WO2006098097A1 - Image display optical system and image display - Google Patents

Image display optical system and image display Download PDF

Info

Publication number
WO2006098097A1
WO2006098097A1 PCT/JP2006/301994 JP2006301994W WO2006098097A1 WO 2006098097 A1 WO2006098097 A1 WO 2006098097A1 JP 2006301994 W JP2006301994 W JP 2006301994W WO 2006098097 A1 WO2006098097 A1 WO 2006098097A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
substrate
light beam
display
optical system
Prior art date
Application number
PCT/JP2006/301994
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Hirayama
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2006098097A1 publication Critical patent/WO2006098097A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0127Head-up displays characterised by optical features comprising devices increasing the depth of field
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • Image display optical system and image display apparatus are Image display optical system and image display apparatus
  • the present invention relates to an image display device that forms a virtual image of an image display element in front of an observation eye in accordance with a signal from an external device.
  • the present invention also relates to an image display optical system mounted on the image display device.
  • Patent Document 1 An image display optical system for an eyeglass display (called a complier or the like) has been proposed having a large exit pupil (Patent Document 1, etc.).
  • a display light beam emitted from an image display element is introduced into a transparent substrate after being collimated by an optical element such as an objective lens, and disposed inside the substrate.
  • the display light beam is deflected by a plurality of mirrors (half mirrors) parallel to each other and led out of the substrate.
  • the individual mirrors are formed by arranging the exit pupils outside the substrate. If the pupil of the observation eye is placed at any position of the exit pupil, the observer can observe the virtual image of the image display element superimposed on the outside scene at infinity.
  • exit pupil the total exit pupil
  • a large exit pupil is advantageous in that the degree of freedom of the position of the pupil of the observation eye increases.
  • Patent Document 1 Japanese Translation of Special Publication 2003-536102
  • the outside world observed by the observer may be a finite distance instead of an infinite distance. For example, when used indoors.
  • the virtual image formation distance is limited to infinity, and it is difficult to make it a finite distance.
  • the reason is as follows. First, in order to make the virtual image formation distance of the image display optical system finite, it is necessary to make the display light beam of each pixel introduced into the substrate a slight divergent light beam that is not a perfect parallel light beam. There is. This can be easily realized by adjusting the positional relationship between the objective lens and the image display element.
  • an object of the present invention is to provide an image display optical system and an image display apparatus that can set a virtual image formation distance of an image display element to a finite value while ensuring a large exit pupil. To do.
  • the image display optical system of the present invention introduces a first optical element that converts a display light beam emitted from each pixel of the image display element into a parallel light beam and the display light beam that has been converted into a parallel light beam.
  • a first optical element that converts a display light beam emitted from each pixel of the image display element into a parallel light beam and the display light beam that has been converted into a parallel light beam.
  • a second optical element that provides optical power to all the display light fluxes derived from the substrate is provided.
  • the base and the plurality of mirrors have a property of transmitting an external light beam that arrives at the base from the outside at substantially the same angle as the display light beam when entering the exit pupil.
  • a third optical element that imparts optical power to the external light flux that arrives at the base may be further provided.
  • the sum of the optical powers of the third optical element and the second optical element may be set to zero.
  • the sum of the optical powers of the third optical element and the second optical element is a diopter of the observation eye with respect to the external environment. Is set to the value to be corrected.
  • Another image display optical system of the present invention guides the display light beam emitted from the image display element force.
  • An image display optical system comprising a substrate that enters and propagates inside, and a plurality of mirrors that deflect the display light beam propagating inside the substrate and guide it to the outside of the substrate, as viewed from the exit pupil.
  • the image display optical system may further include an introduction mirror that deflects the display light beam introduced into the base body so as to propagate while being internally reflected.
  • the plurality of mirrors are provided on any surface of the base on which the display light beam is internally reflected, and between the plurality of mirrors and the surface. May include a functional film that guides a part of the display light beam to the plurality of mirrors without interfering with the internal reflection.
  • the introduction mirror deflects the display light beam introduced into the base so as to be internally reflected by three or more surfaces of the base. There may be.
  • An image display apparatus includes: an image display element; and any one of the image display optical systems according to the present invention that forms the exit pupil based on a display light beam emitted from the image display element. .
  • the image display device and the image display optical system are further fixed to an observer's head, and further provided with mounting means for disposing the exit pupil in the vicinity of the observer's observation eye. Also good.
  • an image display optical system and an image display device that can set a virtual image formation distance of an image display element to a finite value while ensuring a large exit pupil are realized.
  • FIG. 1 is an external view of an eyeglass display.
  • FIG. 2 is an exploded view of the optical system portion of the eyeglass display of the first embodiment.
  • 3] A schematic cross-sectional view of the optical system portion of the eyeglass display of the first embodiment.
  • IV] is a schematic cross-sectional view of the optical system portion of the eyeglass display of the second embodiment.
  • FIG. 5 is a partially enlarged view of FIG.
  • FIG. 7 is a schematic cross-sectional view of an optical system portion of an eyeglass display according to a third embodiment.
  • FIG. 9 is a schematic cross-sectional view of a substrate portion 1 of an eyeglass display provided with an air gap.
  • FIG. 10 is a diagram showing the film configuration of the multilayer film of Example 1.
  • FIG. 11 is a graph showing the angular characteristics of the reflectance of the multilayer film of Example 1.
  • FIG. 12 is a graph showing the wavelength characteristic of reflectance with respect to light with an incident angle of 0 ° of the multilayer film of Example 1.
  • FIG. 13 is a graph showing the wavelength characteristics of the reflectance of the multilayer film of Example 1 with respect to light having an incident angle of 60 °.
  • FIG. 14 is a view showing the film configuration of the multilayer film of Example 2.
  • FIG. 15 A graph showing the angular characteristics of the reflectance of the multilayer film of Example 2.
  • FIG. 16 is a graph showing the wavelength characteristics of the reflectance of the multilayer film of Example 2 with respect to light with an incident angle of 0 °.
  • FIG. 17 is a graph showing the wavelength characteristics of reflectance with respect to light with an incident angle of 60 ° of the multilayer film of Example 2.
  • FIG. 18 is a configuration diagram of an optical system used in the method for manufacturing a holographic optical element of Example 3.
  • FIG. 20 is an exploded view of the optical system portion of the eyeglass display of the sixth embodiment.
  • ⁇ 21 It is a schematic cross-sectional view of the optical system portion of the eyeglass display of the seventh embodiment.
  • ⁇ 22] It is a schematic cross-sectional view of the optical system portion of the eyeglass display of the eighth embodiment.
  • ⁇ 23 It is a figure explaining the setting method of the attitude
  • FIG. 25 is a diagram showing a calculation result of the arrangement angle of the half mirror when the formation distance D of the virtual image is 3 m.
  • FIG. 26 is a diagram showing the calculation result of the arrangement angle of the half mirror when the virtual image formation distance D is lm.
  • FIG. 27 is a view for explaining a method of setting the posture of the half mirror of Example 4 (the number of half mirrors is an even number).
  • FIG. 28 is a view for explaining a method of setting the posture of the half mirror of Example 4 (roof-type mirror type).
  • FIG. 29 is a schematic sectional view of a substrate part 1 of an eyeglass display according to a ninth embodiment.
  • FIG. 1 A first embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG.
  • This embodiment is an embodiment of an eyeglass display.
  • Figure 1 is an external view of this eyeglass display.
  • the present eyeglass display is formed by fixing a substrate part 1, an image introducing unit 2, a cable 3 and the like to a frame 4 having a structure similar to that of a spectacle frame.
  • the substrate portion 1 has a substrate force whose outer shape is adjusted in the same manner as the outer shape of the spectacle lens, and is attached to one front portion of the frame 4 (the left front portion in FIG. 1).
  • the image introduction unit 2 is attached to one temple (the left temple in FIG. 1) of the frame 4 or the like.
  • the image introduction unit 2 is connected to an external device (such as a personal computer) via a cable 3.
  • Fig. 2 is an exploded view of the optical system part (image display optical system) of the eyeglass display.
  • the substrate unit 1 includes two substrates 11, 1 in order from the outside to the observation eye E. 3 is arranged. These substrates 11 and 13 are provided with a display light flux L (here, visible light) introduced from the image introduction unit 2 and an external light flux L ′ (here, visible light) directed toward the observation eye E from the outside world. And transparent).
  • L display light flux
  • L ′ here, visible light
  • the substrate 11 is a parallel plate, and an introduction mirror 11a, which is a total reflection mirror, and a plurality of half mirrors l ib parallel to each other are arranged in predetermined positions at predetermined positions, respectively.
  • the substrate 13 is a plano-concave lens (refractive lens) with a concave surface facing the observation eye E side. These substrates 11 and 13 are in close contact with each other with a functional film 13a made of a dielectric multilayer film having a function equivalent to an air gap.
  • FIG. 3 is a schematic cross-sectional view obtained by cutting the optical system portion of the present eyeglass display along a horizontal plane (horizontal plane viewed from the observer) including the optical path of the display light beam L.
  • a small image display element 2a such as a liquid crystal display element and an objective lens 2b are arranged.
  • the display light beam L emitted from each pixel of the image display element 2a is converted into a parallel light flux by the objective lens 2b.
  • the display light beam L converted into the parallel light beam reaches the surface on the observation eye E side of the substrate 11 through the substrate 13 and the functional film 13a.
  • the incident angle of the display light beam L on this surface is a small angle regardless of which pixel the display light beam is, and is smaller than the critical angle ⁇ c of the substrate 11. Incident inside.
  • the passage region of the display light beam L incident on this surface has no optical power and is a parallel plate.
  • the display light beam L incident on the inside of the substrate 11 is reflected by the introduction mirror 11a in the substrate 11, and the substrate 11 is incident at an incident angle larger than the critical angle ⁇ c of the substrate 11 (for example, an angle near 60 °). It enters the observation eye E side of 11 and reflects off that surface. Then, the display light beam L is incident on the external surface of the substrate 11 and is similarly reflected. The display light beam L repeats this, and propagates in the direction of the observation eye E while being alternately reflected (internal reflection) between the observation eye E side surface and the external field side surface. Thereafter, the display light beam L sequentially enters the plurality of half mirrors l ib in the substrate 11.
  • the display light beams L incident on the plurality of half mirrors l ib at a predetermined incident angle are respectively deflected in the direction of the observation eye E, and are incident on the surface of the substrate 11 on the observation eye E side smaller than the critical angle ⁇ c. Incident at an angle of incidence (an angle near 0 °). Therefore, the display light beam L is emitted to the outside of the substrate 11 and is incident on a region near the observation eye E through the functional film 13a and the substrate 13, and an exit pupil P is formed there. The exit pupil P is increased by the number of half mirrors l ib.
  • the functional film 13a has a function equivalent to that of the air gap, that is, substantially 100% reflectivity with respect to visible light having an angle larger than the critical angle ⁇ c of the substrate 11 (for example, an angle near 60 °). It must be designed to show approximately 100% transparency for visible light with an angle smaller than the critical angle ⁇ c (eg near 0 °)!
  • the display light beam L propagating through the substrate 11 is converted into a parallel light beam. Therefore, the plurality of display light beams L immediately after being reflected by the plurality of half mirrors l ib are light beams that respectively form the virtual image ⁇ of the image display element 2a at infinity.
  • the substrate 13 (a plano-concave lens) is inserted into the entire display light beam L after being emitted from the substrate 11, so that the entire display light beam L has a negative optical power. Receive.
  • the display light beam L incident on the exit pupil P is not a parallel light beam but has the same divergence angle as the divergent light beam diverging from a predetermined position at a finite distance D.
  • the observation eye E can observe the virtual image I of the image display element 2a at a predetermined position of the finite distance D.
  • the present eyeglass display can set the formation distance of the virtual image I to a finite value while ensuring a large exit pupil P.
  • the formation distance of the virtual image I can be adjusted only by adjusting the refractive power of the substrate 13 (the radius of curvature of the concave surface).
  • FIGS. A second embodiment of the present invention will be described with reference to FIGS.
  • This embodiment is an embodiment of an eyeglass display. Only the differences from the eyeglass display of the first embodiment will be described here.
  • FIG. 4 is a schematic cross-sectional view of the optical system portion of the present eyeglass display.
  • the substrate portion 1 of this eyeglass display has a dielectric multilayer film on the outside of the substrate 11.
  • the parallel plate-like substrate 15 is in close contact with the functional film 15a.
  • the adjacent half mirror l ib and half mirror l ib are roof-shaped
  • Fmirror l ib is also parallel to each other.
  • a folding mirror 1 lc for folding the display light beam L propagating through the substrate 11 and reciprocating the substrate 11 is provided inside the substrate 11.
  • the functional film 15a is semi-transmissive to the display light beam L (for example, visible light having an incident angle near 60 °) that reciprocates inside the substrate 11, and has an angle smaller than the critical angle ⁇ c of the substrate 11. It is designed to be nearly 100% transparent to visible light at a degree (eg, near 0 ° incident angle).
  • a part of the display light beam L traveling in the forward path in the substrate 11 enters the substrate 15 through the functional film 15a. , Is incident on one half mirror l ib.
  • a part of the display light flux L during the return path in the substrate 11 is
  • the half mirror l ib deflects the display light beam L incident thereon in the direction of the observation eye E, and
  • the mirror I ib deflects the display light beam L incident thereon in the direction of the observation eye E.
  • the display light beam L deflected by the lasers l ib and l ib is the functional film 15a, the substrate 11, the functional film 13a, and
  • the substrate 13 (a plano-concave lens) is inserted into the entire display light beam L after being emitted from the substrate 11, the entire display light beam L after being emitted from the substrate 11 is inserted. Receives negative optical power.
  • the display light beam L incident on the exit pupil P is not a parallel light beam but has the same divergence angle as the divergent light beam diverging from a predetermined position at a finite distance.
  • the observation eye E can observe the virtual image I of the image display element 2a at a predetermined position at a finite distance.
  • the force folding mirror 11c provided with the folding mirror 11c can be omitted.
  • FIGS. 2 and 3 A third embodiment of the present invention will be described with reference to FIGS.
  • This embodiment is an embodiment of an eyeglass display. Here, only differences from the eyeglass display of the first embodiment (see FIGS. 2 and 3) will be described.
  • the substrate 13 added in the first embodiment gives an appropriate negative optical power to the display light beam L, but the same negative light is also applied to the external light beam directed from the outside to the observation eye E. I will give you the optical power. For this reason, in the first embodiment, there is a problem that the observation distance of the outside world by the observation eye E deviates from the actual distance. In this embodiment, such a deviation in the observation distance of the outside world is suppressed.
  • FIG. 6 is an exploded view of the optical system portion of the present eyeglass display
  • FIG. 7 is a schematic sectional view of the optical system portion of the present idle display.
  • the substrate 12 is in close contact with the substrate portion 1 of the present eyeglass display on the outside of the substrate 11 with the functional film 12a interposed therebetween.
  • the functional film 12a is the same as the functional film 13a, and the substrate 12 is a plano-convex lens (refractive lens) with a convex surface facing the outside.
  • This substrate 12 does not act on the display light beam L, and gives positive optical power only to the external light beam L ′ directed from the external environment I ′′ to the observation eye E, as shown in FIG.
  • the substrate 13 gives a common negative optical power to both the display light flux L and the external light flux L ′.
  • the refractive power P of the substrate 13 is the distance (this is the distance at which a virtual image is to be formed, as in the first embodiment.
