but this apparatus gasifies sulfur, so it has drawbacks such as an increased battery capacity and a complicated structure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、固体電解質管の大きさを74%さく保
ったt−iで、しかも電池容積を大き、くする事なく、
単純な構造で電池反応領域内の陽極活物質中の硫黄と多
硫化ナトリウムの濃度を適正に保ち、以て電池の実効容
量の大きいナトリウム−硫黄電池を提供するにある。
The purpose of the present invention is to create a t-i that maintains the size of the solid electrolyte tube by 74%, without increasing or decreasing the battery capacity.
The object of the present invention is to provide a sodium-sulfur battery that has a simple structure, maintains appropriate concentrations of sulfur and sodium polysulfide in an anode active material in a battery reaction region, and has a large effective capacity.

〔発明の概要〕[Summary of the invention]

本発明によるナトリウム−硫黄電池は、溶融硫黄および
溶融多硫化ナトリウムよシなる陽極活物質が、それを収
容した陽極容器内に形成された循環流路中を熱対流によ
って循環するようにしたことを特徴とするものである。
In the sodium-sulfur battery according to the present invention, anode active materials such as molten sulfur and molten sodium polysulfide are circulated by thermal convection in a circulation channel formed in an anode container containing the anode active materials. This is a characteristic feature.

好ましくは上記循環流路は陽極容器内部に設けられた電
極を兼ねる導電体で形成し、該導電体と固体電解質との
対向する領域に多孔質導電材を充填し、該領域が上記循
環流路の一部をなし、該領域での電池反応に伴う抵抗損
による発熱を陽極活物質を循環させるエネルギーとする
Preferably, the circulation flow path is formed of a conductor that also serves as an electrode provided inside the anode container, and a region where the conductor and the solid electrolyte face each other is filled with a porous conductive material, and the region is formed in the circulation flow path. The heat generated by resistance loss accompanying the battery reaction in this region is used as energy for circulating the anode active material.

上記発熱のみでは陽極活物質の循環を充分行わ環流路の
一部に内部ヒータを設けるのがよい。
It is preferable to provide sufficient circulation of the anode active material and provide an internal heater in a part of the circulation path with the above heat generation alone.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例の断面を図式的に示したもので
ある。各部の詳細構造は第3図と同様であるが、本実施
例のナトリウム−硫黄電池の陽極容器5の内部には第1
図に示すように筒形の内部陽極と、その内部に挿入され
た内部ヒータ15とが付加されている。内部陽極電極1
4は4電体製であって、外部回路に接続する為の電極と
して用いられると共に、陽極容器内の陽極活物質の循環
路を定める為の流路形成体としても併用される。
FIG. 1 schematically shows a cross section of an embodiment of the invention. The detailed structure of each part is the same as that shown in FIG. 3, but there is a first
As shown in the figure, a cylindrical internal anode and an internal heater 15 inserted therein are added. Internal anode electrode 1
Reference numeral 4 is made of a four-electrode material, and is used as an electrode for connecting to an external circuit, and is also used as a flow path forming member for defining a circulation path for the anode active material in the anode container.

内部陽極電極14の上下端には図示の如く開放間隙があ
る。
There are open gaps at the upper and lower ends of the internal anode electrode 14 as shown.

電池反応領域は、固体電解質管1と内部陽極電極14と
の間の図中打点図示した領域Aでちり、この領域Aは炭
素繊維マトリックス等の多孔質導電材4で満たされてお
シ、電池反応はこの領域Aのみで起る。第1図中の円1
6内はこの領域の部分拡大図である。この領域Aは、機
能上、第3図に示した通常のナトリウム−硫黄電池の陽
極容器5内の領域に相当する。
The battery reaction area is a dotted area A between the solid electrolyte tube 1 and the internal anode electrode 14, and this area A is filled with a porous conductive material 4 such as a carbon fiber matrix. The reaction occurs only in this region A. Circle 1 in Figure 1
6 is a partially enlarged view of this area. This area A functionally corresponds to the area within the anode container 5 of the conventional sodium-sulfur battery shown in FIG.

