JP2023171872A - light guide optical assembly - Google Patents

light guide optical assembly Download PDF

Info

Publication number
JP2023171872A
JP2023171872A JP2023168964A JP2023168964A JP2023171872A JP 2023171872 A JP2023171872 A JP 2023171872A JP 2023168964 A JP2023168964 A JP 2023168964A JP 2023168964 A JP2023168964 A JP 2023168964A JP 2023171872 A JP2023171872 A JP 2023171872A
Authority
JP
Japan
Prior art keywords
light
light guide
diffractive
diffraction
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023168964A
Other languages
Japanese (ja)
Inventor
ダンジンガー,ヨチャイ
Danziger Yochay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumus Ltd
Original Assignee
Lumus Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumus Ltd filed Critical Lumus Ltd
Publication of JP2023171872A publication Critical patent/JP2023171872A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Endoscopes (AREA)
  • Laser Surgery Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Abstract

To provide an optical assembly for optical aperture expansion.SOLUTION: An optical assembly combines facet reflective technology with diffractive technology. At least two diffractive components having opposite optical power (matching) are used so that chromatic dispersion introduced by a first diffractive component will then be canceled by a second diffractive component. The two diffractive components are used in combination with a reflective optical component to achieve more efficient aperture expansion (for near-eye display), reducing distortions and noise, while also reducing design constraints on a system and individual components, as compared to conventional techniques. The assembly eliminates and/or reduces the need for polarization management while enabling a wider field of view. In addition, since distortion patterns of the two technologies do not correlate, nonuniformity can be reduced, as compared to conventional single technology implementations.SELECTED DRAWING: Figure 8

Description

本発明は、一般に光学アセンブリに関し、とりわけ、光学的開口の拡大に関係する。 FIELD OF THE INVENTION This invention relates generally to optical assemblies and, more particularly, to widening optical apertures.

図7のAを参照すると、導波路内で回折コンポーネントを使用する従来の光学的開口の拡大の大まかな略図が示されている。現在の図では、入射光(画像)はページの外からページまで垂直である。内連結(Coupling-in)要素(1001)は入射光を側方拡大要素(1002)へ連結し、側方拡大要素(1002)は光を側方に(現在の図で左から右まで)拡大する。その後、側方に拡大した光は垂直拡大要素(1003)へ連結して、垂直拡大要素(1003)は、光を垂直に(現在の図で上から下に)拡大し、その光をユーザー(ビューアーの目)に外連結する。 Referring to FIG. 7A, a rough schematic of conventional optical aperture enlargement using diffractive components within a waveguide is shown. In the current diagram, the incident light (image) is normal from outside the page to the page. A coupling-in element (1001) couples the incoming light to a lateral expansion element (1002), which expands the light laterally (from left to right in the current view). do. The laterally expanded light is then coupled to a vertical expansion element (1003) which expands the light vertically (from top to bottom in the current view) and directs the light to the user ( (viewer's eyes).

従来の回折素子は、様々な波長を備えた光線が様々な角度で回折する色分散を導入する。色分散を減らすために狭帯域光源(レーザーなど)を使用することができる。より現実的な解決策は、互いの分散を打ち消すために回折コンポーネントを設計することである。 Conventional diffractive elements introduce chromatic dispersion, where light rays with different wavelengths are diffracted at different angles. Narrowband light sources (such as lasers) can be used to reduce chromatic dispersion. A more practical solution is to design the diffractive components to cancel each other's dispersion.

図7のBを参照すると、角度領域(角度間隔)で伝播する光の図7のAの回折方向の図が示されている。破線の矢印と実線の矢印は2つの様々な典型的な波長を示す。領域(1005)の開始角度は、光線が光ガイドへ連結される第1の回折素子(内連結要素(1001))にぶつかるときの、光線の角度を表わす。領域(1007)は、内連結要素(1001)の後の光線の方向を表し、領域(1009)は側方拡大要素(1002)後の光線の方向を表し、および領域(1005)はさらに、垂直的拡大要素(1003)によって光ガイドからの連結後の光線の角度を表す。光ガイドに入る光線の方向は、色分散を最小限に抑えるために光ガイドから連結された光線の方向と等しい。光の様々な波長が光ガイド内に伝播すると、様々な波長は異なる方向を有し、光ガイドから出力されるときと同じ方向を有する。 Referring to FIG. 7B, a diagram of the diffraction direction of FIG. 7A of light propagating in an angular domain (angular interval) is shown. The dashed and solid arrows indicate two different typical wavelengths. The starting angle of the region (1005) represents the angle of the light ray when it hits the first diffractive element (inner coupling element (1001)) coupled to the light guide. The area (1007) represents the direction of the ray after the inner connecting element (1001), the area (1009) represents the direction of the ray after the lateral expansion element (1002), and the area (1005) further represents the direction of the ray after the vertical connecting element (1001). The angle of the light ray after connection from the light guide is represented by the magnification element (1003). The direction of the light rays entering the light guide is equal to the direction of the light rays coupled out of the light guide to minimize chromatic dispersion. As different wavelengths of light propagate into the light guide, the different wavelengths have different directions and have the same direction when output from the light guide.

基礎技術
図1は従来の先行技術の折り畳み式の光学構造を例示し、ここで、基板(2)は表示源(4)により照射される。表示はコリメート光学系(6)(例えばレンズ)によってコリメートされる。表示源(4)からの光は、主な光線(11)が基板平面と平行になるように、第1の反射面(8)によって基板(2)へ連結される。第2の反射面(12)は、基板からビューアーの目(14)へ光を連結する。この構造はコンパクトであるにもかかわらず、著しい欠点に苛まされている。とりわけ、非常に制限されたFOVだけしか達成することができない。
Basic Technology Figure 1 illustrates a conventional prior art foldable optical structure, in which a substrate (2) is illuminated by a display source (4). The display is collimated by collimating optics (6) (eg a lens). Light from the display source (4) is coupled to the substrate (2) by a first reflective surface (8) such that the main rays (11) are parallel to the substrate plane. A second reflective surface (12) couples light from the substrate to the viewer's eye (14). Despite its compactness, this structure suffers from significant drawbacks. In particular, only a very limited FOV can be achieved.

ここで、図2を参照すると、典型的な光誘導光学素子(LOE)の側面図が示されている。上記の制限を緩和するために、選択反射面のアレイを、光誘導光学素子(LOE)内で使用し、製造することができる。第1の反射面(16)は、デバイスの後ろに位置付けられる光源(図示せず)から発せられるコリメートされた表示光線(ビーム)(18)により照射される。図面の簡潔さのために、1つの光線、すなわち、入射光線(38)(「ビーム」あるいは「入射光線」とも呼ばれる)だけが一般に描かれている。ビーム(18A)と(18B)などの入射光の他の光線は、入射光瞳孔の左と右の縁などの入射瞳の縁を指定するために使用されることもある。一般に、画像が光線によって本明細書に表される場合はいつでも、光線は画像のサンプルビームであり、これは、画像の点またはピクセルに各々対応するわずかに異なる角度で複数のビームによって典型的に形成されることに注目されたい。特に画像の先端と呼ばれる場合を除いて、例示されるビームは典型的に画像の重心である。 Referring now to FIG. 2, a side view of a typical light guiding optical element (LOE) is shown. To alleviate the above limitations, arrays of selectively reflective surfaces can be used and fabricated within light guiding optical elements (LOEs). The first reflective surface (16) is illuminated by a collimated display beam (18) originating from a light source (not shown) located at the back of the device. For simplicity of the drawing, only one ray, namely the incident ray (38) (also referred to as the "beam" or "incident ray"), is generally drawn. Other rays of the incident light, such as beams (18A) and (18B), may also be used to specify the edges of the entrance pupil, such as the left and right edges of the entrance light pupil. In general, whenever an image is represented herein by a ray, the ray is a sample beam of the image, which is typically represented by multiple beams at slightly different angles, each corresponding to a point or pixel in the image. Note that it is formed. The illustrated beam is typically the center of gravity of the image, unless specifically referred to as the tip of the image.

反射面(16)は光源からの入射光を反射し、入射光は内部全反射によって光ガイド(20)の内部で捕捉される。光ガイド(20)は「導波路」、「平面基板」、および「光伝送基板」とも呼ばれる。光ガイド(20)は、後(主)面(26)と前(主)面(26A)として図面で示されている、互いに平行な少なくとも2つの(主)面を含む。光ガイド(20)が通常対称的である(したがって、主面(26)、(26A)への言及を取り替えても同じ結果をもたらすことができる)ため、主面(26)と(26A)に対して「前」および「後ろ」との指示は参照の利便性のためであることに留意されたい。光ガイド(20)は本明細書の文脈では1次元(1D)導波路と呼ばれ、1対の平行な面(この場合、主面(26)、(26A))の間の1つだけの寸法で注入された画像をガイドする。 The reflective surface (16) reflects the incident light from the light source, which is captured inside the light guide (20) by total internal reflection. The light guide (20) is also referred to as a "waveguide," "planar substrate," and "light transmission substrate." The light guide (20) includes at least two (major) surfaces parallel to each other, shown in the figures as a back (major) surface (26) and a front (major) surface (26A). Since the light guide (20) is usually symmetrical (therefore interchanging references to the main surfaces (26), (26A) can yield the same result), the main surfaces (26) and (26A) Note that the designations "front" and "back" are for convenience of reference. The light guide (20) is referred to as a one-dimensional (1D) waveguide in the present context, with only one waveguide between a pair of parallel planes (in this case the major planes (26), (26A)). Guide the injected image with dimensions.

入射光線(38)は、基板の近位端(図の右側)で基板に入る。光は、光ガイドと1つ以上のファセット、通常少なくとも複数のファセット、および典型的にはいくつかのファセットを通って、光ガイドの遠位端(図の左側)に向かって伝播する。光は、伝播の当初の伝播方向(28)と別の伝播方向(30)の両方において光ガイドを通って伝播する。 The incident light beam (38) enters the substrate at its proximal end (right side of the figure). Light propagates through the light guide and one or more facets, usually at least more than one facet, and typically several facets toward the distal end of the light guide (left side in the figure). Light propagates through the light guide in both an original direction of propagation (28) and an alternate direction of propagation (30).

基板(20)の表面からいくつかの反射の後、捕捉された波は選択反射面(22)のアレイに達し、これが基板からの光をビューアーの目(24)へ連結する。代替的な構造では、選択反射面(22)は、光線(18)の直後に、基板(20)の表面から最初に反射することなく、基板に入る。 After several reflections from the surface of the substrate (20), the captured waves reach an array of selectively reflective surfaces (22), which couple the light from the substrate to the viewer's eyes (24). In an alternative construction, the selectively reflective surface (22) enters the substrate immediately after the light beam (18) without first reflecting from the surface of the substrate (20).

選択反射面(22)などの内部の部分反射面は一般に本明細書の文脈では「ファセット」と呼ばれる。極限では、ファセットは、完全反射型(100%の反射率あるいはミラー、例えば、基板の遠位端における最後のファセット)、あるいは最小限反射型であり得る。現実用途の強化のために、ファセットは部分反射型であり、現実世界からの光が上部表面(26A)を介して入り、ファセットを含む基板を横断し、および、基板を出て下部表面(26)を介してビューアーの目(24)に至ることを可能にする。仮想現実用途のために、ファセットは100%の反射率を有する第1の内連結ミラーなどの代替的な反射率を有することもある。なぜなら、現実世界からの画像光はこのミラーを横断する必要はないからである。内部部分反射面(22)は一般に、光ガイド(20)の伸長の方向に対して斜角(つまり、平行でも垂直でもない)で光ガイド(20)を少なくとも部分的に横断する。 Internal partially reflective surfaces, such as selectively reflective surfaces (22), are generally referred to as "facets" in the context of this specification. In the extreme, the facets can be fully reflective (100% reflective or a mirror, eg, the last facet at the distal end of the substrate) or minimally reflective. For enhanced real-world applications, the facets are partially reflective so that light from the real world enters through the top surface (26A), traverses the substrate containing the facets, and exits the substrate through the bottom surface (26A). ) to the viewer's eye (24). For virtual reality applications, the facets may have alternative reflectivities, such as a first interlocking mirror with 100% reflectance. This is because image light from the real world does not need to traverse this mirror. Internal partially reflective surface (22) generally at least partially traverses light guide (20) at an oblique angle (ie, neither parallel nor perpendicular) to the direction of elongation of light guide (20).

反射率への言及は一般に名目上の反射率に関するものである。名目上の反射率は、基板中の特定位置で必要とされる全反射である。例えば、ファセットの反射率が50%と言及される場合、これは一般に名目上の反射率の50%を指す。名目上の反射率が10%である場合、50%の反射率は5%のファセットの反射率をもたらす。当業者は使用の文脈から反射率の割合の使用を理解するであろう。部分反射は、限定されないが、ある割合の光の伝送あるいは偏光の使用を含む、様々な技術によって実行可能である。 References to reflectance generally refer to nominal reflectance. Nominal reflectance is the total internal reflection required at a particular location in the substrate. For example, when the reflectance of a facet is referred to as 50%, this generally refers to 50% of the nominal reflectance. If the nominal reflectance is 10%, a reflectance of 50% results in a facet reflectance of 5%. Those skilled in the art will understand the use of reflectance percentages from the context of use. Partial reflection can be performed by a variety of techniques including, but not limited to, transmission of a percentage of light or the use of polarization.

図3のAとBは、選択反射面の所望の反射率挙動を例示する。図3のAでは、光線(32)はファセット(34)から部分的に反射され、基板(20)から連結される(38B)。図3のBでは、光線(36)は顕著な反射なく、ファセット(34)を通って伝送される。 3A and 3B illustrate the desired reflectance behavior of a selectively reflective surface. In FIG. 3A, light ray (32) is partially reflected from facet (34) and coupled out of substrate (20) (38B). In FIG. 3B, the light ray (36) is transmitted through the facet (34) without significant reflection.

図4のAは、光を基板に連結し、その後、光をビューアーの目へ連結する、選択反射面のアレイの詳細な断面図である。図に示すように、光源(4)からの光線(38)は第1の部分反射面にぶつかる。光線(41)の一部はもともとの方向を継続し、基板から連結される。光線(42)の別の部分は内部全反射によって基板へ連結される。捕捉された光線は、点(44)で他の2つの部分反射面(22)によって基板から徐々に外連結される。第1の反射面(16)のコーティング特性は、他の反射面(22)、(46)のコーティング特性に必ずしも類似しなければならないというわけではない。このコーティングは、金属性、二色性、またはハイブリッドの金属-二色性の、より簡易なビームスプリッターであり得る。同様に、非シースルー(non-see-through)システムの場合、最後の反射面(46)は簡易なミラーであり得る。 FIG. 4A is a detailed cross-sectional view of an array of selectively reflective surfaces that couples light to a substrate and then to a viewer's eye. As shown, the light ray (38) from the light source (4) impinges on the first partially reflective surface. A portion of the light beam (41) continues its original direction and is coupled out of the substrate. Another part of the light beam (42) is coupled to the substrate by total internal reflection. The captured rays are gradually coupled out from the substrate by two other partially reflective surfaces (22) at points (44). The coating properties of the first reflective surface (16) do not necessarily have to be similar to the coating properties of the other reflective surfaces (22), (46). This coating can be metallic, dichroic, or a hybrid metal-dichroic, simpler beam splitter. Similarly, for non-see-through systems, the last reflective surface (46) may be a simple mirror.

図4のBは、反射面のアレイを含む装置の詳細な断面図であり、最後の反射面(46)が全反射ミラーである。最後の反射面(46)の最も左側の部分はこのような場合では光学的にアクティブではあり得ず、周辺光線(48)を基板から該連結することはできない。従って、デバイスの出力開口はわずかに小さくなる。しかしながら、光学効率ははるかに高くなり、LOEの製造プロセスははるかに簡素になり得る。 FIG. 4B is a detailed cross-sectional view of the device including an array of reflective surfaces, the last reflective surface (46) being a total internal reflection mirror. The left-most part of the last reflective surface (46) cannot be optically active in such a case and the peripheral rays (48) cannot be coupled out from the substrate. Therefore, the output aperture of the device will be slightly smaller. However, the optical efficiency can be much higher and the manufacturing process of LOE can be much simpler.

図2で示された構造とは異なり、反射面(16)と(22)の配向に対する制約があるということに注目することは重要である。前の構造では、すべての光は反射面(16)によって基板の内部で連結される。従って、表面(16)は表面(22)と平行である必要はない。さらに、反射面は、光が入力波の方向とは正反対方向に基板から外連結されるように、配向されてもよい。図4のAで例示された構造については、しかしながら、入力光の一部は表面(16)によって反射されないが、入力光(38)のもともとの方向に継続して、直ちに出力光(41)として基板から外連結される。従って、同じ平面波から始まるすべての光線が同じ出力方向を確実に有するように、すべての反射面(22)が互いに平行でなければならないだけでなく、表面(16)も同様に表面(22)に対して平行でなければならない。 It is important to note that unlike the structure shown in Figure 2, there are constraints on the orientation of the reflective surfaces (16) and (22). In the previous structure, all the light is coupled inside the substrate by reflective surfaces (16). Therefore, surface (16) need not be parallel to surface (22). Additionally, the reflective surface may be oriented such that light is coupled out of the substrate in a direction diametrically opposite to the direction of the input wave. For the structure illustrated in FIG. 4A, however, a portion of the input light is not reflected by the surface (16), but continues in the original direction of the input light (38) and immediately becomes output light (41). Connected externally from the board. Therefore, to ensure that all rays starting from the same plane wave have the same output direction, not only must all reflective surfaces (22) be parallel to each other, but surfaces (16) must also be parallel to surfaces (22). must be parallel to the

再度、図4のAを参照すると、基板からの光を連結するための2つの反射面を有するシステムが示され、しかしながら、光学系の必要とされる出力開口と基板の厚さに従って任意の数の反射面を使用することができる。当然のことながら、1つの外連結面しか必要とされない場合がある。その場合、出力開口はシステムの入力開口のサイズの事実上2倍になる。最後の構造に必要とされる反射面だけは単純なビームスプリッターとミラーである。 Referring again to FIG. 4A, a system with two reflective surfaces for coupling light from the substrate is shown, however any number can be used according to the required output aperture of the optical system and the thickness of the substrate. reflective surfaces can be used. Of course, only one external coupling surface may be required. In that case, the output aperture is effectively twice the size of the input aperture of the system. The only reflective surfaces needed in the final structure are simple beam splitters and mirrors.

本図に記載される装置において、表示源からの光は、基板の端部で基板へと連結されるが、対称システムを有することが好ましいシステムがある。すなわち、入力光は、基板の中央部で基板へと連結されるべきである。 In the device described in this figure, the light from the display source is coupled to the substrate at the edges of the substrate, but there are systems where it is preferred to have a symmetrical system. That is, the input light should be coupled into the substrate at the center of the substrate.