  • a virtual image of the image display element 2a is formed at a finite distance.
  • the present eyeglass display unlike the first embodiment, there is no deviation in the observation distance of the external environment I ′′ by the observation eye E.
  • the combined refractive power P is a value other than zero.
  • the diopter correction of the observation eye E with respect to the external environment I " is performed.
  • the combined refractive power P is set to P
  • the refractive power P of the substrate 12 may be set so that out S force> 0. Note that the observation eye E requires s out
  • the surface on the outside of the substrate 12 may be concave.
  • an aspherical surface or a progressive focal plane is used in combination with at least one of the surface on the observer side of the substrate 13 and the surface on the outside world of the substrate 12, the functions of the spectacle lens for astigmatism and the spectacle lens for both perspectives can be realized. It can also be put on an eyeglass display.
  • a fourth embodiment of the present invention will be described with reference to FIG.
  • the third embodiment described above is a force that suppresses the deviation in the observation distance of the outside world in the parallel mirror type eyeglass display (first embodiment, FIG. 3).
  • the deviation of the observation distance of the outside world is suppressed. Only the differences from the second embodiment (FIG. 4) or the third embodiment (FIG. 7) will be described here.
  • FIG. 8 is a schematic cross-sectional view of the optical system portion of the present eyeglass display.
  • a substrate 12 made of a plano-convex lens is in close contact with the substrate 1 of this eyeglass display on the outside of the substrate 11 with a functional film 15a interposed therebetween.
  • a plurality of half mirrors l ib and a plurality of half mirrors l ib are provided.
  • the refractive power P of the substrate 13 and the refractive power P of the substrate 12 are the same as those of the third embodiment.
  • the refractive power P of the substrate 13 is the distance to form a virtual image (here,
  • the refractive power P of the substrate 12 is equal to the refractive power P of the substrate 13.
  • the combined refractive power P is a non-zero value.
  • a refractive lens is used for each of the substrates 12 and 13, but an optical element other than the refractive lens (Fresnel lens holographic optical element) is used for either or both of the substrates 12 and 13. ) Etc. may be used.
  • the force that uses the objective lens 2b to give optical uniformity to the display light beam L incident on the substrate 11 is an optical element other than the objective lens 2b (a Fresnel lens or a holographic optical element). Etc.) may be used. Further, instead of preparing an optical element separately from the substrate 11, the surface of the substrate 11 on which the display light beam L first enters may have optical power.
  • the dielectric multilayer film is used for the functional films 13a, 12a, and 15a.
  • the holographic optical element having the same characteristics, a metal film, a semiconductor film, and the like can be used.
  • Other optical multilayers may be used.
  • an air gap may be used instead of the functional films 13a and 12a.
  • an air gap is applied to the substrate portion 1 of the third embodiment, as schematically shown in FIG. 9, each of the substrate 11 and the substrate 12 and the substrate 11 and the substrate 13 are respectively The spacer 16 may be sandwiched between the two and pressed by the support member 17 from the periphery.
  • FIG. 1 is a functional membrane 1
  • the configuration of the multilayer film is optimized by a computer in accordance with the characteristics required for the multilayer film.
  • the premise for optimization is as follows.
  • the display beam L emitted from the image display element 2a must be limited to s-polarized light. • The incident angle of the display beam L that internally reflects the substrate 11 to the substrate surface must be around 60 °.
  • the multilayer film and the substrate should be bonded with the same refractive index as the substrate.
  • the display luminous flux is
  • FIG. 10 is a diagram showing a film configuration of the multilayer film. As shown in Fig. 10, the total number of layers of this multilayer film is 19, the refractive index of the substrate is 1.56, the refractive index of the high refractive index layer is 2.20, and the refractive index of the low refractive index layer is 1.46. The central wavelength is 510 nm.
  • FIG. 11 is a diagram showing the angular characteristics of the reflectance of the multilayer film.
  • Rs indicates the reflectivity for s-polarized light
  • Rp indicates the reflectivity for p-polarized light.
  • this multilayer film exhibits a transmittance of about 100% for s-polarized light with an angle sufficiently smaller than 45 °, and for s-polarized light with an angle sufficiently larger than 45 °. The reflectivity is almost 100%.
  • FIG. 12 is a diagram showing the wavelength characteristics of the reflectance of the multilayer film with respect to light with an incident angle of 0 °.
  • Ra represents the average value of the reflectance for s-polarized light and the reflectance for p-polarized light.
  • the multilayer film exhibits a transmittance of approximately 100% over the entire visible light range when the incident angle is 0 °.
  • FIG. 13 is a graph showing the wavelength characteristics of the reflectance of the multilayer film with respect to light having an incident angle of 60 °.
  • the force indicated by Rs is the reflectivity for polarized light
  • Rp is the reflectivity for p-polarized light.
  • this multilayer film exhibits a reflectivity of approximately 100% over the entire visible light region if it is s-polarized light with an incident angle of 60 °.
  • FIG. 2 Embodiment 2 will be described with reference to FIGS. 14, 15, 16, and 17.
  • FIG. The present embodiment is an embodiment of a dielectric multilayer film that can be used as the functional films 13a and 12a.
  • the configuration of the multilayer film is optimized by a computer according to the characteristics required for the multilayer film.
  • the premise for optimization is as follows.
  • the display light beam L emitted from the image display element 2a has both an s-polarized component and a p-polarized component.
  • Incident angle of the display light beam L reflected from the inner surface of the substrate 11 to the substrate surface must be in the vicinity of 60 °.
  • the multilayer film and the substrate should be bonded with the same refractive index as the substrate.
  • FIG. 14 is a diagram showing a film configuration of the multilayer film. As shown in Figure 14, the total number of layers of this multilayer film is 40, the refractive index of the substrate is 1.56, the refractive index of the high refractive index layer is 2.20, and the refractive index of the low refractive index layer is 1.3845. The central wavelength is 510 nm.
  • FIG. 15 is a diagram showing the angle characteristics of the reflectance of the multilayer film.
  • Rs indicates the reflectivity for s-polarized light
  • Rp indicates the reflectivity for p-polarized light.
  • this multilayer film exhibits a transmittance of about 100% for light having an angle sufficiently smaller than 45 °, and about 100% for light having an angle sufficiently larger than 45 °. % Reflectivity.
  • FIG. 16 is a graph showing the wavelength characteristics of the reflectance of the multilayer film with respect to light with an incident angle of 0 °.
  • Ra represents the average value of the reflectance for s-polarized light and the reflectance for p-polarized light.
  • the present multilayer film exhibits a transmittance of about 100% over the entire visible light range when the incident angle is 0 °.
  • FIG. 17 is a diagram showing the wavelength characteristics of the reflectance of the multilayer film with respect to light with an incident angle of 60 °.
  • the force indicated by Rs is the reflectivity for polarized light
  • Rp is the reflectivity for p-polarized light.
  • the present multilayer film exhibits a reflectance of approximately 100% over the entire visible light range when the incident angle is 60 °.
  • Example 3 will be described with reference to FIG.
  • the present embodiment is an embodiment of a method for manufacturing a holographic optical element that can be used as the functional films 13a and 12a.
  • FIG. 18 is a configuration diagram of an optical system used in the present manufacturing method.
  • Laser light emitted from a laser light source 31 having a wavelength ⁇ is divided into two by a beam splitter 32.
  • the two divided laser beams are respectively expanded by two beam expanders 33 and then incident on the hologram photosensitive material 35 through the two auxiliary prisms 34 at an incident angle ⁇ .
  • the photosensitive material 35 is exposed.
  • a holographic optical element is completed.
  • the completed holographic optical element has the property of diffracting and reflecting light incident at a predetermined wavelength ⁇ and incident angle ⁇ and totally transmitting light incident at an incident angle deviating from the incident angle ⁇ .
  • the wavelength ⁇ is set to be the same as the wavelength of the display light beam L of the eyeglass display, and the incident angle ⁇ is the incident angle of the display light beam L that internally reflects the substrate 11 (for example, , Around 60 °).
  • the light flux L displayed on the eyeglass display includes light of a plurality of different wavelengths (for example, light of RGB colors), multiple exposure may be performed with light of each wavelength.
  • a resin-based material resin sheet
  • a large-area holographic optical element can be manufactured at low cost.
  • the holographic optical element is a resin sheet, it is only necessary to affix it to the substrate 11 so that the holographic optical element has a practical value in terms of low cost and mass production.
  • FIG. 7 A fifth embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment of an eyeglass display.
  • This embodiment is an embodiment of an eyeglass display.
  • the third embodiment a parallel mirror type in which the deviation of the observation distance of the outside world is suppressed, see FIG. 7 will be described.
  • the difference is in the number of surfaces subjected to internal reflection of the substrate 11.
  • FIG. 19 is an exploded view of the optical system portion of the present eyeglass display.
  • the inner surface reflection of the display light beam L is provided with the surface on the observation eye E side of the substrate 11, the surface on the outer world side, and two side surfaces sandwiched between these two surfaces.
  • the All of these surfaces used for internal reflection are flat surfaces.
  • the orientation of the introduction mirror 11a is set so as to have an angle with respect to each of the four surfaces.
  • the posture of the multiple half mirrors l ib is such that the display light beam L incident on the half mirror l ib
  • the substrate 12 having a positive refractive power is disposed on the outer side of the substrate 11 and is negative on the observation eye E side of the substrate 11. If the substrate 13 having a refractive power is arranged, it is possible to suppress the deviation in the observation distance of the outside world while setting the virtual image formation distance to be finite.
  • the substrate 12 may be omitted if it is not necessary to suppress the deviation in the observation distance of the outside world.
  • the substrate 12 may be omitted if it is not necessary to suppress the deviation in the observation distance of the outside world.
  • the diopter correction of the observation eye E can be performed.
  • a prismatic base parallel plate-like substrate 11 having a rectangular cross section is used as a substrate for internally reflecting the display light beam L.
  • a prismatic base triangular prism, quadrangular prism, pentagonal prism, etc Having a cross section of another shape may be used.
  • FIG. 8 A sixth embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment of an eyeglass display.
  • This embodiment is an embodiment of an eyeglass display.
  • the fourth embodiment a roof-type mirror type in which the deviation of the observation distance of the outside world is suppressed, see FIG. 8 will be described.
  • the difference is in the number of surfaces used for internal reflection of the substrate 11.
  • FIG. 20 is an exploded view of the optical system portion of the present eyeglass display.
  • the inner surface of the display light flux L is provided with a surface on the observation eye E side of the substrate 11, a surface on the outer world side, and two side surfaces sandwiched between these two surfaces.
  • the All of these surfaces used for internal reflection are flat surfaces.
  • the orientation of the introduction mirror 11a may be set so as to have an angle with respect to each of the four surfaces.
  • the posture of the folding mirror 11c is set so that the display light beam L propagated in the substrate 11 is folded.
  • the posture of the two types of half mirrors 1 lb and l ib provided inside the substrate 12 is such that the display light beam L entering from the substrate 11 through the functional film 15a
  • the substrate 12 having a positive refractive power is arranged on the outside of the substrate 11, and the substrate 11 has a negative polarity on the observation eye E side. If the substrate 13 having a refractive power is arranged, it is possible to suppress the deviation in the observation distance of the outside world while setting the virtual image formation distance to be finite.
  • the surface of the substrate 12 on the outside world side may be flat if it is not necessary to suppress the deviation of the observation distance of the outside world.
  • diopter correction of the observation eye E can be performed by adjusting the refractive power of the substrate 12.
  • a prismatic base body parallel plate-shaped substrate 11
  • a prismatic base triangular prism, quadrangular prism, pentagonal prism, etc Having a cross section of another shape may be used.
  • FIG. 3 A seventh embodiment of the present invention will be described with reference to FIG.
  • This embodiment is an embodiment of an eyeglass display.
  • the substrate is omitted from the parallel mirror type eyeglass display (first embodiment, FIG. 3), and the positional relationship of each part is adjusted instead.
  • first embodiment FIG. 3
  • FIG. 21 is a schematic cross-sectional view of an optical system portion of the present eyeglass display. As shown in FIGS. 21 (a) and 21 (b), the present eyeglass display includes only one parallel plate-shaped substrate 11 and does not include a substrate having refractive power.
  • the positional relationship between the image display element 2a and the objective lens 2b is adjusted so that the distances of the virtual images I individually formed by the plurality of half mirrors l ib are finite, as shown in FIG. It is adjusted. That is, the display light flux L from each pixel of the image display element 2a that has passed through the objective lens 2b is not a parallel light beam but a divergent light beam.
  • each half mirror l ib is such that the virtual image I formed individually by the display light beam reflected by each half mirror l ib overlaps a predetermined position as shown in FIG. 21 (b). Adjusted as follows. Therefore, there is a deviation in posture between the plurality of half mirrors l ib. As a result, the display light beam L incident on the exit pupil P has the same divergence angle as the divergent light beam diverging from a predetermined position at a finite distance.
  • the observation eye E is placed at any position of the exit pupil P, the observation eye
  • the present eyeglass display can adjust the positional relationship between the objective lens 2b and the image display element 2a and the postures of the plurality of half mirrors l ib, while maintaining a large exit pupil P, while maintaining a large exit pupil P.
  • the formation distance can be set to a finite value.
  • the distance d (see FIG. 21 (a)) from the introduction mirror 11a to the plurality of half mirrors 1 lb is sufficiently long. For that distance d
  • the distances of the virtual images I individually formed by the display light beams reflected by the half mirrors l ib can be regarded as substantially the same. be able to.
  • the present eyeglass display gives optical power to the display light beam L, it does not give any optical power to the external light beam, so that the observation distance of the external world by the observation eye E shifts. The problem does not arise.
  • an observer be provided with an adjustment mechanism for finely adjusting the positional relationship between the image display element 2a and the objective lens 2b. This is because even if the positional relationship is the same as the design value, there is a possibility of deviation after assembly, and even if the amount of deviation is very small, the degree of overlap of virtual image I may be poor. Power.
  • FIG. 4 This embodiment is an embodiment of an eyeglass display.
  • the substrate is omitted from the roof-type mirror-type eyeglass display (second embodiment, FIG. 4), and the positional relationship of each part is adjusted instead.
  • second embodiment FIG. 4
  • FIG. 22 is a schematic cross-sectional view of the optical system portion of the present eyeglass display. As shown in FIG. 22, this eyeglass display has only two parallel plate-like substrates 11 and 15 and does not have a substrate having refractive power. Instead, the positional relationship between the image display element 2a and the objective lens 2b is adjusted so that the distance between the virtual images I formed individually by the plurality of half mirrors l ib and l ib is finite. That is R
  • the display light beam L that has passed through the objective lens 2b is not a parallel light beam but a divergent light beam.
  • each half mirror l ib, l ib is the same as that of each half mirror l ib, l ib
  • the display light beam L incident on the exit pupil P has the same divergence angle as the divergent light beam diverging from a predetermined position at a finite distance.
  • the observation eye E can observe the virtual image I of the image display element 2a at a predetermined position of the finite distance D.
  • the present eyeglass display can greatly increase the exit pupil P simply by adjusting the positional relationship between the objective lens 2b and the image display element 2a and the postures of the plurality of half mirrors l ib and l ib.
  • the formation distance of the virtual image I can be set to a finite value while maintaining.
  • the distance from the introduction mirror 11a to the plurality of half mirrors l ib and l ib is sufficiently long. Also,
  • the effect also has the effect described in the seventh embodiment.
