JP2023546685A - 冷媒漏れセンサ測定調整システムおよび方法 - Google Patents

冷媒漏れセンサ測定調整システムおよび方法 Download PDF

Info

Publication number
JP2023546685A
JP2023546685A JP2023524638A JP2023524638A JP2023546685A JP 2023546685 A JP2023546685 A JP 2023546685A JP 2023524638 A JP2023524638 A JP 2023524638A JP 2023524638 A JP2023524638 A JP 2023524638A JP 2023546685 A JP2023546685 A JP 2023546685A
Authority
JP
Japan
Prior art keywords
refrigerant
adjustment
measurement
amount
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023524638A
Other languages
English (en)
Inventor
バトラー,ブライアン・アール
アルファノ,デイビッド・エイ
Original Assignee
コープランド エルピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コープランド エルピー filed Critical コープランド エルピー
Publication of JP2023546685A publication Critical patent/JP2023546685A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/21Modules for refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒測定調整システムは、建物の冷却システムの外部の空気中に存在する冷媒量を測定するように構成された、建物のための冷媒センサと、調整された量を生成するために、測定された冷媒量を調整に基づいて調整し、空気温度、空気圧、空気の相対湿度、冷却システムの動作モード、冷媒センサの測定値の経時変化、および建物内に配置された冷却システムの熱交換器にわたって空気を吹き付ける送風機がオンであるかどうかのうちの少なくとも1つに基づいて調整を決定するように構成された調整モジュールと、を備える。