図4のCは、対称構造を有する側方の瞳孔拡張の一次元の(1D)光ガイドの詳細な断面図を例示するダイヤグラムである。本図は、対称な光モジュールを生成するために、2つの同一の基板を組み合わせる方法を例示している。見られるように、表示源(4)からの光の一部は、直接部分反射面を通り抜けて基板から出る。光の他の一部は、部分反射面(16R)および(16L)によって、それぞれ、基板の右側(20R)へと及び基板の左側(20L)へと連結される。その後、捕捉された光は、それぞれ、反射面(22R)および(22L)によって、徐々に外連結される。明らかに、出力開口は、システムの入力開口のサイズの3倍であり、図5のBに記載されている倍率と同じ倍率である。しかしながら、前のシステムとは異なり、ここでのシステムは、右および左の基板の接合面(29)を中心に対称である。 FIG. 4C is a diagram illustrating a detailed cross-sectional view of a lateral pupil dilation one-dimensional (1D) light guide with symmetrical structure. This figure illustrates how two identical substrates can be combined to create a symmetrical optical module. As can be seen, some of the light from the display source (4) directly passes through the partially reflective surface and exits the substrate. Another part of the light is coupled by partially reflective surfaces (16R) and (16L) to the right side of the substrate (20R) and to the left side of the substrate (20L), respectively. The captured light is then gradually coupled out by reflective surfaces (22R) and (22L), respectively. Obviously, the output aperture is three times the size of the input aperture of the system, which is the same magnification as described in FIG. 5B. However, unlike the previous system, the system here is symmetrical about the joining surfaces (29) of the right and left substrates.

ここで図5のAおよびBを参照すると、光ガイドに加えて(on top of)図4のBおよびCの典型的な実装が示されている。図4のBおよびCの構成は、入射画像を横に拡大したものである。図4のBの装置は、図5のAの第1のLOE(20a)を実装するために使用され、図4のCの装置は、図5のBの第1のLOE(20a’)を実装するために使用され、および図2の装置は、第2のLOE(20b)を実装するために使用され得る。 Referring now to FIGS. 5A and 5B, exemplary implementations of FIGS. 4B and C are shown on top of a light guide. The configurations B and C in FIG. 4 are horizontally enlarged versions of the incident image. The device of FIG. 4B is used to implement the first LOE (20a) of FIG. 5A, and the device of FIG. 4C is used to implement the first LOE (20a') of FIG. and the apparatus of FIG. 2 may be used to implement the second LOE (20b).

図5のAは、二重のLOE構成を利用する2つの軸に沿ったビームを拡大するための代替方法を例示する。入力波(90)は、第1の反射面(16a)によって、図4のBにおいて例示された構造に類似した非対称の構造を有する、第1のLOE(20a)へと連結され、その後、η軸に沿って伝播する。部分反射面(22a)は、第1のLOE(20a)から出て光に連結し、その後、光は、反射面(16b)によって第2の非対称のLOE(20b)へと連結される。その後、光は、ξ軸に沿って伝播し、その後、選択反射面(22b)によって外連結される。示されるように、元のビーム(90)は両軸に沿って拡大され、ここで全体的な拡大は、要素(16a)および(22b)の横寸法間の比率によって判定される。図5のAで与えられた構成は、単に二重のLOEセットアップの一例である。また、複雑な光学システムを形成するために2つ以上のLOEが一緒に組み合わせられる他の構成も可能である。 FIG. 5A illustrates an alternative method for expanding the beam along two axes that utilizes a dual LOE configuration. The input wave (90) is coupled by a first reflective surface (16a) to a first LOE (20a), which has an asymmetric structure similar to the structure illustrated in FIG. Propagates along the axis. A partially reflective surface (22a) couples light out of the first LOE (20a), which is then coupled by a reflective surface (16b) into a second asymmetric LOE (20b). The light then propagates along the ξ axis and is then coupled out by the selectively reflective surface (22b). As shown, the original beam (90) is expanded along both axes, where the overall expansion is determined by the ratio between the lateral dimensions of elements (16a) and (22b). The configuration given in FIG. 5A is simply an example of a dual LOE setup. Other configurations are also possible where two or more LOEs are combined together to form a complex optical system.

ここで図5のBを参照すると、二重のLOE構成を利用する2つの軸に沿ってビームを拡大するための別の方法を例示するダイヤグラムが示されている。通常、光が表面(16b)によって第2のLOE(20b)へと連結される領域は、外部光に対して透過性にはなり得ず、シースルー領域の一部ではない。したがって、第1のLOE(20a)は透過性である必要がない。結果として、シースルーのシステムに関してさえ、本図において見ることができるように、対称な構造を有するように第1のLOE(20a)を設計することは通常可能である。第2のLOE(20b)は、ユーザーが外部の様子を見ることを可能にする非対称の構造を有する。この構成では、入力ビーム(90)の一部は、元の方向(92)に沿って第2のLOE(20b)の内連結ミラー(16b)へと続き、一方で他の部分(94)は、反射面(16a)によって第1のLOE(20a’)へと連結し、η軸に沿って伝播し、その後、選択反射面(22a)によって第2のLOE(20b)へと連結される。その後、両方の部分は、反射面(16b)によって第2の非対称のLOE(20b)へと連結され、ξ軸に沿って伝播し、その後、選択反射面(22b)によって連結される。 Referring now to FIG. 5B, a diagram illustrating another method for expanding a beam along two axes utilizing a dual LOE configuration is shown. Typically, the area where light is coupled by the surface (16b) to the second LOE (20b) cannot be transparent to external light and is not part of the see-through area. Therefore, the first LOE (20a) does not need to be transparent. As a result, even for see-through systems, it is usually possible to design the first LOE (20a) to have a symmetrical structure, as can be seen in this figure. The second LOE (20b) has an asymmetrical structure that allows the user to see the outside. In this configuration, a portion of the input beam (90) continues along the original direction (92) to the inner coupling mirror (16b) of the second LOE (20b), while the other portion (94) , coupled by a reflective surface (16a) to a first LOE (20a'), propagates along the η-axis, and then coupled to a second LOE (20b) by a selective reflective surface (22a). Both parts are then coupled by a reflective surface (16b) to a second asymmetric LOE (20b), propagating along the ξ axis and then coupled by a selectively reflective surface (22b).

図6は、標準の眼鏡フレーム(107)に埋め込まれたLOE(20a)/(20a’)および(20b)の一例を例示している。表示源(4)、折り畳み式の光学系およびコリメート光学系(6)は、第2のLOE(20b)の縁部に位置する、LOE(20a)/(20a’)の真横の眼鏡フレームのアーム部分(112)の内部に組み立てられる。表示源が、小さなCRT、LCD、またはOLEDなどの、電子素子である場合については、表示源のための駆動電子機器(114)は、アーム(112)の後部部分の内部に組み立てられ得る。電源およびデータインターフェース(116)は、リード(118)、または無線または光の伝送を含む他の通信手段によってアーム(112)に接続可能である。代替的に、バッテリーおよび小型データリンク電子機器は、眼鏡フレームにおいて一体化され得る。本図は一例であり、表示源が、LOE平面と平行に、またはLOEの上部において取り付けられる、アセンブリを含む、他の考えられ得るヘッドマウントディスプレイの配置も構築され得る。 Figure 6 illustrates an example of LOE (20a)/(20a') and (20b) embedded in a standard eyeglass frame (107). The display source (4), folding optics and collimating optics (6) are located on the edge of the second LOE (20b), directly beside the LOE (20a)/(20a'), on the arm of the spectacle frame. Assembled inside part (112). If the display source is an electronic device, such as a small CRT, LCD, or OLED, the drive electronics (114) for the display source may be assembled inside the rear portion of the arm (112). A power and data interface (116) can be connected to the arm (112) by a lead (118) or other communication means including wireless or optical transmission. Alternatively, the battery and small data link electronics may be integrated in the eyeglass frame. This figure is one example; other possible head-mounted display arrangements may also be constructed, including assemblies in which the display source is mounted parallel to the LOE plane or on top of the LOE.

この基礎技術の追加の詳細は、米国特許第7,643,214号、および公開されておらず、本発明に対する先行技術を構成しないPCT/IL2018/050025において見られ得る。 Additional details of this underlying technology can be found in US Pat. No. 7,643,214 and PCT/IL2018/050025, which is unpublished and does not constitute prior art to the present invention.

本実施形態の教示によると、光学的開口の拡大のための装置が提供され、該装置は、少なくとも1つの光ガイド;少なくとも1つの光ガイドに関連付けられた1セットの3つの光学部品であって、1対の第1および第2の一致する回折光学部品;および複数の部分反射する、互いに平行な面の配列を含む反射光学部品を含む、1セットの3つの光学部品;および内連結された光を外連結された光に拡大するための協働する光学部品を含み、内連結された光は、少なくとも1つの光ガイドへと連結され、および拡大は二次元である。 According to the teachings of the present embodiments, an apparatus for optical aperture enlargement is provided, the apparatus comprising: at least one light guide; a set of three optical components associated with the at least one light guide; , a pair of first and second matched diffractive optics; and a set of three optical components, including a reflective optic comprising an array of partially reflective, mutually parallel surfaces; It includes cooperating optics for expanding the light into an out-coupled light, the in-coupled light is coupled to at least one light guide, and the expansion is two-dimensional.

随意の実施形態では、該セットの第1の光学部品は、第1の光ガイド内の拡大の第1の方向で内連結された光を方向付けるために構成され、それによって、第1の拡大された光を生成し;該セットの第2の光学部品は、拡大の第2の方向で第1の拡大された光を第2の光ガイドへと連結するために構成され、それによって、第2の拡大された光を生成し;
および該セットの第3の光学部品は、第2の拡大された光を外連結された光として第3の方向で外連結するために構成され;ここで、第1、第2および第3の方向は互いに平行ではない。
In an optional embodiment, the first optical component of the set is configured to direct the intercoupled light in a first direction of expansion within the first light guide, thereby a second optical component of the set is configured to couple the first expanded light to a second light guide in a second direction of expansion, thereby generating a second expanded light; producing 2 magnified lights;
and a third optical component of the set is configured to couple out the second expanded light as an outcoupled light in a third direction; The directions are not parallel to each other.

別の随意の実施形態は、光を内連結された光として少なくとも1つの光ガイドへと方向付けるように構成された非回折光学部品をさらに含み;ここで、少なくとも1つの光ガイドは1つの光ガイドであり、該1つの光ガイドは、1つの光ガイド内の拡大の第1の方向で内連結された光を方向付けるために構成され、それによって、第1の拡大された光を生成する、第1の回折光学部品;拡大の第2の方向で1つの光ガイドにおいて第1の拡大された光を拡大するために構成され、それによって、第2の拡大された光を生成する、第2の回折光学部品;および第2の拡大された光を外連結された光として第3の方向で外連結するために構成された反射光学部品を含み;ここで、第1、第2および第3の方向は互いに平行ではない。 Another optional embodiment further includes a non-diffractive optical component configured to direct the light as interconnected light into the at least one light guide; a guide, the one light guide configured to direct the intercoupled light in a first direction of expansion within the one light guide, thereby producing a first expanded light; , a first diffractive optical element; a second diffractive optical element configured to expand the first expanded light in one light guide in a second direction of expansion, thereby producing a second expanded light; a second diffractive optical component configured to couple out the second expanded light as outcoupled light in a third direction; 3 directions are not parallel to each other.

別の随意の実施形態は、1対の第3および第4の一致する回折光学部品;および1対の第5および第6の一致する回折光学部品をさらに含む。 Another optional embodiment further includes a pair of third and fourth matched diffractive optical components; and a pair of fifth and sixth matched diffractive optical components.

別の随意の実施形態では、一致する対の光学部品の各々は、他の一致する対の光学部品とは異なる回折間隔を有し、該回折間隔は、一致する対の光学部品の各々が、他の一致する対の光学部品から類似した角度によって異なる波長を屈折させるような回折間隔である。 In another optional embodiment, each of the matched pair of optical components has a diffraction spacing that is different from the other matched pair of optical components, and the diffraction spacing is such that each of the matched pair of optical components has a The diffraction spacing is such that different wavelengths are refracted by similar angles from other matched pairs of optical components.

別の随意の実施形態では、波長は、赤色、緑色、および青色の光である。 In another optional embodiment, the wavelengths are red, green, and blue light.

別の随意の実施形態では、少なくとも1つの光ガイドの第1の光ガイドは、対の第1および第2の一致する回折光学部品を含み;少なくとも1つの光ガイドの第2の光ガイドは、対の第3および第4の一致する回折光学部品を含み;および少なくとも1つの光ガイドの第3の光ガイドは、対の第5および第6の一致する回折光学部品を含む。 In another optional embodiment, a first light guide of the at least one light guide includes a pair of first and second matched diffractive optics; a second light guide of the at least one light guide comprises: a third and fourth matched diffractive optical component of the pair; and a third light guide of the at least one light guide includes a fifth and sixth matched diffractive optical component of the pair.

別の随意の実施形態では、反射光学部品は、第1の光ガイド内の拡大の第1の方向で内連結された光を拡大するように構成され、それによって、第1の拡大された光を生成し;第1、第3、および第4の回折光学部品は、拡大の第2の方向でそれぞれの第1、第2、および第3の光ガイドにおいて第1の拡大された光のそれぞれの波長を拡大するために構成され、それによって、それぞれの第2の拡大された光を生成し;および第2、第4、および第6の回折光学部品は、それぞれの第2の拡大された光を外連結された光として第3の方向で外連結するために構成され;ここで、第1、第2および第3の方向は互いに平行ではない。 In another optional embodiment, the reflective optic is configured to expand the intercoupled light in the first direction of expansion within the first light guide, thereby causing the first expanded light to the first, third, and fourth diffractive optics each of the first, expanded light in the respective first, second, and third light guides in the second direction of expansion; and second, fourth, and sixth diffractive optical components configured to expand the wavelength of the respective second expanded light beams, thereby producing respective second expanded light beams; configured for outcoupling light as outcoupling light in a third direction; wherein the first, second and third directions are not parallel to each other.

本実施形態は、添付の図面を参照して、ほんの一例として本明細書に記載されている。
先行技術の折り畳み式の光学デバイスの側面視である。 典型的な光ガイド光学素子の側面視である。 AおよびBは、2つの入射角の範囲に関する、選択反射面の所望の反射特性および透過率特性を例示する。 Aは、光ガイド光学素子の典型的な構成を例示するダイヤグラムであり、Bは、光ガイド光学素子の別の構成を例示するダイヤグラムであり、Cは、対称構造を有する側方の瞳孔拡張一次元光ガイドの詳細な断面図を例示するダイヤグラムである。 Aは、二重のLOE構成を活用する、2つの軸に沿って光線を拡大する方法を例示するダイヤグラムであり、Bは、二重のLOE構成を活用する、2つの軸に沿って光線を拡大する別の方法を例示するダイヤグラムである。 標準的な眼鏡フレームに埋め込まれたLOEの例を示す。 Aは、導波路において回折コンポーネントを用いる従来の光学的開口拡大の大まかな略図であり、Bは、図7のAの、角度領域において伝播する光の回折方向のダイヤグラムである。 AおよびBは、回折-反射-回折の典型的な実施形態のそれぞれの側面視および正面視の大まかな略図であり、Cは、反射-回折の典型的な実施形態の大まかな略図であり、Dは、図8のAおよび図8のBの、角度領域において伝播する光の回折方向のダイヤグラムである。 AおよびBは、回折-回折-反射の典型的な実施形態の大まかな略図のそれぞれの側面視および正面視であり、Cは、図9のAおよび図9のBの、角度領域において伝播する光の回折方向のダイヤグラムである。 AおよびBは、回折-反射の典型的な実施形態のそれぞれの側面視および正面視の大まかな略図である。 AおよびBは、回折-回折-反射の典型的な実施形態のそれぞれの側面視および正面視の大まかな略図であり、Cは、重複する回折-反射-回折の典型的な実施形態の正面視の大まかな略図である。 AおよびBは、回折-反射の典型的な実施形態の大まかな略図のそれぞれの側面視および正面視であり、Cは、回折-回折-反射の典型的な実施形態の大まかな略図の正面視である。 AおよびBは、別個の回折の側方のエキスパンダを備えた、回折-回折-反射の典型的な実施形態のそれぞれの側面視および正面視の大まかな略図である。 AおよびBは、回折-反射の典型的な実施形態の大まかな略図のそれぞれの側面視および正面視であり、Cは、回折-回折-反射の典型的な実施形態の大まかな略図の正面視である。 A、B、およびCは、反射-回折-回折の典型的な実施形態の大まかな略図のそれぞれの側面視、正面視、および平面視であり、Dは、図15のA、図15のB、および図15のCの、角度領域において伝播する光の回折方向のダイヤグラムである。
The embodiments are described herein, by way of example only, with reference to the accompanying drawings.
1 is a side view of a prior art foldable optical device. 1 is a side view of a typical light guide optical element. A and B illustrate the desired reflection and transmission characteristics of a selectively reflective surface for two ranges of incidence angles. A is a diagram illustrating a typical configuration of a light guide optic, B is a diagram illustrating another configuration of a light guide optic, and C is a diagram illustrating a lateral pupil dilation primary with symmetric structure. 1 is a diagram illustrating a detailed cross-sectional view of a source light guide; A is a diagram illustrating how to expand rays along two axes, exploiting a dual LOE configuration, and B is a diagram illustrating how to expand rays along two axes, exploiting a dual LOE configuration. 2 is a diagram illustrating another method of enlarging. An example of a LOE embedded in a standard eyeglass frame is shown. A is a rough schematic of conventional optical aperture expansion using diffractive components in a waveguide, and B is a diagram of the diffraction direction of light propagating in the angular domain of A of FIG. A and B are rough schematic illustrations of an exemplary embodiment of diffraction-reflection-diffraction in side and front view, respectively; C is a rough schematic illustration of an exemplary embodiment of reflection-diffraction; D is a diagram of the diffraction direction of light propagating in the angular domain of FIGS. 8A and 8B. A and B are side and front views, respectively, of rough schematic diagrams of typical embodiments of diffraction-diffraction-reflection, and C propagating in the angular domain of FIGS. 9A and 9B. It is a diagram of the direction of diffraction of light. A and B are rough schematic side and front views, respectively, of a diffractive-reflective exemplary embodiment. A and B are rough schematic side and front views, respectively, of an exemplary embodiment of diffraction-diffraction-reflection, and C is a front view of an exemplary embodiment of overlapping diffraction-reflection-diffraction. This is a rough diagram. A and B are side and front views, respectively, of a rough schematic of an exemplary embodiment of a diffraction-reflection; C is a front view of a rough schematic of an exemplary embodiment of a diffraction-diffraction-reflection It is. A and B are rough schematic side and front views, respectively, of a diffraction-diffraction-reflection exemplary embodiment with separate diffraction lateral expanders. A and B are side and front views, respectively, of a rough schematic representation of an exemplary embodiment of diffraction-reflection, and C is a front view of a rough schematic representation of an exemplary embodiment of diffraction-diffraction-reflection. It is. A, B, and C are side, front, and plan views, respectively, of a rough schematic of a reflection-diffraction-diffraction exemplary embodiment; D is FIG. 15A, FIG. 15B 15C is a diagram of the diffraction direction of light propagating in the angular domain, and of FIG. 15C.