  • FIG. 4 is an embodiment of a method for setting the postures of a plurality of half mirrors in a parallel mirror and positional relationship adjustment type eyeglass display (seventh embodiment, FIG. 21 (b)).
  • FIG. 23 is a diagram illustrating a method for setting the attitude of the half mirror of the present embodiment.
  • the mirror mirror is symmetrical on both sides of the half mirror M corresponding to the center of the exit pupil P.
  • Half-mirror M, M, M, ..., M, M, ... forms virtual images I individually formed as exit pupils
  • the method of setting the posture of the half mirror M adjacent to the half mirror M is as follows. It is.
  • the half-mirror M force When the distance to the half-mirror M is d, the virtual image I
  • n is the refractive index of the substrate 11.
  • ⁇ a is the incident / reflection angle of the display light beam L reflected on the inner surface with respect to the substrate surface. Incidentally, this angle ⁇ a is twice the arrangement angle ⁇ with respect to the substrate surface of the half mirror M.
  • each half mirror M can be set.
  • each half mirror M satisfies the following general formulas (1 '), (2'), (3 ')
  • ⁇ . Angle formed by the display light beam L deflected by the half mirror Mi and the substrate normal in the air, theta delta;: half mirror Mi in the deflected light flux L is an angle formed between the substrate normal in the substrate 11.
  • FIG. 24, FIG. 25, and FIG. 26 are diagrams showing the results of calculating the arrangement angle of the half mirror by the above method.
  • Fig. 24 shows the calculation results when the virtual image formation distance D is 5 m
  • Fig. 25 shows the calculation results when the virtual image formation distance D is 3 m
  • Fig. 26 shows the virtual image formation distance D.
  • the number of half mirrors is an odd number
  • the force explaining the case where the substrate normal passing through the center of the exit pupil P is located on the central half mirror is shown in FIG.
  • Figure 27 shows how to use each parameter in that case.
  • the setting method of the parallel mirror type has been described, but as shown in FIG. 28, the same setting method can be applied to the roof type mirror type.
  • the arrangement angles of the two types of half mirrors can be set by the methods described above.
  • how to use each parameter is as shown in Fig.28.
  • the suffix “L” is assigned to the parameter relating to one of the two types of half mirrors
  • the suffix “R” is assigned to the parameter relating to the other.
  • FIG. 4 A ninth embodiment of the present invention will be described with reference to FIG.
  • This embodiment is an embodiment of an eyeglass display. This embodiment is obtained by adding a substrate having refractive power to the roof-type mirror-type eyeglass display (second embodiment, FIG. 4) and adjusting the positional relationship of each part.
  • FIG. 29 is a schematic cross-sectional view of the substrate portion 1 of the present eyeglass display.
  • a substrate 12 having a refractive power with a functional film 15 sandwiched between the substrate 11 where the display light beam L is internally reflected is disposed, and a functional film 13a is disposed on the observation eye E side of the substrate 11.
  • a substrate 13 having a refractive power is disposed.
  • two types of half mirrors l ib and l ib are provided inside the substrate 12. Also two types of multiple halves The postures of the mirrors l ib and l ib are the same as those in the eighth embodiment (FIG. 22).
  • the first mirrors l ib and l ib are adjusted so that the virtual images formed individually overlap at the same position.
  • the refractive power of the substrate 12 be P
  • the refractive power of the substrate 13 be P
  • the combined refractive power P received by the display light beam L is expressed by the following equation (5).
  • the combined refractive power P received by the external light beam L ′ is set to zero (or a value corresponding to the diopter correction amount of the observation eye E).
  • the combined refractive power P received by the display light beam L is set to a value corresponding to the virtual image formation distance D.
  • the combined refractive power P received by the external light beam L ′ and the combined refractive power P received by the display light beam L are different from each other. It depends on the parameters of the combination.
  • the manufacturer of this eyeglass display determines three parameters P 1, P 2 and P 3.
  • the absolute value of the refractive power P of the substrate 13 is reduced.
  • the absolute value of the refractive power P of the substrate 12 is reduced.
  • the posture difference between the half mirrors l ib and l ib is increased to facilitate their adjustment.
  • the amount of processing becomes difficult to adjust.
  • the posture difference is several tens of minutes. Therefore, in this case, half Setting a large absolute value of the pseudo refractive power P of L l ib and l ib as a whole
  • this eyeglass display is the one in which a substrate having refractive power is added to the roof type mirror type eyeglass display and the positional relationship of each part is adjusted. Even a glass display with a large number of surfaces subjected to reflection can be similarly deformed.
  • the power described for the eyeglass display that displays the virtual image of the image display element and the outside world in a superimposed manner.
  • the present invention provides an image display device (head) that displays only the virtual image of the image display element.
  • the present invention can also be applied to optical finders of various optical devices such as cameras, mobile phones, binoculars, microscopes, and telescopes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

There is provided an image display optical system capable of setting the virtual image formation distance of an image display element at a finite value while ensuring a large exit pupil. The image display optical system (1) comprises a first optical element (2b) for parallelizing display luminous flux (L) emitted from each pixel of an image display element (2a), a substrate (11) for introducing the parallelized display luminous flux (L) and making it propagate inside, a plurality of parallel mirrors (11b) for deflecting and leading the display luminous flux (L) propagating through the substrate (11) to the outside the substrate (11), and a second optical element (13) for giving an optical power to the entire display luminous flux (L) led out from the substrate (11) so that the virtual image (I) of the image display element (2a) is formed at a predetermined position of finite distance on the back of the plurality of mirrors (11b).

Description

明 細 書  Specification
画像表示光学系及び画像表示装置  Image display optical system and image display apparatus
技術分野  Technical field
[0001] 本発明は、外部機器からの信号に従い画像表示素子の虚像を観察眼の前方に形 成する画像表示装置に関する。また、本発明は、その画像表示装置に搭載される画 像表示光学系に関する。  The present invention relates to an image display device that forms a virtual image of an image display element in front of an observation eye in accordance with a signal from an external device. The present invention also relates to an image display optical system mounted on the image display device.
背景技術  Background art
[0002] 近年、アイグラスディスプレイの画像表示光学系(コンパイナなどと呼ばれる。)とし て、大きな射出瞳を持つものが提案された (特許文献 1など)。  [0002] In recent years, an image display optical system for an eyeglass display (called a complier or the like) has been proposed having a large exit pupil (Patent Document 1, etc.).
この画像表示光学系は、画像表示素子から射出した表示光束を対物レンズなどの 光学素子で平行光束ィ匕してカゝら透明な基板の内部に導入し、その基板の内部に配 置された互いに平行な複数のミラー (ハーフミラー)でその表示光束を偏向し、基板 の外部に導出する。これによつて、個々のミラーは、基板の外部に射出瞳を並べて形 成する。この射出瞳の何れかの位置に観察眼の瞳を配置すれば、観察者は、無限 遠方の外界の景色に画像表示素子の虚像を重畳して観察することができる。  In this image display optical system, a display light beam emitted from an image display element is introduced into a transparent substrate after being collimated by an optical element such as an objective lens, and disposed inside the substrate. The display light beam is deflected by a plurality of mirrors (half mirrors) parallel to each other and led out of the substrate. As a result, the individual mirrors are formed by arranging the exit pupils outside the substrate. If the pupil of the observation eye is placed at any position of the exit pupil, the observer can observe the virtual image of the image display element superimposed on the outside scene at infinity.
[0003] この画像表示素子においては、ミラーの数の分だけトータルの射出瞳 (以下、これ を「射出瞳」という。)が大きくなる。射出瞳が大きいと、観察眼の瞳の位置の自由度が 高まる点で有利である。  In this image display element, the total exit pupil (hereinafter referred to as “exit pupil”) is increased by the number of mirrors. A large exit pupil is advantageous in that the degree of freedom of the position of the pupil of the observation eye increases.
特許文献 1:特表 2003 - 536102号公報  Patent Document 1: Japanese Translation of Special Publication 2003-536102
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、このアイグラスディスプレイの使用状況によっては、観察者の観察する外 界が無限遠方ではなく有限距離になることがある。例えば、室内で使用するときなど である。 [0004] By the way, depending on how the eyeglass display is used, the outside world observed by the observer may be a finite distance instead of an infinite distance. For example, when used indoors.
しかしながら、大きな射出瞳を持つ画像表示光学系では、虚像の形成距離が無限 遠方に限られており、それを有限距離にすることは難しい。その理由は、以下のとお りである。 [0005] 先ず、画像表示光学系の虚像の形成距離を有限にするためには、基板の内部に 導入される各画素の表示光束を、完全な平行光束ではなぐ若干の発散光束にして おく必要がある。これは、対物レンズと画像表示素子との位置関係を調節することで 容易に実現する。 However, in an image display optical system having a large exit pupil, the virtual image formation distance is limited to infinity, and it is difficult to make it a finite distance. The reason is as follows. First, in order to make the virtual image formation distance of the image display optical system finite, it is necessary to make the display light beam of each pixel introduced into the substrate a slight divergent light beam that is not a perfect parallel light beam. There is. This can be easily realized by adjusting the positional relationship between the objective lens and the image display element.
しかし、この状態の表示光束は、複数のミラーに対し異なる発散角度で入射するの で、個々のミラーで反射された同一表示光束による虚像の距離は、互いにずれる。こ のため、射出瞳内における観察眼の位置によって、観察できる虚像の距離が変化す る、多重像が観察される、といった問題が生じる。  However, since the display light beam in this state is incident on the plurality of mirrors at different divergence angles, the virtual image distances by the same display light beam reflected by the individual mirrors are shifted from each other. For this reason, there arise problems that the distance of the observable virtual image changes depending on the position of the observation eye in the exit pupil, and that multiple images are observed.
[0006] そこで本発明は、射出瞳を大きく確保しながらも画像表示素子の虚像の形成距離 を有限の値に設定することのできる画像表示光学系及び画像表示装置を提供するこ とを目的とする。 Accordingly, an object of the present invention is to provide an image display optical system and an image display apparatus that can set a virtual image formation distance of an image display element to a finite value while ensuring a large exit pupil. To do.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の画像表示光学系は、画像表示素子の各画素から射出した表示光束を平 行光束化する第 1の光学素子と、前記平行光束化された前記表示光束を導入して内 部で伝播させる基体と、前記基体の内部を伝播する前記表示光束を偏向して前記 基体の外部に導出する平行な複数のミラーと、有限距離の所定位置に前記画像表 示素子の虚像が形成されるように、前記基体から導出された前記表示光束の全てに 対し光学的パワーを付与する第 2の光学素子とを備えたことを特徴とする。  [0007] The image display optical system of the present invention introduces a first optical element that converts a display light beam emitted from each pixel of the image display element into a parallel light beam and the display light beam that has been converted into a parallel light beam. Forming a virtual image of the image display element at a predetermined position at a finite distance, and a base body propagating at a portion, a plurality of parallel mirrors that deflect the display light beam propagating inside the base body and lead out to the outside of the base body As described above, a second optical element that provides optical power to all the display light fluxes derived from the substrate is provided.
[0008] この画像表示光学系において、前記基体及び前記複数のミラーは、射出瞳への入 射時における前記表示光束と略同じ角度で外界から前記基体に到来する外界光束 を透過する性質を有し、前記基体に到来する前記外界光束に対し光学的パワーを 付与する第 3の光学素子を更に備えてもよい。  In this image display optical system, the base and the plurality of mirrors have a property of transmitting an external light beam that arrives at the base from the outside at substantially the same angle as the display light beam when entering the exit pupil. In addition, a third optical element that imparts optical power to the external light flux that arrives at the base may be further provided.
また、この画像表示光学系において、前記第 3の光学素子及び前記第 2の光学素 子の光学的パワーの和は、ゼロに設定されて 、てもよ 、。  In this image display optical system, the sum of the optical powers of the third optical element and the second optical element may be set to zero.
[0009] また、前記した何れかの画像表示光学系にお!/、て、前記第 3の光学素子及び前記 第 2の光学素子の光学的パワーの和は、観察眼の前記外界に対する視度を補正す る値に設定されて 、てもよ 、。  [0009] In any one of the image display optical systems described above, the sum of the optical powers of the third optical element and the second optical element is a diopter of the observation eye with respect to the external environment. Is set to the value to be corrected.
また、本発明の別の画像表示光学系は、画像表示素子力 射出した表示光束を導 入して内部で伝播させる基体と、前記基体の内部を伝播する前記表示光束を偏向し て前記基体の外部に導出する複数のミラーとを備えた画像表示光学系において、前 記射出瞳から見て有限距離に前記画像表示素子の虚像が形成されるように、前記 基体に導入される前記表示光束に対し光学的パワーを付与する第 1の光学素子を 備えると共に、前記複数のミラーが個別に形成する前記虚像が、前記有限距離の所 定位置において重なるように、前記複数のミラーの間に姿勢の偏りを設けたことを特 徴とする。 Further, another image display optical system of the present invention guides the display light beam emitted from the image display element force. An image display optical system comprising a substrate that enters and propagates inside, and a plurality of mirrors that deflect the display light beam propagating inside the substrate and guide it to the outside of the substrate, as viewed from the exit pupil. A first optical element for applying optical power to the display light beam introduced into the substrate so that a virtual image of the image display element is formed at a finite distance, and the plurality of mirrors individually It is characterized in that a bias in posture is provided between the plurality of mirrors so that the virtual image to be formed overlaps at a predetermined position of the finite distance.
[0010] この画像表示光学系にお!、て、前記基体に導入された前記表示光束を、内面反射 しながら伝播するように偏向する導入ミラーを更に備えてもよい。  [0010] The image display optical system may further include an introduction mirror that deflects the display light beam introduced into the base body so as to propagate while being internally reflected.
また、前記した何れかの画像表示光学系において、前記複数のミラーは、前記基 体のうち前記表示光束が内面反射する何れかの面上に設けられ、前記複数のミラー と前記面との間には、前記内面反射を妨げることなく前記表示光束の一部を前記複 数のミラーの側に導出する機能膜が設けられてもよい。  In any one of the above-described image display optical systems, the plurality of mirrors are provided on any surface of the base on which the display light beam is internally reflected, and between the plurality of mirrors and the surface. May include a functional film that guides a part of the display light beam to the plurality of mirrors without interfering with the internal reflection.
[0011] また、前記した何れかの画像表示光学系において、前記導入ミラーは、前記基体 に導入された前記表示光束を、前記基体の 3以上の面で内面反射するように偏向す るものであってもよい。  [0011] In any one of the above-described image display optical systems, the introduction mirror deflects the display light beam introduced into the base so as to be internally reflected by three or more surfaces of the base. There may be.
本発明の画像表示装置は、画像表示素子と、前記画像表示素子から射出した表 示光束に基づき前記射出瞳を形成する本発明の何れかの画像表示光学系とを備え たことを特徴とする。  An image display apparatus according to the present invention includes: an image display element; and any one of the image display optical systems according to the present invention that forms the exit pupil based on a display light beam emitted from the image display element. .
[0012] この画像表示装置において、前記画像表示素子及び前記画像表示光学系を観察 者の頭部に固定し、その観察者の観察眼の近傍に前記射出瞳を配置する装着手段 を更に備えてもよい。  [0012] In this image display device, the image display device and the image display optical system are further fixed to an observer's head, and further provided with mounting means for disposing the exit pupil in the vicinity of the observer's observation eye. Also good.