上記の電池反応領域Aにおいては充電時と放電時の双方
で電気抵抗損による発熱が起シ、その部分の陽極活物質
は温度が上昇し、熱膨張して比重が小さくなる。特に放
電時においては硫黄から多硫化ナトリウムに移行する反
応において多硫化ナトリウムのモル当シの体積が硫黄の
それに比して大きい事から電池反応による陽極活物質(
硫黄と多硫化すI−1jウム)の比重の減少が大きい。
In the battery reaction region A described above, heat generation occurs due to electrical resistance loss during both charging and discharging, and the temperature of the anode active material in that region increases, thermally expands, and the specific gravity decreases. Particularly during discharge, the molar volume of sodium polysulfide is larger than that of sulfur in the reaction of transferring sulfur to sodium polysulfide.
The specific gravity of sulfur and polysulfide (I-1jium) is greatly reduced.

電池反応領域A内で以上の如く比重の小さくなりた反応
生成後の多硫化ナトリウムを多く含んだvi極活物質は
、該領域A外の未反応陽極活物質を貯えた領域と内部陽
極電極14内部の領域との間に起る連通管効果により陽
極容器5の上部に移動する。この様に上部に溜った膨張
した陽極活物質は外側冷却気体の自然対流、若しくは強
制対流により冷却されている陽極容器5の壁面にて冷却
される。冷却により体積の収縮した陽極活物質は陽極容
器5と内部陽極電極14との間の空間を重力の方向に下
シ、容器5の底の部分で内部陽極電極14の内側の空間
に入る。この空間では電池反応による発熱により温度が
外側に比して高くなるので該空間内の陽極活物質は熱膨
張にょシ上昇し、再び電池反応領域Aに戻る。第2図は
以上のサイクルを概念的に図示したものである。
The vi electrode active material containing a large amount of sodium polysulfide after the reaction product whose specific gravity has become small as described above in the battery reaction area A is transferred to the area outside the area A where unreacted anode active material is stored and the internal anode electrode 14. The anode moves to the upper part of the anode container 5 due to the communication tube effect that occurs between the anode and the inner region. The expanded anode active material accumulated in the upper part is cooled on the wall surface of the anode container 5, which is cooled by natural convection or forced convection of the outer cooling gas. The anode active material whose volume has shrunk due to cooling moves down the space between the anode container 5 and the internal anode electrode 14 in the direction of gravity, and enters the space inside the internal anode electrode 14 at the bottom of the container 5 . In this space, the temperature becomes higher than that outside due to heat generated by the battery reaction, so the anode active material in this space rises due to thermal expansion and returns to the battery reaction area A again. FIG. 2 conceptually illustrates the above cycle.

以上のサイクルの説明では電池反応領域の発熱のみで対
流を起させる場合と説明したが、陽極反応が進んで電池
の内部抵抗が下った場合には反応領域の発熱量が減少し
、その結果として対流による内部流動が減少する。また
、充電時における多硫化ナトリウムから硫黄へ還元され
る反応の場合には陽極活物質の体積が減少して密度が上
が9、電池の運転電流が小さい場合は発熱による体積の
、膨張が不充分となる。以上のような場合においては対
流力が不足することがら9得るので、第1図中に示され
るような内部ヒータ15が対流循環を助けるために用い
られる。また、よシミ池反応と速めるべくよシ多くの量
の陽極活物質を循環させるために、第1図中の17に示
されるような冷却フィンを陽極容器5の外部に取付けて
もよく、これにより温度勾配をよシ太きくし、循環量を
増やす事ができる。
In the above explanation of the cycle, we explained that convection is caused only by heat generation in the battery reaction area, but when the anode reaction progresses and the internal resistance of the battery decreases, the amount of heat generated in the reaction area decreases, and as a result, Internal flow due to convection is reduced. In addition, in the case of the reaction in which sodium polysulfide is reduced to sulfur during charging, the volume of the anode active material decreases and the density increases.9 If the operating current of the battery is small, the volume does not expand due to heat generation. It will be enough. In such cases, convective power may be insufficient, so an internal heater 15 as shown in FIG. 1 is used to aid convective circulation. In addition, in order to circulate a large amount of the anode active material to speed up the pond reaction, cooling fins as shown at 17 in FIG. 1 may be attached to the outside of the anode container 5. This makes it possible to make the temperature gradient wider and increase the amount of circulation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば小型の固体電解質を用いた場合でも、電
池反応領域内の陽極活物質中の硫黄と多硫化すl−IJ
ウムの濃度を適正に保って大容量のナトリウム−硫黄電
池を得る事ができる。本発明によるナトリウム−硫黄電
池は固体電解質を小さくできる為に機械的に丈夫であシ
、製造コストも低くなる。寸だ、陽極容器内の電池反応
領域が小さいため、多孔質導電材の占有する体積が小さ
くなシ、実効的な陽極活物質の容積が大きくなるので電
池のエネルギー密度を大きくする事ができる。
According to the present invention, even when using a small solid electrolyte, sulfur and polysulfide l-IJ in the positive electrode active material in the battery reaction region
It is possible to obtain a large capacity sodium-sulfur battery by keeping the concentration of sodium at an appropriate level. The sodium-sulfur battery according to the present invention is mechanically strong and has low manufacturing costs because the solid electrolyte can be made small. In fact, since the battery reaction area within the anode container is small, the volume occupied by the porous conductive material is small, and the effective volume of the anode active material is increased, making it possible to increase the energy density of the battery.