Description

関連出願の相互参照
本出願は、2020年10月22日に出願された米国特許出願第17/077,479号の優先権を主張する。上記出願の開示全体は、参照により本明細書に組み込まれる。
技術分野
本開示は、冷媒漏れセンサに関し、より詳細には、冷媒漏れセンサの測定を制御するためのシステムおよび方法に関する。
背景
本明細書で提供される背景技術の説明は、本開示の文脈を一般的に提示することを目的としている。本発明者らの研究は、この背景技術の項に記載されている限りにおいて、ならびに出願時に先行技術として認められない可能性がある説明の態様は、本開示に対する先行技術として明示的にも暗示的にも認められない。
冷却および空調用途は、使用する冷媒の地球温暖化係数を低減するために、規制圧力が高まっている。より低い地球温暖化係数の冷媒を使用するために、冷媒の可燃性が増加する可能性がある。
低い地球温暖化の潜在力の選択肢と考えられるいくつかの冷媒が開発されており、それらはASHRAE(米国暖房冷却空調学会)のA2L分類を有し、軽度に可燃性であることを意味する。UL(アンダーライターズラボラトリーズ)60335-2-40規格および同様の規格は、A2L(または軽度に可燃性の)冷媒の所定の(M1)レベルを指定し、所定のレベルを下回るA2L冷媒充填レベルは漏れ検出および緩和を必要としないことを示す。
概要
特徴として、冷媒測定調整システムは、建物の冷却システムの外部の空気中に存在する冷媒量を測定するように構成された、建物のための冷媒センサと、調整された量を生成するために、測定された冷媒量を調整に基づいて調整し、空気温度、空気圧、空気の相対湿度、冷却システムの動作モード、冷媒センサの測定値の経時変化、および建物内に配置された冷却システムの熱交換器にわたって空気を吹き付ける送風機がオンであるかどうかのうちの少なくとも1つに基づいて調整を決定するように構成された調整モジュールと、を備える。
さらなる特徴において、漏れモジュールは、調整測定値に基づいて冷媒漏れが存在するかどうかを示すように構成される。
さらなる特徴において、調整モジュールは、空気温度に基づいて調整を決定するように構成される。
さらなる特徴において、調整モジュールは、空気温度の変化に基づいて調整を決定するように構成される。
さらなる特徴において、調整モジュールは、空気圧に基づいて調整を決定するように構成される。
さらなる特徴において、調整モジュールは、空気圧の変化に基づいて調整を決定するように構成される。
さらなる特徴において、調整モジュールは、相対湿度に基づいて調整を決定するように構成される。
さらなる特徴において、調整モジュールは、相対湿度の変化に基づいて調整を決定するように構成される。
さらなる特徴において、調整モジュールは、動作モードが所定の期間にわたって暖房モードにあるときに測定された冷媒量に基づいて調整を設定するように構成される。
さらなる特徴において、調整モジュールは、建物内からの冷媒の送出が実行された後に測定された冷媒量に基づいて調整を設定するように構成される。
さらなる特徴において、調整モジュールは、動作モードが冷房モードから暖房モードに遷移し、建物内からの冷媒の送出が実行されたときに測定された冷媒量に基づいて調整を設定するように構成される。
さらなる特徴において、調整モジュールは、送風機が少なくとも所定の期間にわたってオンになっているときに測定された冷媒量に基づいて調整を設定するように構成される。
さらなる特徴において、調整モジュールは、調整測定値を生成するために、第2の調整にさらに基づいて冷媒量を調整し、冷媒センサによって測定された冷媒量の経時変化に基づいて、第2の調整を決定するように構成される。
さらなる特徴において、調整モジュールは、(a)測定された冷媒量+調整、および(b)測定された冷媒量-調整のうちの1つに基づいて調整された量を設定するように構成される。
さらなる特徴において、調整モジュールは、調整によって乗算された測定された冷媒量に基づいて調整された量を設定するように構成される。
さらなる特徴において、調整モジュールは、空気温度、空気圧、空気の相対湿度、冷却システムの動作モード、冷媒センサの測定値の経時変化、および建物内に配置された冷却システムの熱交換器にわたって空気を吹き付ける送風機がオンであるかどうかのうちの少なくとも2つに基づいて決定された少なくとも2つの調整に基づいて量を調整するように構成される。
さらなる特徴において、調整モジュールは、空気温度、空気圧、空気の相対湿度、冷却システムの動作モード、冷媒センサの測定値の経時変化、および建物内に配置された冷却システムの熱交換器にわたって空気を吹き付ける送風機がオンであるかどうかの各々に基づいて決定された調整に基づいて量を調整するように構成される。
さらなる特徴において、調整モジュールは、冷媒センサの測定値の経時変化に基づいて測定された冷媒量を調整するように構成され、冷媒測定調整システムは、変化の大きさが所定値よりも大きい場合に、冷媒センサがその耐用年数の終わりにあることを示すように構成された寿命終了モジュールをさらに備える。
さらなる特徴において、調整モジュールは、冷媒センサの測定値の経時変化に基づいて測定された冷媒量を調整するように構成され、冷媒測定調整システムは、少なくとも所定数の連続する事例において変化の大きさが増大した場合に、冷媒センサがその耐用年数の終わりにあることを示すように構成された寿命終了モジュールをさらに備える。
特徴として、冷媒測定調整方法は、建物のための冷媒センサによって建物の冷却システムの外部の空気中に存在する冷媒量を測定することと、調整された量を生成するために、調整に基づいて測定された冷媒量を調整することと、調整を、空気温度、空気圧、空気の相対湿度、冷却システムの動作モード、冷媒センサの測定値の経時変化、および建物内に配置された冷却システムの熱交換器にわたって空気を吹き付ける送風機がオンであるかどうかのうちの少なくとも1つに基づいて決定することと、を含む。
本開示のさらなる適用領域は、詳細な説明、特許請求の範囲および図面から明らかになるであろう。詳細な説明および特定の例は、例示のみを目的とするものであり、本開示の範囲を限定するものではない。
本開示は、詳細な説明および添付の図面からより完全に理解されるであろう。
例示的な冷却システムの機能ブロック図である。 図1の冷却システムの例示的な部分の機能ブロック図である。 制御モジュールの例示的な実装態様の機能ブロック図である。 例示的な調整モジュールの機能ブロック図である。 冷媒漏れセンサの測定値を調整して漏れ検出および改善を行う方法の一例を示すフローチャートである。 ドリフト調整を決定し、寿命状態の終わりを診断する例示的な方法を示すフローチャートである。
図面では、類似および/または同一の要素を識別するために参照番号を再利用することができる。
詳細な説明
冷却システムで使用されるいくつかの冷媒は、軽度に可燃性(例えば、A2L冷媒)として分類することができる。軽度に可燃性の冷媒を使用する冷却システムは、冷却システムによってサービスされる建物内の冷却システムの外部の空気中に存在する冷媒量を測定するように構成された冷媒漏れセンサを備えることができる。この冷媒量は、冷却システムから漏れた冷媒量に相当する。
冷媒漏れセンサの測定値は、冷媒漏れセンサの経年変化に伴って自然に経時変化し得る。例えば、冷媒漏れセンサの測定値は、経時的にドリフトする可能性がある。冷媒漏れセンサの測定値はまた、冷却システムの動作モード、送風機がオンであるかどうか、および/または冷媒漏れセンサにおける空気の相対湿度、温度、または圧力などの1つまたは複数の動作条件によっても変化し得る。
本出願は、上記を考慮して冷媒漏れセンサの測定値を調整することを含む。これにより、測定精度が向上し、冷媒漏れセンサの寿命が長くなる。
図1は、圧縮機102、凝縮器104、膨張弁106、および蒸発器108を備える例示的な冷却システム100の機能ブロック図である。冷却システム100は、逆転弁またはフィルタ乾燥機などの追加および/または代替の構成要素を備えることができる。さらに、本開示は、暖房、換気、および空調(HVAC)、ヒートポンプ、冷房、およびチラーシステムを備えるがこれらに限定されない他のタイプの冷却システムに適用可能である。例えば、冷却システム100は、ヒートポンプシステム内の冷媒流れの方向を反転させるように構成された逆転弁(図示せず)を備えることができる。
圧縮機102は、蒸気形態の冷媒を受け取って圧縮する。圧縮機102は、蒸気形態の加圧冷媒を凝縮器104に供給する。圧縮機102は、ポンプを駆動する電気モータを備える。例えば、単に、圧縮機102のポンプは、スクロール圧縮機および/または往復圧縮機を含むことができる。
加圧冷媒の全部または一部は、凝縮器104内で液体形態に変換される。凝縮器104は、冷媒から熱を移動させて冷媒を冷却する。冷媒蒸気が飽和温度未満の温度まで冷却されると、冷媒は液体(または液化)冷媒に変化する。凝縮器104は、冷媒から離れる熱伝達の速度を増加させる電動ファンを含むことができる。
凝縮器104は、膨張弁106を介して蒸発器108に冷媒を供給する。膨張弁106は、蒸発器108への冷媒の供給流量を制御する。膨張弁106は、サーモスタット膨張弁を含んでもよく、または例えば制御モジュール130によって電子的に制御されてもよい。膨張弁106によって引き起こされる圧力降下は、液化冷媒の一部を蒸気形態に戻し得る。このようにして、蒸発器108は、冷媒蒸気と液化冷媒との混合物を受け取ることができる。
冷媒は、蒸発器108にて吸熱する。液体冷媒は、冷媒の飽和温度よりも高い温度に温められると蒸気形態に移行する。蒸発器108は、冷媒への熱伝達の速度を増加させる電動ファンを含むことができる。
ユーティリティ120は、冷却システム100に電力を供給する。例えば、単に、ユーティリティ120は、約230ボルトの二乗平均平方根(VRMS)で単相交流(AC)電力を提供することができる。他の実施態様では、ユーティリティ120は、例えば50または60Hzのライン周波数で約400VRMS、480VRMS、または600VRMSの3相AC電力を供給することができる。3相交流電力が名目上600VRMSである場合、電力の実際の利用可能電圧は575VRMSであり得る。
ユーティリティ120は、2つ以上の導体を含むACラインを介してAC電力を制御モジュール130に供給することができる。AC電力はまた、ACラインを介して駆動装置132に供給されてもよい。制御モジュール130は、冷却システム100を制御する。例えば、単に、制御モジュール130は、ユーザ入力および/または様々なセンサ(図示せず)によって測定されたパラメータに基づいて冷却システム100を制御することができる。センサは、圧力センサ、温度センサ、電流センサ、電圧センサなどを含むことができる。センサはまた、シリアルデータバスまたは他の適切なデータバスを介して、モータ電流またはトルクなどの駆動制御装置からのフィードバック情報を含むことができる。
