JP2024004007A - Spraying system of two-liquid curable resin, and spraying method of two-liquid curable resin - Google Patents

Spraying system of two-liquid curable resin, and spraying method of two-liquid curable resin Download PDF

Info

Publication number
JP2024004007A
JP2024004007A JP2022103420A JP2022103420A JP2024004007A JP 2024004007 A JP2024004007 A JP 2024004007A JP 2022103420 A JP2022103420 A JP 2022103420A JP 2022103420 A JP2022103420 A JP 2022103420A JP 2024004007 A JP2024004007 A JP 2024004007A
Authority
JP
Japan
Prior art keywords
powder
liquid
curable resin
spraying system
spray gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022103420A
Other languages
Japanese (ja)
Other versions
JP7204034B1 (en
Inventor
達彦 足立
Tatsuhiko Adachi
正文 富田
Masafumi Tomita
瞬 鈴木
Shun Suzuki
忠 樋口
Tadashi Higuchi
浩 伊藤
Hiroshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYODA KENKO CO LTD
SUZUHIRO KAGAKU KK
Tachibana Material Co Ltd
Original Assignee
CHIYODA KENKO CO LTD
SUZUHIRO KAGAKU KK
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYODA KENKO CO LTD, SUZUHIRO KAGAKU KK, Tachibana Material Co Ltd filed Critical CHIYODA KENKO CO LTD
Priority to JP2022103420A priority Critical patent/JP7204034B1/en
Application granted granted Critical
Publication of JP7204034B1 publication Critical patent/JP7204034B1/en
Publication of JP2024004007A publication Critical patent/JP2024004007A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a spraying system of a two-liquid curable resin which can simply spray a two-liquid curable resin where powder such as a flame retardant and an incombustible agent is uniformly dispersed and blended while properly keep a mixing balance of two liquid (liquid A and liquid B).
SOLUTION: A spraying system 100 of a two-liquid curable resin includes a spray gun 10 having a spray nozzle 8 for jetting a pre-cure liquid substance 12 containing liquid A and liquid B forming a two-liquid curable resin to an outside, and liquid supply systems 20, 30 for pressure-feeding and supplying the liquid A and the liquid B to the spray gun 10. The spraying system 100 further includes a powder supply system 50 for pressure-feeding and supplying powder 22 containing at least one of an incombustible agent and a flame retardant to the spray gun 10, and the spray gun 10 has such a structure as to mix the powder 22 after mixing of the liquid A and the liquid B, and generate the pre-cure liquid substance 12 containing the powder 22.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、2液硬化型樹脂の吹付施工システム、及びそれを用いる2液硬化型樹脂の吹付施工方法に関する。 The present invention relates to a two-component curable resin spraying system and a two-component curable resin spraying method using the same.

ポリウレアや発泡フォームを形成するポリウレタン等の樹脂は、いずれも、ポリイソシアネートを主成分とするA液と、ポリオール又はポリアミンを主成分とするB液とで構成される2液を混合し、化学反応させることによって形成される、いわゆる2液硬化型樹脂である。 Resins such as polyurea and polyurethane that form expanded foams are produced by mixing two liquids, consisting of liquid A, which is mainly composed of polyisocyanate, and liquid B, which is mainly composed of polyol or polyamine, and then undergoes a chemical reaction. It is a so-called two-component curing resin that is formed by

ポリウレタンやポリウレア等の2液硬化型樹脂を建築現場等で吹付施工する際には、例えば、A液及びB液をそれぞれ収容するタンクと、タンクから圧送されてきたA液及びB液を圧力空気によって混合するとともに、壁面等の対象箇所へと直ちに吐出するスプレーガンとを備える吹付装置が使用される(特許文献1)。なお、2液硬化型樹脂は、2液の混合時に生ずる化学反応により硬化して形成される。硬化不良、及び硬化時間や樹脂の特性等のバラツキを抑制するには、2液の量比や混合具合等を適切に制御する必要がある。 When spraying a two-component curing resin such as polyurethane or polyurea at a construction site, for example, there is a tank containing each liquid A and B, and liquids A and B pumped from the tank are pumped with pressurized air. A spraying device is used that includes a spray gun that mixes the mixture and immediately discharges the mixture to a target location such as a wall surface (Patent Document 1). Note that the two-part curable resin is formed by being cured by a chemical reaction that occurs when two parts are mixed. In order to suppress poor curing and variations in curing time, resin properties, etc., it is necessary to appropriately control the ratio of the amounts of the two liquids, the mixing condition, etc.

特開昭61-263667号公報Japanese Unexamined Patent Publication No. 61-263667

ポリウレタンやポリウレア等の2液硬化型樹脂の難燃性や不燃性等の性質を向上させる、又は2液硬化型樹脂にこれらの性質を付与するには、通常、不燃剤や難燃剤等の粉状物又は粒状物(以下、纏めて「粉体」とも記す)を配合する必要がある。例えば、特許文献1で提案された吹付装置を使用して難燃剤等の粉体が配合された2液硬化型樹脂を吹付施工するには、A液及びB液の少なくともいずれかに粉体を混合しておくことになる。但し、A液の主成分であるポリイソシアネートは、酸化作用が強く、経時劣化しやすい成分であるため、難燃剤等の粉体を混合すると凝固しやすい。したがって、難燃剤等の粉体をあらかじめA液に混合しておくことは実用的であるとはいえない。 In order to improve the flame retardancy and noncombustibility of two-component curable resins such as polyurethane and polyurea, or to impart these properties to two-component curable resins, it is common to use powders such as flame retardants and flame retardants. It is necessary to blend granular or granular materials (hereinafter collectively referred to as "powder"). For example, in order to spray a two-component curing resin containing powder such as a flame retardant using the spraying device proposed in Patent Document 1, powder is added to at least one of the A and B solutions. It will have to be mixed. However, polyisocyanate, which is the main component of liquid A, has a strong oxidation effect and is a component that easily deteriorates over time, so it tends to coagulate when mixed with powder such as a flame retardant. Therefore, it cannot be said that it is practical to mix powder such as a flame retardant into liquid A in advance.

一方、難燃剤等の粉体をB液にのみ混合すると、A液とB液の粘度等の性質のバランスが崩れることになる。このため、スプレーガンにおける2液の混合量比や混合具合の制御が困難になり、硬化不良が生じたり、樹脂の特性や硬化までの時間等にバラツキが生じたりすることになる。特に、タンクからスプレーガンまでのラインが長い場合(例えば、数十メートル以上)には、スプレーガンにおける2液の混合量比や混合具合の制御がより困難になる。さらに、難燃剤等の粉体を添加したB液の保存安定性が低下するとともに、形成した2液硬化型樹脂中における難燃剤等の粉体の分布状態が不均一になるといった不具合も生じやすくなる。 On the other hand, if a powder such as a flame retardant is mixed only with the B liquid, the balance of properties such as viscosity of the A liquid and the B liquid will be lost. For this reason, it becomes difficult to control the mixing ratio and mixing condition of the two liquids in the spray gun, leading to curing failure and variations in resin properties, time required for curing, etc. In particular, when the line from the tank to the spray gun is long (for example, several tens of meters or more), it becomes more difficult to control the mixing ratio and mixing condition of the two liquids in the spray gun. Furthermore, the storage stability of liquid B to which powders such as flame retardants are added is reduced, and problems such as non-uniform distribution of powders such as flame retardants in the formed two-component curing resin are likely to occur. Become.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、2液(A液及びB液)の混合バランスを適正に保ちつつ、難燃剤や不燃剤等の粉体が均一に分散配合された2液硬化型樹脂を簡易に吹付施工することが可能な2液硬化型樹脂の吹付施工システム、及びこのシステムを使用する2液硬化型樹脂の吹付施工方法を提供することにある。 The present invention has been made in view of the problems of the prior art, and its objective is to maintain an appropriate mixing balance of the two liquids (liquid A and liquid B) while adding flame retardants and A two-component curing resin spraying system that can easily spray two-component curing resin in which powder such as a flame retardant is evenly dispersed, and a two-component curing resin spraying system using this system. The purpose of the present invention is to provide a spraying construction method.