略語および定義
引用の便宜上、このセクションは、本明細書において用いられる略語、頭字語、および短い定義の簡潔なリストを含んでいる。このセクションによって本発明が制限されるとみなすべきではない。より完全な説明は、以下において、および適用可能な規格において見出されうる。
1D - 一次元
2D - 二次元
CRT - 陰極線管
EMB - アイモーションボックス
FOV - 視野
HMD - ヘッドマウントディスプレイ
HUD - ヘッドアップディスプレイ
LCD - 液晶ディスプレイ
LOE - 光ガイド光学素子
OLED - 有機発光ダイオードアレイ
OPL - 光路長
SLM - 空間光変調器
TIR - 全内反射
Abbreviations and Definitions For convenience of citation, this section contains a concise list of abbreviations, acronyms, and short definitions used herein. This section should not be considered as limiting the invention. A more complete description can be found below and in applicable standards.
1D - One-dimensional 2D - Two-dimensional CRT - Cathode ray tube EMB - Eye motion box FOV - Field of view HMD - Head mounted display HUD - Head up display LCD - Liquid crystal display LOE - Light guide optical element OLED - Organic light emitting diode array OPL - Optical path length SLM - Spatial Light Modulator TIR - Total Internal Reflection

詳細な説明-図8のAから図15のDまで
本実施形態に記載の装置の原理および操作は、図面および付随的な説明を参照して十分に理解されることもある。本発明は光学的開口拡大のための光学アセンブリである。その装置によって、回折技術(回折コンポーネント)とファセット反射技術(反射コンポーネント)が組み合わされる。回折コンポーネントを用いる革新的な実施形態は、相反する光パワー(一致)を有する少なくとも2つのコンポーネントを用い、その結果、第1の回折コンポーネントによってもたらされた波長分散が、その後、第2の回折コンポーネントによって取り消される。2つの回折コンポーネントは、(ニアアイディスプレイのための)反射光学部品と組み合わせて用いられ、それによってより効果的な開口拡大を達成し、歪みと雑音を低減する一方、従来の技術と比較して、システムおよび個別のコンポーネントにおける設計制約も低減している。
DETAILED DESCRIPTION - FIGS. 8A to 15D The principles and operation of the apparatus described herein may be better understood with reference to the drawings and accompanying description. The present invention is an optical assembly for optical aperture enlargement. The device combines diffraction technology (diffraction component) and facet reflection technology (reflection component). An innovative embodiment using diffractive components uses at least two components with opposing optical powers (coincidence) so that the chromatic dispersion introduced by the first diffractive component is then applied to the second diffractive component. Cancelled by the component. Two diffractive components are used in combination with reflective optics (for near-eye displays), thereby achieving more effective aperture expansion and reducing distortion and noise, while compared to conventional techniques. , design constraints on systems and individual components are also reduced.

現在の、従来の光学的開口拡大は、(側方および垂直の)両方の拡大に関する単一の技術を用いる。本分野における現在の進歩は、これらの技術のいずれか1つを最適化し向上させることである。使用される2つの主要な技術は、以下の通りである:
1)傾斜しているコーティングされたファセットによる反射(例えば、Lumus,Ltd.に対する米国特許第7,457,040号)。この反射技術は広域スペクトルを有し、したがって、単一の光ガイドからの全ての可視スペクトルを投影することができる。このファセットによって、典型的には、伝播する光線を部分的に反射し、伝送することの両方が行われるが、本明細書における簡潔さのために、この技術は、「反射光学部品」によって実施されるように、一般的に引用される。この反射は、典型的には偏光依存性である。
2)光ガイド面における回折パターン。当技術分野において公知のように、回折格子(パターン)は、回折格子の構造に応じて、伝播する光線を反射する、または伝送する。本明細書における簡潔さのために、この技術は、「回折光学部品」によって実施されるように、一般的に引用される。この回折技術はスペクトルおよび角度の両方において限定される。しかしながら、この技術の偏光依存性は低い。
Current, conventional optical aperture expansion uses a single technique for both (lateral and vertical) expansion. Current progress in the field is to optimize and improve any one of these techniques. The two main techniques used are:
1) Reflection by sloping coated facets (eg, US Pat. No. 7,457,040 to Lumus, Ltd.). This reflection technology has a broad spectrum and therefore can project the entire visible spectrum from a single light guide. Although this facet typically both partially reflects and transmits the propagating light rays, for the sake of brevity herein, this technique is implemented by "reflective optics". It is commonly cited as This reflection is typically polarization dependent.
2) Diffraction pattern on the light guide surface. As is known in the art, a diffraction grating (pattern) either reflects or transmits propagating light rays, depending on the structure of the diffraction grating. For brevity herein, this technique is generally referred to as being implemented by "diffractive optics." This diffraction technique is both spectrally and angularly limited. However, the polarization dependence of this technique is low.

様々な数量と順序(交互に、およびその逆もまた同様)の反射コンポーネントと回折コンポーネントの配列を使用することによって、偏光の管理の必要性が不要となる、および/または低減される一方、より広い視野が可能になる。加えて、その2つの技術の歪みのパターンは、相関しない(無相関である)ので、従来の単一技術の実施と比較して、実施形態によって不均一性を低減することができた。 By using arrays of reflective and diffractive components in varying quantities and orders (alternating and vice versa), the need for polarization management is eliminated and/or reduced, while Allows for a wider field of view. In addition, because the distortion patterns of the two techniques are uncorrelated, embodiments were able to reduce non-uniformity compared to conventional single technique implementations.

一般的に、光学的開口拡大のための装置は、少なくとも1つの光ガイドと、少なくとも1つの光ガイドに関連する1セットの3つの光学部品を含む。1セットの3つの光学部品は、1対の一致する回折光学部品と、反射光学部品を含む。反射光学部品は、複数の、少なくとも部分的に反射し、互いに平行な表面の配列を含む。それらの光学部品は、外連結された光の二次元拡大を達成するために協働するように構成される。言い換えれば、それらのコンポーネントは、内連結された光を、外連結された光まで拡大させるために協働する。内連結された光は、少なくとも1つの光ガイドへと連結される光であり、その拡大は二次元である。 Generally, a device for optical aperture enlargement includes at least one light guide and a set of three optical components associated with the at least one light guide. The set of three optics includes a pair of matched diffractive optics and a reflective optic. The reflective optic includes an array of multiple, at least partially reflective, mutually parallel surfaces. The optical components are configured to cooperate to achieve two-dimensional expansion of the outcoupled light. In other words, the components work together to extend the incoupled light to the outcoupled light. Incoupled light is light that is coupled into at least one light guide, the expansion of which is two-dimensional.

本説明の文脈において、回折光学部品に関する用語「一致する」は、一般的に、実質的に正確に同等な格子素子の格子および/または間隔を指し、したがって、回折コンポーネントの光パワーは同等であり、かつ通常は相反する。コンポーネントの全体的な物理的な寸法は異なってもよいが、同様な格子は、コンポーネントの一致する光パワーを結果としてもたらす。 In the context of this description, the term "matched" with respect to diffractive optical components generally refers to gratings and/or spacings of grating elements that are substantially exactly equivalent, such that the optical powers of the diffractive components are equivalent. , and usually contradictory. Although the overall physical dimensions of the components may differ, similar gratings result in matched optical power of the components.

本説明の文脈において、用語「コンポーネント」は、光学素子、特に反射光学素子および回折光学素子のために使用される。反射コンポーネントおよび光学部品のための設計と生産技術は、当技術分野において公知である。本説明に基づいて、反射光学部品および回折光学部品の様々な形状とサイズで必要とされるように、コンポーネントを実装することができ、様々な操作パラメータは、波長、パワー、および角度を含む。 In the context of this description, the term "component" is used for optical elements, in particular reflective and diffractive optical elements. Design and production techniques for reflective components and optical components are known in the art. Based on this description, the components can be implemented as needed with various shapes and sizes of reflective and diffractive optics, and various operating parameters including wavelength, power, and angle.

本説明の文脈において「回折格子」および「回折パターン」とも呼ばれる回折光学部品は、光ガイドに埋め込まれるか、または光ガイドの表面(面)上に構成されるか、もしくは取り付けられることもある。例えば、回折光学部品は、回折格子またはホログラフィック素子として実装することができる。回折コンポーネントは、Horiba Scientific(Kyoto,Japan)などから入手可能であり、反射コンポーネントは、Lumus(Ness Ziona,Israel)のOE50などが入手可能である。 Diffractive optical components, also referred to as "diffraction gratings" and "diffraction patterns" in the context of this description, may be embedded in the light guide or configured or mounted on the surface of the light guide. For example, a diffractive optical component can be implemented as a diffraction grating or a holographic element. Diffractive components are available from Horiba Scientific (Kyoto, Japan), and reflective components are available from Lumus (Ness Ziona, Israel), such as OE50.

ここで図8のAとBを参照すると、回折-反射-回折の典型的な実施形態の側面視と正面視それぞれの大まかな略図が示されている。異なる光学部品の組み合わせが、異なる軸に沿って光を拡大する。光学光ガイド(10)は、「X軸」に対応するように本明細書で恣意的に例示される伸長方向を持つ、二次元(2D)光ガイドである。光ガイド(10)は、光ガイド(10)の内部の4つの矢印により図8のAに示されるように、光ガイド(10)が2セットの平行面間での反射により二次元で注入画像をガイドするという意味で、2D導波路と称される。複数の内部の部分反射面(40)の配列は、伸長方向に対して斜角(即ち、平行でも垂直でもない)で光ガイド(10)を少なくとも部分的に横断する。 Referring now to FIGS. 8A and 8B, there are shown schematic side and front views, respectively, of an exemplary diffraction-reflection-diffraction embodiment. Combinations of different optical components expand the light along different axes. Optical light guide (10) is a two-dimensional (2D) light guide with an elongation direction arbitrarily illustrated herein as corresponding to the "X-axis." The light guide (10) allows the light guide (10) to capture the injection image in two dimensions by reflection between two sets of parallel surfaces, as shown in Figure 8A by the four arrows inside the light guide (10). It is called a 2D waveguide in the sense that it guides the waveguide. The array of internal partially reflective surfaces (40) at least partially traverses the light guide (10) at an oblique angle (i.e. neither parallel nor perpendicular) to the direction of elongation.

入射光(38)は、回折コンポーネント(5)により光ガイド(10)に連結される。内連結された光は、第1の方向で第1の側方光ガイドエキスパンダとして作用する光ガイド(10)に進入する。光ガイド(10)から拡大光(38C)は光ガイド(2000)へと連結される。光学光ガイド(2000)は、主に「Y軸」に沿って光をガイドする。拡大光(38C)は、図8のAの側面視における矢印により示されるように、第2の拡大方向(Y軸)に拡大する光ガイド(2000)内で反射し続ける。光ガイド(2000)中の光は、本明細書のこの文脈において第2の拡大光(38D)と称される。第2の拡大光(38D)は、回折パターン(25)に遭遇すると、観察者(47)に対して光ガイド(2000)を外連結する(38B)。本実施形態の特徴は、回折コンポーネントが互いに平行ではないという特徴である。 The incident light (38) is coupled into the light guide (10) by a diffractive component (5). The intercoupled light enters the light guide (10) in a first direction, which acts as a first lateral light guide expander. The expanded light (38C) from the light guide (10) is coupled to the light guide (2000). The optical light guide (2000) mainly guides light along the "Y-axis". The expanded light (38C) continues to be reflected within the expanding light guide (2000) in the second expansion direction (Y-axis), as indicated by the arrow in the side view of FIG. 8A. The light in the light guide (2000) is referred to in this context of the present specification as the second expanded light (38D). When the second expanded light (38D) encounters the diffraction pattern (25), it couples out (38B) the light guide (2000) to the observer (47). A feature of this embodiment is that the diffractive components are not parallel to each other.

通常、1セットの3つの光学部品は、第1の光ガイド(光ガイド(10))内で第1の拡大方向(X軸)に内連結された光(38)を方向付け、それにより第1の拡大光(38C)を生成するために構成された、第1の光学部品(回折コンポーネント(5))を含む。前記セットの第2の光学部品(部分反射面(40)の配列)は、第2の拡大方向(Y軸)において第1の拡大光(38C)を第2の光ガイド(2000)へと連結し、それにより第2の拡大光(38D)を生成するために構成される。前記セットの第3の光学部品(回折コンポーネント(25))は、外連結された光(38B)として第3の方向に第2の拡大光(38D)を外連結するために構成される。 Typically, a set of three optical components directs the coupled light (38) in a first expansion direction (X-axis) within a first light guide (light guide (10)), thereby a first optical component (diffractive component (5)) configured to generate an expanded beam (38C) of 1; The second optical component of said set (array of partially reflective surfaces (40)) couples the first expanded light (38C) to the second light guide (2000) in a second expanded direction (Y-axis). and thereby configured to generate a second expanded beam (38D). The third optical element of the set (diffractive component (25)) is configured for outcoupling the second expanded light (38D) in a third direction as outcoupling light (38B).

この記載の文脈において、用語「方向」は通常、典型的には光ガイドの光学軸(通常は長さ)に沿った光ガイド内の伝播の平均方向を指す。言い換えれば、全内反射(TIR)により光ガイドスラブにおいて捕えられる光が光ガイドスラブに沿って進むコース又は通常の道、即ち、光ガイドスラブの平面(光ガイドの基板中の伝播する光線の面内コンポーネント)における拡大のコースである。 In the context of this description, the term "direction" typically refers to the average direction of propagation within a light guide, typically along the optical axis (usually the length) of the light guide. In other words, the course or normal path that light captured in a light guide slab by total internal reflection (TIR) takes along the light guide slab, i.e. the plane of the light guide slab (the plane of the propagating ray in the substrate of the light guide) This is a course of expansion in the internal components).

第1、第2、及び第3の方向は互いに平行ではない。 The first, second, and third directions are not parallel to each other.

ここで図8のDを参照すると、図8のAとBにおける、角度領域(角度間隔)において伝播する光の回折方向のダイヤグラムが示されている。点線と実線は、2つの異なる例示的な波長を示す。方向領域(1005)は、図7のBに関して記載されるような入射角である。領域(1007)は、側方の拡大、及び部分反射面(40)の配列による反射の後の、光線(又は単に「光線」)の方向を表わす。部分反射面(40)は、領域(1011)へと光線の方向を転換する。しかし、この領域(1007)から領域(1011)への反射は、余分な分散を導入せず、ミラー方向(鎖線(1008)として示される)の周囲の伝播の方向を映すだけである。ミラー方向(1008)は、部分反射面(40)の傾斜により決定される。最後の回折素子(25)は、領域(1013)へと光線を回折する。光線が補償的な様式で回折コンポーネント(5)へと回折されると、その後、出力方向(1013)は分散しないが、(1005)を重複させる必要はない。この実施形態において、分散は排除されるが、外連結された光(38B)の出力角度は、内連結された光(38)の入力角度と一致しなくてもよい。 Referring now to FIG. 8D, a diagram of the diffraction direction of light propagating in an angular range (angular interval) in FIGS. 8A and 8B is shown. The dotted and solid lines indicate two different exemplary wavelengths. The directional region (1005) is the angle of incidence as described with respect to FIG. 7B. The region (1007) represents the direction of the light ray (or simply "ray") after lateral expansion and reflection by the array of partially reflective surfaces (40). The partially reflective surface (40) redirects the light rays into the region (1011). However, this reflection from region (1007) to region (1011) does not introduce any extra dispersion and only mirrors the direction of propagation around the mirror direction (shown as dashed line (1008)). The mirror direction (1008) is determined by the tilt of the partially reflective surface (40). The last diffraction element (25) diffracts the light beam into the region (1013). Once the light ray is diffracted into the diffractive component (5) in a compensatory manner, then the output directions (1013) are not dispersed, but there is no need to overlap (1005). In this embodiment, dispersion is eliminated, but the output angle of the outcoupled light (38B) may not match the input angle of the incoupled light (38).

ここで図8のCを参照すると、反射-回折の典型的な実施形態の大まかな略図が示されている。本図は、入射光(38)が(回折コンポーネント(5)の代わりに)傾斜されたプリズム(7)により光ガイド(10)に連結されることを除いて、図8のA及びBと同様である。本実施形態は回折素子(回折素子(25))を1つしか含まないため、2つの一致する回折素子((5)と(25))を含む図8のAとBの実施形態と比べて、色分散は著しいものとなる。色分散(収差)は狭帯域光源の使用により減少され得る。 Referring now to FIG. 8C, a rough schematic of an exemplary embodiment of reflection-diffraction is shown. This figure is similar to Figures 8A and B, except that the incident light (38) is coupled to the light guide (10) by a tilted prism (7) (instead of the diffractive component (5)). It is. This embodiment includes only one diffractive element (diffractive element (25)), compared to the embodiments of FIGS. 8A and B, which include two matched diffractive elements ((5) and (25)). , the color dispersion becomes significant. Chromatic dispersion (aberrations) can be reduced by using a narrowband light source.

ここで図9のAとBを参照すると、回折-回折-反射の典型的な実施形態の大まかな略図の側面視と正面視がそれぞれ示されている。光ガイド(2010)は2D光ガイドである。本実施形態において、前記セットの第1の光学部品は、光ガイド(2010)内で第1の拡大方向(X軸)に内連結された光(38)を方向付け、それにより第1の拡大光(38C)を生成するために構成された、回折コンポーネント(5A)により実装される。前記セットの第2の光学部品は、第2の拡大方向(Y軸)において第1の拡大光(38C)を光ガイド(20)に連結し、それにより第2の拡大光(38D)を生成するために構成される、回折コンポーネント(370)により実装される。前記セットの第3の光学部品は、外連結された光(38B)として第3の方向に第2の拡大光(38D)を外連結するために構成される、好ましくは光ガイド(20)の面に対し斜角にある光ガイド(20)を少なくとも部分的に横断する、複数の部分反射面(ファセット)(45)の配列により実装される。 Referring now to FIGS. 9A and 9B, schematic side and front views, respectively, of an exemplary diffraction-diffraction-reflection embodiment are shown. The light guide (2010) is a 2D light guide. In this embodiment, the first optical component of said set directs the coupled light (38) in a first magnification direction (X-axis) within a light guide (2010), thereby causing a first magnification. It is implemented by a diffractive component (5A) configured to generate light (38C). A second optical component of said set couples the first expanded beam (38C) to the light guide (20) in a second expanded direction (Y-axis), thereby producing a second expanded beam (38D). implemented by a diffractive component (370) configured to. A third optical component of said set is preferably arranged for coupling out the second expanded light (38D) in a third direction as coupled out light (38B), preferably of the light guide (20). It is implemented by an array of partially reflective facets (45) that at least partially traverse the light guide (20) at an oblique angle to the plane.