ユーザインターフェース134は、制御モジュール130にユーザ入力を提供する。ユーザインターフェース134は、追加的または代替的に、ユーザ入力を駆動装置132に直接提供することができる。ユーザ入力は、例えば、所望の温度、ファンの動作に関する要求(例えば、蒸発器ファンの連続運転の要求)、および/または他の適切な入力を含むことができる。ユーザインターフェース134は、サーモスタットの形態をとることができ、制御モジュールの一部またはすべての機能(例えば、熱源を作動させることを含む)をサーモスタットに組み込むことができる。
制御モジュール130は、凝縮器104のファン、蒸発器108のファン、および膨張弁106の動作を制御することができる。制御モジュール130はまた、逆転弁の作動を制御してもよい。
駆動装置132は、制御モジュール130からのコマンドに基づいて圧縮機102を制御することができる。例えば、単に、制御モジュール130は、圧縮機102のモータを特定の速度で動作させるように、または圧縮機102を特定の容量で動作させるように駆動装置132に指示することができる。様々な実施態様において、駆動装置132は、凝縮器ファンを制御することもできる。
蒸発器108は、冷却システムによってサービスされる建物内に配置されてもよい。凝縮器104は、建物の外側に配置されてもよい。ヒートポンプシステムでは、建物内で暖房を行うか、建物内で冷房を行うかによって、蒸発器108および凝縮器104の機能が切り替えられる。冷房が行われるとき、凝縮器104および蒸発器108は上述のように機能する。暖房が行われるとき、冷却液の流れが反転し、凝縮器104と蒸発器108とが逆に動作する。したがって、凝縮器104および蒸発器108は、より一般的には熱交換器と呼ぶことができる。
冷媒漏れセンサ140は、建物の内部に配置されており、冷媒漏れセンサに存在する空気(冷却システムの外部)中の冷媒量(例えば、濃度)を測定する。冷媒漏れセンサ140は、例えば、蒸発器108を横切ってダクトを介して建物内に空気を吹き付ける送風機の下流など、蒸発器108の近くに配置することができる。冷媒漏れセンサ140は、蒸発器108の下流に配置されてもよい。
冷媒漏れセンサ140は、測定した冷媒量に基づいて信号を生成する。例えば、冷媒漏れセンサ140は、冷媒量を制御モジュール130に送信することができる。あるいは、冷媒漏れセンサ140は、量が所定の量よりも大きい場合に信号を第1の状態とし、量が所定の量よりも小さい場合に信号を第2の状態としてもよい。所定の量は、例えば、冷媒の可燃度の低い方の25%であってもよいし、他の適切な値であってもよい。様々な実施態様において、冷媒は、1つまたは複数の基準の下で軽度に可燃性であるとして分類される。例えば、単に、上記のように、冷媒は、A2L冷媒またはより一般的に軽度に可燃性と分類されてもよい。分類は、例えば、ASHRAE(米国暖房冷凍空調学会)、UL(アンダーライターズラボラトリー)60335-2-40規格によるものであってもよく、あるいはASHRAE、UL、または別の規制機関によるものであってもよい別の規格によるものであってもよい。
制御モジュール130は、冷媒漏れセンサ140の出力を受信し、その出力に基づいて冷媒漏れの有無を決定する。例えば、制御モジュール130は、出力が第1の状態にあるとき、または量が所定量より多いときに、漏れが存在すると決定してもよい。量が所定量未満であるか、または出力が第2の状態にある場合、制御モジュール130は、漏れが存在しないと決定してもよい。
冷媒漏れが存在する場合(例えば、信号が、量が所定値よりも大きいこと、または信号が第1の状態にあることを示す)場合、1つまたは複数の改善措置をとることができる。例えば、制御モジュール130は、漏れが存在するときに送風機(蒸発器108を横切って空気を吹き付ける)をオンにすることができる。送風機をオンにすると、漏れた冷媒を放散させることができる。さらに、制御モジュール130は、圧縮機102をオフにし、漏れが改善されるまで(例えば、所定の期間)圧縮機102をオフのままにすることができる。さらに、制御モジュール130は、ロックアウト装置を作動させて、建物内での1つまたは複数の点火装置による点火を防止することができる。追加的または代替的に、制御モジュール130は、建物の外側の冷媒を遮断するために、1つまたは複数の遮断弁を閉じることができる。様々な実施態様において、第1の遮断弁は、凝縮器104と膨張弁106との間に直接実装されてもよい。制御モジュール130は、漏れが検出されたときに第1の遮断弁を閉じてもよい。第2の遮断弁は、蒸発器108と圧縮機102との間に直接実装されてもよい。制御モジュール130は、圧縮機102がオンになっている間、第2の遮断弁を開いたままにし、第1の遮断弁を閉じて建物内から冷媒を送り出すことができる。制御モジュール130は、圧縮機102が所定の期間動作した後、第1の遮断弁を閉じた状態で第2の遮断弁を閉じてもよい。
追加的または代替的に、制御モジュール130は、漏れが存在する場合に、1つまたは複数のインジケータを生成してもよい。例えば、制御モジュール130は、インジケータを1つまたは複数の外部装置に送信し、1つまたは複数の視覚インジケータを生成し(例えば、1つまたは複数のライトをオンにする、1つまたは複数のディスプレイに情報を表示するなど)、および/または1つまたは複数のスピーカなどを介して1つまたは複数の可聴インジケータを生成してもよい。
冷媒漏れセンサ140は、例えば、非分散型赤外線(NDIR)冷媒センサ、熱伝導性冷媒センサ、水晶振動子マイクロバランス(QCM)センサ、または別の適切なタイプの冷媒漏れセンサであってもよい。NDIRセンサは、管を通して光を送る赤外線(IR)ランプを含む。ファンまたは送風機は、管を通して気体(例えば、空気、および漏れが存在する場合には冷媒)を押すかまたは引っ張ることができる。光学センサは、IRランプから管を介して光を受け取り、光の1つまたは複数の特性に基づいてガス中の冷媒量を測定する。熱伝導性センサは、その間で気体が送風機またはファンによって押し引きされ得る導電性プレートを含む。送風機またはファンは、様々な実施態様において省略されてもよい。異なる量の冷媒は、異なる熱伝導率を有する。熱伝導性センサは、2つの温度センサ(例えば、加熱要素の1つ前および1つ後)を含む。熱伝導性センサは、2つのセンサからの測定値間の温度差を決定する。加熱要素からの既知の加熱入力が与えられると、熱伝導性センサは、温度差に基づいて冷媒量を決定する。異なる量の冷媒は異なる密度を有し、したがって異なる振動を引き起こす可能性がある。QCMセンサは、振動に基づいて気体中の冷媒量を測定する。冷媒漏れセンサ140の他の例としては、金属酸化物冷媒センサ、音響冷媒センサ、水晶共振(例えば、QCM)冷媒センサ、カーボンナノチューブ冷媒センサ等が挙げられる。金属酸化物冷媒センサは、ホットプレートによって加熱された表面酸化剤にわたる抵抗を測定する。冷媒の存在下では、酸化層の抵抗が低下することがある。冷媒が放散するにつれて、酸化層の抵抗は増加し得る。金属酸化物冷媒センサは、抵抗に基づいて冷媒量を決定することができる。
冷媒漏れセンサ140で測定された冷媒量は、経時的に実際に存在する冷媒量と乖離することが当然ある。例えば、測定された冷媒量は、経時的にドリフトする可能性がある。1つまたは複数の周囲条件(例えば、温度、圧力、湿度)によっては、冷媒漏れセンサ140で測定される冷媒量に不正確さが生じる可能性がある。また、送風機の電源が入っていると、測定される冷媒量が不正確になる可能性がある。1つまたは複数の周囲条件(例えば、温度、圧力、湿度)の変化に対する冷媒漏れセンサ140の応答はまた、経時的に減速または加速する可能性がある。
このため、本出願では、冷媒漏れセンサ140で測定される冷媒量を調整して上記を考慮する。例えば、ドリフトの調整を決定し、測定された冷媒量を調整するために使用することができる。追加的または代替的に、1つまたは複数の調整は、1つまたは複数の周囲条件に基づいて決定され、測定された冷媒量を調整するために使用されてもよい。追加的または代替的に、周囲条件の変化が発生したときの調整を決定し、測定された冷媒量を調整するために使用することができる。追加的または代替的に、送風機がオンであり、測定された冷媒量を調整するために使用されるときの調整を決定することができる。追加的または代替的に、調節は、暖房および冷房モード動作中の測定値間の差に基づいて決定され、測定された冷媒量を調節するために使用されてもよい。
図2は、図1の冷却システムの例示的な部分の機能ブロック図である。オンにすると、送風機204は、建物内から1つまたは複数の戻り空気ダクトを通して空気を引き込む。送風機204は、空気に蒸発器108を通過させる。蒸発器108は、空気が蒸発器108を通過する際に空気と熱をやりとりする。加熱または冷却された空気は、蒸発器108から1つまたは複数の給気ダクトを通って建物内に流れる。
冷媒漏れセンサ140に加えて、1つまたは複数のセンサが実装されてもよい。例えば、モータ電流センサ208は、送風機204、より具体的には送風機204の電気モータへの電流を測定することができる。制御モジュール130は、電流が所定の電流よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
追加的または代替的に、電圧センサは、送風機204の電気モータに印加される電圧を測定することができる。制御モジュール130は、電圧が所定の電圧よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
追加的または代替的に、電力センサは、送風機204の電気モータの消費電力を測定することができる。制御モジュール130は、消費電力が所定の電力よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
追加的または代替的に、速度センサ212は、送風機204の電気モータの回転速度を測定することができる。制御モジュール130は、速度が所定の速度よりも速い場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
追加的または代替的に、蒸発器108の下流には、1つまたは複数のセンサが実装されてもよい。例えば、圧力センサ216は、(例えば、供給空気ダクト内の)蒸発器108の下流の空気の圧力を測定することができる。制御モジュール130は、圧力が所定の圧力(例えば、大気圧)よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。圧力は、送風機204がオフであるときに大気圧に近づくことができる。圧力は、送風機204がオンであるときに大気圧に対して増加し得る。