すなわち、本発明によれば、以下に示す2液硬化型樹脂の吹付施工システムが提供される。
[1]2液硬化型樹脂を形成するA液及びB液を含む硬化前液状物を外部へと噴射するスプレーノズルを有するスプレーガンと、前記A液及び前記B液を前記スプレーガンへとそれぞれ圧送して供給する液体供給系と、を備える2液硬化型樹脂の吹付施工システムであって、不燃剤及び難燃剤の少なくともいずれかを含む粉体を前記スプレーガンへと圧送して供給する粉体供給系をさらに備え、前記スプレーガンが、前記A液と前記B液の混合後に前記粉体を混合して、前記粉体を含む前記硬化前液状物を生成する構成を有する2液硬化型樹脂の吹付施工システム。
[2]前記スプレーガンが、前記A液と前記B液を混合して液状混合物を形成するメインチャンバーと、前記メインチャンバーの下流側かつ前記スプレーノズルの上流側に設けられる、前記液状混合物と前記粉体を衝突混合して前記硬化前液状物を生成し、前記スプレーノズルへと送るアフターチャンバーと、を備える前記[1]に記載の2液硬化型樹脂の吹付施工システム。
[3]前記粉体供給系が、その内部に前記粉体を収容する加圧式の貯蔵タンクと、前記貯蔵タンク内にエアーを供給して前記粉体を送出するエアー供給手段と、を備える前記[1]又は[2]に記載の2液硬化型樹脂の吹付施工システム。
[4]前記粉体供給系が、さらに、前記貯蔵タンクから送出された前記粉体が流通する、上流側と下流側との差圧を維持するパッキン機能を持った粉体送出手段を経路中に有する粉体流通ラインと、エアーが流通する、前記粉体流通ラインと合流するエアー供給ラインと、前記粉体流通ライン及び前記エアー供給ラインの合流後に、前記エアーとともに前記粉体を流通させて前記スプレーガンへと供給する主配管と、を備える前記[3]に記載の2液硬化型樹脂の吹付施工システム。
[5]前記硬化前液状物中の前記粉体の含有量を、下記(i)~(iii)の少なくともいずれかを制御して調整する前記[3]又は[4]に記載の2液硬化型樹脂の吹付施工システム。
(i)前記貯蔵タンクの内圧
(ii)前記粉体流通ラインにおける前記粉体送出手段の上流側と下流側との差圧
(iii)前記エアー供給ラインに流通させる前記エアーの流量
[6]前記(i)~(iii)の少なくともいずれかを制御する電子制御手段をさらに備える前記[5]に記載の2液硬化型樹脂の吹付施工システム。
[7]前記液体供給系における、前記A液及び前記B液をそれぞれ圧送する圧力が、4.0~25.0MPaであり、前記粉体供給系が、内径8mm以上及び全長100m以下のラインを含む前記[1]~[6]のいずれかに記載の2液硬化型樹脂の吹付施工システム。
[8]前記不燃剤及び前記難燃剤が、赤リン、リン酸エステル、ホスフィン酸金属塩、ホスフィンオキシド、ホスファゼン、リン・窒素塩含有物、リン・金属塩含有物、リン・ハロゲン含有物、臭素含有物、ホウ素含有物、膨張黒鉛、及び金属水酸化物からなる群より選択される少なくとも一種である前記[1]~[7]のいずれかに記載の2液硬化型樹脂の吹付施工システム。
[9]前記粉体が、流動化剤をさらに含む前記[1]~[8]のいずれかに記載の2液硬化型樹脂の吹付施工システム。
That is, according to the present invention, the following two-component curing resin spraying system is provided.
[1] A spray gun having a spray nozzle that sprays to the outside a pre-hardened liquid material containing liquid A and liquid B forming a two-component curable resin, and a spray gun that injects liquid A and liquid B into the spray gun, respectively. A two-component curing resin spraying system comprising: a liquid supply system for supplying the powder by force-feeding; A two-component curing type, further comprising a body supply system, wherein the spray gun mixes the powder after mixing the liquid A and the liquid B to generate the pre-curing liquid material containing the powder. Resin spraying construction system.
[2] The spray gun includes a main chamber that mixes the A liquid and the B liquid to form a liquid mixture, and a main chamber that is provided downstream of the main chamber and upstream of the spray nozzle. The two-component curable resin spraying system according to item [1], further comprising an afterchamber that collides and mixes powder to generate the pre-cured liquid and sends it to the spray nozzle.
[3] The powder supply system includes a pressurized storage tank that stores the powder therein, and an air supply means that supplies air into the storage tank to send out the powder. The two-component curing resin spraying system according to [1] or [2].
[4] The powder supply system further includes a powder delivery means having a packing function to maintain a differential pressure between an upstream side and a downstream side, through which the powder sent out from the storage tank flows. an air supply line through which air flows and merges with the powder distribution line; and after the powder distribution line and the air supply line merge, the powder is distributed together with the air. The two-component curing resin spraying system according to [3] above, including a main pipe that supplies the spray gun.
[5] The two-liquid curing according to [3] or [4], wherein the content of the powder in the pre-curing liquid is adjusted by controlling at least one of the following (i) to (iii). A mold resin spraying construction system.
(i) Internal pressure of the storage tank (ii) Differential pressure between the upstream side and the downstream side of the powder delivery means in the powder distribution line (iii) Flow rate of the air flowing through the air supply line [6] The above The two-component curing resin spraying system according to item [5], further comprising an electronic control means for controlling at least one of (i) to (iii).
[7] The pressure for pumping the A liquid and the B liquid in the liquid supply system is 4.0 to 25.0 MPa, and the powder supply system has a line with an inner diameter of 8 mm or more and a total length of 100 m or less. The two-component curing resin spraying system according to any one of [1] to [6] above.
[8] The flame retardant and the flame retardant include red phosphorus, phosphate ester, phosphinate metal salt, phosphine oxide, phosphazene, phosphorus/nitrogen salt containing material, phosphorus/metal salt containing material, phosphorus/halogen containing material, bromine The two-component curing resin spraying system according to any one of [1] to [7] above, which is at least one selected from the group consisting of a containing material, a boron-containing material, an expanded graphite, and a metal hydroxide.
[9] The two-component curing resin spraying system according to any one of [1] to [8] above, wherein the powder further contains a fluidizing agent.

さらに、本発明によれば、以下に示す2液硬化型樹脂の吹付施工方法が提供される。
[10]請求項1~9のいずれか一項に記載の吹付施工システムを使用して、被施工箇所に2液硬化型樹脂を吹付施工する工程を有する2液硬化型樹脂の吹付施工方法。
[11]前記A液及び前記B液の合計100質量部に対して、前記粉体5~80質量部を混合して、前記2液硬化型樹脂を形成する前記[10]に記載の2液硬化型樹脂の吹付施工方法。
Furthermore, according to the present invention, there is provided the following method for spraying a two-component curing resin.
[10] A method for spraying a two-component curable resin, the method comprising the step of spraying a two-component curable resin onto a target area using the spraying system according to any one of claims 1 to 9.
[11] The two-liquid according to [10], wherein 5 to 80 parts by mass of the powder is mixed with a total of 100 parts by mass of the liquid A and the liquid B to form the two-liquid curable resin. A method of spraying curable resin.

本発明によれば、2液(A液及びB液)の混合バランスを適正に保ちつつ、難燃剤や不燃剤等の粉体が均一に分散配合された2液硬化型樹脂を簡易に吹付施工することが可能な2液硬化型樹脂の吹付施工システム、及びこのシステムを使用する2液硬化型樹脂の吹付施工方法を提供することができる。 According to the present invention, a two-component curing resin in which powders such as flame retardants and noncombustible agents are evenly dispersed can be easily sprayed while maintaining an appropriate mixing balance of two components (components A and B). It is possible to provide a two-component curable resin spraying system and a two-component curable resin spraying method using this system.