ここで図9のCを参照すると、図9のAとBにおける、角度領域(角度間隔)において伝播する光の回折方向のダイヤグラムが示されている。角度のベクトルも示されており、(1005)は進入方向であり、第1の素子(5A)の後の方向は(1007)である。回折素子(370)は相対する光パワーを持ち、それ故、光は、光ガイド(2010)から、同じ方向を持つが色分散(重複(1005))を持たない光ガイド(20)へと連結される。ファセット(45)は、色分散の無い好ましい方向(1013)へと、分散無しに光を反射する。幾つかの色分散は、反射コンポーネントにより導入され得、残りの回折はこれを補うことができる。 Referring now to FIG. 9C, a diagram of the diffraction direction of light propagating in an angular range (angular interval) in FIGS. 9A and 9B is shown. The angular vectors are also shown, where (1005) is the direction of entry and the direction after the first element (5A) is (1007). The diffractive elements (370) have opposing optical powers and therefore light is coupled from the light guide (2010) to the light guide (20) with the same direction but no chromatic dispersion (overlap (1005)). be done. The facets (45) reflect light without dispersion in a preferred direction (1013) without chromatic dispersion. Some chromatic dispersion may be introduced by the reflective component, and the remaining diffraction may compensate for this.

ここで図10のAとBを参照すると、回折-反射の典型的な実施形態の側面視と正面視それぞれの大まかな略図が示されている。光ガイド(2011)は2D光ガイドである。側方の拡大が回折コンポーネントにより行われる一方、垂直的拡大は反射ファセットにより行われる。光ガイド(2011)へと連結する方法は表されない。光は、光ガイド(2011)内を伝播し、回折表面(コンポーネント)(35)に当たり、光ガイド(20)の方へ回折される。回折コンポーネント(35)は、(上部に表される、本図における)光ガイド(2011)の任意の表面にあり得る。光は、光ガイド(20)内を伝播すると、ファセット(45)により目(47)の方へ外連結される(38B)。この構成は、光ガイド(2011)と光ガイド(20)との間の偏光の管理を必要としない。光の注入された偏光は、ファセット(45)を必要とするものに一致するように配向され得る。 Referring now to FIGS. 10A and 10B, schematic side and front views, respectively, of an exemplary diffractive-reflective embodiment are shown. The light guide (2011) is a 2D light guide. Lateral magnification is provided by diffractive components, while vertical magnification is provided by reflective facets. The method of coupling to the light guide (2011) is not represented. Light propagates within the light guide (2011), hits a diffractive surface (component) (35) and is diffracted towards the light guide (20). The diffractive component (35) can be on any surface of the light guide (2011) (in the figure, represented at the top). As the light propagates within the light guide (20), it is coupled out (38B) by facets (45) towards the eye (47). This configuration does not require polarization management between light guide (2011) and light guide (20). The injected polarization of the light can be oriented to match that required by the facets (45).

ここで図11のAとBを参照すると、回折-回折-反射の典型的な実施形態の側面視と正面視それぞれの大まかな略図が示されている。非回折光学部品(501)は、光(38)として示される内連結された光として、光ガイド(2002)へと光を方向付けるように構成される。本実施形態において、単一の光ガイド(2002)が使用され、2つの回折コンポーネントが光ガイド(2002)の部品として実装された。第1の回折光学部品(502)は、1つの光ガイド(2002)内で第1の拡大方向(X軸)に内連結された光(38)を方向付け、それにより第1の拡大光(38C)を生成するために構成される。第2の回折光学部品(50)は、第2の拡大方向(Y軸)に1つの光ガイド(2002)における第1の拡大光(38C)を拡大し、それにより第2の拡大光(38D)を生成するために構成される。反射光学部品(複数のファセット(45)の配列)は、外連結された光(38B)として第3の方向に第2の拡大光(38D)を外連結するために構成される。上記実施形態におけるように、第1、第2、及び第3の方向は互いに平行ではない。 Referring now to FIGS. 11A and 11B, schematic side and front views, respectively, of an exemplary diffraction-diffraction-reflection embodiment are shown. The non-diffractive optics (501) are configured to direct light into the light guide (2002) as intercoupled light, shown as light (38). In this embodiment, a single light guide (2002) was used and two diffractive components were implemented as parts of the light guide (2002). The first diffractive optical component (502) directs the intercoupled light (38) in a first expansion direction (X-axis) within one light guide (2002), thereby causing the first expansion light ( 38C). The second diffractive optical component (50) magnifies the first expanded light (38C) in one light guide (2002) in a second expansion direction (Y-axis), thereby expanding the second expanded light (38D). ) is configured to generate. The reflective optic (array of facets (45)) is configured to couple out the second expanded light (38D) in a third direction as an outcoupled light (38B). As in the embodiments above, the first, second, and third directions are not parallel to each other.

この実施形態の特徴は、単一の一次元光ガイドの使用である。光ガイドへの連結は、非回折コンポーネント(501)によるものであり、光は強固な回折パターン(502)により転換される。光は一次元でガイドされ、それ故、別の次元で拡大しつつ、回折コンポーネント(50)に沿って左から右へと伝播する。光が回折パターン(50)に遭遇すると、光は下方へも転換される。下方へ伝播している間、光は、(図11のAの側面視に表される)反射ファセット(45)により観察者(47)の方へと反射される。この構成は単一の光ガイドを含み、偏光管理を必要としない(光ガイドに注入された光の偏光は、反射ファセット(45)に適切であり得る)。回折パターン(502)と回折パターン(50)の組み合わせは、結果として色分散をもたらさない。 A feature of this embodiment is the use of a single one-dimensional light guide. The coupling to the light guide is by a non-diffractive component (501) and the light is converted by a strong diffractive pattern (502). The light is guided in one dimension and therefore propagates from left to right along the diffractive component (50), expanding in another dimension. When the light encounters the diffraction pattern (50), it is also diverted downward. While propagating downward, the light is reflected by the reflective facets (45) towards the viewer (47) (represented in side view in Figure 11A). This configuration includes a single light guide and does not require polarization management (the polarization of the light injected into the light guide may be appropriate to the reflective facets (45)). The combination of diffraction pattern (502) and diffraction pattern (50) results in no chromatic dispersion.

ここで図11のCを参照すると、重複する回折-反射-回折の典型的な実施形態の正面視の大まかな略図が示されている。異なる技術により、回折及び反射の素子は、同じ光ガイド上で互いに重なり合って位置付けられ得る。本図において、回折格子コンポーネント(1110)は、第1の拡大光(38C)を作り出すために第1の方向に内連結された光(38)を拡大する。側方の開口の拡大は、前後で光を側方に連結する斜線のファセット(1114)を重複させ、色収差を導入することなく第2の方向(38D)に光を拡大することにより、実施される。回折パターン(1112)は導波路から光を連結するために使用される。 Referring now to FIG. 11C, a rough diagram of a front view of an exemplary embodiment of overlapping diffraction-reflection-diffraction is shown. With different techniques, diffractive and reflective elements can be positioned on top of each other on the same light guide. In this figure, a grating component (1110) magnifies the intercoupled light (38) in a first direction to produce a first expanded light (38C). Lateral aperture enlargement is carried out by overlapping the diagonal facets (1114) that laterally couple the light at the front and back, expanding the light in the second direction (38D) without introducing chromatic aberrations. Ru. A diffraction pattern (1112) is used to couple light out of the waveguide.

ここで図12のAおよび図12のBを参照すると、回折-反射の例示的な実施形態の側面視および正面視それぞれの大まかな略図が示される。側方拡大は一次元の光ガイド(2012)に基づく(例えば、Lumus Ltd.の米国特許第7,643,214号を参照)。図12のBでは、光ガイド(2012)への連結は、高度に反射する(すなわち部分反射型であり、かつエネルギーの大部分を反射する)内部ファセット(65)によって行なわれ、内部ファセットは内連結された光(38)の大部分を光ガイド(2012)の左右の側面に反射し、一方で、内連結された光(38)の一部は、内部ファセット(65)を通って光ガイド(20)へと至る。本実施形態が1つしか回折素子を含んでいないとき、以下の図12のCの実施形態と比較して、色分散が重要になる。色分散(収差)は、狭帯域の光源を使用することで低減することができる。 Referring now to FIGS. 12A and 12B, schematic side and front views, respectively, of an exemplary diffractive-reflective embodiment are shown. Lateral magnification is based on a one-dimensional light guide (2012) (see, eg, Lumus Ltd. US Pat. No. 7,643,214). In Figure 12B, the coupling to the light guide (2012) is made by an internal facet (65) that is highly reflective (i.e. partially reflective and reflects most of the energy); Most of the coupled light (38) is reflected to the left and right sides of the light guide (2012), while a portion of the coupled light (38) passes through the inner facets (65) to the light guide. This leads to (20). When this embodiment includes only one diffractive element, chromatic dispersion becomes important compared to the embodiment of FIG. 12C below. Chromatic dispersion (aberrations) can be reduced by using narrowband light sources.

ここで図12のCを参照すると、回折-回折-反射の例示的な実施形態の正面視の大まかな略図が示される。この実施形態では、光ガイド(2013)への連結は、高度な性能を有する回折コンポーネント(66)によって行なわれ、回折コンポーネントは、内連結された光(38)の大部分を光ガイド(2013)の左右の側面に反射し、一方で、内連結された光(38)の一部は、回折コンポーネント(66)を通って光ガイド(20)へと至る。 Referring now to FIG. 12C, a rough diagram of a front view of an exemplary diffraction-diffraction-reflection embodiment is shown. In this embodiment, coupling to the light guide (2013) is performed by a highly capable diffractive component (66), which directs most of the coupled light (38) into the light guide (2013). while a part of the intercoupled light (38) passes through the diffractive component (66) to the light guide (20).

図9のBの説明に似ているが、第1の拡大光(38C)は、図12のBでは回折コンポーネント(67)によって回折され、図12のCでは回折コンポーネント(68)によって回折されて、第2の拡大光(38D)を光ガイド(20)中に生成する。 Similar to the illustration of FIG. 9B, the first expanded light (38C) is diffracted by the diffractive component (67) in FIG. 12B and by the diffractive component (68) in FIG. 12C. , producing a second expanded light (38D) in the light guide (20).

例示的な実施形態から確認できるように、回折コンポーネントは、一般に光ガイドの任意の側部に配置できる。前の実施形態でのように、適切な偏光の注入によって、装置にあわせたさらなる管理の必要はない。 As can be seen from the exemplary embodiments, the diffractive component can generally be placed on any side of the light guide. As in the previous embodiment, with the injection of appropriate polarization, there is no need for further control over the device.

異なる光の波長は、異なる方向の回折パターンによって屈折させられる。この現象は、例えばニアアイディスプレイにより、各波長用の個別の光ガイドを実装することで、使用することができる。例示的な実施形態は3つの光ガイドであり、それぞれ、赤(R)、緑(G)および青(B)着色光に対応する波長のためのものである。個別の回折側方開口エキスパンダ(各色につき1つ)は単一の垂直反射開口エキスパンダに結合されている。 Different wavelengths of light are refracted by diffraction patterns in different directions. This phenomenon can be exploited, for example by near-eye displays, by implementing separate light guides for each wavelength. The exemplary embodiment is three light guides, one for wavelengths corresponding to red (R), green (G) and blue (B) colored light, respectively. Separate diffractive side aperture expanders (one for each color) are combined into a single vertical reflective aperture expander.

ここで図13のAおよび図13のBを参照すると、個別の回折側方エキスパンダを備えた、回折-回折-反射の例示的な実施形態の側面視および正面視それぞれの大まかな略図が示される。本実施形態は、図9のAおよび図9のBに関して上述される実施形態に基づいている。図9のBの光ガイド(2010)は光ガイド(103)、(102)および(101)のセットと取り替えられる。各光ガイドのセットは、この例の赤、緑および青における特定の波長のために構成された、第1の回折コンポーネント(それぞれ(133R)、(133G)、(133B))を有する。各光ガイドのセットは、第1の回折コンポーネントと一致する、第2の回折コンポーネント(それぞれ(134R)、(134G)、(134B))を有する。内連結された光(38)は、第1の回折コンポーネントに通って注入される。これらの第1の回折コンポーネントの各々は波長特異的(wavelength specific)であり、特定の関連する光の波長を回折し、光の他の波長を通過させる。波長の各光ガイドへの特異的な回折は、二色反射器(dichroic reflector)(それぞれ(133R1)、(133G1)、(133B1))のセットをそれぞれの第1の回折コンポーネント(133R)、(133G)、(133B)の後に追加することにより、改善されうる。二色反射器はコーティング反射器または回折反射器をベースにすることが可能であり、したがって、異なる波長は異なるそれぞれの光ガイド(103)、(102)、および(101)に連結される。第1の回折コンポーネント(133R)、(133G)、(133B)によって回折された光の波長は、それぞれの第1の拡大光(38CR)、(38CG)、(38CB)として、それぞれの光ガイド(103)、(102)、および(101)において、側方に拡大し伝播する。各光ガイド(103)、(102)、(101)は、それぞれの第1の拡大光(38CR)、(38CG)、(38CB)を光ガイド(20)の方へ回折させる、それぞれの第2の回折コンポーネント(134R)、(134G)、(134B)を有する。第2の回折コンポーネント(134G)、(134B)が波長選択的であるか、または他の波長についての回折効率が低いため、上部の光ガイドからの光は歪みが最も小さい下部の光ガイドを通過する。光ガイド(20)では、複数の部分反射面(45)の配列は、目(47)へと全ての波長を反射する。 13A and 13B, schematic side and front views, respectively, of a diffraction-diffraction-reflection exemplary embodiment with separate diffractive lateral expanders are shown. It will be done. This embodiment is based on the embodiment described above with respect to FIGS. 9A and 9B. The light guide (2010) of Figure 9B is replaced by a set of light guides (103), (102) and (101). Each set of light guides has a first diffractive component ((133R), (133G), (133B), respectively) configured for a particular wavelength in red, green, and blue in this example. Each set of light guides has a second diffractive component ((134R), (134G), (134B), respectively) that matches the first diffractive component. The intercoupled light (38) is injected through the first diffractive component. Each of these first diffractive components is wavelength specific, diffracting certain relevant wavelengths of light and passing other wavelengths of light. The specific diffraction of wavelengths into each light guide is achieved through a set of dichroic reflectors ((133R1), (133G1), (133B1), respectively) with each first diffractive component (133R), ( 133G) and (133B), it can be improved. Dichroic reflectors can be based on coated reflectors or diffractive reflectors, so different wavelengths are coupled to different respective light guides (103), (102) and (101). The wavelengths of the light diffracted by the first diffractive components (133R), (133G), (133B) are transferred to the respective light guides ( 103), (102), and (101), it expands and propagates laterally. Each light guide (103), (102), (101) has a respective second expanded light beam (38CR), (38CG), (38CB) diffracted towards the light guide (20). It has diffraction components (134R), (134G), and (134B). Because the second diffractive components (134G), (134B) are wavelength selective or have low diffraction efficiency for other wavelengths, light from the upper light guide passes through the lower light guide with the least distortion. do. In the light guide (20), an array of partially reflective surfaces (45) reflects all wavelengths to the eye (47).

本実施形態の代替的な記載としては、一対の第1の(133R)および第2の(134R)の一致する回折光学部品は、1)一対の第3の(133G)および第4の(134G)の一致する回折光学部品と、2)一対の第5の(133B)および第6の(134B)の一致する回折光学部品と、で増大される、というものである。一致する対の光学部品の各々の回折間隔は、他の一致する対の光学部品とは異なっている。回折間隔は、一致する対の光学部品の各々が、他の一致する対の光学部品からの、類似の角度によって異なる波長を屈折させるようになっている。第1の光ガイド(103)は、一対の第1の(133R)および第2の(134R)の一致する回折光学部品を含む。第2の光ガイド(103)は、一対の第4の(133G)および第4の(134G)の一致する回折光学部品を含む。第3の光ガイド(103)は、一対の第5の(133B)および第6の(134B)の一致する回折光学部品を含む。 As an alternative description of this embodiment, a pair of first (133R) and second (134R) matched diffractive optics are: 1) a pair of third (133G) and fourth (134G) ) matching diffractive optics; and 2) a pair of fifth (133B) and sixth (134B) matching diffractive optics. The diffraction spacing of each matched pair of optics is different from the other matched pair of optics. The diffraction spacing is such that each matched pair of optics refracts different wavelengths by similar angles from other matched pairs of optics. The first light guide (103) includes a pair of first (133R) and second (134R) matched diffractive optics. The second light guide (103) includes a pair of fourth (133G) and fourth (134G) matched diffractive optics. The third light guide (103) includes a pair of fifth (133B) and sixth (134B) matched diffractive optics.

本構成では、1つの光ガイドが目(47)の前にある場合があり、光ガイド(103)、(102)、(101)、および(20)の間の偏光を随意に管理することができない。この構成では、光ガイドは、互いの上に直接配置されうる(典型的には、空隙がTIRを維持するために光ガイド間で使用される)。 In this configuration, one light guide may be in front of the eye (47) and the polarization between light guides (103), (102), (101) and (20) can be managed at will. Can not. In this configuration, the light guides may be placed directly on top of each other (typically air gaps are used between the light guides to maintain TIR).

ここで図14のAおよび図14のBを参照すると、回折-反射の例示的な実施形態の側面視および正面視それぞれの大まかな略図が示される。本実施形態は図12のAおよび図12のBに関して記述された操作に類似しており、光ガイド(2012)は、取り換えられ/増大させている(3つの光ガイド(160R)、(160G)および(160B)と取り替えられる)。各光ガイド(160R)、(160G)、(160B)への光(38)の内連結は、それぞれの、高度に反射する内部ファセット/中央スプリッティングミラー(central splitting mirrors)(165R)、(165G)、(165B)による。横への(側方の)拡大は各光ガイド(160R)、(160G)、(160B)において回折性であり、次に、第1の拡大光(38C)はユーザーの目(47)へと外連結するために光ガイド(20)へ回折され/転換される。 Referring now to FIGS. 14A and 14B, schematic side and front views, respectively, of a diffractive-reflective exemplary embodiment are shown. This embodiment is similar to the operation described with respect to FIGS. 12A and 12B, where the light guides (2012) are replaced/augmented (3 light guides (160R), (160G) and (160B)). The internal coupling of the light (38) to each light guide (160R), (160G), (160B) is via the respective highly reflective internal facets/central splitting mirrors (165R), (165G). , (165B). The lateral (lateral) expansion is diffractive in each light guide (160R), (160G), (160B), and the first expanded light (38C) then passes into the user's eye (47). It is diffracted/converted into a light guide (20) for coupling out.