追加的または代替的に、温度センサ220は、(例えば、供給空気ダクト内の)蒸発器108の下流の空気の温度を測定することができる。制御モジュール130は、加熱中に所定の温度(例えば、サーモスタットの設定圧力)よりも高いか、冷却中に所定の温度未満である場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。温度センサ220によって測定される温度は、送風機204が停止している間の周囲温度であってもよい。
追加的または代替的に、相対湿度センサ224は、(例えば、供給空気ダクト内の)蒸発器108の下流の空気の相対湿度(RH)を測定することができる。制御モジュール130は、相対湿度が所定の相対湿度より高いまたは未満である場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。暖房モードおよび冷房モードには、異なる所定の相対湿度を使用することができる。相対湿度センサ224によって測定される相対湿度は、送風機204が停止している間の周囲の相対湿度であってもよい。
追加的または代替的に、空気流量(例えば、質量空気流量(MAF))センサ228は、(例えば、供給空気ダクト内の)蒸発器108の下流の空気の流量(例えば、質量流量)を測定することができる。制御モジュール130は、空気流量が所定の空気流量よりも大きい場合に、送風機204がオンであると決定する(および冷媒漏れセンサ140をオフにする)ことができる。
センサの例示的な位置が図2に示されているが、センサは他の適切な位置に配置されてもよい。さらに、図2のセンサのうちの1つまたは複数は、省略または複製されてもよい。
図3は、制御モジュール130の例示的な実施態様の機能ブロック図である。圧縮機制御モジュール304は、圧縮機102の動作を制御する。例えば、圧縮機制御モジュール304は、サーモスタット308からのコマンド(例えば、冷房モードコマンド)の受信に応答して圧縮機102をオンにすることができる。サーモスタット308は、例えば、建物内の空気の温度が設定温度よりも高い(冷房の例)か、または設定温度未満(暖房の例)の場合に、コマンドを生成することができる。圧縮機制御モジュール304は、圧縮機102がオンであるときに圧縮機102の速度および/または容量を変化させることができる。圧縮機制御モジュール304は、サーモスタット308がコマンドの生成を停止したときに圧縮機102をオフにすることができる。
ファン制御モジュール312は、凝縮器ファン316の動作を制御する。凝縮器ファン316は、凝縮器ファン316がオンであるときに凝縮器104を通過する空気流を増加させる。例えば、ファン制御モジュール312は、サーモスタット308からのコマンドの受信に応答して凝縮器ファン316をオンにすることができる。ファン制御モジュール312は、サーモスタット308がコマンドの生成を停止したときに凝縮器ファン316をオフにすることができる。様々な実施態様では、ファン制御モジュール312は、圧縮機102がオンになる前に凝縮器ファン316をオンにし、圧縮機102がオフになった後の所定の期間にわたって凝縮器ファン316をオンのままにすることができる。
送風機制御モジュール320は、送風機204の動作を制御する。例えば、送風機制御モジュール320は、サーモスタット308からのコマンドの受信に応答して送風機204をオンにすることができる。送風機制御モジュール320はまた、サーモスタット308からの加熱のコマンドの受信に応答して送風機204をオンにすることができる。送風機制御モジュール320は、サーモスタット308からの送風機204をオンにするコマンド(ファンオンコマンド)の受信に応答して送風機204をオンにすることができる。送風機制御モジュール320は、サーモスタット308がいずれのコマンドも生成していないときに送風機204をオフにすることができる。様々な実施態様では、送風機制御モジュール320は、圧縮機102がオンになる前に送風機204をオンにし、圧縮機102がオフになった後の所定の期間にわたって送風機204をオンのままにすることができる。
本明細書で説明する制御モジュールは、装置に電力を印加することによって装置をオンにする。制御モジュールは、装置の電力供給を遮断することによって装置をオフにする。
また、送風機制御モジュール320は、冷媒漏れセンサ140を使用して冷媒漏れを検出したときに、送風機204をオンにすることができる。例えば、漏れモジュール324は、冷媒漏れセンサ140によって冷却システムの外側で測定された冷媒量が所定の量よりも多い場合に、冷却システムに冷媒漏れがあると決定してもよい。漏れモジュール324は、その量が所定の量未満である場合、冷媒漏れがないと決定してもよい。
上述したように、冷媒漏れが冷却システム内に存在する場合、1つまたは複数の他の改善措置をとることができる。例えば、圧縮機制御モジュール304は、冷媒漏れが存在する場合に、圧縮機102をオフにし、圧縮機102を所定の期間オフのままにすることができる。建物内から冷媒を送り出し、建物の外側で冷媒をせき止めるなどのために、1つまたは複数の遮断弁を閉じることもできる。
上述したように、冷媒漏れセンサ140によって測定される冷媒量は、冷媒漏れセンサ140に存在する実際の冷媒量とは異なり得る。調整モジュール328は、冷媒漏れセンサによって測定された冷媒量を、漏れモジュール324などによって冷媒の(調整された)量が使用される前に調整する。調整モジュール328は、温度センサ220、相対湿度センサ224、圧力センサ216、および/または1つまたは複数の他のタイプのセンサなどの、1つまたは複数の他のセンサ332からの測定値に基づいて、1つまたは複数の調整を決定することができる。調整モジュール328は、制御モジュール130内に実装されるものとして示されているが、調整モジュール328は、冷媒漏れセンサ140内に実装されてもよく、または調整モジュール328の機能の一部は、冷媒漏れセンサ140内に実装されてもよく、調整モジュール328の機能の一部(例えば、残りの部分)は、制御モジュール130内に実装されてもよい。
図4は、調整モジュール328の例示的な実施態様の機能ブロック図である。第1の調整モジュール404は、冷媒漏れセンサ140の測定値を受信する。測定値には、冷媒漏れセンサ140で測定された冷媒量が含まれる。
第1の調整モジュール404は、ドリフト調整に基づいて測定値を調整して、第1の調整測定値を生成する。例えば、第1の調整モジュール404は、ドリフト調整と測定との和(加算)またはドリフト調整と測定との積(乗算)に基づいて、またはそれに等しい第1の調整測定値を設定してもよい。
ドリフトモジュール408は、異なる2つの時刻に行われた2つの測定値の差に基づいてドリフト調整を決定する。例えば、ドリフトモジュール408は、第1の時間からの第1の測定値から第2の時間からの第2の測定値を引いた値またはそれに等しい値に基づいてドリフト調整を設定してもよい。第1の測定値は、例えば、冷媒漏れセンサ140に記憶されてもよく、第1の調整モジュール404によって冷媒漏れセンサ140から受信された第1の測定値、(現在時刻に対する)以前の時刻からの測定値、または別の適切な測定値であってもよい。第2の測定値は、第1の測定値、現在の測定値、または別の適切な測定値の後に受信された測定値であってもよい。
第2の調整モジュール412は、第1の調整測定値(第1の調整測定冷媒量)を受信する。第2の調整モジュール412は、周囲調整に基づいて第1の調整測定値を調整して、第2の調整測定値を生成する。例えば、第2の調整モジュール412は、周囲調整と第1の調整測定値との和(加算)または周囲調整と第1の調整測定値との積(乗算)に基づいて、またはそれに等しい第2の調整測定値を設定してもよい。
周囲モジュール416は、周囲温度、周囲圧力、または周囲相対湿度などの周囲パラメータに基づいて周囲調整を決定する。周囲温度は、送風機204が停止している間に温度センサ220によって測定されてもよい。周囲圧力は、送風機204が停止している間に圧力センサ216によって測定されてもよい。周囲相対湿度は、送風機204が停止している間に相対湿度センサ224によって測定されてもよい。周囲モジュール416は、例えば、ルックアップテーブルおよび周囲パラメータの値を周囲調整に関連付ける式のうちの一方を使用して、周囲調整を決定することができる。
様々な実施態様では、周囲モジュール416は、周囲温度に基づく第1の周囲調整、周囲圧力に基づく第2の周囲調整、および周囲相対湿度に基づく第3の周囲調整などの複数の周囲調整を決定することができる。そのような実施態様では、第2の調整モジュール412は、周囲調整の各々に基づいて、例えば各々を加算または乗算することによって、第1の調整測定値を調整してもよい。
周囲モジュール416はまた、送風機の電力状態およびモード(例えば、暖房、冷房、オフ)をシグナリングする入力を含むことができる。これにより、周囲モジュール416は、周囲条件でどのような変化が見られるかを予想/予測することができる。例えば、サーモスタットが冷房モードにあり、送風機がオンである場合、周囲モジュール416は、温度の低下、湿度の上昇、および大気圧の上昇を予期し得る。これらの予期される変化がセンサのうちの1つを除くすべてに反映される場合、そのセンサが適切に動作していないか、または寿命の終わりに動作していないことを知らせることができる。
第3の調整モジュール420は、第2の調整測定値(第2の調整測定冷媒量)を受信する。第3の調整モジュール420は、変化調整に基づいて第2の調整測定値を調整して第3の調整測定値を生成する。例えば、第3の調整モジュール420は、変化調整と第2の調整測定値との和(加算)または変化調整と第2の調整測定値との積(乗算)に基づいて、またはそれに等しい第3の調整測定値を設定してもよい。
変更モジュール424は、温度、圧力、または相対湿度などのパラメータの変化に応答して発生した測定値の変化に基づいて変更調整を決定する。温度は、温度センサ220によって測定されてもよい。圧力は、圧力センサ216によって測定されてもよい。相対湿度は、相対湿度センサ224によって測定されてもよい。変更モジュール424は、例えば、ルックアップテーブルおよびパラメータの測定変化を変更調整に関連付ける式の一方を使用して、変更調整を決定することができる。
様々な実施態様において、変更モジュール424は、温度の変化に基づく第1の変更調整、圧力の変化に基づく第2の変更調整、および相対湿度の変化に基づく第3の変更調整などの複数の変更調整を決定することができる。そのような実施態様では、第3の調整モジュール420は、変更調整の各々に基づいて、例えば各々を加算または乗算することによって、第2の調整測定値を調整してもよい。
様々な実施態様において、変更モジュール424は、調整モジュール328によって出力された最終調整測定値に基づいて変更調整を決定することができる。しかしながら、変更モジュール424は、変更調整を決定するために、各調整を無効にすることができる。