本発明の2液硬化型樹脂の吹付施工システムの一実施形態を示すフロー図である。FIG. 1 is a flow diagram showing an embodiment of the two-component curing resin spraying system of the present invention. スプレーガンに設けられるミキシング機構の一例を示す模式図である。It is a schematic diagram which shows an example of the mixing mechanism provided in a spray gun. ミキシング機構を構成する部材の一例を示す模式図である。It is a schematic diagram showing an example of the member which constitutes a mixing mechanism. ミキシング機構を構成する部材の一例を示す模式図である。It is a schematic diagram showing an example of the member which constitutes a mixing mechanism. ミキシング機構を構成する部材の一例を示す模式図である。It is a schematic diagram showing an example of the member which constitutes a mixing mechanism. 粉体圧送時の各条件と、粉体の吐出量との関係を示すグラフである。It is a graph which shows the relationship between each condition at the time of powder feeding, and the discharge amount of powder. エアー供給ラインのエアー流量と、粉体の吐出量との関係を示すグラフである。It is a graph which shows the relationship between the air flow rate of an air supply line, and the discharge amount of powder. 差圧A-Bと、粉体の吐出量との関係を示すグラフである。3 is a graph showing the relationship between differential pressure AB and powder discharge amount. 最下流のバルブの開度と、粉体の吐出量との関係を示すグラフである。It is a graph showing the relationship between the opening degree of the most downstream valve and the discharge amount of powder. 硬化前液状物中のリン元素(P)濃度(%)と、施工(硬化)後の樹脂中のリン元素(P)濃度(%)との関係を示すグラフである。It is a graph showing the relationship between the phosphorus element (P) concentration (%) in the liquid material before curing and the phosphorus element (P) concentration (%) in the resin after construction (curing).

以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。図1は、本発明の2液硬化型樹脂の吹付施工システムの一実施形態を示すフロー図である。図1に示すように、本実施形態の吹付施工システム100は、2液硬化型樹脂を形成するA液及びB液を含む硬化前液状物12を外部へと噴射するスプレーノズル8を有するスプレーガン10と、A液及びB液をスプレーガン10へとそれぞれ圧送して供給する液体供給系20,30とを備える。吹付施工システム100は、さらに、不燃剤及び難燃剤の少なくともいずれかを含む粉体22をスプレーガン10へと圧送して供給する粉体供給系50を備える。そして、スプレーガン10は、A液とB液の混合後に粉体22を混合して、粉体22を含む硬化前液状物12を生成する構成を有する。 Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments. FIG. 1 is a flow diagram showing an embodiment of the two-component curing resin spraying system of the present invention. As shown in FIG. 1, the spraying system 100 of the present embodiment includes a spray gun having a spray nozzle 8 that sprays a pre-curing liquid material 12 containing liquid A and liquid B forming a two-component curing resin to the outside. 10, and liquid supply systems 20 and 30 that force feed and supply liquid A and liquid B to the spray gun 10, respectively. The spraying system 100 further includes a powder supply system 50 that pumps and supplies powder 22 containing at least one of a nonflammable agent and a flame retardant to the spray gun 10. The spray gun 10 is configured to mix the powder 22 after mixing the A liquid and the B liquid to produce a pre-cured liquid material 12 containing the powder 22.

スプレーガン10は、メインチャンバー2と、メインチャンバー2の下流側かつスプレーノズル8の上流側に設けられるアフターチャンバー4とを備える。メインチャンバー2は、液体供給系20,30からそれぞれ供給されるA液及びB液を混合して液状混合物を形成するスタティックミキサー等の部材で構成される。形成された液状混合物は、メインチャンバー2の下流側に設けられた液状混合物吐出ノズル6からアフターチャンバー4内へと吐出される。アフターチャンバー4内に吐出された液状混合物は、粉体供給系50から圧送されてアフターチャンバー4に導入された粉体22と連続的に衝突混合し、硬化前液状物12が生成される。 The spray gun 10 includes a main chamber 2 and an after chamber 4 provided downstream of the main chamber 2 and upstream of the spray nozzle 8. The main chamber 2 is composed of members such as a static mixer that mixes liquid A and liquid B supplied from the liquid supply systems 20 and 30, respectively, to form a liquid mixture. The formed liquid mixture is discharged into the afterchamber 4 from a liquid mixture discharge nozzle 6 provided on the downstream side of the main chamber 2 . The liquid mixture discharged into the after chamber 4 is continuously collided with and mixed with the powder 22 that has been pressure-fed from the powder supply system 50 and introduced into the after chamber 4, and the pre-cured liquid material 12 is generated.

このように、A液とB液を混合した後に、難燃性や不燃性を含む粉体をさらに混合して硬化前液状物を生成する構成を有するスプレーガンを使用することで、予め粉体を混合したA液やB液をスプレーガンに導入して混合する場合と異なり、これら2液の混合量比や混合具合を厳密かつ簡易に制御することができる。これにより、硬化不良が発生することを抑制することができるとともに、硬化時間や、形成される2液硬化型樹脂の特性等のバラツキを抑制することが可能となる。また、2液の混合量比や混合具合を適切に制御することができるので、形成される2液硬化型樹脂中における難燃剤等の粉体の分布状態を均一にすることができる。さらに、スプレーガンに導入する前のA液及びB液のいずれにも粉体を混合しないので、A液及びB液の保存安定性の低下を抑制することができる。 In this way, by using a spray gun that is configured to mix the A and B liquids and then further mix the flame-retardant and non-combustible powder to produce a pre-cured liquid, it is possible to Unlike the case where liquids A and B mixed with each other are introduced into a spray gun and mixed, the mixing ratio and mixing condition of these two liquids can be precisely and easily controlled. As a result, it is possible to suppress the occurrence of curing defects, and it is also possible to suppress variations in curing time, characteristics, etc. of the two-component curable resin formed. Further, since the mixing ratio and mixing condition of the two liquids can be appropriately controlled, it is possible to make the distribution of powder such as a flame retardant in the two liquid curing resin formed uniform. Furthermore, since powder is not mixed into either the A liquid or the B liquid before being introduced into the spray gun, it is possible to suppress a decrease in the storage stability of the A liquid and the B liquid.

図2は、スプレーガンに設けられるミキシング機構の一例を示す模式図であり、(a)は側面図、(b)は正面図である。また、図3A、3B、及び3Cは、それぞれ、ミキシング機構を構成する部材の一例を示す模式図である。図3A、3B、及び3C中、(a)は各部材の側面図であり、(b)は各部材の正面図である。ミキシング機構15は、メインチャンバー用部材13、アフターチャンバー用部材14、及びこれらの部材を連結する連結部材16を備える。メインチャンバー用部材13の基部から導入された液状混合物は、液状混合物吐出ノズル6からアフターチャンバー用部材14によって形成されるアフターチャンバー4内へと吐出される。一方、アフターチャンバー4内には、連結部材16の粉体導入口25から粉体が導入されるとともに、アシストエアー導入口27からアシストエアーが導入される。このため、アフターチャンバー4内では、アシストエアーの作用によって形成される粉体の渦流が液状混合物と衝突混合し、粉体が均一に分散した状態で含まれる硬化前液状物が生成する。そして、生成した硬化前液状物はスプレーノズル8から外部に吐出され、壁面等の被施工箇所へと吹付けられる。 FIG. 2 is a schematic diagram showing an example of a mixing mechanism provided in a spray gun, with (a) being a side view and (b) being a front view. Moreover, FIGS. 3A, 3B, and 3C are schematic diagrams each showing an example of a member constituting the mixing mechanism. In FIGS. 3A, 3B, and 3C, (a) is a side view of each member, and (b) is a front view of each member. The mixing mechanism 15 includes a main chamber member 13, an after chamber member 14, and a connecting member 16 that connects these members. The liquid mixture introduced from the base of the main chamber member 13 is discharged from the liquid mixture discharge nozzle 6 into the afterchamber 4 formed by the afterchamber member 14. On the other hand, powder is introduced into the afterchamber 4 from the powder introduction port 25 of the connecting member 16, and assist air is introduced from the assist air introduction port 27. Therefore, in the afterchamber 4, the vortex of the powder formed by the action of the assist air collides with the liquid mixture to generate a pre-cured liquid containing the powder in a uniformly dispersed state. Then, the generated pre-cured liquid material is discharged from the spray nozzle 8 to the outside and sprayed onto a work area such as a wall surface.

図2及び3Bに示すように、粉体導入口25及びアシストエアー導入口27は、液状混合物及び硬化前液状物の吐出方向軸の相互に対向する接線方向から、アフターチャンバー4内に粉体及びアシストエアーをそれぞれ導入するように設けられていることが好ましい。これにより、粉体の渦流が液状混合物とより効率的に衝突混合し、粉体がさらに均一に分散した状態で含まれる硬化前液状物が生成するので、粉体がより均一に分散配合された2液硬化型樹脂を吹付けることが可能になるとともに、吐出時の発塵を抑制することができる。 As shown in FIGS. 2 and 3B, the powder inlet 25 and the assist air inlet 27 inject the powder into the afterchamber 4 from the mutually opposing tangential directions of the discharge direction axes of the liquid mixture and the pre-hardened liquid. It is preferable that assist air be introduced respectively. This allows the powder to be more evenly dispersed and blended as the vortex of the powder impinges and mixes more efficiently with the liquid mixture, producing a pre-cure liquid containing the powder in a more evenly dispersed state. It becomes possible to spray the two-component curing resin, and it is also possible to suppress dust generation during discharge.