ここで図14のCを参照すると、回折-回折-反射の例示的な実施形態の正面視の大まかな略図が示される。本実施形態は、図12のCに関して記述された操作に似ており、回折コンポーネント(66)は、回折コンポーネント(133R)、(133G)、(133B)のセットにより取り替えられ/増大させられ、および、それぞれの各光ガイド(159R)、(159G)、(159B)の中心にある第1の各回折コンポーネント(133R)、(133G)、(133B)の後に二色反射器(それぞれ(133R1)、(133G1)、(133B1))が連係している。一致する回折素子(134R)、(134G)、(134B)は、中央の回折コンポーネント(133R)、(133G)、(133B)のいずれか一方の側部上の複数の回折素子(134R1)、(134R2)、(134G1)、(134G2)、(134B1)、(134B2)と取り替えられる。 Referring now to FIG. 14C, a rough diagram of a front view of a diffraction-diffraction-reflection exemplary embodiment is shown. This embodiment is similar to the operation described with respect to FIG. , a dichroic reflector ((133R1), respectively, after each first diffractive component (133R), (133G), (133B) in the center of each light guide (159R), (159G), (159B), respectively. (133G1), (133B1)) are linked. Matching diffractive elements (134R), (134G), (134B) are connected to multiple diffractive elements (134R1), ( 134R2), (134G1), (134G2), (134B1), and (134B2).

ここで図15のA、図15のBおよび図15のCを参照すると、回折-反射-反射の例示的な実施形態の側面視、正面視、および上面視のそれぞれの大まかな略図が示される。
本実施形態では、反射開口エキスパンダは回折エキスパンダの前にある。4つの光ガイドが使用され、それらは反射コンポーネント(201)、および3つの回折コンポーネント(205)、(206)および(207)である。反射コンポーネント(201)は反射を側方に拡大する光ガイドである。この反射光ガイド(201)は、1D光ガイド(図4のAの光ガイド(20)に類似)、または2D光ガイド(図8のCの光ガイド(10)に類似)であってもよい。反射光ガイド(201)へと連結する光は、内連結された光(38)の波長をすべて含み、したがって、反射光ガイド(201)は反射器(図4のAの反射面(16)など)、またはプリズム(図8のCの傾斜されたプリズム(7)など)を含みうる。
Referring now to FIGS. 15A, 15B, and 15C, schematic side, front, and top views, respectively, of a diffraction-reflection-reflection exemplary embodiment are shown. .
In this embodiment, the reflective aperture expander is in front of the diffractive expander. Four light guides are used: a reflective component (201) and three diffractive components (205), (206) and (207). The reflective component (201) is a light guide that expands the reflection laterally. This reflective light guide (201) may be a 1D light guide (similar to light guide (20) in FIG. 4A) or a 2D light guide (similar to light guide (10) in FIG. 8C). . The light coupled into the reflective light guide (201) contains all the wavelengths of the intercoupled light (38), and therefore the reflective light guide (201) is connected to a reflector (such as the reflective surface (16) of A in FIG. 4). ), or a prism (such as the tilted prism (7) of FIG. 8C).

ファセット(203)(平面図である図15のCで描写されている)は、ガイドされた光を、前方へ、かつ、光ガイド(201)から光ガイド(205)、(206)および(207)へ転換させる。光ガイド(205)、(206)および(207)のそれぞれは、それぞれの内連結格子(209R)、(209G)、(209B)を有する。これらの内連結格子(209R)、(209G)、(209B)は、各光ガイドごとに異なる周期を持ち、したがって、異なる波長はそれぞれの内連結格子によって、それぞれに関連する光ガイドへ、連結されるだろう。 Facets (203) (depicted in FIG. 15C in top view) direct the guided light forward and from light guide (201) to light guides (205), (206) and (207). ). Each of the light guides (205), (206) and (207) has a respective inner coupling grating (209R), (209G), (209B). These intercoupling gratings (209R), (209G), (209B) have different periods for each light guide, so that different wavelengths are coupled by each intercoupling grating to the respective associated light guide. It will be.

光は光ガイド(205)、(206)および(207)内で伝播して、各光ガイド内の波長に応じて設計され、かつそれぞれの内連結格子(209R)、(209G)、(209B)に一致させられたそれぞれの格子(25R)、(25G)、(25B)によって観察者(47)の方へ外連結(38B)する。 The light propagates in the light guides (205), (206) and (207), which are designed according to the wavelength within each light guide and the respective inner coupling gratings (209R), (209G), (209B). externally coupled (38B) towards the observer (47) by respective gratings (25R), (25G), (25B) matched with each other.

一般に、反射光学部品(ファセット(203))は第1の光ガイド(201)内の拡大の第1の方向に内連結光(38)を拡大するように構成され、それによって、第1の拡大光(38C)を生成する。第1の回折光学部品(209R)、第3の回折光学部品(209G)、および第4の回折光学部品(209B)は、それぞれ、第1の光ガイド(205)、第2の光ガイド(206)および第3の光ガイド(207)中で、第1の拡大光のそれぞれの波長を連結するように構成される。第2の回折光学部品(25R)、第4の回折光学部品(25G)、および第6の回折光学部品(25B)は、外連結された光(38B)として第3の方向にそれぞれの光を拡大し外連結するように構成される。 Generally, the reflective optics (facets (203)) are configured to expand the intercoupling light (38) in a first direction of expansion within the first light guide (201), thereby Generates light (38C). The first diffractive optical component (209R), the third diffractive optical component (209G), and the fourth diffractive optical component (209B) are connected to the first light guide (205) and the second light guide (206), respectively. ) and a third light guide (207) configured to couple the respective wavelengths of the first expanded light. The second diffractive optical component (25R), the fourth diffractive optical component (25G), and the sixth diffractive optical component (25B) transmit their respective lights in a third direction as externally coupled light (38B). Configured to expand and connect externally.

ここで図15のDを参照すると、角度領域(角度間隔)の中で伝播する光についての図15のA、図15のBおよび図15のCの回折の方向のダイヤグラムが示される。図15のA-図15のCで示される単一の光ガイドの角度の方向の正面図は、図15のDで示される。光は方向(1005)に連結され、反射ミラー(203)が光線を分散させることなく、方向(1007)へと転換させる。回折内連結コンポーネント((209R)、(209G)、(209B)のうちの1つ)は、光線を分散させながら下方へと転換させ、一方で、回折コンポーネント(格子(25R)、(25G)、(25B)のうちの1つ)は相対する光パワーを有しており、したがって、光は分散せずに(重なる方向(1007))へと連結する。 Referring now to FIG. 15D, there is shown a diagram of the direction of diffraction of FIGS. 15A, 15B, and 15C for light propagating within an angular domain (angular interval). The angular front view of the single light guide shown in FIGS. 15A-15C is shown in FIG. 15D. The light is coupled in direction (1005) and a reflective mirror (203) converts the light beam into direction (1007) without scattering it. The intra-diffractive coupling component (one of the gratings (209R), (209G), (209B)) diverts the light beam downward while scattering, while the diffractive component (one of the gratings (25R), (25G), (25B)) have opposing optical powers, so the light is coupled in the overlapping direction (1007) without being dispersed.

この構成は強い反分散特性を持っており、したがって、少ない数のコンポーネントで使用して、狭い場(角スペクトル)で1つ以上のカラーチャンネル(R、G、B)を伝達できる。例えば、3つの光ガイド(205)、(206)および(207)を単一の光ガイドとして実装することができ、または、2つのカラーチャンネルの組み合わせを単一の光ガイド中で実装できる({赤および緑、青}または{赤、緑および青}のセットなど)。 This configuration has strong anti-dispersion properties and can therefore be used with a small number of components to convey more than one color channel (R, G, B) in a narrow field (angular spectrum). For example, three light guides (205), (206) and (207) can be implemented as a single light guide, or a combination of two color channels can be implemented in a single light guide ({ (such as a set of {red, green, blue} or {red, green, and blue}).

上述の例、使用された符号、および例示的な計算は、この実施形態の説明を支援するものであることを留意されたい。不注意な誤字、数学的な誤差、および/または、単純化した計算を使用しても、本発明の有用性および基礎的な利点は損なわれない。 It should be noted that the examples described above, the symbols used, and the example calculations assist in explaining this embodiment. The use of inadvertent typographical errors, mathematical errors, and/or simplistic calculations does not impair the usefulness and fundamental advantages of the present invention.

添付された請求項が複数の従属関係なしに起草された点について、これは、単にそのような複数の従属関係を許容しない法的管轄区域において方式要件に対応するために行われた。請求項を複合的に従属させるようにすることにより意味される特徴のあらゆる組み合わせが、明示的に想定され、本発明の一部として考慮されるべきであることを留意されたい。 To the extent that the appended claims were drafted without multiple dependencies, this was done solely to accommodate formal requirements in jurisdictions that do not permit such multiple dependencies. It is noted that all combinations of features meant by making the claims multiple dependent are expressly contemplated and should be considered as part of the invention.

上記の説明は例としてのみ提供されることを意図しており、添付の特許請求の範囲に定義された本発明の範囲内で他の多くの実施形態が可能であることを理解されるであろう。 It is to be understood that the above description is intended to be provided as an example only and that many other embodiments are possible within the scope of the invention as defined in the appended claims. Dew.

Claims (8)

光学的開口拡大のための装置であって:
(a)少なくとも1つの光ガイド;
(b)前記少なくとも1つの光ガイドに関連付けられた1セットの3つの光学部品であって、
(i)1対の第1および第2の一致する回折光学部品;および
(ii)複数の部分反射する互いに平行な面の配列を含む反射光学部品を含む、1セットの3つの光学部品;および
(c)内連結された光を外連結された光に拡大するために協働する光学部品を含み、
(i)前記内連結された光は、前記少なくとも1つの光ガイドへと連結された光であり、および
(ii)前記拡大は二次元である、装置。
A device for optical aperture enlargement, comprising:
(a) at least one light guide;
(b) a set of three optical components associated with the at least one light guide;
(i) a pair of first and second matched diffractive optics; and (ii) a set of three optics, including a reflective optic including an array of partially reflective mutually parallel surfaces; and (c) comprising optical components that cooperate to expand the incoupled light into the outcoupled light;
(i) the intercoupled light is light coupled into the at least one light guide; and (ii) the expansion is two-dimensional.
(a)前記セットの第1の光学部品は、第1の光ガイド内の拡大の第1の方向で前記内連結された光を方向付けるために構成され、それによって、第1の拡大された光を生成し;
(b)前記セットの第2の光学部品は、拡大の第2の方向で前記第1の拡大された光を第2の光ガイドへと連結するために構成され、それによって、第2の拡大された光を生成し;および
(c)前記セットの第3の光学部品は、前記第2の拡大された光を前記外連結された光として第3の方向で外連結するために構成され;
(d)ここで、第1、第2および第3の方向は互いに平行ではない、請求項1に記載の装置。
(a) a first optical component of the set is configured to direct the intercoupled light in a first direction of expansion within a first light guide, thereby generate light;
(b) a second optical component of the set is configured to couple the first magnified light into a second light guide in a second direction of magnification, thereby providing a second magnified light guide; and (c) a third optical component of the set is configured to outcouple the second expanded light as the outcoupled light in a third direction;
d) The apparatus of claim 1, wherein the first, second and third directions are not parallel to each other.
(a)光を前記内連結された光として前記少なくとも1つの光ガイドへと方向付けるように構成された非回折光学部品をさらに含み;
(b)ここで、前記少なくとも1つの光ガイドは1つの光ガイドであり、該1つの光ガイドは、
(i)前記1つの光ガイド内の拡大の第1の方向で前記内連結された光を方向付けるために構成され、それによって、第1の拡大された光を生成する、第1の回折光学部品;
(ii)拡大の第2の方向で前記1つの光ガイドにおいて前記第1の拡大された光を拡大するために構成され、それによって、第2の拡大された光を生成する、第2の回折光学部品;および
(iii)前記第2の拡大された光を前記外連結された光として第3の方向で外連結するために構成された反射光学部品を含み;
(iv)ここで、前記第1、第2および第3の方向は互いに平行ではない、請求項1に記載の装置。
(a) further comprising a non-diffractive optical component configured to direct light as the intercoupled light into the at least one light guide;
(b) wherein the at least one light guide is a light guide, and the one light guide is:
(i) a first diffractive optic configured to direct the intercoupled light in a first direction of expansion within the one light guide, thereby producing a first expanded light; parts;
(ii) a second diffraction configured to expand the first expanded light in the one light guide in a second direction of expansion, thereby producing a second expanded light; an optical component; and (iii) a reflective optical component configured to couple out the second expanded light as the coupled out light in a third direction;
(iv) The apparatus of claim 1, wherein the first, second and third directions are not parallel to each other.
(i)1対の第3および第4の一致する回折光学部品;および
(ii)1対の第5および第6の一致する回折光学部品をさらに含む、請求項1に記載の装置。
2. The apparatus of claim 1, further comprising: (i) a pair of third and fourth matched diffractive optical components; and (ii) a pair of fifth and sixth matched diffractive optical components.
一致する対の回折光学部品の各々は、他の一致する対の回折光学部品とは異なる回折間隔を有し、該回折間隔は、一致する対の回折光学部品の各々が、他の一致する対の回折光学部品から類似した角度によって異なる波長を屈折させるような回折間隔である、請求項4に記載の装置。 Each of the matched pairs of diffractive optics has a diffraction spacing that is different from the other matched pairs of diffractive optics, and the diffraction spacing is such that each of the matched pairs of diffractive optics has a different diffraction spacing than the other matched pairs of diffractive optics. 5. The apparatus of claim 4, wherein the diffraction spacing is such that different wavelengths are refracted by similar angles from the diffractive optics. 前記波長は、赤色、緑色、および青色の光である、請求項5に記載の装置。 6. The apparatus of claim 5, wherein the wavelengths are red, green, and blue light. (a)前記少なくとも1つの光ガイドの第1の光ガイドは、前記対の第1および第2の一致する回折光学部品を含み;
(b)前記少なくとも1つの光ガイドの第2の光ガイドは、前記対の第3および第4の一致する回折光学部品を含み;および
(c)前記少なくとも1つの光ガイドの第3の光ガイドは、前記対の第5および第6の一致する回折光学部品を含む、請求項5に記載の装置。
(a) a first light guide of the at least one light guide includes the pair of first and second matched diffractive optical components;
(b) a second light guide of the at least one light guide includes third and fourth matched diffractive optics of the pair; and (c) a third light guide of the at least one light guide. 6. The apparatus of claim 5, wherein includes fifth and sixth matched diffractive optical components of the pair.
(a)前記反射光学部品は、第1の光ガイド内の拡大の第1の方向で前記内連結された光を拡大するように構成され、それによって、第1の拡大された光を生成し;
(b)第1、第3、および第4の回折光学部品は、拡大の第2の方向でそれぞれの第1、第2、および第3の光ガイドにおいて前記第1の拡大された光のそれぞれの波長を拡大するために構成され、それによって、それぞれの第2の拡大された光を生成し;および
(c)第2、第4、および第6の回折光学部品は、前記それぞれの第2の拡大された光を前記外連結された光として第3の方向で外連結するために構成され;
(d)ここで、前記第1、第2および第3の方向は互いに平行ではない、請求項7に記載の装置。
(a) the reflective optic is configured to expand the intercoupled light in a first direction of expansion within a first light guide, thereby producing a first expanded light; ;
(b) first, third, and fourth diffractive optical components each of said first magnified light in a respective first, second, and third light guide in a second direction of magnification; (c) second, fourth, and sixth diffractive optical components configured to expand the wavelength of said respective second beams, thereby producing respective second expanded beams; configured to externally couple the expanded light of as the externally coupled light in a third direction;
8. The apparatus of claim 7, wherein (d) the first, second and third directions are not parallel to each other.
JP2023168964A 2017-02-22 2023-09-29 light guide optical assembly Pending JP2023171872A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762461805P 2017-02-22 2017-02-22
US62/461,805 2017-02-22
JP2018510950A JP6980209B2 (en) 2017-02-22 2018-02-22 Optical guide optical assembly
PCT/IL2018/050205 WO2018154576A1 (en) 2017-02-22 2018-02-22 Light guide optical assembly
JP2021182264A JP7365717B2 (en) 2017-02-22 2021-11-09 light guide optical assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021182264A Division JP7365717B2 (en) 2017-02-22 2021-11-09 light guide optical assembly

Publications (1)

Publication Number Publication Date
JP2023171872A true JP2023171872A (en) 2023-12-05

Family

ID=63253130

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018510950A Active JP6980209B2 (en) 2017-02-22 2018-02-22 Optical guide optical assembly
JP2021182264A Active JP7365717B2 (en) 2017-02-22 2021-11-09 light guide optical assembly
JP2023168964A Pending JP2023171872A (en) 2017-02-22 2023-09-29 light guide optical assembly

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018510950A Active JP6980209B2 (en) 2017-02-22 2018-02-22 Optical guide optical assembly
JP2021182264A Active JP7365717B2 (en) 2017-02-22 2021-11-09 light guide optical assembly

Country Status (8)

Country Link
US (6) US10302835B2 (en)
EP (1) EP3397998A4 (en)
JP (3) JP6980209B2 (en)
KR (4) KR102655450B1 (en)
CN (1) CN108738358B (en)
IL (3) IL292456B (en)
TW (1) TWI754010B (en)
WO (1) WO2018154576A1 (en)