第4の調整モジュール428は、第3の調整測定値(第3の調整測定冷媒量)を受信する。第4の調整モジュール428は、送風機調整に基づいて第3の調整測定値を調整して第4の調整測定値を生成する。例えば、第4の調整モジュール428は、送風機調整値と第3の調整測定値との和(加算)(例えば、送風機調整が負の値である例では)または送風機調整値と第3の調整測定値との積(乗算)(例えば、送風機調整が正の値である例では)または第3の調整測定値と送風機調整値との差(減算)(例えば、送風機調整が正の値である例では)に基づいて、またはそれに等しい第4の調整測定値を設定してもよい。
送風機調整モジュール432は、送風機204がオンであるかどうかに基づいて送風機調整を決定する。送風機204が少なくとも所定の期間オンである場合、冷媒漏れは緩和されるべきであるので、冷媒漏れセンサ140からの測定値はゼロであるべきである。しかしながら、冷媒漏れセンサ140が経年変化するにつれて、測定値は増加しても減少してもよい。いくつかの実装形態では、測定値が負になる場合がある。したがって、送風機調整モジュール432は、送風機204が少なくとも所定の期間にわたってオンであった後に(測定値がゼロになるように)オンからオフに遷移したとき、冷媒漏れセンサ140からの測定値(正の値)に基づいて、またはそれに等しい送風機調整を設定してもよい。送風機調整モジュール432は、送風機調整を負(例えば、-測定)にして負の値を生成してもよい。
第5の調整モジュール436は、第4の調整測定値(第4の調整測定冷媒量)を受信する。第5の調整モジュール436は、モード調整に基づいて第4の調整測定値を調整して(最終的な)調整測定値を生成する。例えば、第5の調整モジュール436は、モード調整と第4の調整測定値との和(加算)(例えば、モード調整が負の値である例)またはモード調整と第4の調整測定値との積(乗算)(例えば、モード調整が正の値である例)または差(モード調整と第4の調整測定値との間の減算(例えば、モード調整が正の値である例)に基づいて、またはそれに等しい調整測定値を設定してもよい。漏れモジュール324は、調整モジュール328によって出力された調整測定値に基づいて、上述したように、冷媒漏れが存在するかどうかを決定する。
モードモジュール438は、冷却システムの現在の動作モードに基づいてモード調整を決定する。サーモスタット308は、動作モードを暖房モード、冷房モード、またはオフのいずれかに設定する。冷却システムがオフであるか、または暖房モードに移行しているときに、冷却システムの室内セクションから冷媒を送り出すために、ポンプアウトが実行されてもよい。したがって、冷媒漏れがあったとしても、冷媒漏れセンサ140の測定値は0となるはずである。したがって、モードモジュール438は、モードが暖房モードに移行するとき、またはポンプアウトが実行されたときに、冷媒漏れセンサ140の測定値に基づいて、またはそれに等しいモード調整を設定してもよい。モードモジュール438は、測定値が負にドリフトした場合、負の値または正の値を生成するためにモード調整を負に(例えば、-測定)してもよい。
図4では、調整を行う順序の一例を示しているが、他の順序で調整を行ってもよい。また、上述した調整のうちの1つまたは複数を省略してもよい。
図3に戻って参照すると、寿命終了モジュール440は、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいているかを示すことができる。冷媒漏れセンサ140の測定値は、冷媒漏れセンサ140がその耐用年数の終わりまたはそれに近づいているとき、所定値未満の精度を有することができる。冷凍漏れセンサ140は、冷凍漏れセンサ140のその耐用年数の終わりにあるか、またはそれに近づいているときに交換されるべきである。
寿命終了モジュール440は、相対湿度の変化に応答した測定値の変化が、相対湿度の変化に関連する所定の期待値限界よりも大きいか小さい場合に、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいているかを決定することができる。上記の変更調整は、冷媒漏れセンサ140の耐用年数を延ばすのに役立ち得る。追加的または代替的に、寿命終了モジュール440は、温度変化に応答した測定値の変化が、温度変化に関連する所定の期待値限界よりも大きいかまたは小さい場合に、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいているかを決定することができる。寿命終了モジュール440は、圧力の変化に応答した測定値の変化が、圧力の変化に関連する所定の期待値未満である場合に、冷媒漏れセンサ140がその耐用年数の終わりにあるか、または近づいているかどうかを決定することができる。寿命終了モジュール440は、(第1の測定値と第2の測定値との間の差に基づいて決定される)モード調整が所定値よりも大きいかまたは小さい場合に、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいているとさらに決定することができる。
追加的または代替的に、寿命終了モジュール440は、調整(例えば、送風機調整、ドリフト調整、モード調整など)のうちの1つまたは複数が所定値よりも大きいかまたは小さい場合に、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいていると決定することができる。
寿命終了モジュール440は、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいているときに、1つまたは複数の改善措置をとることができる。例えば、寿命終了モジュール440は、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいているときに、光を放ち、所定のコードをメモリに記憶し、ネットワークを介してメッセージを1つまたは複数のコンピューティングデバイスに送信し、または1つまたは複数の他の改善措置を実行することができる。
図5は、冷媒漏れセンサ140の測定値を調整して漏れ検出および改善を行う方法の一例を示すフローチャートである。制御は504から始まり、調整モジュール328は冷媒漏れセンサ140から測定値を受信する。調整モジュール328はまた、上述したように、調整を取得または決定する。
508において、第1の調整モジュール404は、(504からの)測定値およびドリフト調整に基づいて第1の調整測定値を決定してもよい。512において、第2の調整モジュール412は、第1の調整測定値および周囲調整に基づいて第2の調整測定値を決定する。516において、第3の調整モジュール420は、第2の調整測定値および変更調整に基づいて第3の調整測定値を決定する。520において、第4の調整モジュールは、第3の調整測定値および送風機調整に基づいて第4の調整測定値を決定する。524において、第5の調整モジュール436は、第4の調整測定値およびモード調整に基づいて調整測定値を決定する。上述したように、1つまたは複数の調整は省略されてもよく、異なる調整順序が使用されてもよい。
528において、漏れモジュール324は、調整測定値が所定の冷媒量よりも大きいかどうかを決定する。528が偽である場合、漏れモジュール324は、532において冷媒漏れが存在しないことを示し、制御は次の測定のために504に戻る。528が真である場合、制御は536に続く。
536において、漏れモジュール324は、冷媒漏れが存在することを示す。540において、冷媒漏れの存在の診断に応答して、1つまたは複数の改善措置が実行される。例えば、送風機制御モジュール320は、漏れた冷媒を放散させるために送風機204を所定の期間オンにしてもよい。圧縮機制御モジュール304はまた、所定の期間、圧縮機102をオフにすることができる。圧縮機をオフにする前に、圧縮機制御モジュール304は、圧縮機102をオンのままにして建物内から冷媒を送り出すことができる。1つまたは複数の弁を作動させて、建物の外側で冷媒をせき止めることができる。
図6は、ドリフト調整を決定し、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいているかどうかを決定する例示的な方法を示すフローチャートである。制御は601から始まり、調整モジュール328は、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいているという指示が生成されたかどうかを決定する。601が真である場合、制御は602に戻る。601が偽である場合、制御は604に続く。602において、調整モジュール328は、指示が生成されてから所定の期間が経過したかどうかを決定する。602が偽である場合、603において漏れの緩和が実行される。例えば、送風機制御モジュール320は、送風機204をオンにしてもよい。さらに、制御モジュール130は、1つまたは複数のロックアウト装置を作動させて、建物内での点火を防止することができる。602が偽である場合、制御は601に戻る。所定の期間は、例えば、24時間(1日)または他の適切な期間であってもよい。
604において、調整モジュール328は、建物の暖房または冷房が実行されているように、冷却システムがオンであるかどうかを決定する。604が真である場合、制御は608に続く。604が偽である場合、調整モジュール328は、ドリフト調整を変更しないままにし、601に戻ることができる。
608において、調整モジュール328は、冷却システムの現在の動作モードを決定する。冷却システムが暖房モードで動作している場合、制御は616に続く。冷却システムが冷房モードで動作している場合、制御は612に続く。
612において、調整モジュール328は、冷却システムが少なくとも所定の期間、例えば約5分間またはゼロより大きい別の適切な期間、冷房モードで動作していたかどうかを決定する。612が真である場合、制御は618に続く。612が偽である場合、制御は601に戻り、調整モジュール328はドリフト調整を変更しないままにする。616において、調整モジュール328は、冷却システムが少なくとも所定の期間、例えば約5分間または0より大きい別の適切な期間、暖房モードで動作していたかどうかを決定する。616が真である場合、制御は620に続く。616が偽である場合、制御は601に戻り、調整モジュール328はドリフト調整を変更しないままにする。
618において、ドリフトモジュール408は、冷媒漏れセンサ140の現在の測定値または冷媒漏れセンサ140の最後のX回の測定値の平均(例えば、標準平均、移動平均、または加重移動平均)などのベースライン測定値を決定する。Xは、例えば、最後の10回の測定値、または別の適切な数の測定値、または最後のX時間単位(例えば、秒、分など)にわたって取得された冷媒漏れセンサ140からの測定値のすべてであってもよい。最後は、現在時刻に対する時間的意味を指すことができる。