液体供給系20,30は、A液及びB液をスプレーガン10へとそれぞれ圧送して供給する系である(図1)。スプレーガン10には、A液及びB液の混合によって形成された液状混合物を吐出方向(下流側)へと押し出す圧縮空気を流通させる圧縮空気供給系40がさらに接続されている。また、スプレーガン10のアフターチャンバー4には、粉体を導入する粉体供給系50(主配管60)、及びアシストエアーを導入するアシストエアー供給系70が接続されている。粉体供給系50(主配管60)、液体供給系20,30、圧縮空気供給系40、及びアシストエアー供給系70の開閉状態は、トリガー75によって一括制御することができる。 The liquid supply systems 20 and 30 are systems that pressure feed and supply liquid A and liquid B to the spray gun 10, respectively (FIG. 1). The spray gun 10 is further connected to a compressed air supply system 40 that circulates compressed air that pushes out the liquid mixture formed by mixing the A liquid and the B liquid in the discharge direction (downstream side). Furthermore, a powder supply system 50 (main pipe 60) that introduces powder and an assist air supply system 70 that introduces assist air are connected to the afterchamber 4 of the spray gun 10. The opening and closing states of the powder supply system 50 (main piping 60), the liquid supply systems 20 and 30, the compressed air supply system 40, and the assist air supply system 70 can be collectively controlled by a trigger 75.

図1に示すように、粉体供給系50は、その内部に粉体22を収容する加圧式の貯蔵タンク24と、貯蔵タンク24内にエアーを供給して粉体22を送出するコンプレッサー28等のエアー供給手段とを備える。すなわち、粉体22は、エアー供給手段から供給されるエアーの圧力(空気流)によってスプレーガン10へと圧送される。貯蔵タンク24には、タンクの内圧を検知する圧力センサー32、及びタンク内の粉体の量を検知する計量器34が設けられている。コンプレッサー28から送出したエアーは、レギュレーター36、エアー流量計38、及びコントロール弁42を備えた流路を通じて貯蔵タンク24内に供給される。そして、供給されたエアーの圧力によって、貯蔵タンク24外へと粉体を送出することができる。 As shown in FIG. 1, the powder supply system 50 includes a pressurized storage tank 24 that stores the powder 22 therein, a compressor 28 that supplies air into the storage tank 24, and sends out the powder 22. and an air supply means. That is, the powder 22 is force-fed to the spray gun 10 by the pressure of air (air flow) supplied from the air supply means. The storage tank 24 is provided with a pressure sensor 32 that detects the internal pressure of the tank, and a measuring device 34 that detects the amount of powder in the tank. Air sent from the compressor 28 is supplied into the storage tank 24 through a flow path that includes a regulator 36, an air flow meter 38, and a control valve 42. Then, the powder can be sent out of the storage tank 24 by the pressure of the supplied air.

粉体供給系50は、さらに、貯蔵タンク24から送出された粉体が流通する粉体流通ライン52と、エアーが流通する、粉体流通ライン52と合流するエアー供給ライン54と、粉体流通ライン52及びエアー供給ライン54の合流後に、エアーとともに粉体を流通させてスプレーガン10へと供給する主配管60と、を備える。粉体流通ライン52の経路中には、上流側と下流側との差圧を維持するパッキン機能を持った粉体送出手段62が設けられている。エアー供給ライン54は、レギュレーター36、エアー流量計38、及びコントロール弁42を備える、コンプレッサー28から送出したエアーが流れる流路であり、粉体流通ライン52と合流する。粉体流通ライン52から送出されてきた粉体は、エアー供給ライン54から送られてきたエアー(空気流)に乗って、圧力センサー32及びコントロール弁42が設けられた主配管60へと圧送される。 The powder supply system 50 further includes a powder distribution line 52 through which the powder sent out from the storage tank 24 flows, an air supply line 54 which joins the powder distribution line 52 through which air flows, and a powder distribution line 54 through which the powder flows. After the line 52 and the air supply line 54 join together, a main pipe 60 is provided, which flows the powder together with air and supplies it to the spray gun 10. A powder delivery means 62 having a packing function to maintain a differential pressure between the upstream side and the downstream side is provided in the path of the powder distribution line 52. The air supply line 54 includes a regulator 36, an air flow meter 38, and a control valve 42, and is a flow path through which air sent from the compressor 28 flows, and merges with the powder distribution line 52. The powder sent from the powder distribution line 52 is carried by the air (air flow) sent from the air supply line 54 and is forced into the main pipe 60 where the pressure sensor 32 and the control valve 42 are installed. Ru.

パッキン機能を持った粉体送出手段62としては、例えば、INV盤65が接続されたスクリュー式又はロータリー式のポンプ等を用いることができる。このようなパッキン機能を持った粉体送出手段62を粉体流通ライン52の経路中に設けることで、粉体送出手段62の上流側と下流側の間に生ずる差圧を維持し、エアー供給ライン54からのエアーの流入(逆流)を防止しつつ、粉体を下流側へとより安定して定量的に送出することができる。 As the powder delivery means 62 having a packing function, for example, a screw type or rotary type pump to which an INV board 65 is connected can be used. By providing the powder delivery means 62 with such a packing function in the route of the powder distribution line 52, the differential pressure generated between the upstream side and the downstream side of the powder delivery means 62 is maintained, and the air supply While preventing the inflow (reverse flow) of air from the line 54, the powder can be more stably and quantitatively sent to the downstream side.

主配管60へと圧送された粉体は、スプレーガン10のアフターチャンバー4内に導入され、液状混合物と衝突混合して硬化前液状物を形成する。硬化前液状物中の粉体の含有量は、下記(i)~(iii)の少なくともいずれかを制御することによって調整することができる。
(i)貯蔵タンク24の内圧
(ii)粉体流通ライン52における粉体送出手段62の上流側と下流側との差圧
(iii)エアー供給ライン54に流通させるエアーの流量
The powder forced into the main pipe 60 is introduced into the afterchamber 4 of the spray gun 10, and collides with the liquid mixture to form a pre-cured liquid. The content of powder in the pre-curing liquid can be adjusted by controlling at least one of the following (i) to (iii).
(i) Internal pressure of the storage tank 24 (ii) Differential pressure between the upstream side and the downstream side of the powder delivery means 62 in the powder distribution line 52 (iii) Flow rate of air flowing through the air supply line 54

例えば、貯蔵タンク24の内圧を高めることで、硬化前液状物に含まれる粉体の量を増加させることができる。また、粉体流通ライン52における粉体送出手段62の上流側と下流側との差圧を増大させる(上流側の圧力を相対的に増大させる)ことで、硬化前液状物に含まれる粉体の量を増加させることができる。さらに、エアー供給ライン54に流通させるエアーの流量を増減することで、硬化前液状物に含まれる粉体の量を制御することができる。 For example, by increasing the internal pressure of the storage tank 24, the amount of powder contained in the pre-curing liquid can be increased. In addition, by increasing the differential pressure between the upstream side and the downstream side of the powder delivery means 62 in the powder distribution line 52 (relatively increasing the pressure on the upstream side), the powder contained in the pre-curing liquid can be removed. can be increased. Furthermore, by increasing or decreasing the flow rate of air flowing through the air supply line 54, the amount of powder contained in the pre-curing liquid material can be controlled.

上記(i)~(iii)の少なくともいずれかを制御するPLC盤68等の電子制御手段を設けることで、硬化前液状物中の粉体の含有量を自動制御することができる。PLC盤68には、各流路に設けられたレギュレーター36、エアー流量計38、コントロール弁42、圧力センサー32、及びINV盤65(粉体送出手段62)が接続されており、これらの制御装置やセンサー等を電子的に自動制御することができる。 By providing an electronic control means such as a PLC panel 68 for controlling at least one of the above (i) to (iii), it is possible to automatically control the powder content in the pre-curing liquid material. A regulator 36, an air flow meter 38, a control valve 42, a pressure sensor 32, and an INV board 65 (powder delivery means 62) provided in each flow path are connected to the PLC panel 68, and these control devices It is possible to electronically and automatically control devices, sensors, etc.