発明の効果  The invention's effect
[0013] 本発明によれば、射出瞳を大きく確保しながらも画像表示素子の虚像の形成距離 を有限の値に設定することのできる画像表示光学系及び画像表示装置が実現する。 図面の簡単な説明  [0013] According to the present invention, an image display optical system and an image display device that can set a virtual image formation distance of an image display element to a finite value while ensuring a large exit pupil are realized. Brief Description of Drawings
[0014] [図 1]アイグラスディスプレイの外観図である。  FIG. 1 is an external view of an eyeglass display.
[図 2]第 1実施形態のアイグラスディスプレイの光学系部分の分解図である。 圆 3]第 1実施形態のアイグラスディスプレイの光学系部分の概略断面図である。 圆 4]第 2実施形態のアイグラスディスプレイの光学系部分の概略断面図である。 FIG. 2 is an exploded view of the optical system portion of the eyeglass display of the first embodiment. 3] A schematic cross-sectional view of the optical system portion of the eyeglass display of the first embodiment. IV] is a schematic cross-sectional view of the optical system portion of the eyeglass display of the second embodiment.
[図 5]図 4の部分拡大図である。 FIG. 5 is a partially enlarged view of FIG.
圆 6]第 3実施形態のアイグラスディスプレイの光学系部分の分解図である。 Note 6] It is an exploded view of the optical system part of the eyeglass display of the third embodiment.
圆 7]第 3実施形態のアイグラスディスプレイの光学系部分の概略断面図である。 圆 8]第 4実施形態のアイグラスディスプレイの光学系部分の概略断面図である。 [7] FIG. 7 is a schematic cross-sectional view of an optical system portion of an eyeglass display according to a third embodiment.圆 8] It is a schematic cross-sectional view of the optical system portion of the eyeglass display of the fourth embodiment.
[図 9]エアギャップを設けたアイグラスディスプレイの基板部 1の概略断面図である。 圆 10]実施例 1の多層膜の膜構成を示す図である。  FIG. 9 is a schematic cross-sectional view of a substrate portion 1 of an eyeglass display provided with an air gap. FIG. 10 is a diagram showing the film configuration of the multilayer film of Example 1.
圆 11]実施例 1の多層膜の反射率の角度特性を示す図である。 [11] FIG. 11 is a graph showing the angular characteristics of the reflectance of the multilayer film of Example 1.
圆 12]実施例 1の多層膜の入射角度 0° の光に対する反射率の波長特性を示す図 である。 FIG. 12 is a graph showing the wavelength characteristic of reflectance with respect to light with an incident angle of 0 ° of the multilayer film of Example 1.
圆 13]実施例 1の多層膜の入射角度 60° の光に対する反射率の波長特性を示す図 である。 FIG. 13 is a graph showing the wavelength characteristics of the reflectance of the multilayer film of Example 1 with respect to light having an incident angle of 60 °.
圆 14]実施例 2の多層膜の膜構成を示す図である。 FIG. 14 is a view showing the film configuration of the multilayer film of Example 2.
圆 15]実施例 2の多層膜の反射率の角度特性を示す図である。 FIG. 15] A graph showing the angular characteristics of the reflectance of the multilayer film of Example 2.
圆 16]実施例 2の多層膜の入射角度 0° の光に対する反射率の波長特性を示す図 である。 FIG. 16 is a graph showing the wavelength characteristics of the reflectance of the multilayer film of Example 2 with respect to light with an incident angle of 0 °.
圆 17]実施例 2の多層膜の入射角度 60° の光に対する反射率の波長特性を示す図 である。 FIG. 17 is a graph showing the wavelength characteristics of reflectance with respect to light with an incident angle of 60 ° of the multilayer film of Example 2.
[図 18]実施例 3のホログラフィック光学素子の製造方法で用いられる光学系の構成図 である。  FIG. 18 is a configuration diagram of an optical system used in the method for manufacturing a holographic optical element of Example 3.
圆 19]第 5実施形態のアイグラスディスプレイの光学系部分の分解図である。 圆 19] An exploded view of the optical system portion of the eyeglass display of the fifth embodiment.
圆 20]第 6実施形態のアイグラスディスプレイの光学系部分の分解図である。 20] FIG. 20 is an exploded view of the optical system portion of the eyeglass display of the sixth embodiment.
圆 21]第 7実施形態のアイグラスディスプレイの光学系部分の概略断面図である。 圆 22]第 8実施形態のアイグラスディスプレイの光学系部分の概略断面図である。 圆 23]実施例 4のハーフミラーの姿勢の設定方法を説明する図である (ハーフミラー の数が奇数)。 圆 21] It is a schematic cross-sectional view of the optical system portion of the eyeglass display of the seventh embodiment.圆 22] It is a schematic cross-sectional view of the optical system portion of the eyeglass display of the eighth embodiment.圆 23] It is a figure explaining the setting method of the attitude | position of the half mirror of Example 4 (the number of half mirrors is an odd number).
圆 24]虚像の形成距離 Dが 5mであるときのハーフミラーの配置角度の計算結果を示 す図である。 圆 24] The calculation result of the arrangement angle of the half mirror when the virtual image formation distance D is 5m is shown. It is a figure.
[図 25]虚像の形成距離 Dが 3mであるときのハーフミラーの配置角度の計算結果を示 す図である。  FIG. 25 is a diagram showing a calculation result of the arrangement angle of the half mirror when the formation distance D of the virtual image is 3 m.
[図 26]虚像の形成距離 Dが lmであるときのハーフミラーの配置角度の計算結果を示 す図である。  FIG. 26 is a diagram showing the calculation result of the arrangement angle of the half mirror when the virtual image formation distance D is lm.
[図 27]実施例 4のハーフミラーの姿勢の設定方法を説明する図である (ハーフミラー の数が偶数)。  FIG. 27 is a view for explaining a method of setting the posture of the half mirror of Example 4 (the number of half mirrors is an even number).
[図 28]実施例 4のハーフミラーの姿勢の設定方法を説明する図である (屋根型ミラー タイプ)。  FIG. 28 is a view for explaining a method of setting the posture of the half mirror of Example 4 (roof-type mirror type).
[図 29]第 9実施形態のアイグラスディスプレイの基板部 1の概略断面図である。  FIG. 29 is a schematic sectional view of a substrate part 1 of an eyeglass display according to a ninth embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] [第 1実施形態] [0015] [First embodiment]
図 1、図 2、図 3を参照して本発明の第 1実施形態を説明する。本実施形態は、アイ グラスディスプレイの実施形態である。  A first embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG. This embodiment is an embodiment of an eyeglass display.
図 1は、本アイグラスディスプレイの外観図である。図 1に示すように、本アイグラス ディスプレイは、眼鏡フレームと同様の構造のフレーム 4に、基板部 1、画像導入ュ- ット 2、及びケーブル 3などを固定してなる。  Figure 1 is an external view of this eyeglass display. As shown in FIG. 1, the present eyeglass display is formed by fixing a substrate part 1, an image introducing unit 2, a cable 3 and the like to a frame 4 having a structure similar to that of a spectacle frame.
[0016] 基板部 1は、その外形が眼鏡レンズの外形と同様に整えられた基板力 なり、フレ ーム 4の一方のフロント部(図 1では左のフロント部)に装着される。画像導入ユニット 2 は、フレーム 4の一方のテンプル(図 1では左のテンプル)などに取り付けられる。この 画像導入ユニット 2は、ケーブル 3を介して外部機器 (パーソナルコンピュータなど)に 接続される。 [0016] The substrate portion 1 has a substrate force whose outer shape is adjusted in the same manner as the outer shape of the spectacle lens, and is attached to one front portion of the frame 4 (the left front portion in FIG. 1). The image introduction unit 2 is attached to one temple (the left temple in FIG. 1) of the frame 4 or the like. The image introduction unit 2 is connected to an external device (such as a personal computer) via a cable 3.
[0017] このアイグラスディスプレイがフレーム 4によって眼鏡と同様に観察者の頭部に装着 されると、観察者の一方の眼 E (図 1では左眼、以下「観察眼」という。 )に基板部 1が 正対する。また、この状態では、基板部 1の観察眼 E側の端部に画像導入ユニット 2 の射出口が正対する。  [0017] When this eyeglass display is mounted on the observer's head in the same manner as the glasses by the frame 4, the substrate is placed on one eye E of the observer (the left eye in FIG. 1, hereinafter referred to as the "observing eye"). Part 1 faces directly. In this state, the exit of the image introduction unit 2 faces the end of the substrate unit 1 on the observation eye E side.
図 2は、アイグラスディスプレイの光学系部分 (画像表示光学系)の分解図である。 図 2に示すように、基板部 1は、外界から観察眼 Eに向かって順に、 2枚の基板 11, 1 3を配置してなる。これらの基板 11, 13は、画像導入ユニット 2から導入される表示光 束 L (ここでは可視光とする。)と、外界から観察眼 Eに向力う外界光束 L' (ここでは可 視光とする。)とに対し透明である。 Fig. 2 is an exploded view of the optical system part (image display optical system) of the eyeglass display. As shown in FIG. 2, the substrate unit 1 includes two substrates 11, 1 in order from the outside to the observation eye E. 3 is arranged. These substrates 11 and 13 are provided with a display light flux L (here, visible light) introduced from the image introduction unit 2 and an external light flux L ′ (here, visible light) directed toward the observation eye E from the outside world. And transparent).
[0018] 基板 11は、平行平板であり、その内部に全反射ミラーである導入ミラー 11aと、互い に平行な複数のハーフミラー l ibとを、それぞれ所定の位置に所定の姿勢で配置し ている。基板 13は、観察眼 E側に凹面を向けた平凹レンズ (屈折レンズ)である。これ らの基板 11,基板 13は、エアギャップと同等の機能を有する誘電体多層膜からなる 機能膜 13aを挟んで密着している。  [0018] The substrate 11 is a parallel plate, and an introduction mirror 11a, which is a total reflection mirror, and a plurality of half mirrors l ib parallel to each other are arranged in predetermined positions at predetermined positions, respectively. Yes. The substrate 13 is a plano-concave lens (refractive lens) with a concave surface facing the observation eye E side. These substrates 11 and 13 are in close contact with each other with a functional film 13a made of a dielectric multilayer film having a function equivalent to an air gap.
[0019] 図 3は、本アイグラスディスプレイの光学系部分を表示光束 Lの光路を含む水平面( 観察者から見た水平面)で切断してできる概略断面図である。図 3に示すとおり、画 像導入ユニット 2内には、液晶表示素子などの小型の画像表示素子 2aと対物レンズ 2bとが配置される。  FIG. 3 is a schematic cross-sectional view obtained by cutting the optical system portion of the present eyeglass display along a horizontal plane (horizontal plane viewed from the observer) including the optical path of the display light beam L. As shown in FIG. 3, in the image introducing unit 2, a small image display element 2a such as a liquid crystal display element and an objective lens 2b are arranged.
画像表示素子 2aの各画素から射出した表示光束 Lは、対物レンズ 2bにて平行光 束化される。平行光束化された表示光束 Lは、基板 13及び機能膜 13aを介して基板 11の観察眼 E側の面に到達する。この面への表示光束 Lの入射角度は、どの画素か らの表示光束であっても小さい角度であり、基板 11の臨界角度 Θ cよりも小さいので 、表示光束 Lはその面力も基板 11の内部に入射する。なお、基板 13のうち、この面 へ入射する表示光束 Lの通過領域は、何の光学的パワーも持たな!、平行平板にな つている。  The display light beam L emitted from each pixel of the image display element 2a is converted into a parallel light flux by the objective lens 2b. The display light beam L converted into the parallel light beam reaches the surface on the observation eye E side of the substrate 11 through the substrate 13 and the functional film 13a. The incident angle of the display light beam L on this surface is a small angle regardless of which pixel the display light beam is, and is smaller than the critical angle Θ c of the substrate 11. Incident inside. In the substrate 13, the passage region of the display light beam L incident on this surface has no optical power and is a parallel plate.
[0020] 基板 11の内部に入射した表示光束 Lは、基板 11内の導入ミラー 11aにて反射し、 基板 11の臨界角度 Θ cよりも大きい入射角度 (例えば、 60° 近傍の角度)で基板 11 の観察眼 E側の面に入射し、その面にて反射する。そして、その表示光束 Lは、基板 11の外界側の面に入射して同様に反射する。表示光束 Lは、これを繰り返し、観察 眼 E側の面と外界側の面とで交互に反射(内面反射)しながら観察眼 Eの方向へと伝 播する。その後、表示光束 Lは、基板 11内の複数のハーフミラー l ibに対し順次入 射する。  [0020] The display light beam L incident on the inside of the substrate 11 is reflected by the introduction mirror 11a in the substrate 11, and the substrate 11 is incident at an incident angle larger than the critical angle Θc of the substrate 11 (for example, an angle near 60 °). It enters the observation eye E side of 11 and reflects off that surface. Then, the display light beam L is incident on the external surface of the substrate 11 and is similarly reflected. The display light beam L repeats this, and propagates in the direction of the observation eye E while being alternately reflected (internal reflection) between the observation eye E side surface and the external field side surface. Thereafter, the display light beam L sequentially enters the plurality of half mirrors l ib in the substrate 11.
[0021] 複数のハーフミラー l ibに所定の入射角度で入射した表示光束 Lは、観察眼 Eの 方向にそれぞれ偏向され、基板 11の観察眼 E側の面に臨界角度 Θ cよりも小さい入 射角度 (0° 近傍の角度)で入射する。よって、その表示光束 Lは、基板 11の外部へ 射出し、機能膜 13a及び基板 13を介して観察眼 Eの近傍の領域に入射し、そこに射 出瞳 Pを形成する。この射出瞳 Pは、ハーフミラー l ibが複数化さている分だけ大きく なっている。 [0021] The display light beams L incident on the plurality of half mirrors l ib at a predetermined incident angle are respectively deflected in the direction of the observation eye E, and are incident on the surface of the substrate 11 on the observation eye E side smaller than the critical angle Θc. Incident at an angle of incidence (an angle near 0 °). Therefore, the display light beam L is emitted to the outside of the substrate 11 and is incident on a region near the observation eye E through the functional film 13a and the substrate 13, and an exit pupil P is formed there. The exit pupil P is increased by the number of half mirrors l ib.
[0022] なお、機能膜 13aは、エアギャップと同等の機能、すなわち、基板 11の臨界角度 Θ cよりも大きい角度 (例えば 60° 近傍の角度)の可視光に対し略 100%の反射性を示 し、かつ臨界角度 Θ cよりも小さい角度 (例えば 0° 近傍の角度)の可視光に対し略 1 00%の透過性を示すように設計されればよ!、。  [0022] The functional film 13a has a function equivalent to that of the air gap, that is, substantially 100% reflectivity with respect to visible light having an angle larger than the critical angle Θ c of the substrate 11 (for example, an angle near 60 °). It must be designed to show approximately 100% transparency for visible light with an angle smaller than the critical angle Θc (eg near 0 °)!
ここで、本アイグラスディスプレイでは、基板 11を伝播する表示光束 Lは平行光束 化されている。よって、複数のハーフミラー l ibで反射した直後の複数の表示光束 L は、それぞれ無限遠方に画像表示素子 2aの虚像 Γを形成するような光束である。  Here, in this eyeglass display, the display light beam L propagating through the substrate 11 is converted into a parallel light beam. Therefore, the plurality of display light beams L immediately after being reflected by the plurality of half mirrors l ib are light beams that respectively form the virtual image Γ of the image display element 2a at infinity.