620において、ドリフトモジュール408は、冷媒漏れセンサ140の現在の測定値または冷媒漏れセンサ140の最後のX回の測定値の平均(例えば、標準平均、移動平均、または加重移動平均)などのベースラインクリーン測定値を決定する。Xは、例えば、最後の10回の測定値、または別の適切な数の測定値、または最後のX時間単位(例えば、秒、分など)にわたって取得された冷媒漏れセンサ140からの測定値のすべてであってもよい。最後は、現在時刻に対する時間的意味を指すことができる。618および620の後、制御は624に続く。
624において、ドリフトモジュール408は、(620からの)ベースラインクリーン測定値および(618からの)ベースライン測定値に基づいてドリフト調整を決定する。初期測定値は、メモリに記憶されてもよい。ドリフトモジュール408は、ベースライン測定値からベースラインクリーン測定値を引いたものなど、ベースライン測定値とベースライン洗浄測定値との間の差に基づいて、またはそれに等しいドリフト調整を設定してもよい。
628において、寿命終了モジュール440は、ドリフト調整(例えば、大きさ)が所定値よりも大きいかどうかを決定することができる。628が真である場合、寿命終了モジュール440は、冷媒漏れセンサがその耐用年数の終わりにあるか、またはそれに近づいていることを示し、632において、1つまたは複数の改善措置をとることができる。寿命終了モジュール440はまた、632において(602で比較した)期間をリセットすることができる。628が偽である場合、制御は636に移行することができる。636において、寿命終了モジュール440は、ドリフト調整(例えば、大きさ)が初期ドリフト調整に対して所定量を超えて増加したか、または(624において)最後のY回の更新の各々の間に増加したかを決定することができる。Yは2以上の整数である。636が真である場合、寿命終了モジュール440は、冷媒漏れセンサ140がその耐用年数の終わりにあるか、またはそれに近づいていることを示し、632において、1つまたは複数の改善措置をとることができる。636が偽である場合、寿命終了モジュール440は、640において、冷媒漏れセンサ140がその耐用年数の終わりにないか、またはそれに近づいていないことを示すことができ、制御は601に戻ることができる。
前述の説明は、本質的に単なる例示であり、決して本開示、その用途、または使用法を限定することを意図するものではない。本開示の広範な教示は、様々な形態で実施することができる。したがって、本開示は特定の例を含むが、図面、明細書、および添付の特許請求の範囲を検討すると他の修正が明らかになるので、本開示の真の範囲はそのように限定されるべきではない。本開示の原理を変更することなく、方法内の1つまたは複数のステップを異なる順序で(または同時に)実行することができることを理解されたい。さらに、各実施形態は特定の特徴を有するものとして上述されているが、本開示の任意の実施形態に関して説明されたそれらの特徴のうちの任意の1つまたは複数は、その組み合わせが明示的に説明されていなくても、他の実施形態のいずれかの特徴に実装および/またはそれらと組み合わせることができる。言い換えれば、記載された実施形態は相互に排他的ではなく、1つまたは複数の実施形態の互いの置換は、本開示の範囲内に留まる。
要素間(例えば、モジュール間、回路要素間、半導体層間等)の空間的および機能的関係は、「接続された」、「係合された」、「結合された」、「隣接する」、「隣に」、「上に」、「上方に」、「下方に」、および「配置された」を含む様々な用語を使用して説明される。「直接的」であると明示的に記載されていない限り、第1の要素と第2の要素との間の関係が上記開示に記載されている場合、その関係は、第1の要素と第2の要素との間に他の介在要素が存在しない直接的な関係とすることができるが、第1の要素と第2の要素との間に(空間的または機能的に)1つまたは複数の介在要素が存在する間接的な関係とすることもできる。本明細書で使用される場合、A、B、およびCのうちの少なくとも1つという語句は、非排他的論理ORを使用して論理(A OR B OR C)を意味すると解釈されるべきであり、「Aの少なくとも1つ、Bの少なくとも1つ、およびCの少なくとも1つ」を意味すると解釈されるべきではない。
図では、矢印によって示される矢印の方向は、一般に、図が対象とする情報(データまたは命令など)の流れを示している。例えば、要素Aおよび要素Bが様々な情報を交換するが、要素Aから要素Bに送信された情報が図に関連する場合、矢印は要素Aから要素Bを指すことができる。この一方向の矢印は、他の情報が要素Bから要素Aに送信されないことを意味しない。さらに、要素Aから要素Bに送信される情報について、要素Bは、要素Aに情報の要求または受信確認を送信することができる。
以下の定義を含む本出願では、「モジュール」という用語または「制御装置」という用語は、「回路」という用語と置き換えることができる。「モジュール」という用語は、特定用途向け集積回路(ASIC)、デジタル、アナログ、またはアナログ/デジタル混合ディスクリート回路、デジタル、アナログ、またはアナログ/デジタル混合集積回路、組み合わせ論理回路、フィールドプログラマブルゲートアレイ(FPGA)、コードを実行するプロセッサ回路(共有、専用、またはグループ)、プロセッサ回路によって実行されるコードを記憶するメモリ回路(共有、専用、またはグループ)、記載された機能を提供する他の適切なハードウェア構成要素、または上記の一部または全部の組み合わせ、例えばシステムオンチップを指すか、その一部であるか、または含むことができる。
モジュールは、1つまたは複数のインターフェース回路を含むことができる。いくつかの例では、インターフェース回路は、ローカルエリアネットワーク(LAN)、インターネット、ワイドエリアネットワーク(WAN)、またはそれらの組み合わせに接続された有線または無線インターフェースを含むことができる。本開示の任意の所与のモジュールの機能は、インターフェース回路を介して接続された複数のモジュール間で分散されてもよい。例えば、複数のモジュールは、負荷分散を可能にし得る。さらなる例では、サーバ(遠隔またはクラウドとしても知られている)モジュールは、クライアントモジュールに代わっていくつかの機能を達成することができる。
コードという用語は、上記で使用されるように、ソフトウェア、ファームウェア、および/またはマイクロコードを含むことができ、プログラム、ルーチン、機能、クラス、データ構造、および/またはオブジェクトを指すことができる。共有プロセッサ回路という用語は、複数のモジュールからのいくつかまたはすべてのコードを実行する単一のプロセッサ回路を包含する。グループプロセッサ回路という用語は、追加のプロセッサ回路と組み合わせて、1つまたは複数のモジュールからのいくつかまたはすべてのコードを実行するプロセッサ回路を包含する。複数のプロセッサ回路への言及は、個別のダイ上の複数のプロセッサ回路、単一のダイ上の複数のプロセッサ回路、単一のプロセッサ回路の複数のコア、単一のプロセッサ回路の複数のスレッド、または上記の組み合わせを包含する。共有メモリ回路という用語は、複数のモジュールからのいくつかまたはすべてのコードを記憶する単一のメモリ回路を包含する。グループメモリ回路という用語は、追加のメモリと組み合わせて、1つまたは複数のモジュールからのいくつかまたはすべてのコードを記憶するメモリ回路を包含する。
メモリ回路という用語は、コンピュータ可読媒体という用語のサブセットである。本明細書で使用されるコンピュータ可読媒体という用語は、媒体を通って(搬送波上などで)伝播する一時的な電気信号または電磁信号を包含しない。したがって、コンピュータ可読媒体という用語は、有形かつ非一時的であると考えることができる。非一時的有形コンピュータ可読媒体の非限定的な例は、不揮発性メモリ回路(フラッシュメモリ回路、消去可能プログラマブル読み出し専用メモリ回路、またはマスク読み出し専用メモリ回路など)、揮発性メモリ回路(スタティックランダムアクセスメモリ回路またはダイナミックランダムアクセスメモリ回路など)、磁気記憶媒体(アナログまたはデジタル磁気テープまたはハードディスクドライブなど)、および光記憶媒体(CD、DVD、ブルーレイディスク等)である。
本出願に記載された装置および方法は、コンピュータプログラムで具現化された1つまたは複数の特定の機能を実行するように汎用コンピュータを構成することによって作成された専用コンピュータによって部分的または完全に実装されてもよい。上述した機能ブロック、フローチャート構成要素、および他の要素は、ソフトウェア仕様として機能し、これは、熟練した技術者またはプログラマの日常業務によってコンピュータプログラムに変換することができる。
コンピュータプログラムは、少なくとも1つの非一時的な有形のコンピュータ可読媒体に記憶されたプロセッサ実行可能命令を含む。コンピュータプログラムはまた、記憶されたデータを含むか、またはそれに依存することができる。コンピュータプログラムは、専用コンピュータのハードウェアと対話する基本入出力システム(BIOS)、専用コンピュータの特定のデバイスと対話するデバイスドライバ、1つまたは複数のオペレーティングシステム、ユーザアプリケーション、バックグラウンドサービス、バックグラウンドアプリケーションなどを含むことができる。
コンピュータプログラムは、(i)HTML(ハイパーテキストマークアップ言語)、XML(拡張可能マークアップ言語)、またはJSON(Java(登録商標)Script Object Notation)などの解析される記述テキスト、(ii)アセンブリコード、(iii)コンパイラによってソースコードから生成されるオブジェクトコード、(iv)インタプリタによる実行のためのソースコード、(v)ジャストインタイムコンパイラによるコンパイルおよび実行のためのソースコードなどを含むことができる。単なる例として、ソースコードは、C、C++、C#、Objective-C、Swift、Haskell、Go、SQL、R、Lisp、Java(登録商標)、Fortran、Perl、Pascal、Curl、OCaml、Javascript(登録商標)、HTML5(ハイパーテキストマークアップ言語バージョン5)、Ada、ASP(アクティブサーバページ)、PHP(PHP:ハイパーテキストプリプロセッサ)、Scala、Eiffel、Smalltalk、Erlang、Ruby、Flash(登録商標)、VisualBasic(登録商標)、Lua、MATLAB(登録商標)、SIMULINK(登録商標)、およびPython(登録商標)を含む言語からの構文を使用して書かれてもよい。