本実施形態の吹付施工システム100のうち、粉体供給系50、アフターチャンバー4、スプレーノズル8、及びアシストエアー供給系70以外の部分は、従来公知の2液硬化型樹脂の吹付施工システムと同様の構成を有する。すなわち、本実施形態の吹付施工システム100は、図1に示すような粉体供給系50、アフターチャンバー4、スプレーノズル8、及びアシストエアー供給系70を従来公知の吹付施工システムを構成するスプレーガンに接続することで構成することができるため、極めて汎用性が高いシステムである。 In the spraying system 100 of this embodiment, the parts other than the powder supply system 50, the afterchamber 4, the spray nozzle 8, and the assist air supply system 70 are the same as the conventional two-component curing resin spraying system. It has the following configuration. That is, the spraying system 100 of the present embodiment includes a powder supply system 50, an afterchamber 4, a spray nozzle 8, and an assist air supply system 70 as shown in FIG. It is an extremely versatile system as it can be configured by connecting to

粉体は、不燃剤及び難燃剤の少なくともいずれかを含む。「不燃剤」は、配合対象物である樹脂の不燃性を向上させる成分である。また、「難燃剤」は、配合対象物である樹脂の不燃性を向上させる成分である。不燃剤及び難燃剤としては、赤リン、リン酸エステル、ホスフィン酸金属塩、ホスフィンオキシド、ホスファゼン、リン・窒素塩含有物、リン・金属塩含有物、リン・ハロゲン含有物、臭素含有物、ホウ素含有物、膨張黒鉛、及び金属水酸化物等を用いることができる。これらの不燃剤及び難燃剤は、1種単独で又は2種以上を組み合わせて用いることができる。 The powder contains at least one of a flame retardant and a flame retardant. "Nonflammable agent" is a component that improves the nonflammability of the resin to be blended. In addition, the "flame retardant" is a component that improves the nonflammability of the resin to be blended. Nonflammable agents and flame retardants include red phosphorus, phosphoric acid esters, metal phosphinates, phosphine oxide, phosphazene, substances containing phosphorus and nitrogen salts, substances containing phosphorus and metal salts, substances containing phosphorus and halogens, substances containing bromine, and boron. Containers, expanded graphite, metal hydroxides, and the like can be used. These flame retardants and flame retardants can be used alone or in combination of two or more.

粉体の粒径は、粉体(不燃剤及び難燃剤)の種類によって異なる。例えば、赤リンの粒径は5~15μm程度、リン酸エステルの粒径は20~30μm程度、膨張黒鉛の粒径は100~150μm程度、金属水酸化物(例えば、水酸化アルミニウム)の粒径は1~10μm程度である。本実施形態の吹付施工システムでは粉体を空気で圧送するため、粉体の粒径が大きすぎると、施工する2液硬化型樹脂中に粉体を定量的に含有させることがやや困難になることがある。このため、粉体の粒径は200μm以下であることが好ましく、175μm以下であることがさらに好ましい。 The particle size of the powder differs depending on the type of powder (nonflammable agent and flame retardant). For example, the particle size of red phosphorus is about 5 to 15 μm, the particle size of phosphoric acid ester is about 20 to 30 μm, the particle size of expanded graphite is about 100 to 150 μm, and the particle size of metal hydroxide (for example, aluminum hydroxide). is about 1 to 10 μm. In the spraying system of this embodiment, the powder is pumped with air, so if the particle size of the powder is too large, it will be somewhat difficult to quantitatively incorporate the powder into the two-component curing resin to be applied. Sometimes. Therefore, the particle size of the powder is preferably 200 μm or less, more preferably 175 μm or less.

本実施形態の吹付施工システムでは、空気流によって粉体を流路中で圧送する。このため、粉体は、不燃剤や難燃剤の流動性を向上させる流動化剤をさらに含むことが好ましい。流動化剤としては、シリカ、マイカ、タルク、ベントナイト、ゼオライト、フライアッシュ、及びガラスビーズ等を用いることができる。これらの流動化剤は、1種単独で又は2種以上を組み合わせて用いることができる。なかでも、流動性の向上効果が特に良好であることからシリカが好ましい。流動化剤の平均粒径(メジアン径)は、例えば、1~15μmであることが好ましく、3~10μmであることがさらに好ましい。粉体に含有させる流動化剤の量は、不燃剤及び難燃剤の合計100質量部に対して、1~10質量部とすることが好ましく、2~5質量部とすることがさらに好ましい。 In the spraying system of this embodiment, the powder is force-fed through the flow path using an air flow. For this reason, it is preferable that the powder further contains a fluidizing agent that improves the fluidity of the flame retardant and the flame retardant. As the fluidizing agent, silica, mica, talc, bentonite, zeolite, fly ash, glass beads, etc. can be used. These fluidizing agents can be used alone or in combination of two or more. Among these, silica is preferred because it has a particularly good effect of improving fluidity. The average particle diameter (median diameter) of the fluidizing agent is, for example, preferably 1 to 15 μm, more preferably 3 to 10 μm. The amount of fluidizing agent contained in the powder is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass, based on 100 parts by mass of the nonflammable agent and flame retardant.

本実施形態の吹付施工システムでは、液体供給系においてA液及びB液をそれぞれ圧送する圧力を、通常、4.0~25.0MPaとすることができる。なお、A液及びB液をそれぞれ圧送する圧力は、2液硬化型樹脂の種類に応じて適宜設定することができる。例えば、2液硬化型樹脂がポリウレタンの場合、A液及びB液をそれぞれ圧送する圧力は、4.0~10.0MPaとすることが好ましく、6.0~8.0MPaとすることがさらに好ましい。2液硬化型樹脂がポリウレアの場合、A液及びB液をそれぞれ圧送する圧力は、10.0~25.0MPaとすることが好ましく、10.0~16.0MPaとすることがさらに好ましい。また、通常、内径8mm以上、好ましくは10mm以上、及び全長100m以下、好ましくは90m以下のラインを含む粉体供給系とすることができる。なお、粉体供給系に含まれる「ライン」とは、貯蔵タンク等の端部から、スプレーガンに接続する部分までの経路(流路)を意味する。 In the spraying system of the present embodiment, the pressure at which liquid A and liquid B are pumped in the liquid supply system can generally be 4.0 to 25.0 MPa. Note that the pressures for pumping liquid A and liquid B can be appropriately set depending on the type of two-component curing resin. For example, when the two-component curable resin is polyurethane, the pressure for pumping liquid A and liquid B is preferably 4.0 to 10.0 MPa, more preferably 6.0 to 8.0 MPa. . When the two-component curable resin is polyurea, the pressure at which the A and B solutions are pumped is preferably 10.0 to 25.0 MPa, more preferably 10.0 to 16.0 MPa. Further, the powder supply system can usually include a line with an inner diameter of 8 mm or more, preferably 10 mm or more, and a total length of 100 m or less, preferably 90 m or less. Note that the "line" included in the powder supply system means a path (flow path) from an end of a storage tank or the like to a part connected to a spray gun.

本発明の2液硬化型樹脂の吹付施工方法の一実施形態は、前述の吹付施工システムを使用して、建築現場における壁面等の被施工箇所に2液硬化型樹脂を吹付施工する工程を有する。前述の通り、本実施形態の吹付施工システムは、不燃剤等の粉体をスプレーガンへと圧送して供給する粉体供給系を設け、2液(A液及びB液)の混合後に粉体を混合する構成を採用したシステムである。このため、2液の混合バランスを適正に保ちつつ、粉体が、たとえ高濃度であっても均一に分散配合された2液硬化型樹脂を簡易に吹付施工することができる。具体的には、A液及びB液の合計100質量部に対して、通常、粉体5~80質量部、好ましくは10~70質量部を混合して、2液硬化型樹脂を形成することができる。 An embodiment of the two-component curable resin spraying method of the present invention includes the step of spraying a two-component curable resin onto a construction site such as a wall surface at a construction site using the above-mentioned spraying system. . As mentioned above, the spraying system of this embodiment is provided with a powder supply system that pumps and supplies powder such as a nonflammable agent to the spray gun, and after mixing the two liquids (liquid A and liquid B), the powder is This system employs a configuration that mixes the following. Therefore, it is possible to easily spray a two-component curable resin in which the powder is evenly dispersed even if the powder is highly concentrated, while maintaining an appropriate mixing balance of the two components. Specifically, 5 to 80 parts by mass of powder, preferably 10 to 70 parts by mass, is mixed with a total of 100 parts by mass of liquids A and B to form a two-part curable resin. Can be done.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以降、「部」及び「%」は、特に断らない限り質量基準である。 Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples. Hereinafter, "parts" and "%" are based on mass unless otherwise specified.