[0023] しかし、本アイグラスディスプレイにおいては、基板 11から射出した後の表示光束 L の全体には基板 13 (平凹レンズ)が挿入されるので、その表示光束 Lの全体は負の 光学的パワーを受ける。 [0023] However, in the present eyeglass display, the substrate 13 (a plano-concave lens) is inserted into the entire display light beam L after being emitted from the substrate 11, so that the entire display light beam L has a negative optical power. Receive.
よって、射出瞳 Pへ入射する表示光束 Lは、平行光束ではなくなり、有限距離 Dの 所定位置から発散した発散光束と同じ発散角度を持つことになる。  Therefore, the display light beam L incident on the exit pupil P is not a parallel light beam but has the same divergence angle as the divergent light beam diverging from a predetermined position at a finite distance D.
[0024] したがって、観察眼 Eが射出瞳 Pの何れかの位置に配置されていれば、その観察眼 Eは有限距離 Dの所定位置に、画像表示素子 2aの虚像 Iを観察することができる。 以上、本アイグラスディスプレイは、射出瞳 Pを大きく確保しながら虚像 Iの形成距離 を有限の値に設定することができる。 Therefore, if the observation eye E is arranged at any position of the exit pupil P, the observation eye E can observe the virtual image I of the image display element 2a at a predetermined position of the finite distance D. . As described above, the present eyeglass display can set the formation distance of the virtual image I to a finite value while ensuring a large exit pupil P.
なお、本アイグラスディスプレイにおいては、基板 13の屈折力(凹面の曲率半径)を 調整するだけで、虚像 Iの形成距離を調整することができる。  In this eyeglass display, the formation distance of the virtual image I can be adjusted only by adjusting the refractive power of the substrate 13 (the radius of curvature of the concave surface).
[0025] [第 2実施形態] [Second Embodiment]
図 4、図 5を参照して本発明の第 2実施形態を説明する。本実施形態は、アイグラス ディスプレイの実施形態である。ここでは、第 1実施形態のアイグラスディスプレイとの 相違点のみ説明する。  A second embodiment of the present invention will be described with reference to FIGS. This embodiment is an embodiment of an eyeglass display. Only the differences from the eyeglass display of the first embodiment will be described here.
図 4は、本アイグラスディスプレイの光学系部分の概略断面図である。図 4に示すと おり、本アイグラスディスプレイの基板部 1には、基板 11の外界側に、誘電体多層膜 力 なる機能膜 15aを挟んで平行平板状の基板 15が密着している。 FIG. 4 is a schematic cross-sectional view of the optical system portion of the present eyeglass display. As shown in FIG. 4, the substrate portion 1 of this eyeglass display has a dielectric multilayer film on the outside of the substrate 11. The parallel plate-like substrate 15 is in close contact with the functional film 15a.
[0026] また、基板 11の内部に複数のハーフミラーが設けられる代わりに、基板 15の内部 に、互いに姿勢の異なる 2種類のハーフミラー l ib , l ibが交互に複数個ずつ設け [0026] Further, instead of providing a plurality of half mirrors in the substrate 11, two types of half mirrors l ib and l ib having different postures are alternately provided in the substrate 15 one by one.
R し  R
られる。互いに隣接するハーフミラー l ib及びハーフミラー l ibは、屋根型のハー し R  It is done. The adjacent half mirror l ib and half mirror l ib are roof-shaped
フミラーを構成する。なお、複数のハーフミラー l ib同士は平行であり、複数のハー し  Configure the mirror. The multiple half mirrors l ib are parallel to each other,
フミラー l ib同士も平行である。  Fmirror l ib is also parallel to each other.
R  R
[0027] また、基板 11の内部には、導入ミラー 11aの他に、基板 11内を伝播した表示光束 Lを折り返して基板 11内を往復させるための折り返しミラー 1 lcが設けられる。  In addition to the introduction mirror 11a, a folding mirror 1 lc for folding the display light beam L propagating through the substrate 11 and reciprocating the substrate 11 is provided inside the substrate 11.
また、機能膜 15aは、基板 11の内部を往復する表示光束 L (例えば入射角 60° 近 傍の角度の可視光)に対し半透過性を示し、基板 11の臨界角度 Θ cよりも小さい角 度 (例えば入射角 0° 近傍の角度)の可視光に対し略 100%の透過性を示すよう〖こ 設計される。  In addition, the functional film 15a is semi-transmissive to the display light beam L (for example, visible light having an incident angle near 60 °) that reciprocates inside the substrate 11, and has an angle smaller than the critical angle Θ c of the substrate 11. It is designed to be nearly 100% transparent to visible light at a degree (eg, near 0 ° incident angle).
[0028] ここで、本アイグラスディスプレイでは、図 5に拡大して示すように、基板 11内の往 路進行中の表示光束 Lの一部が機能膜 15aを介して基板 15へと進入し、一方のハ 一フミラー l ibに入射する。また、基板 11内の復路進行中の表示光束 Lの一部が機  Here, in the present eyeglass display, as shown in an enlarged view in FIG. 5, a part of the display light beam L traveling in the forward path in the substrate 11 enters the substrate 15 through the functional film 15a. , Is incident on one half mirror l ib. In addition, a part of the display light flux L during the return path in the substrate 11 is
R  R
能膜 15aを介して基板 15へと進入し、他方のハーフミラー l ibに入射する。  It enters the substrate 15 via the active film 15a and enters the other half mirror l ib.
 Shi
ハーフミラー l ibは、そこへ入射した表示光束 Lを観察眼 Eの方向へ偏向し、ハー  The half mirror l ib deflects the display light beam L incident thereon in the direction of the observation eye E, and
R  R
フミラー l ibは、そこへ入射した表示光束 Lを観察眼 Eの方向へ偏向する。ハーフミ し  The mirror I ib deflects the display light beam L incident thereon in the direction of the observation eye E. Half
ラー l ib , l ibで偏向された表示光束 Lは、機能膜 15a、基板 11、機能膜 13a、及 The display light beam L deflected by the lasers l ib and l ib is the functional film 15a, the substrate 11, the functional film 13a, and
R し R
び基板 13を介して観察眼 Eの近傍の領域に入射し、そこへ射出瞳 Pを形成する。こ のアイグラスディスプレイにおいても、ハーフミラー l ib , l ibが複数化されている分 し R  Then, the light enters the region near the observation eye E through the substrate 13, and an exit pupil P is formed there. In this eyeglass display, too, half mirrors l ib and l ib are divided into R
だけ射出瞳 Pは大きい。  Only the exit pupil P is big.
[0029] そして、本アイグラスディスプレイにおいても、基板 11から射出した後の表示光束 L の全体には基板 13 (平凹レンズ)が挿入されるので、基板 11から射出した後の表示 光束 Lの全体は負の光学的パワーを受ける。 [0029] Also in this eyeglass display, since the substrate 13 (a plano-concave lens) is inserted into the entire display light beam L after being emitted from the substrate 11, the entire display light beam L after being emitted from the substrate 11 is inserted. Receives negative optical power.
よって、射出瞳 Pへ入射する表示光束 Lは、平行光束ではなくなり、有限距離の所 定位置から発散した発散光束と同じ発散角度を持つことになる。  Therefore, the display light beam L incident on the exit pupil P is not a parallel light beam but has the same divergence angle as the divergent light beam diverging from a predetermined position at a finite distance.
[0030] したがって、観察眼 Eが射出瞳 Pの何れかの位置に配置されていれば、その観察眼 Eは有限距離の所定位置に、画像表示素子 2aの虚像 Iを観察することができる。 なお、本アイグラスディスプレイでは、折り返しミラー 11cを設けた力 折り返しミラー 11cを省略することも可能である。但し、折り返しミラー 11cを設けた方力 射出瞳 P内 における観察眼 Eの位置による光量差を抑えることができるので望ましい。 [0030] Therefore, if the observation eye E is placed at any position of the exit pupil P, the observation eye E can observe the virtual image I of the image display element 2a at a predetermined position at a finite distance. In this eyeglass display, the force folding mirror 11c provided with the folding mirror 11c can be omitted. However, it is desirable because the difference in the amount of light depending on the position of the observation eye E in the direction exit pupil P where the folding mirror 11c is provided can be suppressed.
[0031] [第 3実施形態] [0031] [Third embodiment]
図 6、図 7を参照して本発明の第 3実施形態を説明する。本実施形態は、アイグラス ディスプレイの実施形態である。ここでは、第 1実施形態のアイグラスディスプレイ(図 2,図 3参照)との相違点のみ説明する。  A third embodiment of the present invention will be described with reference to FIGS. This embodiment is an embodiment of an eyeglass display. Here, only differences from the eyeglass display of the first embodiment (see FIGS. 2 and 3) will be described.
先ず、第 1実施形態の問題点について説明する。第 1実施形態において追加され た基板 13は、表示光束 Lに対し適当な負の光学的パワーを与えるものであつたが、 外界から観察眼 Eに向力う外界光束に対しても全く同じ負の光学的パワーを与えてし まう。このため、第 1実施形態では、観察眼 Eによる外界の観察距離が実際よりも手前 にずれるという問題があった。本実施形態では、このような外界の観察距離のずれを 抑える。  First, problems of the first embodiment will be described. The substrate 13 added in the first embodiment gives an appropriate negative optical power to the display light beam L, but the same negative light is also applied to the external light beam directed from the outside to the observation eye E. I will give you the optical power. For this reason, in the first embodiment, there is a problem that the observation distance of the outside world by the observation eye E deviates from the actual distance. In this embodiment, such a deviation in the observation distance of the outside world is suppressed.
[0032] 図 6は、本アイグラスディスプレイの光学系部分の分解図であり、図 7は、本アイダラ スディスプレイの光学系部分の概略断面図である。図 6、図 7に示すとおり、本アイグ ラスディスプレイの基板部 1には、基板 11の外界側に、機能膜 12aを挟んで基板 12 が密着している。機能膜 12aは、機能膜 13aと同じものであり、基板 12は、外界側に 凸面を向けた平凸レンズ (屈折レンズ)である。  FIG. 6 is an exploded view of the optical system portion of the present eyeglass display, and FIG. 7 is a schematic sectional view of the optical system portion of the present idle display. As shown in FIGS. 6 and 7, the substrate 12 is in close contact with the substrate portion 1 of the present eyeglass display on the outside of the substrate 11 with the functional film 12a interposed therebetween. The functional film 12a is the same as the functional film 13a, and the substrate 12 is a plano-convex lens (refractive lens) with a convex surface facing the outside.
[0033] この基板 12は、表示光束 Lには作用せず、図 7に示すとおり、外界 I"から観察眼 E に向力う外界光束 L'にのみ正の光学的パワーを与える。一方、基板 13は、表示光 束 Lと外界光束 L'との双方に共通の負の光学的パワーを与える。  This substrate 12 does not act on the display light beam L, and gives positive optical power only to the external light beam L ′ directed from the external environment I ″ to the observation eye E, as shown in FIG. The substrate 13 gives a common negative optical power to both the display light flux L and the external light flux L ′.
このうち、基板 13の屈折力 Pは、第 1実施形態と同様、虚像を形成すべき距離 (こ  Among these, the refractive power P of the substrate 13 is the distance (this is the distance at which a virtual image is to be formed, as in the first embodiment.
in  in
こでは有限距離)に応じた値に設定される。したがって、第 1実施形態と同様、有限 距離に画像表示素子 2aの虚像が形成される。  Here, it is set to a value corresponding to a finite distance). Therefore, as in the first embodiment, a virtual image of the image display element 2a is formed at a finite distance.
[0034] 一方、基板 12の屈折力 P は、基板 13の屈折力 Pの等量反対符号 (P =— P ) On the other hand, the refractive power P of the substrate 12 is equal in sign to the refractive power P of the substrate 13 (P = —P).
out in out in に設定される。  out in set to out in.
このとき、外界光束 L'が受ける合成屈折力 Pは、 P =P +P =0となり、外界光束  At this time, the combined refractive power P received by the external light flux L ′ becomes P = P + P = 0, and the external light flux
s s in out L'は、基板 12, 13が存在しな力つたのと同じ状態で観察眼 Eに入射する。 ss in out L ′ is incident on the observation eye E in the same state as if the substrates 12 and 13 were not present.
したがって、本アイグラスディスプレイによれば、第 1実施形態とは異なり、観察眼 E による外界 I"の観察距離には何のずれも生じない。  Therefore, according to the present eyeglass display, unlike the first embodiment, there is no deviation in the observation distance of the external environment I ″ by the observation eye E.
[0035] なお、本アイグラスディスプレイにお 、て、合成屈折力 Pがゼロ以外の値になるよう [0035] In this eyeglass display, the combined refractive power P is a value other than zero.
s  s
に基板 12の屈折力 P を加減すれば、外界 I "に対する観察眼 Eの視度補正をするこ  If the refractive power P of the substrate 12 is adjusted, the diopter correction of the observation eye E with respect to the external environment I "is performed.
out  out
とちでさる。  Tochidaru.
例えば、観察眼 Eの視度が強い (近視)の場合、合成屈折力 Pが Pく 0となるよう基  For example, when the diopter of observation eye E is strong (myopia), the combined refractive power P is set to P
S S  S S
板 12の屈折力 P を設定し、観察眼 Eの視度が弱い (遠視)の場合、合成屈折力 P  When the refractive power P of the plate 12 is set and the diopter of the observation eye E is weak (hyperopia), the combined refractive power P
out S 力 >0となるよう基板 12の屈折力 P を設定すればよい。なお、観察眼 Eが必要とし s out  The refractive power P of the substrate 12 may be set so that out S force> 0. Note that the observation eye E requires s out
ている視度補正量に依っては、基板 12の外界側の面が凹面になることもある。  Depending on the diopter correction amount, the surface on the outside of the substrate 12 may be concave.
[0036] また、基板 13の観察者側の面、基板 12の外界側の面の少なくとも一方に非球面や 累進焦点面などを併用すれば、乱視用眼鏡レンズや遠近両用眼鏡レンズの機能を 本アイグラスディスプレイに持たせることもできる。 [0036] If an aspherical surface or a progressive focal plane is used in combination with at least one of the surface on the observer side of the substrate 13 and the surface on the outside world of the substrate 12, the functions of the spectacle lens for astigmatism and the spectacle lens for both perspectives can be realized. It can also be put on an eyeglass display.
[第 4実施形態]  [Fourth embodiment]
図 8を参照して本発明の第 4実施形態を説明する。上述した第 3実施形態は、平行 ミラータイプのアイグラスディスプレイ (第 1実施形態、図 3)において外界の観察距離 のずれを抑えたものであった力 本実施形態は、屋根型ミラータイプのアイグラスディ スプレイ (第 2実施形態、図 4)において外界の観察距離のずれを抑えたものである。 なお、ここでは、第 2実施形態(図 4)又は第 3実施形態(図 7)との相違点のみ説明す る。  A fourth embodiment of the present invention will be described with reference to FIG. The third embodiment described above is a force that suppresses the deviation in the observation distance of the outside world in the parallel mirror type eyeglass display (first embodiment, FIG. 3). In the glass display (second embodiment, FIG. 4), the deviation of the observation distance of the outside world is suppressed. Only the differences from the second embodiment (FIG. 4) or the third embodiment (FIG. 7) will be described here.