Claims (20)

  1. 建物の冷却システムの外部の空気中に存在する冷媒量を測定するように構成された、前記建物のための冷媒センサと、
    調整された量を生成するために、測定された前記冷媒量を調整に基づいて調整し、
    前記調整を、
    空気温度、
    空気圧、
    空気の相対湿度、
    前記冷却システムの動作モード、
    前記冷媒センサの測定値の経時変化、および
    前記建物内に配置された前記冷却システムの熱交換器にわたって空気を吹き付ける送風機がオンであるかどうかのうちの少なくとも1つに基づいて決定する
    ように構成された調整モジュールと、
    を備える、冷媒測定調整システム。
  2. 前記調整の測定値に基づいて冷媒漏れが存在するかどうかを示すように構成された漏れモジュールをさらに備える、請求項1に記載の冷媒測定調整システム。
  3. 前記調整モジュールは、前記空気温度に基づいて前記調整を決定するように構成される、請求項1に記載の冷媒測定調整システム。
  4. 前記調整モジュールは、前記空気温度の変化に基づいて前記調整を決定するように構成される、請求項3に記載の冷媒測定調整システム。
  5. 前記調整モジュールは、前記空気圧に基づいて前記調整を決定するように構成される、請求項1に記載の冷媒測定調整システム。
  6. 前記調整モジュールは、前記空気圧の変化に基づいて前記調整を決定するように構成される、請求項5に記載の冷媒測定調整システム。
  7. 前記調整モジュールは、前記相対湿度に基づいて前記調整を決定するように構成される、請求項1に記載の冷媒測定調整システム。
  8. 前記調整モジュールは、前記相対湿度の変化に基づいて前記調整を決定するように構成される、請求項7に記載の冷媒測定調整システム。
  9. 前記調整モジュールは、前記動作モードが所定の期間にわたって暖房モードにあるときに測定された前記冷媒量に基づいて前記調整を設定するように構成される、請求項1に記載の冷媒測定調整システム。
  10. 前記調整モジュールは、前記建物内からの冷媒の送出が実行された後に測定された前記冷媒量に基づいて前記調整を設定するように構成される、請求項1に記載の冷媒測定調整システム。
  11. 前記調整モジュールは、前記動作モードが冷房モードから暖房モードに遷移し、前記建物内からの冷媒の送出が実行されたときに測定された前記冷媒量に基づいて前記調整を設定するように構成される、請求項1に記載の冷媒測定調整システム。
  12. 前記調整モジュールは、前記送風機が少なくとも所定の期間オンになっているときに測定された前記冷媒量に基づいて前記調整を設定するように構成される、請求項1に記載の冷媒測定調整システム。
  13. 前記調整モジュールは、
    前記調整の測定値を生成するために、第2の調整にさらに基づいて前記冷媒量を調整し、
    前記冷媒センサによって測定された前記冷媒量の経時変化に基づいて、前記第2の調整を決定するように構成される、請求項1に記載の冷媒測定調整システム。
  14. 前記調整モジュールは、(a)測定された前記冷媒量+前記調整、および(b)測定された前記冷媒量-前記調整のうちの1つに基づいて前記調整された量を設定するように構成される、請求項1に記載の冷媒測定調整システム。
  15. 前記調整モジュールは、前記調整によって乗算された測定された前記冷媒量に基づいて前記調整された量を設定するように構成される、請求項1に記載の冷媒測定調整システム。
  16. 前記調整モジュールは、
    前記空気温度、
    前記空気圧、
    空気の前記相対湿度、
    前記冷却システムの前記動作モード、
    前記冷媒センサの前記測定値の前記経時変化、および
    前記建物内に配置された前記冷却システムの前記熱交換器にわたって空気を吹き付ける前記送風機がオンであるかどうかのうちの少なくとも2つに基づいて決定された少なくとも2つの調整に基づいて前記量を調整するように構成される、請求項1に記載の冷媒測定調整システム。
  17. 前記調整モジュールは、
    前記空気温度、
    前記空気圧、
    空気の前記相対湿度、
    前記冷却システムの前記動作モード、
    前記冷媒センサの前記測定値の前記経時変化、および
    前記建物内に配置された前記冷却システムの前記熱交換器にわたって空気を吹き付ける前記送風機がオンであるかどうかのうちの各々に基づいて決定された調整に基づいて前記量を調整するように構成される、請求項1に記載の冷媒測定調整システム。
  18. 前記調整モジュールは、前記冷媒センサの前記測定値の前記経時変化に基づいて測定された前記冷媒量を調整するように構成され、
    前記冷媒測定調整システムは、前記変化の大きさが所定値よりも大きい場合に、前記冷媒センサがその耐用年数の終わりにあることを示すように構成された寿命終了モジュールをさらに備える、
    請求項1に記載の冷媒測定調整システム。
  19. 前記調整モジュールは、前記冷媒センサの前記測定値の前記経時変化に基づいて測定された前記冷媒量を調整するように構成され、
    前記冷媒測定調整システムは、少なくとも所定数の連続する事例において前記変化の大きさが増大した場合に、前記冷媒センサがその耐用年数の終わりにあることを示すように構成された寿命終了モジュールをさらに備える、
    請求項1に記載の冷媒測定調整システム。
  20. 建物のための冷媒センサによって前記建物の冷却システムの外部の空気中に存在する冷媒量を測定することと、
    調整された量を生成するために、調整に基づいて測定された前記冷媒量を調整することと、
    前記調整を、
    空気温度、
    空気圧、
    空気の相対湿度、
    前記冷却システムの動作モード、
    前記冷媒センサの前記測定値の経時変化、および
    前記建物内に配置された前記冷却システムの熱交換器に空気を吹き付ける送風機がオンであるかどうかのうちの少なくとも1つに基づいて決定することと、
    を含む、冷媒測定調整方法。
JP2023524638A 2020-10-22 2021-10-21 冷媒漏れセンサ測定調整システムおよび方法 Pending JP2023546685A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17/077,479 US11609032B2 (en) 2020-10-22 2020-10-22 Refrigerant leak sensor measurement adjustment systems and methods
US17/077,479 2020-10-22
PCT/US2021/056047 WO2022087261A1 (en) 2020-10-22 2021-10-21 Refrigerant leak sensor measurement adjustment systems and methods