<ポリウレタンフォームの吹付施工>
ポリウレタンフォームを形成するための市販のA液及びB液を用意した。また、不燃剤及び難燃剤として、赤リン(粒径約5~15μm)、リン酸エステル(粒径約20~30μm)、ホスフィン酸金属塩(粒径約1~4μm)、ホスフィンオキシド(粒径約1~30μm)、ホスファゼン(粒径約10~100μm)、及び膨張黒鉛(粒径約100~150μm)を用意した。さらに、流動化剤として、シリカ(粒径約1~15μm)を用意した。図2に示すミキシング機構15を設けたスプレーガン10を備えた、図1に示す構成の吹付施工システム100を準備した。この吹付施工システム100の粉体供給系50は、内径10mm、全長20mのラインを含む。A液及びB液をいずれも70℃に加温するとともに、0.7MPaの圧力を付加して液体供給系20,30にてそれぞれ圧送し、スプレーガン10に導入した。一方、表1に示す条件にしたがって粉体(赤リン、リン酸エステル、膨張黒鉛、及びシリカの混合物)を粉体供給系50にて圧送し、スプレーガン10に導入した。そして、A液及びB液の合計100部に対して、5~40部の粉体(赤リン、リン酸エステル、膨張黒鉛、及びシリカの混合物)を混合してスプレーノズル8から硬化前液状物12を吐出して被施工箇所へと吹付け、粉体の吐出量を連続的に計測しながら、粉体が均一に分散配合されたウレタンフォームを被施工箇所上に形成した。なお、表1に示す各条件は、電子制御手段であるPLC盤68によって自動的に制御した。
<Spraying construction of polyurethane foam>
Commercially available liquids A and B for forming polyurethane foam were prepared. In addition, as flame retardants and flame retardants, red phosphorus (particle size: approx. 5-15 μm), phosphoric acid ester (particle size: approx. 20-30 μm), phosphinate metal salt (particle size: approx. 1-4 μm), phosphine oxide (particle size: approx. (approximately 1 to 30 μm), phosphazene (particle size of approximately 10 to 100 μm), and expanded graphite (particle size of approximately 100 to 150 μm) were prepared. Furthermore, silica (particle size of about 1 to 15 μm) was prepared as a fluidizing agent. A spraying system 100 having the configuration shown in FIG. 1 and including a spray gun 10 provided with a mixing mechanism 15 shown in FIG. 2 was prepared. The powder supply system 50 of this spray construction system 100 includes a line with an inner diameter of 10 mm and a total length of 20 m. Both A liquid and B liquid were heated to 70° C., and a pressure of 0.7 MPa was applied, and the liquids were force-fed through liquid supply systems 20 and 30, respectively, and introduced into the spray gun 10. On the other hand, according to the conditions shown in Table 1, powder (a mixture of red phosphorus, phosphoric acid ester, expanded graphite, and silica) was pumped through the powder supply system 50 and introduced into the spray gun 10. Then, 5 to 40 parts of powder (a mixture of red phosphorus, phosphoric acid ester, expanded graphite, and silica) is mixed with a total of 100 parts of liquids A and B, and the pre-hardened liquid is sprayed from the spray nozzle 8. 12 was discharged and sprayed onto the work site, and while the amount of powder discharged was continuously measured, a urethane foam in which the powder was evenly dispersed and blended was formed on the work site. Note that each condition shown in Table 1 was automatically controlled by a PLC panel 68, which is an electronic control means.

Figure 2024004007000002
Figure 2024004007000002

また、粉体圧送時の各条件と、粉体の吐出量との関係を示すグラフ、エアー供給ラインのエアー流量と、粉体の吐出量との関係を示すグラフ、差圧A-Bと、粉体の吐出量との関係を示すグラフ、及び最下流のバルブの開度と、粉体の吐出量との関係を示すグラフを図4~7に示す。 In addition, a graph showing the relationship between each condition during powder feeding and the powder discharge amount, a graph showing the relationship between the air flow rate of the air supply line and the powder discharge amount, differential pressure AB, Graphs showing the relationship between the amount of powder discharged and graphs showing the relationship between the opening degree of the most downstream valve and the amount of powder discharged are shown in FIGS. 4 to 7.

図5に示すように、エアー供給ラインのエアー流量の増加に伴って粉体の吐出量が増加し、エアー流量が62L/minを超えたあたりで減少に転じたことがわかる。また、エアー流量約100~150L/minにかけて、粉体の吐出量が安定的に減少している。また、図6に示すように、貯蔵タンクの内圧Aと、エアー供給ラインの内圧Bとの差圧(A-B)が大きいほど、粉体の吐出量が増加したことがわかる。さらに、図7に示すように、最下流のバルブの開度が大きいほど、粉体の吐出量が増加したことがわかる。 As shown in FIG. 5, it can be seen that the amount of powder discharged increased as the air flow rate of the air supply line increased, and began to decrease when the air flow rate exceeded 62 L/min. Further, the amount of powder discharged stably decreases when the air flow rate is about 100 to 150 L/min. Furthermore, as shown in FIG. 6, it can be seen that the greater the differential pressure (AB) between the internal pressure A of the storage tank and the internal pressure B of the air supply line, the greater the amount of powder discharged. Furthermore, as shown in FIG. 7, it can be seen that the greater the opening degree of the most downstream valve, the greater the amount of powder discharged.

図4に示すように、エアー供給ラインのエアー流量が少なく、かつ、最下流のバルブの開度が大きいと、エアー供給ラインに供給されたエアーがラインの前方に解放されて差圧A-Bが増大し、粉体の吐出量が増加することがわかる。一方、エアー流量が増加するにしたがって逆の現象が生ずること、すなわち、粉体の吐出量が減少することがわかる。以上より、エアー供給ラインのエアー流量を90~155L/min、差圧A-Bを2~30Pa、及び最下流のバルブの開度を30~45%とした際に、粉体の吐出量をより安定的に確保できたことがわかる。 As shown in Figure 4, when the air flow rate in the air supply line is small and the opening degree of the most downstream valve is large, the air supplied to the air supply line is released to the front of the line, resulting in the differential pressure A-B. It can be seen that the amount of powder discharged increases. On the other hand, it can be seen that as the air flow rate increases, the opposite phenomenon occurs, that is, the amount of powder discharged decreases. From the above, when the air flow rate of the air supply line is 90 to 155 L/min, the differential pressure AB is 2 to 30 Pa, and the opening degree of the most downstream valve is 30 to 45%, the amount of powder discharged is It can be seen that we were able to secure it more stably.