[0037] 図 8は、本アイグラスディスプレイの光学系部分の概略断面図である。図 8に示すと おり、本アイグラスディスプレイの基板部 1には、基板 11の外界側に、機能膜 15aを 挟んで平凸レンズからなる基板 12が密着しており、その基板 12の内部に、複数のハ 一フミラー l ib及び複数のハーフミラー l ibが設けられる。  FIG. 8 is a schematic cross-sectional view of the optical system portion of the present eyeglass display. As shown in FIG. 8, a substrate 12 made of a plano-convex lens is in close contact with the substrate 1 of this eyeglass display on the outside of the substrate 11 with a functional film 15a interposed therebetween. A plurality of half mirrors l ib and a plurality of half mirrors l ib are provided.
し R  R
このうち、基板 13の屈折力 Pと基板 12の屈折力 P とは、第 3実施形態のそれと同  Of these, the refractive power P of the substrate 13 and the refractive power P of the substrate 12 are the same as those of the third embodiment.
in out  in out
じに設定される。すなわち、基板 13の屈折力 Pは、虚像を形成すべき距離 (ここでは  It is set to the same time. That is, the refractive power P of the substrate 13 is the distance to form a virtual image (here,
in  in
有限距離)に応じた値に設定され、基板 12の屈折力 P は、基板 13の屈折力 Pの  The refractive power P of the substrate 12 is equal to the refractive power P of the substrate 13.
out in 等量反対符号 (P =— P )  out in Equivalent opposite sign (P = — P)
out in に設定される。 [0038] このとき、外界光束 L'が受ける合成屈折力 Pは、 P =P +P =0となり、外界光束 set to in. [0038] At this time, the combined refractive power P received by the external light flux L ′ is P = P + P = 0, and the external light flux
s s in out  s s in out
L'は、基板 12, 13が存在しな力つたのと同じ状態で観察眼 Eに入射する。  L ′ is incident on the observation eye E in the same state as if the substrates 12 and 13 were not present.
したがって、本アイグラスディスプレイによれば、観察眼 Eによる外界 I"の観察距離 には何のずれも生じない  Therefore, according to this eyeglass display, there is no deviation in the observation distance of the external environment I "by the observation eye E.
なお、本アイグラスディスプレイにおいても、合成屈折力 Pがゼロ以外の値になるよ  In this eyeglass display, the combined refractive power P is a non-zero value.
s  s
うに基板 12の屈折力 P を加減すれば、外界 I "に対する観察眼 Eの視度補正をする  In other words, if the refractive power P of the substrate 12 is adjusted, the diopter correction of the observation eye E with respect to the external environment I "is performed.
out  out
ことができる。  be able to.
[0039] [その他]  [0039] [Others]
なお、上述した各実施形態では、基板 12, 13の各々に屈折レンズが用いられたが 、基板 12, 13の何れか一方又は双方に、屈折レンズ以外の光学素子(フレネルレン ズゃホログラフィック光学素子)などが用いられてもよ 、。  In each of the embodiments described above, a refractive lens is used for each of the substrates 12 and 13, but an optical element other than the refractive lens (Fresnel lens holographic optical element) is used for either or both of the substrates 12 and 13. ) Etc. may be used.
また、上述した各実施形態では、基板 11に入射する表示光束 Lに対し光学的パヮ 一を与えるために対物レンズ 2bが用いられた力 対物レンズ 2b以外の光学素子(フ レネルレンズやホログラフィック光学素子など)が用いられてもよい。また、基板 11と別 に光学素子を用意する代わりに、基板 11のうち表示光束 Lが最初に入射する面に光 学的パワーを持たせてもよ 、。  Further, in each of the above-described embodiments, the force that uses the objective lens 2b to give optical uniformity to the display light beam L incident on the substrate 11 is an optical element other than the objective lens 2b (a Fresnel lens or a holographic optical element). Etc.) may be used. Further, instead of preparing an optical element separately from the substrate 11, the surface of the substrate 11 on which the display light beam L first enters may have optical power.
[0040] また、上述した各実施形態では、機能膜 13a, 12a, 15aに誘電体多層膜が用いら れたが、それと同じ特性を持つホログラフィック光学素子や、金属膜や半導体膜など 力もなる他の光学多層膜が用いられてもよ 、。 [0040] In each of the above-described embodiments, the dielectric multilayer film is used for the functional films 13a, 12a, and 15a. However, the holographic optical element having the same characteristics, a metal film, a semiconductor film, and the like can be used. Other optical multilayers may be used.
また、上述した各実施形態では、機能膜 13a, 12aの代わりにエアギャップが用いら れてもよい。例えば、第 3実施形態の基板部 1にエアギャップを適用する場合には、 図 9に概略的に示すように、基板 11と基板 12との間、及び基板 11と基板 13との間の それぞれにスぺーサ 16を挟み、周囲から全体を支持部材 17によって押圧すればよ い。  In each embodiment described above, an air gap may be used instead of the functional films 13a and 12a. For example, when an air gap is applied to the substrate portion 1 of the third embodiment, as schematically shown in FIG. 9, each of the substrate 11 and the substrate 12 and the substrate 11 and the substrate 13 are respectively The spacer 16 may be sandwiched between the two and pressed by the support member 17 from the periphery.
[0041] また、製造者は、アイグラスディスプレイの仕様やコストなどを加味して機能膜とエア ギャップとを適宜選択使用することが望ましい。因みに、エアギャップを用いるよりも機 能膜を用いる方が、部品の削減、組み立て工程の削減が図れるので、低コストである [実施例 1] [0041] Further, it is desirable for the manufacturer to appropriately select and use the functional film and the air gap in consideration of the specifications and cost of the eyeglass display. By the way, it is cheaper to use functional membranes than to use air gaps because it can reduce parts and assembly processes. [Example 1]
図 10、図 11、図 12、図 13を参照して実施例 1を説明する。本実施例は、機能膜 1 The first embodiment will be described with reference to FIGS. 10, 11, 12, and 13. FIG. This example is a functional membrane 1
3a, 12aとして利用可能な誘電体多層膜の実施例である。 This is an example of a dielectric multilayer film usable as 3a and 12a.
[0042] 本多層膜の構成は、本多層膜に必要とされる特性に応じて計算機が最適化したも のである。最適化に当たっての前提は、以下のとおりである。 [0042] The configuration of the multilayer film is optimized by a computer in accordance with the characteristics required for the multilayer film. The premise for optimization is as follows.
•画像表示素子 2aから射出する表示光束 Lは s偏光に制限されていること •基板 11を内面反射する表示光束 Lの基板面への入射角度が 60° の近傍である こと  • The display beam L emitted from the image display element 2a must be limited to s-polarized light. • The incident angle of the display beam L that internally reflects the substrate 11 to the substrate surface must be around 60 °.
'多層膜と基板との間は基板と同じ屈折率の接着剤で接着されること  'The multilayer film and the substrate should be bonded with the same refractive index as the substrate.
なお、画像表示素子 2aとして液晶表示素子を用いた場合、その原理上、表示光束 When a liquid crystal display element is used as the image display element 2a, the display luminous flux is
Lは偏光するので、 s偏光の限定は実用上何の差し支えもな!/、。 Since L is polarized, the limitation of s-polarization is practically no problem!
[0043] 図 10は、本多層膜の膜構成を示す図である。図 10に示すように、本多層膜の全層 数は 19、基板の屈折率は 1. 56、高屈折率層の屈折率は 2. 20、低屈折率層の屈 折率は 1. 46、中心波長え = 510nmである。 FIG. 10 is a diagram showing a film configuration of the multilayer film. As shown in Fig. 10, the total number of layers of this multilayer film is 19, the refractive index of the substrate is 1.56, the refractive index of the high refractive index layer is 2.20, and the refractive index of the low refractive index layer is 1.46. The central wavelength is 510 nm.
図 11は、本多層膜の反射率の角度特性を示す図である。図 11において Rsで示す のが s偏光に対する反射率、 Rpで示すのが p偏光に対する反射率である。図 11に示 すように、本多層膜は、 45° よりも十分に小さい角度の s偏光に対して略 100%の透 過率を示し、 45° よりも十分に大きい角度の s偏光に対して略 100%の反射率を示 す。  FIG. 11 is a diagram showing the angular characteristics of the reflectance of the multilayer film. In FIG. 11, Rs indicates the reflectivity for s-polarized light, and Rp indicates the reflectivity for p-polarized light. As shown in Fig. 11, this multilayer film exhibits a transmittance of about 100% for s-polarized light with an angle sufficiently smaller than 45 °, and for s-polarized light with an angle sufficiently larger than 45 °. The reflectivity is almost 100%.
[0044] 図 12は、本多層膜の入射角度 0° の光に対する反射率の波長特性を示す図であ る。図 12にお ヽて Raで示すのは s偏光に対する反射率と p偏光に対する反射率との 平均値である。図 12に示すように、本多層膜は、入射角度 0° の光であれば、可視 光全域に亘つて略 100%の透過率を示す。  FIG. 12 is a diagram showing the wavelength characteristics of the reflectance of the multilayer film with respect to light with an incident angle of 0 °. In Fig. 12, Ra represents the average value of the reflectance for s-polarized light and the reflectance for p-polarized light. As shown in FIG. 12, the multilayer film exhibits a transmittance of approximately 100% over the entire visible light range when the incident angle is 0 °.
図 13は、本多層膜の入射角度 60° の光に対する反射率の波長特性を示す図で ある。図 13において Rsで示すの力 偏光に対する反射率、 Rpで示すのが p偏光に対 する反射率である。図 13に示すように、本多層膜は、入射角度 60° の s偏光の光で あれば、可視光全域に亘つて略 100%の反射率を示す。  FIG. 13 is a graph showing the wavelength characteristics of the reflectance of the multilayer film with respect to light having an incident angle of 60 °. In FIG. 13, the force indicated by Rs is the reflectivity for polarized light, and Rp is the reflectivity for p-polarized light. As shown in FIG. 13, this multilayer film exhibits a reflectivity of approximately 100% over the entire visible light region if it is s-polarized light with an incident angle of 60 °.
[0045] [実施例 2] 図 14、図 15、図 16、図 17を参照して実施例 2を説明する。本実施例は、機能膜 1 3a, 12aとして利用可能な誘電体多層膜の実施例である。 [0045] [Example 2] Embodiment 2 will be described with reference to FIGS. 14, 15, 16, and 17. FIG. The present embodiment is an embodiment of a dielectric multilayer film that can be used as the functional films 13a and 12a.
本多層膜の構成は、本多層膜に必要とされる特性に応じて計算機が最適化したも のである。最適化に当たっての前提は、以下のとおりである。  The configuration of the multilayer film is optimized by a computer according to the characteristics required for the multilayer film. The premise for optimization is as follows.
[0046] ,画像表示素子 2aから射出する表示光束 Lが s偏光成分と p偏光成分との双方を有 して ヽること [0046] The display light beam L emitted from the image display element 2a has both an s-polarized component and a p-polarized component.
•基板 11を内面反射する表示光束 Lの基板面への入射角度が 60° の近傍である こと  • Incident angle of the display light beam L reflected from the inner surface of the substrate 11 to the substrate surface must be in the vicinity of 60 °.
'多層膜と基板との間は基板と同じ屈折率の接着剤で接着されること  'The multilayer film and the substrate should be bonded with the same refractive index as the substrate.
図 14は、本多層膜の膜構成を示す図である。図 14に示すように、本多層膜の全層 数は 40、基板の屈折率は 1. 56、高屈折率層の屈折率は 2. 20、低屈折率層の屈 折率は 1. 3845、中心波長え = 510nmである。  FIG. 14 is a diagram showing a film configuration of the multilayer film. As shown in Figure 14, the total number of layers of this multilayer film is 40, the refractive index of the substrate is 1.56, the refractive index of the high refractive index layer is 2.20, and the refractive index of the low refractive index layer is 1.3845. The central wavelength is 510 nm.
[0047] 図 15は、本多層膜の反射率の角度特性を示す図である。図 15において Rsで示す のが s偏光に対する反射率、 Rpで示すのが p偏光に対する反射率である。図 15に示 すように、本多層膜は、 45° よりも十分に小さい角度の光に対して略 100%の透過 率を示し、 45° よりも十分に大きい角度の光に対して略 100%の反射率を示す。 図 16は、本多層膜の入射角度 0° の光に対する反射率の波長特性を示す図であ る。図 16にお ヽて Raで示すのは s偏光に対する反射率と p偏光に対する反射率との 平均値である。図 16に示すように、本多層膜は、入射角度 0° の光であれば、可視 光全域に亘つて略 100%の透過率を示す。 FIG. 15 is a diagram showing the angle characteristics of the reflectance of the multilayer film. In FIG. 15, Rs indicates the reflectivity for s-polarized light, and Rp indicates the reflectivity for p-polarized light. As shown in Fig. 15, this multilayer film exhibits a transmittance of about 100% for light having an angle sufficiently smaller than 45 °, and about 100% for light having an angle sufficiently larger than 45 °. % Reflectivity. FIG. 16 is a graph showing the wavelength characteristics of the reflectance of the multilayer film with respect to light with an incident angle of 0 °. In Fig. 16, Ra represents the average value of the reflectance for s-polarized light and the reflectance for p-polarized light. As shown in FIG. 16, the present multilayer film exhibits a transmittance of about 100% over the entire visible light range when the incident angle is 0 °.
[0048] 図 17は、本多層膜の入射角度 60° の光に対する反射率の波長特性を示す図で ある。図 17において Rsで示すの力 偏光に対する反射率、 Rpで示すのが p偏光に対 する反射率である。図 17に示すように、本多層膜は、入射角度 60° の光であれば、 可視光全域に亘つて略 100%の反射率を示す。 FIG. 17 is a diagram showing the wavelength characteristics of the reflectance of the multilayer film with respect to light with an incident angle of 60 °. In FIG. 17, the force indicated by Rs is the reflectivity for polarized light, and Rp is the reflectivity for p-polarized light. As shown in FIG. 17, the present multilayer film exhibits a reflectance of approximately 100% over the entire visible light range when the incident angle is 60 °.
[実施例 3]  [Example 3]
図 18を参照して実施例 3を説明する。本実施例は、機能膜 13a, 12aとして利用可 能なホログラフィック光学素子の製造方法の実施例である。  Example 3 will be described with reference to FIG. The present embodiment is an embodiment of a method for manufacturing a holographic optical element that can be used as the functional films 13a and 12a.
[0049] 図 18は、本製造方法で用いられる光学系の構成図である。この光学系において、 波長 λのレーザ光源 31から射出したレーザ光は、ビームスプリッタ 32で 2分割される 。 2分割されたレーザ光は、 2つのビームエキスパンダ 33でそれぞれ拡大された後、 2つの補助プリズム 34を介してホログラム感光材料 35に入射角度 Θで入射する。こ れによって感光材料 35が露光する。露光後の感光材料 35を現像処理すれば、ホロ グラフィック光学素子が完成する。 FIG. 18 is a configuration diagram of an optical system used in the present manufacturing method. In this optical system, Laser light emitted from a laser light source 31 having a wavelength λ is divided into two by a beam splitter 32. The two divided laser beams are respectively expanded by two beam expanders 33 and then incident on the hologram photosensitive material 35 through the two auxiliary prisms 34 at an incident angle Θ. As a result, the photosensitive material 35 is exposed. When the exposed photosensitive material 35 is developed, a holographic optical element is completed.