Publications (1)

Publication Number Publication Date
JP2023546685A true JP2023546685A (ja) 2023-11-07

Family

ID=81258170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023524638A Pending JP2023546685A (ja) 2020-10-22 2021-10-21 冷媒漏れセンサ測定調整システムおよび方法

Country Status (6)

Country Link
US (1) US11609032B2 (ja)
EP (1) EP4232762A1 (ja)
JP (1) JP2023546685A (ja)
KR (1) KR20230091143A (ja)
CN (1) CN116490759A (ja)
WO (1) WO2022087261A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
JP6927397B1 (ja) * 2020-09-24 2021-08-25 ダイキン工業株式会社 空気調和システムおよびその室内機
JP2024036955A (ja) * 2022-09-06 2024-03-18 パナソニックIpマネジメント株式会社 管理システム、管理方法、情報処理装置、プログラム、及び冷凍サイクル装置

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270747A (ja) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd ガス漏れ警報器
JP3026895B2 (ja) * 1992-10-13 2000-03-27 松下電器産業株式会社 空気質レベル判定方法および空気質レベル判定装置
US5357781A (en) 1993-01-22 1994-10-25 Sentech Corporation Method and apparatus for sampling and detecting gases in a fluid
US5820262A (en) 1996-12-05 1998-10-13 Johnson Service Company Smart refrigerant sensor
US6890715B1 (en) 1999-08-18 2005-05-10 The California Institute Of Technology Sensors of conducting and insulating composites
US6973794B2 (en) 2000-03-14 2005-12-13 Hussmann Corporation Refrigeration system and method of operating the same
EP1321723B1 (en) 2000-09-26 2013-11-06 Daikin Industries, Ltd. Air conditioner
US6791088B1 (en) 2001-05-04 2004-09-14 Twin Rivers Engineering, Inc. Infrared leak detector
KR100432224B1 (ko) 2002-05-01 2004-05-20 삼성전자주식회사 공기 조화기의 냉매 누설 검출 방법
US6772598B1 (en) 2002-05-16 2004-08-10 R.S. Services, Inc. Refrigerant leak detection system
KR100471723B1 (ko) 2002-05-17 2005-03-08 삼성전자주식회사 공기 조화기 및 그 제어 방법
US7197914B2 (en) 2003-10-06 2007-04-03 Vista Engineering Technologies Method and apparatus for detecting and locating leak holes in a pipeline using tracers
US7814757B2 (en) 2006-09-12 2010-10-19 Delphi Technologies, Inc. Operating algorithm for refrigerant safety system
ES2742529T3 (es) 2006-09-21 2020-02-14 Mitsubishi Electric Corp Sistema de refrigeración/acondicionamiento de aire con función de detección de fugas de refrigerante, acondicionador de aire/refrigerador y método para detectar fugas de refrigerante
DE102009059824A1 (de) 2009-12-21 2011-06-22 Inficon GmbH, 50968 Verfahren und Vorrichtung zur Leckbestimmung
JP5558555B2 (ja) 2010-03-12 2014-07-23 三菱電機株式会社 冷凍空調装置
US8924026B2 (en) 2010-08-20 2014-12-30 Vigilent Corporation Energy-optimal control decisions for systems
WO2012160598A1 (ja) 2011-05-23 2012-11-29 三菱電機株式会社 空気調和装置
US9211092B2 (en) * 2013-01-03 2015-12-15 Dexcom, Inc. End of life detection for analyte sensors
EP2979045A4 (en) 2013-03-26 2017-04-12 Aaim Controls, Inc. Refrigeration circuit control system
EP3051236B1 (en) 2013-09-27 2018-10-17 Toshiba Carrier Corporation Freeze cycling device
JP5812081B2 (ja) 2013-11-12 2015-11-11 ダイキン工業株式会社 室内機
US10488065B2 (en) 2014-12-17 2019-11-26 Carrier Corporation Leak detection unit for refrigerant system
WO2016170651A1 (ja) 2015-04-23 2016-10-27 三菱電機株式会社 冷凍装置
WO2017026014A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 冷凍サイクル装置
US11436911B2 (en) 2015-09-30 2022-09-06 Johnson Controls Tyco IP Holdings LLP Sensor based system and method for premises safety and operational profiling based on drift analysis
US10354332B2 (en) 2015-09-30 2019-07-16 Sensormatic Electronics, LLC Sensor based system and method for drift analysis to predict equipment failure
JP6274277B2 (ja) 2015-09-30 2018-02-07 ダイキン工業株式会社 冷凍装置
JP6156528B1 (ja) 2016-02-16 2017-07-05 ダイキン工業株式会社 冷凍装置
US10569620B2 (en) 2016-06-30 2020-02-25 Emerson Climate Technologies, Inc. Startup control systems and methods to reduce flooded startup conditions
JP6428717B2 (ja) 2016-07-15 2018-11-28 ダイキン工業株式会社 冷凍システム
JP6380500B2 (ja) 2016-10-17 2018-08-29 ダイキン工業株式会社 冷凍装置
JP6278094B1 (ja) 2016-10-28 2018-02-14 ダイキン工業株式会社 空気調和装置
EP3545241B1 (en) 2016-11-22 2020-07-29 Danfoss A/S A method for handling fault mitigation in a vapour compression system
JP6798322B2 (ja) 2017-01-16 2020-12-09 ダイキン工業株式会社 遮断弁を有する冷凍装置
US11118821B2 (en) 2017-01-19 2021-09-14 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10571171B2 (en) 2017-01-27 2020-02-25 Emerson Climate Technologies, Inc. Low charge detection system for cooling systems
US11326798B2 (en) * 2017-02-23 2022-05-10 Kenneth Ray Green Refrigerant leak detection and mitigation system and method
US20190056133A1 (en) 2017-02-23 2019-02-21 Elda D. Green Distributed Climate-Control Systems and Methods with Distributed Protection against Refrigerant Loss
US11143439B2 (en) 2017-03-13 2021-10-12 Mitsubishi Electric Corporation Heat pump with refrigerant leak detection and pump-down method
ES2973977T3 (es) 2017-03-13 2024-06-25 Mitsubishi Electric Corp Dispositivo de ciclo de refrigeración
CN110494703A (zh) 2017-03-31 2019-11-22 大金工业株式会社 空调装置
WO2018216127A1 (ja) * 2017-05-24 2018-11-29 三菱電機株式会社 空調システム
US20190170599A1 (en) 2017-12-01 2019-06-06 Johnson Controls Technology Company Systems and methods for leak management utilizing sub-barometric refrigerant conduit sleeves
US11573149B2 (en) 2017-12-01 2023-02-07 Johnson Controls Tyco IP Holdings LLP Systems and methods for refrigerant leak management based on acoustic leak detection
US10514176B2 (en) 2017-12-01 2019-12-24 Johnson Controls Technology Company Systems and methods for refrigerant leak management
US10935454B2 (en) 2017-12-01 2021-03-02 Johnson Controls Technology Company Systems and methods for refrigerant leak management
US10760838B2 (en) * 2017-12-20 2020-09-01 Lennox Industries Inc. Method and apparatus for refrigerant detector calibration confirmation
WO2019150462A1 (ja) 2018-01-31 2019-08-08 日立ジョンソンコントロールズ空調株式会社 空気調和機
WO2019171483A1 (ja) * 2018-03-07 2019-09-12 日立ジョンソンコントロールズ空調株式会社 空気調和機および空気調和機の制御方法
CN110375468B (zh) * 2018-04-13 2022-10-11 开利公司 风冷热泵***、用于其的制冷剂泄漏检测方法及检测***
US10767882B2 (en) 2018-10-17 2020-09-08 Lennox Industries Inc. Refrigerant pump down for an HVAC system

Also Published As

Publication number Publication date
US11609032B2 (en) 2023-03-21
WO2022087261A1 (en) 2022-04-28
EP4232762A1 (en) 2023-08-30
US20220128282A1 (en) 2022-04-28
CN116490759A (zh) 2023-07-25
KR20230091143A (ko) 2023-06-22

Similar Documents

Publication Publication Date Title
JP2023546685A (ja) 冷媒漏れセンサ測定調整システムおよび方法
US11649997B2 (en) Refrigerant leak sensor power control systems and methods
US10317862B2 (en) Systems and methods for heat rise compensation
US11965663B2 (en) Refrigerant leak sensor with extended life
Wang et al. Air handling unit supply air temperature optimal control during economizer cycles
US11732916B2 (en) Refrigeration leak detection
US20150300671A1 (en) System and method for controlling hvac equipment so as to obtain a desired range of a sound pressure level and/or sound power level
WO2014153848A1 (zh) 空调室外风机的控制电路、控制方法及空调器
WO2018200706A1 (en) Dynamic coefficient of performance calculation for refrigeration systems
WO2022169760A1 (en) Mitigation state verification systems and methods
US20230109334A1 (en) Refrigerant Charge Monitoring Systems And Methods For Multiple Evaporators
JP2004309032A (ja) セントラル冷暖房設備及びその運転制御方法
US20190242597A1 (en) Air conditioner system, air conditioner control device, air conditioner method, and program
US11639805B2 (en) Systems and methods for optimal representation of setpoint selection via an array of lights
JP6210665B2 (ja) 冷凍装置及びこれを備えた恒温恒湿装置
Catrini et al. Analysis of the operation of air-cooled chillers with variable-speed fans for advanced energy-saving-oriented control strategies
JP5721775B2 (ja) 車両用空気調和装置
JP2009236453A (ja) 温調装置
US11143425B1 (en) Determination of return air temperature
Chuang et al. Double-feedback control with stepless variable speed driving technology by sensing refrigerant pressure and indoor temperature applied to air conditioning system
CA2891019A1 (en) An hvac system, an hvac controller and a method of heating an lcd display of an hvac controller
CN116413054A (zh) 一种空调效率降低系数的测量方法与装置
JP2002005489A (ja) 空調制御装置
CN118176397A (zh) 操作空调机组中的电子膨胀阀的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240614