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Substrate-guided optical device utilizing beam splitters
US10048499B2 (en) 2005-11-08 2018-08-14 Lumus Ltd. Polarizing optical system
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-mounted display system
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd Compact head-mounted display system protected by a hyperfine structure
IL237337B (en) 2015-02-19 2020-03-31 Amitai Yaakov Compact head-mounted display system having uniform image
WO2017100721A1 (en) * 2015-12-09 2017-06-15 Glotech Inc. Multicolor transparent displays
CN108235739B (en) 2016-10-09 2021-03-16 鲁姆斯有限公司 Aperture multiplier using rectangular waveguides
KR102541662B1 (en) 2016-11-08 2023-06-13 루머스 리미티드 Light-guide device with optical cutoff edge and corresponding production methods
US10371896B2 (en) * 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
WO2018138714A1 (en) 2017-01-28 2018-08-02 Lumus Ltd. Augmented reality imaging system
KR102655450B1 (en) 2017-02-22 2024-04-05 루머스 리미티드 Light guide optical assembly
CN113341566B (en) 2017-03-22 2023-12-15 鲁姆斯有限公司 Overlapping reflective surface constructions
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Light-guide optical element and method of its manufacture
WO2019016813A1 (en) 2017-07-19 2019-01-24 Lumus Ltd. Lcos illumination via loe
US11513352B2 (en) 2017-09-29 2022-11-29 Lumus Ltd. Augmented reality display
WO2019077614A1 (en) 2017-10-22 2019-04-25 Lumus Ltd. Head-mounted augmented reality device employing an optical bench
KR102570722B1 (en) 2017-11-21 2023-08-24 루머스 리미티드 Optical Aperture Expansion Array for Near Eye Displays
IL275013B (en) 2017-12-03 2022-08-01 Lumus Ltd Optical device testing method and apparatus
KR20200096274A (en) 2017-12-03 2020-08-11 루머스 리미티드 Optical device alignment method
TWI791728B (en) 2018-01-02 2023-02-11 以色列商魯姆斯有限公司 Augmented reality display with active alignment
US10506220B2 (en) 2018-01-02 2019-12-10 Lumus Ltd. Augmented reality displays with active alignment and corresponding methods
US10551544B2 (en) * 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US10572731B1 (en) * 2018-03-13 2020-02-25 Facebook Technologies, Llc Infrared transparent backlight device for eye tracking applications
EP3775827B1 (en) 2018-04-08 2023-07-05 Lumus Ltd. Apparatus for optical testing of plate-shaped optical elements
US10830938B2 (en) 2018-05-14 2020-11-10 Lumus Ltd. Projector configuration with subdivided optical aperture for near-eye displays, and corresponding optical systems
US11442273B2 (en) 2018-05-17 2022-09-13 Lumus Ltd. Near-eye display having overlapping projector assemblies
IL259518B2 (en) 2018-05-22 2023-04-01 Lumus Ltd Optical system and method for improvement of light field uniformity
KR20210013173A (en) 2018-05-23 2021-02-03 루머스 리미티드 Optical system with light guide optical element with partially reflective inner surface
KR20210022708A (en) 2018-06-21 2021-03-03 루머스 리미티드 Measurement technology for the non-uniformity of refractive index between the plates of the optical element of the light guide
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US11409103B2 (en) 2018-07-16 2022-08-09 Lumus Ltd. Light-guide optical element employing polarized internal reflectors
TWI827663B (en) * 2018-09-06 2024-01-01 以色列商魯姆斯有限公司 Near-eye display with laser diode illumination
US11543583B2 (en) * 2018-09-09 2023-01-03 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
TWM642752U (en) 2018-11-08 2023-06-21 以色列商魯姆斯有限公司 Light-guide display with reflector
US11947130B2 (en) 2018-11-08 2024-04-02 Lumus Ltd. Optical devices and systems with dichroic beamsplitter color combiner
TWM598414U (en) 2018-11-11 2020-07-11 以色列商魯姆斯有限公司 Near eye display with intermediate window
US10690831B2 (en) * 2018-11-20 2020-06-23 Facebook Technologies, Llc Anisotropically formed diffraction grating device
JP7229275B2 (en) * 2018-12-11 2023-02-27 富士フイルム株式会社 Cholesteric liquid crystal layer, method for forming cholesteric liquid crystal layer, laminate, light guide element, and image display device
JP7161934B2 (en) * 2018-12-21 2022-10-27 株式会社日立エルジーデータストレージ Video display device and video display system
US11314092B2 (en) * 2019-01-11 2022-04-26 Google Llc Systems, devices, and methods for light guide based wearable heads-up displays
KR20210113594A (en) 2019-01-15 2021-09-16 루머스 리미티드 How to fabricate a symmetric light guide optical element
EP3903138B1 (en) * 2019-01-24 2023-03-08 Lumus Ltd. Optical systems including loe with three stage expansion
WO2020183229A1 (en) 2019-03-12 2020-09-17 Lumus Ltd. Image projector
CN110058410B (en) * 2019-03-20 2020-12-15 华为技术有限公司 Waveguide assembly and near-to-eye display device
EP3987340B1 (en) 2019-06-23 2024-03-13 Lumus Ltd. Display with foveated optical correction
EP3990967A4 (en) 2019-06-27 2022-08-03 Lumus Ltd. Apparatus and methods for eye tracking based on eye imaging via a light-guide optical element
BR112021025737A2 (en) 2019-07-04 2022-02-15 Lumus Ltd Optical system and optical system for displaying an image to a user's eye
US11774757B2 (en) * 2019-07-22 2023-10-03 Apple Inc. Optical module for head-mountable device
US11249235B2 (en) * 2019-08-12 2022-02-15 Himax Display, Inc. Light guide module and augmented reality apparatus having the same
WO2021076148A1 (en) 2019-10-18 2021-04-22 Google Llc Diffractive optical elements for large-field image display
EP4041491B1 (en) 2019-11-25 2023-07-26 Lumus Ltd. Method of polishing a surface of a waveguide
IL270991B (en) 2019-11-27 2020-07-30 Lumus Ltd Lightguide optical element for polarization scrambling
JP7396738B2 (en) 2019-12-05 2023-12-12 ルーマス リミテッド Light-guiding optics with complementary coating partial reflectors and light-guiding optics with reduced light scattering
CN114746797A (en) * 2019-12-08 2022-07-12 鲁姆斯有限公司 Optical system with compact image projector
US11709363B1 (en) * 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
GB2593214B (en) * 2020-03-20 2022-06-08 Envisics Ltd A display device and system
KR102623956B1 (en) 2020-05-24 2024-01-10 루머스 리미티드 Method for manufacturing composite light guiding optical elements
EP3916468A1 (en) * 2020-05-29 2021-12-01 Nokia Technologies Oy Optical apparatuses and methods
DE202021104723U1 (en) 2020-09-11 2021-10-18 Lumus Ltd. Image projector coupled to an optical light guide element
CN112130324A (en) * 2020-09-16 2020-12-25 谷东科技有限公司 Near-to-eye display optical coupler and near-to-eye display optical system
GB2599144B (en) * 2020-09-28 2023-05-24 Snap Inc Waveguide assembly
CN116438479B (en) 2020-09-29 2024-05-10 阿维甘特公司 Architecture for illuminating a display panel
EP4222416A4 (en) * 2020-10-01 2024-03-27 Lumus Ltd Compound light-guide optical elements
US11737954B1 (en) 2020-10-06 2023-08-29 Verily Life Sciences Llc Network-connected containers having medication stored therein
WO2022097153A1 (en) 2020-11-09 2022-05-12 Lumus Ltd. Color corrected back reflection in ar systems
JP7490286B2 (en) * 2021-02-25 2024-05-27 ルーマス リミテッド Optical aperture multiplier with rectangular waveguide.
EP4237903A4 (en) 2021-03-01 2024-04-24 Lumus Ltd Optical system with compact coupling from a projector into a waveguide
IL308019B1 (en) * 2021-05-19 2024-02-01 Lumus Ltd Active optical engine
CN113219671A (en) * 2021-05-25 2021-08-06 深圳市光舟半导体技术有限公司 Optical device and display apparatus
WO2023281369A1 (en) 2021-07-04 2023-01-12 Lumus Ltd. Color shifted optical system for near-eye displays
CN117396792A (en) 2021-07-04 2024-01-12 鲁姆斯有限公司 Display with stacked light guide elements providing different portions of field of view
KR20240046489A (en) 2021-08-23 2024-04-09 루머스 리미티드 Method for manufacturing composite light guiding optical elements with embedded coupling-in reflector
GB2610870A (en) * 2021-09-21 2023-03-22 Envisics Ltd Holographic system and pupil expander therefor
GB2614027A (en) * 2021-09-21 2023-06-28 Envisics Ltd Compact head-up display
GB2610875A (en) * 2021-09-21 2023-03-22 Envisics Ltd Compact head-up display
CN114167601B (en) * 2021-11-10 2022-11-18 北京灵犀微光科技有限公司 Triple pupil expanding device
CN114167600A (en) * 2021-11-10 2022-03-11 北京灵犀微光科技有限公司 Compact pupil expanding device
WO2023101934A1 (en) * 2021-12-02 2023-06-08 Google Llc Waveguides for displays constructed from a combination of flat and curved surfaces
US11741861B1 (en) 2022-02-08 2023-08-29 Lumus Ltd. Optical system including selectively activatable facets
KR20230135489A (en) * 2022-03-16 2023-09-25 엘지이노텍 주식회사 Light guide member with diffraction pattern
CN115903158B (en) * 2023-01-09 2023-08-11 江苏中天科技股份有限公司 Butterfly-shaped band-shaped optical cable