(実施例1~9)
ポリウレタンフォームを形成するための市販のA液及びB液を用意した。また、不燃剤及び難燃剤として、赤リン(粒径約5~15μm)、リン酸エステル(粒径約20~30μm)、ホスフィン酸金属塩(粒径約1~4μm)、ホスフィンオキシド(粒径約1~30μm)、ホスファゼン(粒径約10~100μm)、及び膨張黒鉛(粒径約100~150μm)を用意した。さらに、流動化剤として、シリカ(粒径約1~15μm)を用意した。図2に示すミキシング機構15を設けたスプレーガン10を備えた、図1に示す構成の吹付施工システム100を準備した。この吹付施工システム100の粉体供給系50は、内径10mm、全長20mのラインを含む。A液及びB液をいずれも70℃に加温するとともに、0.7MPaの圧力を付加して液体供給系20,30にてそれぞれ圧送し、スプレーガン10に導入した。一方、以下に示す条件にしたがって粉体(赤リン、リン酸エステル、膨張黒鉛、及びシリカの混合物)を粉体供給系50にて圧送し、スプレーガン10に導入した。なお、蛍光X線元素分析法により分析することで、用いた粉体中のリン元素(P)濃度は予め把握しておいた。そして、硬化前液状物中のリン元素(P)濃度(%)が表2に示す値となるように、A液及びB液と、粉体(赤リン、リン酸エステル、膨張黒鉛、及びシリカの混合物)とを混合するとともに、スプレーノズル8から硬化前液状物12を吐出して被施工箇所へと吹付け、粉体が均一に分散配合されたウレタンフォームを被施工箇所上に形成した。
(Examples 1 to 9)
Commercially available liquids A and B for forming polyurethane foam were prepared. In addition, as flame retardants and flame retardants, red phosphorus (particle size: approx. 5-15 μm), phosphoric acid ester (particle size: approx. 20-30 μm), phosphinate metal salt (particle size: approx. 1-4 μm), phosphine oxide (particle size: approx. (approximately 1 to 30 μm), phosphazene (particle size of approximately 10 to 100 μm), and expanded graphite (particle size of approximately 100 to 150 μm) were prepared. Furthermore, silica (particle size of about 1 to 15 μm) was prepared as a fluidizing agent. A spraying system 100 having the configuration shown in FIG. 1 and including a spray gun 10 provided with a mixing mechanism 15 shown in FIG. 2 was prepared. The powder supply system 50 of this spray construction system 100 includes a line with an inner diameter of 10 mm and a total length of 20 m. Both liquid A and liquid B were heated to 70° C., and a pressure of 0.7 MPa was applied, and the liquids were force-fed through liquid supply systems 20 and 30, respectively, and introduced into the spray gun 10. On the other hand, powder (a mixture of red phosphorus, phosphate ester, expanded graphite, and silica) was force-fed using the powder supply system 50 and introduced into the spray gun 10 under the conditions shown below. Note that the phosphorus element (P) concentration in the powder used was determined in advance by analysis using fluorescent X-ray elemental analysis. Then, liquid A and liquid B were mixed with powder (red phosphorus, phosphoric acid ester, expanded graphite, and silica) so that the phosphorus element (P) concentration (%) in the liquid before curing became the value shown in Table 2. At the same time, the pre-hardened liquid material 12 was discharged from the spray nozzle 8 and sprayed onto the work area, thereby forming a urethane foam containing the powder evenly dispersed thereon.

蛍光X線元素分析法により、被施工箇所上に形成したウレタンフォーム(施工(硬化)後の樹脂)中の任意の3箇所におけるリン元素(P)濃度(%)を測定し、その平均値を算出した。結果を表2及び図8に示す。 Using fluorescent X-ray elemental analysis, the phosphorus element (P) concentration (%) at three arbitrary locations in the urethane foam (resin after construction (curing)) formed on the construction site was measured, and the average value was calculated. Calculated. The results are shown in Table 2 and FIG.

Figure 2024004007000003
Figure 2024004007000003

表2及び図8に示すように、硬化前液状物中のリン元素(P)濃度(%)の増減に伴って、施工(硬化)後の樹脂中のリン元素(P)濃度(%)が増減しており、これらが高い相関関係を示すことがわかる。さらに、被施工箇所上に形成したウレタンフォーム中に粉体が均一に分散配合されたことが明らかである。 As shown in Table 2 and Figure 8, as the phosphorus element (P) concentration (%) in the pre-curing liquid increases, the phosphorus element (P) concentration (%) in the resin after application (curing) increases. It can be seen that these values show a high correlation. Furthermore, it is clear that the powder was evenly dispersed and blended into the urethane foam formed on the area to be constructed.

本発明の2液硬化型樹脂の吹付施工システムは、建築現場において、難燃性等の特性が付与されたポリウレタンやポリウレア等の2液硬化型樹脂を壁面等の被施工箇所に吹付施工するためのシステムとして有用である。 The two-component curable resin spraying system of the present invention is for spraying a two-component curable resin such as polyurethane or polyurea, which has properties such as flame retardancy, onto a wall or other work area at a construction site. It is useful as a system for

2:メインチャンバー
4:アフターチャンバー
6:液状混合物吐出ノズル
8:スプレーノズル
10:スプレーガン
12:硬化前液状物
13:メインチャンバー用部材
14:アフターチャンバー用部材
15:ミキシング機構
16:連結部材
20,30:液体供給系
22:粉体
24:貯蔵タンク
25:粉体導入口
27:アシストエアー導入口
28:コンプレッサー
32:圧力センサー
34:計量器
36:レギュレーター
38:エアー流量計
40:圧縮空気供給系
42:コントロール弁
50:粉体供給系
52:粉体流通ライン
54:エアー供給ライン
60:主配管
62:粉体送出手段
65:INV盤
68:PLC盤
70:アシストエアー供給系
75:トリガー
100:吹付施工システム
2: Main chamber 4: After chamber 6: Liquid mixture discharge nozzle 8: Spray nozzle 10: Spray gun 12: Liquid before curing 13: Main chamber member 14: After chamber member 15: Mixing mechanism 16: Connection member 20, 30: Liquid supply system 22: Powder 24: Storage tank 25: Powder inlet 27: Assist air inlet 28: Compressor 32: Pressure sensor 34: Meter 36: Regulator 38: Air flow meter 40: Compressed air supply system 42: Control valve 50: Powder supply system 52: Powder distribution line 54: Air supply line 60: Main piping 62: Powder delivery means 65: INV panel 68: PLC panel 70: Assist air supply system 75: Trigger 100: Spraying construction system

Claims (11)

2液硬化型樹脂を形成するA液及びB液を含む硬化前液状物を外部へと噴射するスプレーノズルを有するスプレーガンと、
前記A液及び前記B液を前記スプレーガンへとそれぞれ圧送して供給する液体供給系と、を備える2液硬化型樹脂の吹付施工システムであって、
不燃剤及び難燃剤の少なくともいずれかを含む粉体を前記スプレーガンへと圧送して供給する粉体供給系をさらに備え、
前記スプレーガンが、前記A液と前記B液の混合後に前記粉体を混合して、前記粉体を含む前記硬化前液状物を生成する構成を有する2液硬化型樹脂の吹付施工システム。
a spray gun having a spray nozzle that sprays a pre-cured liquid material including liquid A and liquid B forming a two-component curable resin to the outside;
A two-component curing resin spraying system comprising: a liquid supply system that pressure-feeds the A liquid and the B liquid to the spray gun, and
Further comprising a powder supply system that pumps and supplies powder containing at least one of a flame retardant and a flame retardant to the spray gun,
A two-component curable resin spraying system, wherein the spray gun mixes the powder after mixing the A liquid and the B liquid to generate the pre-hardening liquid material containing the powder.
前記スプレーガンが、
前記A液と前記B液を混合して液状混合物を形成するメインチャンバーと、
前記メインチャンバーの下流側かつ前記スプレーノズルの上流側に設けられる、前記液状混合物と前記粉体を衝突混合して前記硬化前液状物を生成し、前記スプレーノズルへと送るアフターチャンバーと、
を備える請求項1に記載の2液硬化型樹脂の吹付施工システム。
The spray gun is
a main chamber that mixes the liquid A and the liquid B to form a liquid mixture;
an after chamber that is provided downstream of the main chamber and upstream of the spray nozzle, and that collides with the liquid mixture and the powder to generate the pre-cured liquid and sends it to the spray nozzle;
The two-component curing resin spraying system according to claim 1.
前記粉体供給系が、
その内部に前記粉体を収容する加圧式の貯蔵タンクと、
前記貯蔵タンク内にエアーを供給して前記粉体を送出するエアー供給手段と、
を備える請求項1に記載の2液硬化型樹脂の吹付施工システム。
The powder supply system is
a pressurized storage tank containing the powder therein;
an air supply means for supplying air into the storage tank to send out the powder;
The two-component curing resin spraying system according to claim 1.
前記粉体供給系が、さらに、
前記貯蔵タンクから送出された前記粉体が流通する、上流側と下流側との差圧を維持するパッキン機能を持った粉体送出手段を経路中に有する粉体流通ラインと、
エアーが流通する、前記粉体流通ラインと合流するエアー供給ラインと、
前記粉体流通ライン及び前記エアー供給ラインの合流後に、前記エアーとともに前記粉体を流通させて前記スプレーガンへと供給する主配管と、
を備える請求項3に記載の2液硬化型樹脂の吹付施工システム。
The powder supply system further includes:
a powder distribution line having in its path a powder delivery means having a packing function to maintain a differential pressure between an upstream side and a downstream side, through which the powder sent out from the storage tank flows;
an air supply line through which air flows and merges with the powder distribution line;
a main pipe that circulates the powder together with the air and supplies the powder to the spray gun after the powder distribution line and the air supply line join;
The two-component curing resin spraying system according to claim 3, comprising:
前記硬化前液状物中の前記粉体の含有量を、下記(i)~(iii)の少なくともいずれかを制御して調整する請求項3に記載の2液硬化型樹脂の吹付施工システム。
(i)前記貯蔵タンクの内圧
(ii)前記粉体流通ラインにおける前記粉体送出手段の上流側と下流側との差圧
(iii)前記エアー供給ラインに流通させる前記エアーの流量
The two-component curable resin spraying system according to claim 3, wherein the content of the powder in the pre-curing liquid is adjusted by controlling at least one of the following (i) to (iii).
(i) Internal pressure of the storage tank (ii) Differential pressure between the upstream side and the downstream side of the powder delivery means in the powder distribution line (iii) Flow rate of the air flowing through the air supply line
前記(i)~(iii)の少なくともいずれかを制御する電子制御手段をさらに備える請求項5に記載の2液硬化型樹脂の吹付施工システム。 The two-component curing resin spraying system according to claim 5, further comprising an electronic control means for controlling at least one of the above (i) to (iii). 前記液体供給系における、前記A液及び前記B液をそれぞれ圧送する圧力が、4.0~25.0MPaであり、
前記粉体供給系が、内径8mm以上及び全長100m以下のラインを含む請求項1に記載の2液硬化型樹脂の吹付施工システム。
The pressure at which the liquid A and the liquid B are pumped in the liquid supply system is 4.0 to 25.0 MPa,
The two-component curing resin spraying system according to claim 1, wherein the powder supply system includes a line with an inner diameter of 8 mm or more and a total length of 100 m or less.
前記不燃剤及び前記難燃剤が、赤リン、リン酸エステル、ホスフィン酸金属塩、ホスフィンオキシド、ホスファゼン、リン・窒素塩含有物、リン・金属塩含有物、リン・ハロゲン含有物、臭素含有物、ホウ素含有物、膨張黒鉛、及び金属水酸化物からなる群より選択される少なくとも一種である請求項1に記載の2液硬化型樹脂の吹付施工システム。 The flame retardant and the flame retardant include red phosphorus, phosphate ester, phosphinate metal salt, phosphine oxide, phosphazene, phosphorus/nitrogen salt containing material, phosphorus/metal salt containing material, phosphorus/halogen containing material, bromine containing material, The two-component curing resin spraying system according to claim 1, which is at least one selected from the group consisting of boron-containing materials, expanded graphite, and metal hydroxides. 前記粉体が、流動化剤をさらに含む請求項1に記載の2液硬化型樹脂の吹付施工システム。 The two-component curing resin spraying system according to claim 1, wherein the powder further contains a fluidizing agent. 請求項1~9のいずれか一項に記載の吹付施工システムを使用して、被施工箇所に2液硬化型樹脂を吹付施工する工程を有する2液硬化型樹脂の吹付施工方法。 A method for spraying a two-component curable resin, the method comprising the step of spraying a two-component curable resin onto a target area using the spraying system according to any one of claims 1 to 9. 前記A液及び前記B液の合計100質量部に対して、前記粉体5~80質量部を混合して、前記2液硬化型樹脂を形成する請求項10に記載の2液硬化型樹脂の吹付施工方法。