さらに、本発明のナトリウム−硫黄電池においては、陽
極活物質の循環は全て液相の状態で行なわれ、先記の特
開昭52−25229の如き気相の硫黄の通路を設ける
必要がないので、電池容積の大盤化を招かずに、簡単な
構造で実容量を大きく取る事ができる。更に電池反応領
域内部の電極活な促進も押えられ、しかも大きな同体電
解質を用いる必要もない。
Furthermore, in the sodium-sulfur battery of the present invention, the circulation of the anode active material is entirely carried out in a liquid phase, and there is no need to provide a path for gaseous sulfur as in the above-mentioned JP-A-52-25229. , the actual capacity can be increased with a simple structure without increasing the battery capacity. Further, the promotion of electrode activity inside the battery reaction region can be suppressed, and there is no need to use a large isoelectrolyte.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るす) IJウムー硫黄電
池を1図式的に示す断面図、第2図は第1図における陽
極容器内部の陽極活物質の流れを概念的に示した図、第
3図は従来技術によるナトリウム−硫黄電池の断面図で
ちる。 1・・・固体電解質管   2・・・ナトリウム3・・
・硫黄       4・・・多孔質導電材5・・・陽
極容器     6・・・陰極容器7・・・陰極キャッ
プ   8・・・ナトリウムリゾ−/−?9・・・端蓋
      10・・・細孔11・・・ナトリウム注入
管 12・・・αアルミナリング13・・・陽極キャッ
プ  14・・・内部陽極電極15・・・ヒータ   
   17・・・放熱フィンA・・・電池反応領域 第1図 第2図 第3図
Figure 1 is a cross-sectional view schematically showing an IJ Umu sulfur battery according to an embodiment of the present invention, and Figure 2 is a diagram conceptually showing the flow of the anode active material inside the anode container in Figure 1. , FIG. 3 is a cross-sectional view of a conventional sodium-sulfur battery. 1...Solid electrolyte tube 2...Sodium 3...
- Sulfur 4... Porous conductive material 5... Anode container 6... Cathode container 7... Cathode cap 8... Sodium lyso-/-? 9... End cap 10... Pore 11... Sodium injection tube 12... α alumina ring 13... Anode cap 14... Internal anode electrode 15... Heater
17...Radiating fin A...Battery reaction area Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、陰極活物質として溶融ナトリウム、陽極活物質とし
て多孔質導電材を浸した溶融硫黄および溶融多硫化ナト
リウムを用い、これらの間に固体電解質を介在させたナ
トリウム−硫黄電池において、陽極活物質を収容した陽
極容器内に形成された循環流路中を陽極活物質が熱対流
により循環せしめられることを特徴とするナトリウム−
硫黄電池。 2、上記の循環流路は陽極容器内に配置され且つ外部回
路と接続された電極を兼ねる導電体により形成され、該
導電体と前記固体電解質との対向領域が前記循環流路の
一部をなし、該対向領域に前記多孔質導電材が充填され
、該対向領域における電池反応に伴う抵抗損による発熱
を陽極活性物質の前記熱対流のためのエネルギーとした
特許請求の範囲第1項記載のナトリウム−硫黄電池。 3、上記発熱の他に、更に前記循環流路の一部に設けた
内部ヒータによる発熱を陽極活性物質の熱対流のための
エネルギーとした特許請求の範囲第2項記載のナトリウ
ム−硫黄電池。 4、陽極活物質の循環を促進させるための放熱フィンを
陽極容器の外側に取付けた特許請求の範囲第1項ないし
第3項のいずれかに記載のナトリウム−硫黄電池。
[Claims] 1. A sodium-sulfur battery using molten sodium as a cathode active material, molten sulfur and molten sodium polysulfide impregnated with a porous conductive material as anode active materials, and with a solid electrolyte interposed between them. , wherein the anode active material is circulated by thermal convection in a circulation channel formed in an anode container containing the anode active material.
sulfur battery. 2. The above-mentioned circulation flow path is formed by a conductor that also serves as an electrode placed in the anode container and connected to an external circuit, and the area where the conductor and the solid electrolyte face each other forms a part of the circulation flow path. None, the opposing region is filled with the porous conductive material, and the heat generated by resistance loss accompanying the battery reaction in the opposing region is used as energy for the thermal convection of the anode active material. Sodium-sulfur battery. 3. The sodium-sulfur battery according to claim 2, in which, in addition to the heat generated above, heat generated by an internal heater provided in a part of the circulation flow path is used as energy for thermal convection of the anode active material. 4. The sodium-sulfur battery according to any one of claims 1 to 3, wherein heat radiation fins are attached to the outside of the anode container to promote circulation of the anode active material.
JP59178763A 1984-08-28 1984-08-28 Natrium-sulphur battery Pending JPS6155871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59178763A JPS6155871A (en) 1984-08-28 1984-08-28 Natrium-sulphur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178763A JPS6155871A (en) 1984-08-28 1984-08-28 Natrium-sulphur battery