Family Cites Families (388)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2748659A (en) 1951-02-26 1956-06-05 Jenaer Glaswerk Schott & Gen Light source, searchlight or the like for polarized light
US2746650A (en) 1952-09-11 1956-05-22 C V Machf H Vissers Machines for spreading artificial fertilizers and the like
US2886911A (en) 1953-07-23 1959-05-19 George K C Hardesty Duo-panel edge illumination system
US2795069A (en) 1956-02-07 1957-06-11 George K C Hardesty Laminated metal-plastic illuminable panel
DE1422172B1 (en) 1961-12-07 1970-11-12 Kopperschmidt & Co Carl W periscope
US3491245A (en) 1967-04-10 1970-01-20 George K C Hardesty Guided light display panel
US3677621A (en) 1969-11-24 1972-07-18 Vickers Ltd Optical field flattening devices
US3626394A (en) 1970-04-09 1971-12-07 Magnavox Co Magneto-optical system
US3667621A (en) 1970-10-20 1972-06-06 Wisconsin Foundry And Machine Fluid power system for a self-contained unloading unit
US3737212A (en) 1970-12-14 1973-06-05 Gen Electric Diffraction optics head up display
GB1377627A (en) 1971-09-01 1974-12-18 Rank Organisation Ltd Beam splitting prisms
CH563945A5 (en) 1971-10-20 1975-07-15 Balzers Patent Beteilig Ag
US3857109A (en) 1973-11-21 1974-12-24 Us Navy Longitudinally-pumped two-wavelength lasers
US3873209A (en) 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
FR2295436A1 (en) 1974-12-16 1976-07-16 Radiotechnique Compelec DIRECTIVE COUPLING DEVICE FOR MULTIMODES OPTICAL FIBERS
US3940204A (en) 1975-01-23 1976-02-24 Hughes Aircraft Company Optical display systems utilizing holographic lenses
US3969023A (en) 1975-03-06 1976-07-13 American Optical Corporation Method and apparatus for detecting layers of stress in lenses
GB1514977A (en) 1975-12-02 1978-06-21 Standard Telephones Cables Ltd Detecting oil in water
US4084883A (en) 1977-02-28 1978-04-18 The University Of Rochester Reflective polarization retarder and laser apparatus utilizing same
DE3000402A1 (en) 1979-01-19 1980-07-31 Smiths Industries Ltd DISPLAY DEVICE
US4355864A (en) 1980-03-26 1982-10-26 Sperry Corporation Magnetooptic switching devices
US4331387A (en) 1980-07-03 1982-05-25 Westinghouse Electric Corp. Electro-optical modulator for randomly polarized light
US4383740A (en) 1980-10-31 1983-05-17 Rediffusion Simulation Incorporated Infinity image visual display system
FR2496905A1 (en) 1980-12-24 1982-06-25 France Etat EPISCOPE WITH MULTIMODES REFLECTIONS
DE3266408D1 (en) 1981-10-14 1985-10-24 Gec Avionics Optical arrangements for head-up displays and night vision goggles
US4516828A (en) 1982-05-03 1985-05-14 General Motors Corporation Duplex communication on a single optical fiber
US4516628A (en) 1982-09-30 1985-05-14 Ward William F Heat recovery system and method
FR2562273B1 (en) 1984-03-27 1986-08-08 France Etat Armement DEVICE FOR OBSERVING THROUGH A WALL IN TWO OPPOSITE DIRECTIONS
US4715684A (en) 1984-06-20 1987-12-29 Hughes Aircraft Company Optical system for three color liquid crystal light valve image projection system
US4711512A (en) 1985-07-12 1987-12-08 Environmental Research Institute Of Michigan Compact head-up display
US4720189A (en) 1986-01-07 1988-01-19 Northern Telecom Limited Eye-position sensor
AT390677B (en) 1986-10-10 1990-06-11 Avl Verbrennungskraft Messtech SENSOR ELEMENT FOR DETERMINING SUBSTANCE CONCENTRATIONS
US4805988A (en) 1987-07-24 1989-02-21 Nelson Dones Personal video viewing device
US4798448A (en) 1988-02-16 1989-01-17 General Electric Company High efficiency illumination system for display devices
US4932743A (en) 1988-04-18 1990-06-12 Ricoh Company, Ltd. Optical waveguide device
GB2220081A (en) 1988-06-21 1989-12-28 Hall & Watts Defence Optics Lt Periscope apparatus
FR2638242B1 (en) 1988-10-21 1991-09-20 Thomson Csf OPTICAL COLLIMATION SYSTEM, ESPECIALLY FOR A HELMET VISUAL
DE68909553T2 (en) 1988-10-21 1994-01-27 Thomson Csf Optical collimation system for a helmet view indicator.
CN1043203A (en) 1988-12-02 1990-06-20 三井石油化学工业株式会社 Optical output controlling method and device thereof
JPH02182447A (en) 1989-01-09 1990-07-17 Mitsubishi Electric Corp Dielectric multilayer reflecting film
US5880888A (en) 1989-01-23 1999-03-09 Hughes Aircraft Company Helmet mounted display system
US4978952A (en) 1989-02-24 1990-12-18 Collimated Displays Incorporated Flat screen color video display
FR2647556B1 (en) 1989-05-23 1993-10-29 Thomson Csf OPTICAL DEVICE FOR INTRODUCING A COLLIMATED IMAGE INTO THE VISUAL FIELD OF AN OBSERVER AND HELMET COMPRISING AT LEAST ONE SUCH DEVICE
JPH04219657A (en) 1990-04-13 1992-08-10 Ricoh Co Ltd Magneto-optical information recording and reproducing device and mode splitter
JPH04289531A (en) 1990-05-21 1992-10-14 Ricoh Co Ltd Optical information recording and reproducing device and prism coupler
US5157526A (en) 1990-07-06 1992-10-20 Hitachi, Ltd. Unabsorbing type polarizer, method for manufacturing the same, polarized light source using the same, and apparatus for liquid crystal display using the same
US5096520A (en) 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
JPH04159503A (en) 1990-10-24 1992-06-02 Ricoh Co Ltd Prism coupler
US5751480A (en) 1991-04-09 1998-05-12 Canon Kabushiki Kaisha Plate-like polarizing element, a polarizing conversion unit provided with the element, and a projector provided with the unit
FR2683918B1 (en) 1991-11-19 1994-09-09 Thomson Csf MATERIAL CONSTITUTING A RIFLE SCOPE AND WEAPON USING THE SAME.
US5367399A (en) 1992-02-13 1994-11-22 Holotek Ltd. Rotationally symmetric dual reflection optical beam scanner and system using same
US5383053A (en) 1992-04-07 1995-01-17 Hughes Aircraft Company Virtual image display having a high efficiency grid beamsplitter
US5301067A (en) 1992-05-06 1994-04-05 Plx Inc. High accuracy periscope assembly
US5231642A (en) 1992-05-08 1993-07-27 Spectra Diode Laboratories, Inc. Semiconductor ring and folded cavity lasers
US5369415A (en) 1992-06-29 1994-11-29 Motorola, Inc. Direct retinal scan display with planar imager
US5680209A (en) 1992-08-13 1997-10-21 Maechler; Meinrad Spectroscopic systems for the analysis of small and very small quantities of substances
US6144347A (en) 1992-10-09 2000-11-07 Sony Corporation Head-mounted image display apparatus
US5537173A (en) 1992-10-23 1996-07-16 Olympus Optical Co., Ltd. Film winding detecting means for a camera including control means for controlling proper and accurate winding and rewinding of a film
IL103900A (en) 1992-11-26 1998-06-15 Electro Optics Ind Ltd Optical system
JP2777041B2 (en) 1993-02-12 1998-07-16 京セラ株式会社 Watch cover glass
DE69434719T2 (en) 1993-02-26 2007-02-08 Yeda Research And Development Co., Ltd. Optical holographic devices
GB2278222A (en) 1993-05-20 1994-11-23 Sharp Kk Spatial light modulator
US5284417A (en) 1993-06-07 1994-02-08 Ford Motor Company Automotive fuel pump with regenerative turbine and long curved vapor channel
JPH09503594A (en) 1993-10-07 1997-04-08 バーチャル ビジョン,インコーポレイティド Binoculars head mounted display system
US5555329A (en) 1993-11-05 1996-09-10 Alliesignal Inc. Light directing optical structure
JPH07199236A (en) 1993-12-28 1995-08-04 Fujitsu Ltd Optical switch and light distributor
US7262919B1 (en) 1994-06-13 2007-08-28 Canon Kabushiki Kaisha Head-up display device with curved optical surface having total reflection
FR2721872B1 (en) 1994-07-01 1996-08-02 Renault DEVICE FOR IMPROVING THE VISION OF A ROAD SCENE
JPH0824260A (en) 1994-07-18 1996-01-30 Olympus Optical Co Ltd Ultrasonic diagnostic apparatus
JPH0870782A (en) 1994-09-08 1996-03-19 Kanebo Foods Ltd Ice cream its preparation
JP3219943B2 (en) 1994-09-16 2001-10-15 株式会社東芝 Planar direct-view display device
JPH08114765A (en) 1994-10-15 1996-05-07 Fujitsu Ltd Polarization separation/conversion element and polarization lighting device using same and projection display device
US5650873A (en) 1995-01-30 1997-07-22 Lockheed Missiles & Space Company, Inc. Micropolarization apparatus
US5999836A (en) 1995-06-06 1999-12-07 Nelson; Robert S. Enhanced high resolution breast imaging device and method utilizing non-ionizing radiation of narrow spectral bandwidth
GB9521210D0 (en) 1995-10-17 1996-08-28 Barr & Stroud Ltd Display system
GB2306741A (en) 1995-10-24 1997-05-07 Sharp Kk Illuminator
DE69636122T2 (en) 1995-11-13 2006-12-07 Takara Bio Inc., Otsu PROCEDURE FOR TRANSFERRING TO TARGET CELLS WITH A RETROVIRUS
JP2921480B2 (en) 1996-03-25 1999-07-19 日本電気株式会社 Method of starting maintenance mode in computer system
US6404550B1 (en) 1996-07-25 2002-06-11 Seiko Epson Corporation Optical element suitable for projection display apparatus
US5829854A (en) 1996-09-26 1998-11-03 Raychem Corporation Angled color dispersement and recombination prism
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
US5886822A (en) 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
JPH10133055A (en) 1996-10-31 1998-05-22 Sharp Corp Photocoupler and its production
IL129515A (en) 1996-11-12 2003-12-10 Planop Planar Optics Ltd Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
US5724163A (en) 1996-11-12 1998-03-03 Yariv Ben-Yehuda Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
US5919601A (en) 1996-11-12 1999-07-06 Kodak Polychrome Graphics, Llc Radiation-sensitive compositions and printing plates
JPH10160961A (en) 1996-12-03 1998-06-19 Mitsubishi Gas Chem Co Inc Optical element
US5944964A (en) 1997-02-13 1999-08-31 Optical Coating Laboratory, Inc. Methods and apparatus for preparing low net stress multilayer thin film coatings
EP0867747A3 (en) 1997-03-25 1999-03-03 Sony Corporation Reflective display device
US6292296B1 (en) 1997-05-28 2001-09-18 Lg. Philips Lcd Co., Ltd. Large scale polarizer and polarizer system employing it
DE19725262C2 (en) 1997-06-13 1999-08-05 Vitaly Dr Lissotschenko Optical beam transformation device
DE69834539D1 (en) 1997-06-16 2006-06-22 Koninkl Philips Electronics Nv PROJECTION UNIT
US5883684A (en) 1997-06-19 1999-03-16 Three-Five Systems, Inc. Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield
US5896232A (en) 1997-08-07 1999-04-20 International Business Machines Corporation Highly efficient and compact frontlighting for polarization-based reflection light valves
RU2124746C1 (en) 1997-08-11 1999-01-10 Закрытое акционерное общество "Кванта Инвест" Dichroic polarizer
GB2329901A (en) 1997-09-30 1999-04-07 Reckitt & Colman Inc Acidic hard surface cleaning and disinfecting compositions
US6091548A (en) 1997-10-01 2000-07-18 Raytheon Company Optical system with two-stage aberration correction
WO1999023524A1 (en) 1997-10-30 1999-05-14 The Microoptical Corporation Eyeglass interface system
CA2326767C (en) 1998-04-02 2009-06-23 Yeda Research And Development Co., Ltd. Holographic optical devices
US6222971B1 (en) 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
US6231992B1 (en) 1998-09-04 2001-05-15 Yazaki Corporation Partial reflector
JP2000155234A (en) 1998-11-24 2000-06-06 Nippon Electric Glass Co Ltd Capillary for optical fiber
JP2000187177A (en) 1998-12-22 2000-07-04 Olympus Optical Co Ltd Image display device
US20050024849A1 (en) 1999-02-23 2005-02-03 Parker Jeffery R. Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides
WO2000063738A1 (en) 1999-04-21 2000-10-26 U.S. Precision Lens Incorporated Optical systems for reflective lcd's
US6798579B2 (en) 1999-04-27 2004-09-28 Optical Products Development Corp. Real imaging system with reduced ghost imaging
US6728034B1 (en) 1999-06-16 2004-04-27 Matsushita Electric Industrial Co., Ltd. Diffractive optical element that polarizes light and an optical pickup using the same
JP3913407B2 (en) 1999-07-09 2007-05-09 株式会社リコー Refractive index distribution measuring apparatus and method
US20030063042A1 (en) 1999-07-29 2003-04-03 Asher A. Friesem Electronic utility devices incorporating a compact virtual image display
US6671100B1 (en) 1999-10-14 2003-12-30 Stratos Product Development Llc Virtual imaging system
US6264328B1 (en) 1999-10-21 2001-07-24 University Of Rochester Wavefront sensor with off-axis illumination
JP2001141924A (en) 1999-11-16 2001-05-25 Matsushita Electric Ind Co Ltd Branching device and branching light-receiving element
JP3828328B2 (en) 1999-12-28 2006-10-04 ローム株式会社 Head mounted display
US6421148B2 (en) 2000-01-07 2002-07-16 Honeywell International Inc. Volume holographic diffusers
KR100441162B1 (en) 2000-01-28 2004-07-21 세이코 엡슨 가부시키가이샤 Light reflective type polarizer and projector using the same
US6789910B2 (en) 2000-04-12 2004-09-14 Semiconductor Energy Laboratory, Co., Ltd. Illumination apparatus
JP2001311904A (en) 2000-04-28 2001-11-09 Canon Inc Device and system for image display
US6362861B1 (en) 2000-05-02 2002-03-26 Agilent Technologies, Inc. Microdisplay system
IL136248A (en) 2000-05-21 2004-08-31 Elop Electrooptics Ind Ltd System and method for varying the transmittance of light through a media
DE60142516D1 (en) * 2000-06-05 2010-08-19 Lumus Ltd OPTICAL RADIATOR WITH SUBSTRATE LIGHTING
US6307612B1 (en) 2000-06-08 2001-10-23 Three-Five Systems, Inc. Liquid crystal display element having a precisely controlled cell gap and method of making same
US6324330B1 (en) 2000-07-10 2001-11-27 Ultratech Stepper, Inc. Folded light tunnel apparatus and method
WO2002008662A1 (en) 2000-07-24 2002-01-31 Mitsubishi Rayon Co., Ltd. Surface illuminant device and prism sheet used therefor
KR100388819B1 (en) 2000-07-31 2003-06-25 주식회사 대양이앤씨 Optical System for Head Mount Display
US6490104B1 (en) * 2000-09-15 2002-12-03 Three-Five Systems, Inc. Illumination system for a micro display
US6542307B2 (en) 2000-10-20 2003-04-01 Three-Five Systems, Inc. Compact near-eye illumination system
US6547416B2 (en) 2000-12-21 2003-04-15 Koninklijke Philips Electronics N.V. Faceted multi-chip package to provide a beam of uniform white light from multiple monochrome LEDs
GB0108838D0 (en) 2001-04-07 2001-05-30 Cambridge 3D Display Ltd Far field display
JP4772204B2 (en) 2001-04-13 2011-09-14 オリンパス株式会社 Observation optical system
KR100813943B1 (en) 2001-04-30 2008-03-14 삼성전자주식회사 Reflection type complex prism and optical pickup apparatus employing it
GB2375188B (en) 2001-04-30 2004-07-21 Samsung Electronics Co Ltd Wearable Display Apparatus with Waveguide Having Diagonally Cut End Face
GB0112871D0 (en) 2001-05-26 2001-07-18 Thales Optics Ltd Improved optical device
US20020186179A1 (en) 2001-06-07 2002-12-12 Knowles Gary R. Optical display device
US6672721B2 (en) 2001-06-11 2004-01-06 3M Innovative Properties Company Projection system having low astigmatism
US6690513B2 (en) 2001-07-03 2004-02-10 Jds Uniphase Corporation Rhomb interleaver
US6791760B2 (en) 2001-07-24 2004-09-14 Itt Manufacturing Enterprises, Inc. Planar diffractive relay
US6927694B1 (en) 2001-08-20 2005-08-09 Research Foundation Of The University Of Central Florida Algorithm for monitoring head/eye motion for driver alertness with one camera
US6556282B2 (en) 2001-09-04 2003-04-29 Rosemount Aerospace, Inc. Combined LOAS and LIDAR system
WO2003023756A1 (en) 2001-09-07 2003-03-20 The Microoptical Corporation Light weight, compact, remountable face-supported electronic display
DE10150656C2 (en) 2001-10-13 2003-10-02 Schott Glas Reflector for a high pressure gas discharge lamp
US6775432B2 (en) 2001-10-19 2004-08-10 Santanu Basu Method and apparatus for optical wavelength demultiplexing, multiplexing and routing
JP2003140081A (en) 2001-11-06 2003-05-14 Nikon Corp Hologram combiner optical system
US7393406B2 (en) 2001-11-13 2008-07-01 Brown Paul W In situ formation of chloride sequestering compounds
JP2003149643A (en) 2001-11-16 2003-05-21 Goyo Paper Working Co Ltd Front light for liquid crystal display
FR2834799B1 (en) 2002-01-11 2004-04-16 Essilor Int OPHTHALMIC LENS WITH PROJECTION INSERT
HRP20020044B1 (en) 2002-01-16 2008-11-30 Mara-Institut D.O.O. Indirectly prestressed, concrete, roof-ceiling construction with flat soffit
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
DE10216169A1 (en) 2002-04-12 2003-10-30 Zeiss Carl Jena Gmbh Arrangement for the polarization of light
US20070165192A1 (en) 2006-01-13 2007-07-19 Silicon Optix Inc. Reduced field angle projection display system
ITTO20020625A1 (en) 2002-07-17 2004-01-19 Fiat Ricerche LIGHT GUIDE FOR "HEAD-MOUNTED" OR "HEAD-UP" TYPE DISPLAY DEVICES
JP4111074B2 (en) 2002-08-20 2008-07-02 セイコーエプソン株式会社 projector
EP1418459A1 (en) 2002-11-08 2004-05-12 3M Innovative Properties Company Optical device comprising cubo-octahedral polyhedron as light flux splitter or light diffusing element
US20050174641A1 (en) 2002-11-26 2005-08-11 Jds Uniphase Corporation Polarization conversion light integrator
US20090190890A1 (en) 2002-12-19 2009-07-30 Freeland Riley S Fiber optic cable having a dry insert and methods of making the same
US7175304B2 (en) 2003-01-30 2007-02-13 Touchsensor Technologies, Llc Integrated low profile display
US7205960B2 (en) 2003-02-19 2007-04-17 Mirage Innovations Ltd. Chromatic planar optic display system
US20040199053A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Autosteering vision endoscope
DE10319274A1 (en) 2003-04-29 2004-12-02 Osram Opto Semiconductors Gmbh light source
US7206133B2 (en) 2003-05-22 2007-04-17 Optical Research Associates Light distribution apparatus and methods for illuminating optical systems
US7298940B2 (en) 2003-06-10 2007-11-20 Abu-Ageel Nayef M Illumination system and display system employing same
WO2004109349A2 (en) 2003-06-10 2004-12-16 Elop Electro-Optics Industries Ltd. Method and system for displaying an informative image against a background image
US7475992B2 (en) 2003-06-10 2009-01-13 Abu-Ageel Nayef M Light recycler and color display system including same
US7379651B2 (en) 2003-06-10 2008-05-27 Abu-Ageel Nayef M Method and apparatus for reducing laser speckle
US7400447B2 (en) 2003-09-03 2008-07-15 Canon Kabushiki Kaisha Stereoscopic image display device
IL157838A (en) 2003-09-10 2013-05-30 Yaakov Amitai High brightness optical device
IL157837A (en) 2003-09-10 2012-12-31 Yaakov Amitai Substrate-guided optical device particularly for three-dimensional displays
JP2005084522A (en) 2003-09-10 2005-03-31 Nikon Corp Combiner optical system
IL157836A (en) 2003-09-10 2009-08-03 Yaakov Amitai Optical devices particularly for remote viewing applications
KR20050037085A (en) 2003-10-17 2005-04-21 삼성전자주식회사 Light tunnel, illuminating device and projector adopting the same
US7430355B2 (en) 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
US7101063B2 (en) 2004-02-05 2006-09-05 Hewlett-Packard Development Company, L.P. Systems and methods for integrating light
JP2005227339A (en) 2004-02-10 2005-08-25 Seiko Epson Corp Light source device, method for manufacturing light source device, and projector
JP2005308717A (en) 2004-03-23 2005-11-04 Shin Etsu Chem Co Ltd Method and instrument for measuring noncircularity of core part in optical fiber base material
EP1731943B1 (en) 2004-03-29 2019-02-13 Sony Corporation Optical device and virtual image display device
WO2005094667A2 (en) 2004-04-01 2005-10-13 Torch William C Biosensors, communicators, and controllers monitoring eye movement and methods for using them
JP4609160B2 (en) 2004-05-17 2011-01-12 株式会社ニコン Optical element, combiner optical system, and information display device
WO2005111669A1 (en) 2004-05-17 2005-11-24 Nikon Corporation Optical element, combiner optical system, and image display unit
TWI282017B (en) 2004-05-28 2007-06-01 Epistar Corp Planar light device
IL162573A (en) 2004-06-17 2013-05-30 Lumus Ltd Substrate-guided optical device with very wide aperture
IL162572A (en) 2004-06-17 2013-02-28 Lumus Ltd High brightness optical device
WO2006001254A1 (en) 2004-06-29 2006-01-05 Nikon Corporation Image combiner and image display device
IL163361A (en) * 2004-08-05 2011-06-30 Lumus Ltd Optical device for light coupling into a guiding substrate
US7329982B2 (en) 2004-10-29 2008-02-12 3M Innovative Properties Company LED package with non-bonded optical element
JP2006145644A (en) 2004-11-17 2006-06-08 Hitachi Ltd Polarization splitter and projection display apparatus using the same
WO2006061927A1 (en) * 2004-12-06 2006-06-15 Nikon Corporation Image display optical system, image display unit, lighting optical system, and liquid crystral display unit
US20060126181A1 (en) 2004-12-13 2006-06-15 Nokia Corporation Method and system for beam expansion in a display device
US7413328B2 (en) 2004-12-30 2008-08-19 Honeywell International Inc. Remotely coupled hybrid HUD backlight
WO2006085309A1 (en) 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Substrate-guided optical device utilizing beam splitters
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
JP2008533507A (en) 2005-02-10 2008-08-21 ラマス リミテッド Substrate guiding optical device especially for vision enhancement optical system
WO2006087709A1 (en) 2005-02-17 2006-08-24 Lumus Ltd. Personal navigation system
WO2006098097A1 (en) 2005-03-14 2006-09-21 Nikon Corporation Image display optical system and image display
US7573640B2 (en) * 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
US8187481B1 (en) 2005-05-05 2012-05-29 Coho Holdings, Llc Random texture anti-reflection optical surface treatment
US7405881B2 (en) 2005-05-30 2008-07-29 Konica Minolta Holdings, Inc. Image display apparatus and head mount display
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
JP4987708B2 (en) 2005-06-20 2012-07-25 パナソニック株式会社 Two-dimensional image display device, illumination light source, and exposure illumination device
JP5030134B2 (en) 2005-08-18 2012-09-19 株式会社リコー Polarization conversion element, polarization conversion optical system, and image projection apparatus
US7434940B2 (en) 2005-09-06 2008-10-14 Hewlett-Packard Development Company, L.P. Light coupling system and method
EP1922580B1 (en) * 2005-09-07 2009-11-04 BAE Systems PLC A projection display with a rod-like, rectangular cross-section waveguide and a plate-like waveguide, each of them having a diffraction grating
US9081178B2 (en) 2005-09-07 2015-07-14 Bae Systems Plc Projection display for displaying an image to a viewer
IL171820A (en) 2005-11-08 2014-04-30 Lumus Ltd Polarizing optical device for light coupling
US10048499B2 (en) 2005-11-08 2018-08-14 Lumus Ltd. Polarizing optical system
TWI297817B (en) 2005-12-30 2008-06-11 Ind Tech Res Inst System and mehtod for recording and reproducing holographic storage which has tracking servo projection
IL173715A0 (en) 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
JP2007219106A (en) * 2006-02-16 2007-08-30 Konica Minolta Holdings Inc Optical device for expanding diameter of luminous flux, video display device and head mount display
IL174170A (en) 2006-03-08 2015-02-26 Abraham Aharoni Device and method for binocular alignment
CN200941530Y (en) 2006-08-08 2007-08-29 牛建民 Semiconductor laser speckle generator
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Substrate- guided optical device
US20090275157A1 (en) 2006-10-02 2009-11-05 Illumitex, Inc. Optical device shaping
US20080151375A1 (en) 2006-12-26 2008-06-26 Ching-Bin Lin Light guide means as dually effected by light concentrating and light diffusing
JP5191771B2 (en) 2007-04-04 2013-05-08 パナソニック株式会社 Surface illumination device and liquid crystal display device using the same
US8643948B2 (en) 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
US8139944B2 (en) 2007-05-08 2012-03-20 The Boeing Company Method and apparatus for clearing an optical channel
US8320032B2 (en) * 2007-06-04 2012-11-27 Nokia Corporation Diffractive beam expander and a virtual display based on a diffractive beam expander
IL183637A (en) 2007-06-04 2013-06-27 Zvi Lapidot Distributed head-mounted display
JP5031452B2 (en) 2007-06-20 2012-09-19 キヤノン株式会社 Image observation apparatus and image observation system
WO2009006640A1 (en) 2007-07-05 2009-01-08 I2Ic Corporation Light source having transparent layers
US7589901B2 (en) 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
JP2009065048A (en) * 2007-09-07 2009-03-26 Rohm Co Ltd Semiconductor light-emitting element and method of manufacturing the same
JP2009128565A (en) 2007-11-22 2009-06-11 Toshiba Corp Display device, display method and head-up display
FR2925171B1 (en) 2007-12-13 2010-04-16 Optinvent OPTICAL GUIDE AND OPTICAL SYSTEM OF EYE VISION
US20090165017A1 (en) 2007-12-24 2009-06-25 Yahoo! Inc. Stateless proportionally consistent addressing
WO2009127849A1 (en) 2008-04-14 2009-10-22 Bae Systems Plc Improvements in or relating to waveguides
JP2010044172A (en) 2008-08-11 2010-02-25 Sony Corp Virtual image display device
TW201014452A (en) 2008-08-19 2010-04-01 Plextronics Inc Organic light emitting diode lighting devices
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
JP2010060770A (en) 2008-09-03 2010-03-18 Epson Toyocom Corp Optical article and method for manufacturing optical article
AU2009294384A1 (en) 2008-09-16 2010-03-25 Bae Systems Plc Improvements in or relating to waveguides
US7949214B2 (en) 2008-11-06 2011-05-24 Microvision, Inc. Substrate guided relay with pupil expanding input coupler
JP5662332B2 (en) 2008-11-19 2015-01-28 スリーエム イノベイティブ プロパティズ カンパニー Multilayer optical film with output limitations in both polar and azimuthal directions and related configurations
US8317352B2 (en) 2008-12-11 2012-11-27 Robert Saccomanno Non-invasive injection of light into a transparent substrate, such as a window pane through its face
US7949252B1 (en) 2008-12-11 2011-05-24 Adobe Systems Incorporated Plenoptic camera with large depth of field
ES2721600T5 (en) * 2008-12-12 2022-04-11 Bae Systems Plc Improvements in or related to waveguides
JP2010139949A (en) * 2008-12-15 2010-06-24 Osaka Univ Wavelength selective mirror
US20100202129A1 (en) 2009-01-21 2010-08-12 Abu-Ageel Nayef M Illumination system utilizing wavelength conversion materials and light recycling
JP2010170606A (en) 2009-01-21 2010-08-05 Fujinon Corp Method of manufacturing prism assembly
JP5133925B2 (en) 2009-03-25 2013-01-30 オリンパス株式会社 Head-mounted image display device
CN102356338B (en) 2009-04-08 2015-03-11 国际商业机器公司 Optical waveguide with embedded light-reflecting feature and method for fabricating the same
US9256007B2 (en) 2009-04-21 2016-02-09 Svv Technology Innovations, Inc. Light collection and illumination systems employing planar waveguide
US9335604B2 (en) * 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US20100291489A1 (en) 2009-05-15 2010-11-18 Api Nanofabrication And Research Corp. Exposure methods for forming patterned layers and apparatus for performing the same
JP2010266787A (en) 2009-05-18 2010-11-25 Canon Inc Image display apparatus
RU2538100C2 (en) 2009-05-28 2015-01-10 Конинклейке Филипс Электроникс Н.В. Lighting device with housing enclosing light source
JP2011039490A (en) 2009-07-17 2011-02-24 Sony Corp Image display device, head-mounted display, and light beam extending device
US8730183B2 (en) 2009-09-03 2014-05-20 Obscura Digital Large scale multi-user, multi-touch system
TW201115231A (en) 2009-10-28 2011-05-01 Coretronic Corp Backlight module
JP2011199672A (en) 2010-03-19 2011-10-06 Seiko Instruments Inc Glass substrate bonding method, glass assembly, package manufacturing method, package, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
JP5499854B2 (en) 2010-04-08 2014-05-21 ソニー株式会社 Optical position adjustment method for head mounted display
JP6132762B2 (en) 2010-04-16 2017-05-24 フレックス ライティング 2,エルエルシー Front-illuminated device with film-based light guide
US9028123B2 (en) * 2010-04-16 2015-05-12 Flex Lighting Ii, Llc Display illumination device with a film-based lightguide having stacked incident surfaces
US9244277B2 (en) 2010-04-30 2016-01-26 The Arizona Board Of Regents On Behalf Of The University Of Arizona Wide angle and high resolution tiled head-mounted display device
JP5471986B2 (en) 2010-09-07 2014-04-16 株式会社島津製作所 Optical component and display device using the same
US8649099B2 (en) 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
US9632315B2 (en) 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
US8743464B1 (en) 2010-11-03 2014-06-03 Google Inc. Waveguide with embedded mirrors
US8666208B1 (en) 2010-11-05 2014-03-04 Google Inc. Moldable waveguide with embedded micro structures
CN103201660B (en) 2010-11-08 2016-01-20 3M创新有限公司 Lighting converter
JP2012123936A (en) 2010-12-06 2012-06-28 Omron Corp Plane light source device, and three-dimensional display device
JP5645631B2 (en) 2010-12-13 2014-12-24 三菱電機株式会社 Wavelength monitor, optical module, and wavelength monitoring method
CN103384854B (en) 2010-12-22 2017-03-15 视瑞尔技术公司 For tracking the combined optical modulation device of user
US8939579B2 (en) 2011-01-28 2015-01-27 Light Prescriptions Innovators, Llc Autofocusing eyewear, especially for presbyopia correction
JP5747538B2 (en) 2011-02-04 2015-07-15 セイコーエプソン株式会社 Virtual image display device
JP5703876B2 (en) 2011-03-18 2015-04-22 セイコーエプソン株式会社 Light guide plate, virtual image display device including the same, and method for manufacturing light guide plate
WO2012131970A1 (en) 2011-03-31 2012-10-04 トヨタ自動車株式会社 Control device for internal combustion engine and vehicle equipped with same
US8608328B2 (en) 2011-05-06 2013-12-17 Teledyne Technologies Incorporated Light source with secondary emitter conversion element
JP2012252091A (en) 2011-06-01 2012-12-20 Sony Corp Display apparatus
US9595009B2 (en) 2011-06-29 2017-03-14 International Business Machines Corporation Code reviewer selection in a distributed software development environment
US8471967B2 (en) 2011-07-15 2013-06-25 Google Inc. Eyepiece for near-to-eye display with multi-reflectors
US8639073B2 (en) 2011-07-19 2014-01-28 Teraxion Inc. Fiber coupling technique on a waveguide
US8472119B1 (en) 2011-08-12 2013-06-25 Google Inc. Image waveguide having a bend
WO2013048781A2 (en) 2011-09-28 2013-04-04 Rambus Inc. Laser micromachining optical elements in a substrate
JP6119091B2 (en) 2011-09-30 2017-04-26 セイコーエプソン株式会社 Virtual image display device
JP5826597B2 (en) 2011-10-31 2015-12-02 シャープ株式会社 Simulated solar irradiation device
US9046241B2 (en) 2011-11-12 2015-06-02 Jingqun Xi High efficiency directional light source using lens optics
JP5879973B2 (en) 2011-11-30 2016-03-08 ソニー株式会社 Light reflecting member, light beam extending device, image display device, and optical device
FR2983976B1 (en) 2011-12-13 2017-10-20 Optinvent OPTICAL GUIDE WITH OVERLAY GUIDE ELEMENTS AND METHOD OF MANUFACTURE
US10030846B2 (en) 2012-02-14 2018-07-24 Svv Technology Innovations, Inc. Face-lit waveguide illumination systems
US8665178B1 (en) 2012-03-01 2014-03-04 Google, Inc. Partially-reflective waveguide stack and heads-up display using same
US8848289B2 (en) * 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
US8736963B2 (en) 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
US9274338B2 (en) * 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US9523852B1 (en) * 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
CN103562802B (en) 2012-04-25 2016-08-17 罗克韦尔柯林斯公司 Holographic wide angle display
IL219907A (en) 2012-05-21 2017-08-31 Lumus Ltd Head-mounted display eyeball tracker integrated system
EP2854715A1 (en) 2012-05-29 2015-04-08 NLT Spine Ltd. Laterally deflectable implant
US20130321432A1 (en) 2012-06-01 2013-12-05 QUALCOMM MEMES Technologies, Inc. Light guide with embedded fresnel reflectors
NZ702897A (en) 2012-06-11 2017-03-31 Magic Leap Inc Multiple depth plane three-dimensional display using a wave guide reflector array projector
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
US9250409B2 (en) 2012-07-02 2016-02-02 Corning Cable Systems Llc Fiber-optic-module trays and drawers for fiber-optic equipment
TWI522690B (en) 2012-07-26 2016-02-21 揚昇照明股份有限公司 Hybrid light guide plate and display device
US8913324B2 (en) * 2012-08-07 2014-12-16 Nokia Corporation Display illumination light guide
US9151950B2 (en) 2012-08-07 2015-10-06 Cisco Technology, Inc. Lid design to seal optical components of a transceiver module
WO2014074202A2 (en) 2012-08-20 2014-05-15 The Regents Of The University Of California Monocentric lens designs and associated imaging systems having wide field of view and high resolution
CN102928981B (en) * 2012-11-14 2016-08-03 中航华东光电有限公司 Optical system of holographic optical waveguide helmet display
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
FR2999301B1 (en) 2012-12-12 2015-01-09 Thales Sa OPTICAL GUIDE OF COLLIMATE IMAGES WITH OPTICAL BEAM DEDOLDER AND OPTICAL DEVICE THEREFOR
US8947783B2 (en) 2013-01-02 2015-02-03 Google Inc. Optical combiner for near-eye display
JP6065630B2 (en) 2013-02-13 2017-01-25 セイコーエプソン株式会社 Virtual image display device
WO2014155096A1 (en) 2013-03-28 2014-10-02 Bae Systems Plc Improvements in and relating to displays
JP6225474B2 (en) * 2013-05-14 2017-11-08 セイコーエプソン株式会社 Display device
DE102013106392B4 (en) 2013-06-19 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing an antireflection coating
US8913865B1 (en) 2013-06-27 2014-12-16 Microsoft Corporation Waveguide including light turning gaps
KR20160030202A (en) 2013-07-02 2016-03-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Flat light guide
TW201502607A (en) 2013-07-04 2015-01-16 Era Optoelectronics Inc Structure for guiding light into guide light plate to conduct total internal reflection
US20160020965A1 (en) 2013-08-07 2016-01-21 Hitachi, Ltd. Method and apparatus for dynamic monitoring condition control
US10107475B2 (en) 2013-09-12 2018-10-23 Quarkstar Llc Light-emitting device and luminaire incorporating same
US20150081313A1 (en) 2013-09-16 2015-03-19 Sunedison Llc Methods and systems for photovoltaic site installation, commissioining, and provisioning
DE102013219625B3 (en) * 2013-09-27 2015-01-22 Carl Zeiss Ag Spectacle lens for a display device which can be placed on the head of a user and generates an image, and a display device with such a spectacle lens
JP6225657B2 (en) 2013-11-15 2017-11-08 セイコーエプソン株式会社 OPTICAL ELEMENT, IMAGE DISPLAY DEVICE, AND MANUFACTURING METHOD THEREOF
KR102378457B1 (en) 2013-11-27 2022-03-23 매직 립, 인코포레이티드 Virtual and augmented reality systems and methods
JP6287131B2 (en) 2013-12-02 2018-03-07 セイコーエプソン株式会社 Virtual image display device
EP2887120A1 (en) * 2013-12-19 2015-06-24 BAE Systems PLC Improvements in and relating to waveguides
US9474902B2 (en) 2013-12-31 2016-10-25 Nano Retina Ltd. Wearable apparatus for delivery of power to a retinal prosthesis
US9423552B2 (en) 2014-02-24 2016-08-23 Google Inc. Lightguide device with outcoupling structures
CN103837988B (en) 2014-03-05 2017-01-18 杭州科汀光学技术有限公司 Minitype near-to-eye display optical system
US9311525B2 (en) 2014-03-19 2016-04-12 Qualcomm Incorporated Method and apparatus for establishing connection between electronic devices
JP6442149B2 (en) * 2014-03-27 2018-12-19 オリンパス株式会社 Image display device
JP6287487B2 (en) * 2014-03-31 2018-03-07 セイコーエプソン株式会社 Optical device, image projection apparatus, and electronic apparatus
CN108572449B (en) 2014-03-31 2021-09-14 联想(北京)有限公司 Display device and electronic apparatus
CN103885184B (en) * 2014-04-10 2016-04-27 北京理工大学 A kind of projection slab guide Helmet Mounted Display
DE102014207490B3 (en) 2014-04-17 2015-07-02 Carl Zeiss Ag Spectacle lens for a display device to be placed on the head of a user and an image-generating display device and display device with such a spectacle lens
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-mounted display system
US9766459B2 (en) 2014-04-25 2017-09-19 Microsoft Technology Licensing, Llc Display devices with dimming panels
US9915823B1 (en) * 2014-05-06 2018-03-13 Google Llc Lightguide optical combiner for head wearable display
JP6746282B2 (en) 2014-07-09 2020-08-26 恵和株式会社 Optical sheet, edge light type backlight unit, and method for manufacturing optical sheet
US9366869B2 (en) * 2014-11-10 2016-06-14 Google Inc. Thin curved eyepiece for see-through head wearable display
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd Compact head-mounted display system protected by a hyperfine structure
IL236490B (en) 2014-12-25 2021-10-31 Lumus Ltd Substrate-guided optical device
IL236491B (en) 2014-12-25 2020-11-30 Lumus Ltd A method for fabricating substrate-guided optical device
CN104570352B (en) * 2015-01-06 2018-03-09 华为技术有限公司 A kind of near-to-eye
WO2016118643A1 (en) 2015-01-21 2016-07-28 Tesseland Llc Display device with total internal reflection
US9891514B2 (en) 2015-01-30 2018-02-13 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
WO2016120669A1 (en) 2015-01-30 2016-08-04 Arcelormittal Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve corrosion resistance
CN104656259B (en) * 2015-02-05 2017-04-05 上海理湃光晶技术有限公司 The conjugation arrowband three primary colours nearly optics of the eye display device of volume holographic grating waveguide staggeredly
US20160234485A1 (en) * 2015-02-09 2016-08-11 Steven John Robbins Display System
US9632226B2 (en) * 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
IL237337B (en) 2015-02-19 2020-03-31 Amitai Yaakov Compact head-mounted display system having uniform image
CN107850777B (en) 2015-04-22 2021-10-22 易赛特股份有限公司 Method and apparatus for optical aberration correction
CN113050280B (en) 2015-05-04 2024-01-19 奇跃公司 Split pupil optical system for virtual and augmented reality and method for displaying images using the same
TWI587004B (en) 2015-06-18 2017-06-11 中強光電股份有限公司 Image display apparatus
US9910276B2 (en) 2015-06-30 2018-03-06 Microsoft Technology Licensing, Llc Diffractive optical elements with graded edges
US10007117B2 (en) 2015-09-10 2018-06-26 Vuzix Corporation Imaging light guide with reflective turning array
WO2017062483A1 (en) 2015-10-05 2017-04-13 Magic Leap, Inc. Microlens collimator for scanning optical fiber in virtual/augmented reality system
US10378882B2 (en) 2015-11-04 2019-08-13 Magic Leap, Inc. Light field display metrology
US10345594B2 (en) 2015-12-18 2019-07-09 Ostendo Technologies, Inc. Systems and methods for augmented near-eye wearable displays
JP6562088B2 (en) 2016-01-18 2019-08-21 株式会社島津製作所 OPTICAL ELEMENT, DISPLAY DEVICE USING SAME, AND LIGHT RECEIVER
US10473933B2 (en) 2016-02-19 2019-11-12 Microsoft Technology Licensing, Llc Waveguide pupil relay
TW201732373A (en) 2016-02-24 2017-09-16 Omron Tateisi Electronics Co Display device
AU2017224004B2 (en) 2016-02-24 2021-10-28 Magic Leap, Inc. Polarizing beam splitter with low light leakage
US20190072719A1 (en) 2016-02-25 2019-03-07 Molex, Llc Waveguide termination module and method of termination
CN205787362U (en) 2016-02-26 2016-12-07 中国航空工业集团公司洛阳电光设备研究所 Optical waveguide components, two-dimensional expansion fiber waveguide device, head-up display and illuminator
US20170255012A1 (en) 2016-03-04 2017-09-07 Sharp Kabushiki Kaisha Head mounted display using spatial light modulator to move the viewing zone
CN205485073U (en) * 2016-03-07 2016-08-17 成都理想境界科技有限公司 Near -to -eye display system and wear display device
JP6677036B2 (en) 2016-03-23 2020-04-08 セイコーエプソン株式会社 Image display device and optical element
CN107290816B (en) 2016-03-30 2020-04-24 中强光电股份有限公司 Optical waveguide element and head-mounted display device having the same
US20170343810A1 (en) 2016-05-24 2017-11-30 Osterhout Group, Inc. Pre-assembled solid optical assembly for head worn computers
US10025093B2 (en) 2016-04-13 2018-07-17 Microsoft Technology Licensing, Llc Waveguide-based displays with exit pupil expander
US10739598B2 (en) 2016-05-18 2020-08-11 Lumus Ltd. Head-mounted imaging device
CN105807348B (en) * 2016-05-23 2018-07-06 东南大学 A kind of reflection volume holographic grating waveguiding structure
WO2018013307A1 (en) 2016-06-21 2018-01-18 Ntt Docomo, Inc. An illuminator for a wearable display
WO2017221993A1 (en) 2016-06-22 2017-12-28 富士フイルム株式会社 Light guide member and liquid crystal display device
CN106226902A (en) * 2016-07-18 2016-12-14 深圳珑璟光电技术有限公司 Display device is worn alternately for what augmented reality showed
KR101989364B1 (en) 2016-07-29 2019-06-14 공주대학교 산학협력단 Glass materials for large scale dye-sensitized solar cell sealing and pastes comprising the same
TWI614527B (en) 2016-08-18 2018-02-11 盧姆斯有限公司 Compact head-mounted display system having uniform image
US10466479B2 (en) 2016-10-07 2019-11-05 Coretronic Corporation Head-mounted display apparatus and optical system
CN108235739B (en) * 2016-10-09 2021-03-16 鲁姆斯有限公司 Aperture multiplier using rectangular waveguides
KR102541662B1 (en) 2016-11-08 2023-06-13 루머스 리미티드 Light-guide device with optical cutoff edge and corresponding production methods
CN106338832A (en) * 2016-11-09 2017-01-18 苏州苏大维格光电科技股份有限公司 Single holographic diffraction optical waveguide lens and 3D display device
KR20190000456U (en) 2016-12-02 2019-02-19 루머스 리미티드 Optical system with compact collimating image projector
CN108882845B (en) 2016-12-31 2022-05-03 鲁姆斯有限公司 Eye tracker based on retinal imaging via light-guide optical elements
WO2018127913A1 (en) 2017-01-04 2018-07-12 Lumus Ltd. Optical system for near-eye displays
CN108445573B (en) 2017-02-16 2023-06-30 中强光电股份有限公司 Optical waveguide element and display device
KR102655450B1 (en) * 2017-02-22 2024-04-05 루머스 리미티드 Light guide optical assembly
CN113341566B (en) 2017-03-22 2023-12-15 鲁姆斯有限公司 Overlapping reflective surface constructions
JP2018165740A (en) 2017-03-28 2018-10-25 セイコーエプソン株式会社 Display device
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Light-guide optical element and method of its manufacture
KR102456533B1 (en) * 2017-05-23 2022-10-19 삼성전자주식회사 Apparatus for reconstruction of holograms and method thereof
CN107238928B (en) 2017-06-09 2020-03-06 京东方科技集团股份有限公司 Array waveguide
DE102017126908A1 (en) 2017-11-15 2019-05-16 Carl Zeiss Ag Optical fiber for an HMD, HMD and method for transmitting an image in an HMD
US20190170327A1 (en) 2017-12-03 2019-06-06 Lumus Ltd. Optical illuminator device
US10506220B2 (en) 2018-01-02 2019-12-10 Lumus Ltd. Augmented reality displays with active alignment and corresponding methods
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
KR20210013173A (en) * 2018-05-23 2021-02-03 루머스 리미티드 Optical system with light guide optical element with partially reflective inner surface
CN210323582U (en) 2018-05-27 2020-04-14 鲁姆斯有限公司 Substrate-guided optical system with field curvature effect mitigation
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
US11378391B2 (en) 2020-02-14 2022-07-05 Toyota Motor Engineering & Manufacturing North America, Inc. Closed spray testing container for spray measurement verification