The two-component curable resin according to claim 10, wherein 5 to 80 parts by mass of the powder is mixed with a total of 100 parts by mass of the liquid A and the liquid B to form the two-component curable resin. Spraying construction method.

JP2022103420A 2022-06-28 2022-06-28 Two-component curing resin spraying system and two-component curing resin spraying method Active JP7204034B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022103420A JP7204034B1 (en) 2022-06-28 2022-06-28 Two-component curing resin spraying system and two-component curing resin spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022103420A JP7204034B1 (en) 2022-06-28 2022-06-28 Two-component curing resin spraying system and two-component curing resin spraying method

Publications (2)

Publication Number Publication Date
JP7204034B1 JP7204034B1 (en) 2023-01-13
JP2024004007A true JP2024004007A (en) 2024-01-16

Family

ID=84888472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022103420A Active JP7204034B1 (en) 2022-06-28 2022-06-28 Two-component curing resin spraying system and two-component curing resin spraying method

Country Status (1)

Country Link
JP (1) JP7204034B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225887A (en) * 1988-07-15 1990-01-29 Pioneer Electron Corp Display device
JPH0445874A (en) * 1990-06-13 1992-02-14 Nitto Boseki Co Ltd Executing method for phenolic resin expanded material
JPH05200362A (en) * 1991-09-06 1993-08-10 Mitsui Toatsu Chem Inc Protecting and corrosion preventing method for steel product and steel pipe
JPH10216574A (en) * 1997-02-03 1998-08-18 Nippon Steel Corp Method and apparatus for coating thin film of highly viscous rapid curing type coating material
JPH10328586A (en) * 1997-05-30 1998-12-15 Tokyu Constr Co Ltd Mixing and spraying method and mixing and spraying nozzle
JP2020527456A (en) * 2017-07-21 2020-09-10 カーライル フルイド テクノロジーズ,インコーポレイティド Systems and methods to improve control of collision mixing
WO2022124300A1 (en) * 2020-12-09 2022-06-16 旭有機材株式会社 On-site mixing and spraying method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225887A (en) * 1988-07-15 1990-01-29 Pioneer Electron Corp Display device
JPH0445874A (en) * 1990-06-13 1992-02-14 Nitto Boseki Co Ltd Executing method for phenolic resin expanded material
JPH05200362A (en) * 1991-09-06 1993-08-10 Mitsui Toatsu Chem Inc Protecting and corrosion preventing method for steel product and steel pipe
JPH10216574A (en) * 1997-02-03 1998-08-18 Nippon Steel Corp Method and apparatus for coating thin film of highly viscous rapid curing type coating material
JPH10328586A (en) * 1997-05-30 1998-12-15 Tokyu Constr Co Ltd Mixing and spraying method and mixing and spraying nozzle
JP2020527456A (en) * 2017-07-21 2020-09-10 カーライル フルイド テクノロジーズ,インコーポレイティド Systems and methods to improve control of collision mixing
WO2022124300A1 (en) * 2020-12-09 2022-06-16 旭有機材株式会社 On-site mixing and spraying method

Also Published As

Publication number Publication date
JP7204034B1 (en) 2023-01-13

Similar Documents

Publication Publication Date Title
EP2485850B1 (en) Method of using a spray gun and material produced thereby
US7766537B2 (en) Lightweight foamed concrete mixer
US7794135B2 (en) Dry polymer hydration apparatus and methods of use
US5979787A (en) Apparatus and method for convergently applying polymer foam to substrate
US11022987B2 (en) Systems and methods for improved control of impingement mixing
EP2764895B1 (en) Fire-extinguishing binary chemical condensation composition
US11424045B2 (en) Method for radiation shielding
JP2004298863A (en) Nozzle for use in cold spray technique and cold spray system
US20130048094A1 (en) Continuous additive proportioning
US6010083A (en) Apparatus and method for generating high quality foam using an air eductor
WO2010056996A2 (en) Method and apparatus for improving fire prevention and extinguishment
JP2013538714A (en) Mixing apparatus for pumpable mixtures and related methods
US20180126396A1 (en) High-volume foam spray gun
RU2008143378A (en) METHOD AND INSTALLATION FOR HIGH-DISPERSION DISTRIBUTION AND RELEASE OF AN IRRITANT OR MILITARY POISONING SUBSTANCE
CN110841222A (en) Foam uniform mixing pipe, mixed foam fire extinguishing system and control method thereof, and fire fighting truck
JP2024004007A (en) Spraying system of two-liquid curable resin, and spraying method of two-liquid curable resin
US20180230364A1 (en) Proppant composition and method
US20170259091A1 (en) Fire-fighting system
KR20060134125A (en) Slurry installation method and apparatus
KR102219044B1 (en) Compressed gas conditioning assembly or related improvements
JP2011247323A (en) Liquefied carbon dioxide supply apparatus and polyurethane foam manufacturing apparatus equipped therewith
JP2011245694A (en) Device for supplying of liquefied carbon dioxide, and apparatus for manufacturing of polyurethane foam with the same
US8980378B2 (en) Method and system for coating a surface with a viscous one or plural component coating material
JP2008024809A (en) Method and apparatus for producing polyurethane foam by spray foaming
CN115634403B (en) Foam mixing device, system, foam fire engine and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221227

R150 Certificate of patent or registration of utility model

Ref document number: 7204034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150