Publications (1)

Publication Number Publication Date
JPS6155871A true JPS6155871A (en) 1986-03-20

Family

ID=16054179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178763A Pending JPS6155871A (en) 1984-08-28 1984-08-28 Natrium-sulphur battery

Country Status (1)

Country Link
JP (1) JPS6155871A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146462U (en) * 1988-03-31 1989-10-09
JPH01161562U (en) * 1988-04-30 1989-11-09
JPH055291U (en) * 1991-07-10 1993-01-26 株式会社アマダ Vertical automatic welding machine work clamp device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146462U (en) * 1988-03-31 1989-10-09
JPH01161562U (en) * 1988-04-30 1989-11-09
JPH055291U (en) * 1991-07-10 1993-01-26 株式会社アマダ Vertical automatic welding machine work clamp device

Similar Documents

Publication Publication Date Title
US3932195A (en) Electric cells
KR102339641B1 (en) Sodium-Aluminum Battery with Sodium Ion Conductive Ceramic Separator
US3980496A (en) Energy conversion devices with improved electrode shapes
US3826685A (en) Sealed primary sodium-halogen battery
US3865630A (en) Electrochemical cell having heat pipe means for increasing ion mobility in the electrolyte
KR810000921B1 (en) High temperature battery
US4659637A (en) Electrochemical cell with high conductivity glass electrolyte
US4977044A (en) Sodium-sulfur thermal battery
US3447968A (en) Electrical energy storage device and method of storing electrical energy
JPH0526308B2 (en)
JPS6155871A (en) Natrium-sulphur battery
JPS58157B2 (en) How to recharge secondary storage batteries
US4419419A (en) Rechargeable electric storage battery
US3881955A (en) Wall-sealed battery casing and sealed primary sodium-halogen battery
KR101255242B1 (en) Electrochemical cell
JPS6226768A (en) Sodium-sulfur battery
JP2664161B2 (en) Sodium-sulfur battery
JPH0294264A (en) Lead-acid battery
US4659638A (en) Electrochemical storage cell
JP2568622B2 (en) Sodium-sulfur battery
GB1586659A (en) Electrochemical cells
JP2612894B2 (en) Sodium-sulfur battery
JP2002324576A (en) Sodium-sulfur battery device
JPH01235168A (en) Sodium-sulfur battery and manufacture thereof
JPH02165573A (en) Sodium-sulfur battery