[0050] 完成したホログラフィック光学素子は、所定の波長 λかつ入射角度 Θで入射する光 を回折反射し、入射角度 Θから外れた入射角度でで射する光を全透過する性質を 有する。 [0050] The completed holographic optical element has the property of diffracting and reflecting light incident at a predetermined wavelength λ and incident angle Θ and totally transmitting light incident at an incident angle deviating from the incident angle Θ.
したがって、本製造方法では、波長 λは、アイグラスディスプレイの表示光束 Lの波 長と同じに設定され、入射角度 Θは、基板 11を内面反射する表示光束 Lの基板面 への入射角度 (例えば、 60° 近傍)と同じに設定される。  Therefore, in this manufacturing method, the wavelength λ is set to be the same as the wavelength of the display light beam L of the eyeglass display, and the incident angle Θ is the incident angle of the display light beam L that internally reflects the substrate 11 (for example, , Around 60 °).
[0051] なお、アイグラスディスプレイの表示光束 Lが互いに異なる複数の波長の光 (例えば 、 RGB各色の光)を含むときには、それぞれの波長の光で多重露光すればよい。 また、ホログラム感光材料 35として榭脂ベースの材料 (榭脂シート)を用いると、大 面積のホログラフィック光学素子を低コストで製造することができる。また、ホログラフィ ック光学素子が榭脂シートであると、基板 11に密着させる際に貼付するだけで済む ため、低コスト'大量生産の面で実用価値が高い。 [0051] When the light flux L displayed on the eyeglass display includes light of a plurality of different wavelengths (for example, light of RGB colors), multiple exposure may be performed with light of each wavelength. In addition, when a resin-based material (resin sheet) is used as the hologram photosensitive material 35, a large-area holographic optical element can be manufactured at low cost. In addition, when the holographic optical element is a resin sheet, it is only necessary to affix it to the substrate 11 so that the holographic optical element has a practical value in terms of low cost and mass production.
[0052] [第 5実施形態] [0052] [Fifth Embodiment]
図 19を参照して本発明の第 5実施形態を説明する。本実施形態は、アイグラスディ スプレイの実施形態である。ここでは、第 3実施形態 (平行ミラータイプにおいて外界 の観察距離のずれを抑えたもの、図 7参照)との相違点のみ説明する。相違点は、基 板 11の内面反射に供される面の数にある。  A fifth embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment of an eyeglass display. Here, only differences from the third embodiment (a parallel mirror type in which the deviation of the observation distance of the outside world is suppressed, see FIG. 7) will be described. The difference is in the number of surfaces subjected to internal reflection of the substrate 11.
[0053] 図 19は、本アイグラスディスプレイの光学系部分の分解図である。図 19に示すよう に、本アイグラスディスプレイでは、表示光束 Lの内面反射に、基板 11の観察眼 E側 の面、外界側の面、及びそれら 2つの面に挟まれた 2側面が供される。内面反射に供 されるこれらの面は、何れも平面である。 FIG. 19 is an exploded view of the optical system portion of the present eyeglass display. As shown in FIG. 19, in the present eyeglass display, the inner surface reflection of the display light beam L is provided with the surface on the observation eye E side of the substrate 11, the surface on the outer world side, and two side surfaces sandwiched between these two surfaces. The All of these surfaces used for internal reflection are flat surfaces.
このように表示光束 Lを 4つの面で内面反射させるためには、図 19に示すように、そ れら 4つの面に対しそれぞれ角度を持つように、導入ミラー 11aの姿勢を設定すれば よい。なお、複数のハーフミラー l ibの姿勢は、そこへ入射した表示光束 Lが観察眼In this way, in order to internally reflect the display light beam L at the four surfaces, as shown in FIG. 19, the orientation of the introduction mirror 11a is set so as to have an angle with respect to each of the four surfaces. Good. The posture of the multiple half mirrors l ib is such that the display light beam L incident on the half mirror l ib
Eの方向へ偏向するように設定される。 Set to deflect in the direction of E.
[0054] このように表示光束 Lが 3以上の面で内面反射する場合にも、基板 11の外界側に 正の屈折力を持つ基板 12を配置し、基板 11の観察眼 E側に負の屈折力を持つ基 板 13を配置すれば、虚像の形成距離を有限に設定しながら外界の観察距離のずれ を抑えることができる。 In this way, even when the display light beam L is internally reflected by a surface of 3 or more, the substrate 12 having a positive refractive power is disposed on the outer side of the substrate 11 and is negative on the observation eye E side of the substrate 11. If the substrate 13 having a refractive power is arranged, it is possible to suppress the deviation in the observation distance of the outside world while setting the virtual image formation distance to be finite.
なお、本アイグラスディスプレイにおいて、外界の観察距離のずれを抑える必要が 無ければ、基板 12を省略してもよい。また、本アイグラスディスプレイにおいて、基板 In the present eyeglass display, the substrate 12 may be omitted if it is not necessary to suppress the deviation in the observation distance of the outside world. In this eyeglass display, the substrate
12の屈折力を調整すれば、観察眼 Eの視度補正をすることができる。 By adjusting the refractive power of 12, the diopter correction of the observation eye E can be performed.
[0055] また、本アイグラスディスプレイでは、表示光束 Lを内面反射させるための基板とし て、断面が長方形となった角柱状の基体 (平行平板状の基板 11)が用いられたが、 基板 11の代わりに、他の形状の断面を有した角柱状の基体 (三角柱、四角柱、五角 柱 · · ·)が用いられてもよい。 In this eyeglass display, a prismatic base (parallel plate-like substrate 11) having a rectangular cross section is used as a substrate for internally reflecting the display light beam L. Instead of this, a prismatic base (triangular prism, quadrangular prism, pentagonal prism,...) Having a cross section of another shape may be used.
[第 6実施形態]  [Sixth embodiment]
図 20を参照して本発明の第 6実施形態を説明する。本実施形態は、アイグラスディ スプレイの実施形態である。ここでは、第 4実施形態 (屋根型ミラータイプにおいて外 界の観察距離のずれを抑えたもの、図 8参照)との相違点のみ説明する。相違点は、 基板 11の内面反射に供される面の数にある。  A sixth embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment of an eyeglass display. Here, only differences from the fourth embodiment (a roof-type mirror type in which the deviation of the observation distance of the outside world is suppressed, see FIG. 8) will be described. The difference is in the number of surfaces used for internal reflection of the substrate 11.
[0056] 図 20は、本アイグラスディスプレイの光学系部分の分解図である。図 20に示すよう に、本アイグラスディスプレイでは、表示光束 Lの内面反射に、基板 11の観察眼 E側 の面、外界側の面、及びそれら 2つの面に挟まれた 2側面が供される。内面反射に供 されるこれらの面は、何れも平面である。 FIG. 20 is an exploded view of the optical system portion of the present eyeglass display. As shown in FIG. 20, in the present eyeglass display, the inner surface of the display light flux L is provided with a surface on the observation eye E side of the substrate 11, a surface on the outer world side, and two side surfaces sandwiched between these two surfaces. The All of these surfaces used for internal reflection are flat surfaces.
このように表示光束 Lを 4つの面で内面反射させるためには、図 19に示すように、そ れら 4つの面に対しそれぞれ角度を持つように、導入ミラー 11aの姿勢を設定すれば よい。なお、折り返しミラー 11cの姿勢は、基板 11内を伝播した表示光束 Lを折り返 すように設定される。また、基板 12の内部に設けられる 2種類の複数のハーフミラー 1 lb , l ibの姿勢は、基板 11から機能膜 15aを介して進入した表示光束 Lを観察眼 In this way, in order to internally reflect the display light beam L on the four surfaces, as shown in FIG. 19, the orientation of the introduction mirror 11a may be set so as to have an angle with respect to each of the four surfaces. . The posture of the folding mirror 11c is set so that the display light beam L propagated in the substrate 11 is folded. In addition, the posture of the two types of half mirrors 1 lb and l ib provided inside the substrate 12 is such that the display light beam L entering from the substrate 11 through the functional film 15a
R し R
Eの方向へ偏向するよう設定される。 [0057] このように表示光束 Lが 3以上の面で内面反射する場合にも、基板 11の外界側に 正の屈折力を持つ基板 12を配置し、基板 11の観察眼 E側に負の屈折力を持つ基 板 13を配置すれば、虚像の形成距離を有限に設定しながら外界の観察距離のずれ を抑えることができる。 Set to deflect in the direction of E. [0057] As described above, even when the display light beam L is internally reflected by the surface of 3 or more, the substrate 12 having a positive refractive power is arranged on the outside of the substrate 11, and the substrate 11 has a negative polarity on the observation eye E side. If the substrate 13 having a refractive power is arranged, it is possible to suppress the deviation in the observation distance of the outside world while setting the virtual image formation distance to be finite.
なお、本アイグラスディスプレイにおいて、外界の観察距離のずれを抑える必要が 無ければ、基板 12の外界側の面を平面にしてもよい。また、本アイグラスディスプレイ において、基板 12の屈折力を調整すれば、観察眼 Eの視度補正をすることができる  In the present eyeglass display, the surface of the substrate 12 on the outside world side may be flat if it is not necessary to suppress the deviation of the observation distance of the outside world. In this eyeglass display, diopter correction of the observation eye E can be performed by adjusting the refractive power of the substrate 12.
[0058] また、本アイグラスディスプレイでは、平行光束 Lを内面反射させるための基板とし て、断面が長方形となった角柱状の基体 (平行平板状の基板 11)が用いられたが、 基板 11の代わりに、他の形状の断面を有した角柱状の基体 (三角柱、四角柱、五角 柱 · · ·)が用いられてもよい。 In the present eyeglass display, a prismatic base body (parallel plate-shaped substrate 11) having a rectangular cross section is used as a substrate for reflecting the parallel light flux L on the inner surface. Instead of this, a prismatic base (triangular prism, quadrangular prism, pentagonal prism,...) Having a cross section of another shape may be used.
[第 7実施形態]  [Seventh embodiment]
図 21を参照して本発明の第 7実施形態を説明する。本実施形態は、アイグラスディ スプレイの実施形態である。本実施形態は、平行ミラータイプのアイグラスディスプレ ィ (第 1実施形態、図 3)において基板を省略し、その代わりに各部の位置関係を調 整したものである。ここでは、第 1実施形態との相違点のみ説明する。  A seventh embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment of an eyeglass display. In this embodiment, the substrate is omitted from the parallel mirror type eyeglass display (first embodiment, FIG. 3), and the positional relationship of each part is adjusted instead. Here, only differences from the first embodiment will be described.
[0059] 図 21は、本アイグラスディスプレイの光学系部分の概略断面図である。図 21 (a) , ( b)に示すように、本アイグラスディスプレイは、 1枚の平行平板状の基板 11を備える だけで、屈折力を持った基板は備えない。  FIG. 21 is a schematic cross-sectional view of an optical system portion of the present eyeglass display. As shown in FIGS. 21 (a) and 21 (b), the present eyeglass display includes only one parallel plate-shaped substrate 11 and does not include a substrate having refractive power.
その代わりに、画像表示素子 2aと対物レンズ 2bとの位置関係は、図 21 (a)に示す ように、複数のハーフミラー l ibが個別に形成する虚像 Iの距離が有限となるように調 整される。つまり、対物レンズ 2bを通過した画像表示素子 2aの各画素からの表示光 束 Lは、平行光束ではなく発散光束となる。  Instead, the positional relationship between the image display element 2a and the objective lens 2b is adjusted so that the distances of the virtual images I individually formed by the plurality of half mirrors l ib are finite, as shown in FIG. It is adjusted. That is, the display light flux L from each pixel of the image display element 2a that has passed through the objective lens 2b is not a parallel light beam but a divergent light beam.
[0060] さらに、個々のハーフミラー l ibの姿勢は、個々のハーフミラー l ibにより反射され た表示光束で個別に形成される虚像 Iが、図 21 (b)に示すように所定位置に重なるよ うに調整される。そのため、複数のハーフミラー l ibの間には、姿勢の偏りが生じてい る。 その結果、射出瞳 Pへ入射する表示光束 Lは、有限距離の所定位置から発散した 発散光束と同じ発散角度を持つことになる。 [0060] Further, the posture of each half mirror l ib is such that the virtual image I formed individually by the display light beam reflected by each half mirror l ib overlaps a predetermined position as shown in FIG. 21 (b). Adjusted as follows. Therefore, there is a deviation in posture between the plurality of half mirrors l ib. As a result, the display light beam L incident on the exit pupil P has the same divergence angle as the divergent light beam diverging from a predetermined position at a finite distance.
[0061] したがって、観察眼 Eが射出瞳 Pの何れかの位置に配置されていれば、その観察眼Therefore, if the observation eye E is placed at any position of the exit pupil P, the observation eye
Eは有限距離 Dの所定位置に、画像表示素子 2aの虚像 Iを観察することができる。 以上、本アイグラスディスプレイは、対物レンズ 2bと画像表示素子 2aとの位置関係 と、複数のハーフミラー l ibの姿勢とを調整するだけで、射出瞳 Pを大きく確保しなが ら虚像 Iの形成距離を有限の値に設定することができる。 E can observe the virtual image I of the image display element 2a at a predetermined position of a finite distance D. As described above, the present eyeglass display can adjust the positional relationship between the objective lens 2b and the image display element 2a and the postures of the plurality of half mirrors l ib, while maintaining a large exit pupil P, while maintaining a large exit pupil P. The formation distance can be set to a finite value.
[0062] なお、本アイグラスディスプレイにおいて、導入ミラー 11aから複数のハーフミラー 1 lbまでの距離 d (図 21 (a)参照)は、十分に長いことが望ましい。その距離 dに対してIn this eyeglass display, it is desirable that the distance d (see FIG. 21 (a)) from the introduction mirror 11a to the plurality of half mirrors 1 lb is sufficiently long. For that distance d
、複数のハーフミラー l ibの配置間隔が短ければ、各ハーフミラー l ibを反射した表 示光束で個別に形成される虚像 Iの距離を略同じとみなせるので、それらの虚像 Iを 確実に重ねることができる。 If the interval between the multiple half mirrors l ib is short, the distances of the virtual images I individually formed by the display light beams reflected by the half mirrors l ib can be regarded as substantially the same. be able to.
[0063] また、本アイグラスディスプレイは、表示光束 Lに対し光学的パワーを与えるものの、 外界光束に対しては何の光学的パワーも与えな 、ので、観察眼 Eによる外界の観察 距離がずれるという問題は生じない。 [0063] In addition, although the present eyeglass display gives optical power to the display light beam L, it does not give any optical power to the external light beam, so that the observation distance of the external world by the observation eye E shifts. The problem does not arise.
また、本アイグラスディスプレイにおいては、観察者が画像表示素子 2aと対物レン ズ 2bとの位置関係を微調整するための調整機構が設けられて 、ることが望ま 、。 なぜなら、その位置関係を設計値どおりにしたとしても、組み立て後にずれる可能性 があり、また、そのずれ量が仮に微小であったとしても、虚像 Iの重なり度が悪ィ匕する 可能性がある力 である。  In the present eyeglass display, it is desirable that an observer be provided with an adjustment mechanism for finely adjusting the positional relationship between the image display element 2a and the objective lens 2b. This is because even if the positional relationship is the same as the design value, there is a possibility of deviation after assembly, and even if the amount of deviation is very small, the degree of overlap of virtual image I may be poor. Power.