Also Published As

Publication number Publication date
US20200041713A1 (en) 2020-02-06
US20180292592A1 (en) 2018-10-11
US20190293856A1 (en) 2019-09-26
KR20190115404A (en) 2019-10-11
US10684403B2 (en) 2020-06-16
KR20240049840A (en) 2024-04-17
KR102481569B1 (en) 2022-12-26
US10473841B2 (en) 2019-11-12
JP7365717B2 (en) 2023-10-20
EP3397998A1 (en) 2018-11-07
JP2020510849A (en) 2020-04-09
KR20210154259A (en) 2021-12-20
IL278913A (en) 2021-01-31
IL261600A (en) 2018-11-29
JP2022028761A (en) 2022-02-16
KR20230003431A (en) 2023-01-05
CN108738358B (en) 2021-03-26
KR102338472B1 (en) 2021-12-14
US11194084B2 (en) 2021-12-07
WO2018154576A1 (en) 2018-08-30
KR102655450B1 (en) 2024-04-05
IL278913B (en) 2022-06-01
US10302835B2 (en) 2019-05-28
US20230350121A1 (en) 2023-11-02
US20220091320A1 (en) 2022-03-24
TW201837513A (en) 2018-10-16
TWI754010B (en) 2022-02-01
US11747537B2 (en) 2023-09-05
IL292456A (en) 2022-06-01
IL292456B (en) 2022-08-01
US20200292744A1 (en) 2020-09-17
CN108738358A (en) 2018-11-02
JP6980209B2 (en) 2021-12-15
EP3397998A4 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP7365717B2 (en) light guide optical assembly
JP7289462B2 (en) Duplicate facet
FI128831B (en) Display element, personal display device, method of producing an image on a personal display and use
JP6287095B2 (en) Optical device and electronic apparatus
JP7304861B2 (en) Multi-pupil waveguide display element and display device
KR20210152451A (en) new grid arrangement
TWI790700B (en) Optical device
CN111492300A (en) Laser projector and diffraction display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230929