[0064] [第 8実施形態] [0064] [Eighth embodiment]
図 22を参照して本発明の第 8実施形態を説明する。本実施形態は、アイグラスディ スプレイの実施形態である。本実施形態は、屋根型ミラータイプのアイグラスディスプ レイ (第 2実施形態、図 4)において基板を省略し、その代わりに各部の位置関係を調 整したものである。ここでは、第 2実施形態との相違点のみ説明する。  The eighth embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment of an eyeglass display. In this embodiment, the substrate is omitted from the roof-type mirror-type eyeglass display (second embodiment, FIG. 4), and the positional relationship of each part is adjusted instead. Here, only differences from the second embodiment will be described.
[0065] 図 22は、本アイグラスディスプレイの光学系部分の概略断面図である。図 22に示 すように、本アイグラスディスプレイは、 2枚の平行平板状の基板 11, 15を備えるだけ で、屈折力を持った基板は備えない。 その代わりに、画像表示素子 2aと対物レンズ 2bとの位置関係は、複数のハーフミラ 一 l ib , l ibが個別に形成する虚像 Iの距離が有限となるように調整される。つまり し R FIG. 22 is a schematic cross-sectional view of the optical system portion of the present eyeglass display. As shown in FIG. 22, this eyeglass display has only two parallel plate-like substrates 11 and 15 and does not have a substrate having refractive power. Instead, the positional relationship between the image display element 2a and the objective lens 2b is adjusted so that the distance between the virtual images I formed individually by the plurality of half mirrors l ib and l ib is finite. That is R
、対物レンズ 2bを通過した表示光束 Lは、平行光束ではなく発散光束となる。  The display light beam L that has passed through the objective lens 2b is not a parallel light beam but a divergent light beam.
[0066] さらに、個々のハーフミラー l ib , l ibの姿勢は、個々のハーフミラー l ib , l ib [0066] Further, the posture of each half mirror l ib, l ib is the same as that of each half mirror l ib, l ib
L R L R  L R L R
により個別に形成される虚像 Iが、所定位置に重なるように調整される。そのため、複 数のハーフミラー l ibの間と、複数のハーフミラー l ibの間とには、それぞれ姿勢の  Are adjusted so that the virtual images I formed individually overlap each other at a predetermined position. For this reason, there is a posture between the plurality of half mirrors l ib and between the plurality of half mirrors l ib.
L R  L R
偏りが生じている。  There is a bias.
その結果、射出瞳 Pへ入射する表示光束 Lは、有限距離の所定位置から発散した 発散光束と同じ発散角度を持つことになる。  As a result, the display light beam L incident on the exit pupil P has the same divergence angle as the divergent light beam diverging from a predetermined position at a finite distance.
[0067] したがって、観察眼 Eが射出瞳 Pの何れかの位置に配置されていれば、その観察眼 Eは有限距離 Dの所定位置に、画像表示素子 2aの虚像 Iを観察することができる。 以上、本アイグラスディスプレイは、対物レンズ 2bと画像表示素子 2aとの位置関係 と、複数のハーフミラー l ib , l ibの姿勢とを調整するだけで、射出瞳 Pを大きく確 Therefore, if the observation eye E is arranged at any position of the exit pupil P, the observation eye E can observe the virtual image I of the image display element 2a at a predetermined position of the finite distance D. . As described above, the present eyeglass display can greatly increase the exit pupil P simply by adjusting the positional relationship between the objective lens 2b and the image display element 2a and the postures of the plurality of half mirrors l ib and l ib.
し R  R
保しながら虚像 Iの形成距離を有限の値に設定することができる。  The formation distance of the virtual image I can be set to a finite value while maintaining.
[0068] なお、本アイグラスディスプレイにおいて、第 7実施形態と同様に、導入ミラー 11aか ら複数のハーフミラー l ib , l ibまでの距離は、十分に長いことが望ましい。また、 [0068] In the present eyeglass display, as in the seventh embodiment, it is desirable that the distance from the introduction mirror 11a to the plurality of half mirrors l ib and l ib is sufficiently long. Also,
し R  R
その効果も、第 7実施形態で説明した効果を具備する。  The effect also has the effect described in the seventh embodiment.
[実施例 4]  [Example 4]
図 23、図 24、図 25、図 26、図 27、図 28を参照して実施例 4を説明する。本実施例 は、平行ミラーかつ位置関係調整タイプのアイグラスディスプレイ (第 7実施形態、図 21 (b) )における複数のハーフミラーの姿勢の設定方法の実施形態である。  Embodiment 4 will be described with reference to FIGS. 23, 24, 25, 26, 27, and 28. FIG. This embodiment is an embodiment of a method for setting the postures of a plurality of half mirrors in a parallel mirror and positional relationship adjustment type eyeglass display (seventh embodiment, FIG. 21 (b)).
[0069] 図 23は、本実施例のハーフミラーの姿勢の設定方法を説明する図である。図 23で は、射出瞳 Pの中心に対応するハーフミラー Mの両側に対称の関係でノヽーフミラー FIG. 23 is a diagram illustrating a method for setting the attitude of the half mirror of the present embodiment. In FIG. 23, the mirror mirror is symmetrical on both sides of the half mirror M corresponding to the center of the exit pupil P.
0  0
M , M , · · ·と、 M , M , · · ·とが配置された例を示した。本実施例では、これらの An example in which M 1, M 2,... And M 1, M 2,. In this example, these
+1 +2 -1 -2 +1 +2 -1 -2
ハーフミラー M , M , M , · · · , M , M , …が個別に形成する虚像 Iを、射出瞳  Half-mirror M, M, M, ..., M, M, ... forms virtual images I individually formed as exit pupils
0 +1 +2 - 1 -2  0 +1 +2-1 -2
Pの中心に対応するハーフミラー Mの背後(射出瞳 Pの中心を通る基板法線上)に  Behind the half mirror M corresponding to the center of P (on the substrate normal passing through the center of the exit pupil P)
0  0
重ねることを考える。  Think about overlapping.
[0070] 先ず、ハーフミラー Mに隣接するハーフミラー M の姿勢の設定方法は、次のとお りである。 [0070] First, the method of setting the posture of the half mirror M adjacent to the half mirror M is as follows. It is.
第 1に、ハーフミラー M力 ハーフミラー M までの距離が d であるときに、虚像 I  First, the half-mirror M force When the distance to the half-mirror M is d, the virtual image I
0 - 1 m-1  0-1 m-1
の形成距離 (基板 11の位置を基準)を Dとするためには、ハーフミラー M で偏向さ  In order to set the formation distance (referenced to the position of the substrate 11) to D, the half mirror M
-1  -1
れた表示光束 Lが空気中で基板法線と成す角度 Θ は、式(1)を満たす必要がある  The angle Θ formed by the displayed luminous flux L with the substrate normal in the air must satisfy equation (1)
-1  -1
[0071] Θ =tan_1[d /D] …ひ) [0071] Θ = tan _1 [d / D]… hi)
- 1 m-l  -1 m-l
第 2に、ハーフミラー M で偏向された表示光束 Lが空気中で基板法線と成す角度  Second, the angle formed by the display light beam L deflected by the half mirror M and the substrate normal in the air
-1  -1
が 0 となるためには、ハーフミラー M で偏向された表示光束 Lが基板 11内で基板 In order for the display light beam L deflected by the half mirror M to be 0
- 1 - 1 -1-1
法線と成す角度 θ A は、式(2)を満たす必要がある。  The angle θ A formed with the normal line must satisfy Equation (2).
-1  -1
θ Δ = sin"1 [sin0 /n θ Δ = sin " 1 [sin0 / n
- 1 -1 g ] …(2)  -1 -1 g]… (2)
但し、「n」は、基板 11の屈折率である。  Here, “n” is the refractive index of the substrate 11.
[0072] 第 3に、ハーフミラー M で偏向された表示光束 Lが基板 11内で基板法線と成す角  [0072] Third, the angle formed by the display light beam L deflected by the half mirror M and the substrate normal in the substrate 11
-1  -1
度が 0 Δ となるためには、ハーフミラー M の基板面に対する配置角度 0 は、式  In order for the degree to be 0 Δ, the arrangement angle 0 with respect to the substrate surface of the half mirror M is
- 1 - 1 m-l  -1-1 m-l
(3)を満たす必要がある。  It is necessary to satisfy (3).
Θ =(0a+ θ Δ )/2 ·'·(3)  Θ = (0a + θ Δ) / 2
m-l - 1  m-l-1
但し、「 Θ a」は、内面反射する表示光束 Lの基板面に対する入反射角度である。因 みに、この角度 Θ aは、ハーフミラー Mの基板面に対する配置角度 Θ の 2倍である。  However, “Θa” is the incident / reflection angle of the display light beam L reflected on the inner surface with respect to the substrate surface. Incidentally, this angle Θ a is twice the arrangement angle Θ with respect to the substrate surface of the half mirror M.
0 m  0 m
[0073] したがって、ハーフミラー M の基板面に対する配置角度 0 は、以上の式(1), (  [0073] Therefore, the arrangement angle 0 with respect to the substrate surface of the half mirror M is given by the above equations (1), (
- 1 m-l  -1 m-l
2) , (3)を満たすように設定されればょ ヽ。  If it is set to satisfy 2) and (3) ヽ.
また、これと同様に、各ハーフミラー Mの配置角度 Θ を設定することもできる。因  Similarly, the arrangement angle Θ of each half mirror M can be set. Cause
1 mi  1 mi
みに、各ハーフミラー Mの配置角度 0 は、以下の一般式(1'), (2'), (3')を満た  In addition, the arrangement angle 0 of each half mirror M satisfies the following general formulas (1 '), (2'), (3 ')
1 mi  1 mi
すように設定されればよい。  It may be set so as to.
[0074] Θ =tan_1[d /D] ··· (1') [0074] Θ = tan _1 [d / D] (1 ')
1 mi  1 mi
Θ A = sin"1 [sin0 /n ] ··· (2') Θ A = sin " 1 [sin0 / n] (2 ')
i i g  i i g
Θ =(0a+ θ Δ )/2 ·'·(3,)  Θ = (0a + θ Δ) / 2 · '· (3,)
mi i  mi i
但し、  However,
d :ハーフミラー Mからハーフミラー Mまでの距離,  d: distance from half mirror M to half mirror M,
mi 0 i  mi 0 i
θ .:ハーフミラー Miで偏向された表示光束 Lが空気中で基板法線と成す角度, θ Δ ;:ハーフミラー Miで偏向された表示光束 Lが基板 11内で基板法線と成す角度 である。 θ.: Angle formed by the display light beam L deflected by the half mirror Mi and the substrate normal in the air, theta delta;: half mirror Mi in the deflected light flux L is an angle formed between the substrate normal in the substrate 11.
[0075] 図 24、図 25、図 26は、以上の方法でハーフミラーの配置角度を計算した結果を示 す図である。図 24には、虚像の形成距離 Dを 5mとした場合の計算結果を、図 25に は、虚像の形成距離 Dを 3mとした場合の計算結果を、図 26には、虚像の形成距離 Dを lmとした場合の計算結果を示した。なお、各計算において、 0 a = 6O° , Θ = m FIG. 24, FIG. 25, and FIG. 26 are diagrams showing the results of calculating the arrangement angle of the half mirror by the above method. Fig. 24 shows the calculation results when the virtual image formation distance D is 5 m, Fig. 25 shows the calculation results when the virtual image formation distance D is 3 m, and Fig. 26 shows the virtual image formation distance D. The calculation results when lm is lm are shown. In each calculation, 0 a = 6O °, Θ = m
30° , η = 1. 6とした。 30 ° and η = 1.6.
g  g
[0076] なお、本実施例では、ハーフミラーの数が奇数であり、射出瞳 Pの中心を通る基板 法線が、中央のハーフミラー上に位置する場合を説明した力 図 27に示すように、ハ 一フミラーの数が偶数であり、射出瞳 Pの中心を通る基板法線が 2つのハーフミラー の間に位置する場合にも、同様の方法で各ハーフミラーの配置角度を設定すること ができる。その場合の各パラメータの採り方は、図 27に示すとおりである。  In this example, the number of half mirrors is an odd number, and the force explaining the case where the substrate normal passing through the center of the exit pupil P is located on the central half mirror is shown in FIG. Even when the number of half mirrors is an even number and the substrate normal passing through the center of the exit pupil P is located between the two half mirrors, the arrangement angle of each half mirror can be set in the same way. it can. Figure 27 shows how to use each parameter in that case.
[0077] また、本実施例では、平行ミラータイプの設定方法を説明したが、図 28に示すよう に、屋根型ミラータイプについても同様の設定方法を適用できる。  Furthermore, in the present embodiment, the setting method of the parallel mirror type has been described, but as shown in FIG. 28, the same setting method can be applied to the roof type mirror type.
屋根型ミラータイプの場合、 2種類のハーフミラーの配置角度を、それぞれ上述した 方法で設定すればよい。その場合の各パラメータの採り方は、図 28中に示すとおり である。図 28においては、 2種類のハーフミラーの一方に関するパラメータには添え 字「L」を、他方に関するパラメータには添え字「R」を付与した。  In the case of the roof-type mirror type, the arrangement angles of the two types of half mirrors can be set by the methods described above. In this case, how to use each parameter is as shown in Fig.28. In FIG. 28, the suffix “L” is assigned to the parameter relating to one of the two types of half mirrors, and the suffix “R” is assigned to the parameter relating to the other.
[0078] [第 9実施形態]  [0078] [Ninth embodiment]
図 29を参照して本発明の第 9実施形態を説明する。本実施形態は、アイグラスディ スプレイの実施形態である。本実施形態は、屋根型ミラータイプのアイグラスディスプ レイ (第 2実施形態、図 4)において、屈折力を持った基板を追加すると共に、各部の 位置関係を調整したものである。  A ninth embodiment of the present invention will be described with reference to FIG. This embodiment is an embodiment of an eyeglass display. This embodiment is obtained by adding a substrate having refractive power to the roof-type mirror-type eyeglass display (second embodiment, FIG. 4) and adjusting the positional relationship of each part.
[0079] 図 29は、本アイグラスディスプレイの基板部 1の概略断面図である。  FIG. 29 is a schematic cross-sectional view of the substrate portion 1 of the present eyeglass display.
本アイグラスディスプレイにおいては、表示光束 Lが内面反射する基板 11の外界側 に、機能膜 15を挟み屈折力を持つ基板 12が配置され、また、基板 11の観察眼 E側 に、機能膜 13aを挟み屈折力を持つ基板 13が配置される。また、基板 12の内部に、 2種類の複数のハーフミラー l ib , l ibが設けられる。また、 2種類の複数のハーフ ミラー l ib , l ibの姿勢は、第 8実施形態(図 22)と同様、それら 2種類の複数のハ し R In the present eyeglass display, a substrate 12 having a refractive power with a functional film 15 sandwiched between the substrate 11 where the display light beam L is internally reflected is disposed, and a functional film 13a is disposed on the observation eye E side of the substrate 11. A substrate 13 having a refractive power is disposed. Further, two types of half mirrors l ib and l ib are provided inside the substrate 12. Also two types of multiple halves The postures of the mirrors l ib and l ib are the same as those in the eighth embodiment (FIG. 22).
一フミラー l ib , l ib個別に形成する虚像が同位置に重なるように調整される。  The first mirrors l ib and l ib are adjusted so that the virtual images formed individually overlap at the same position.
し R  R
[0080] ここで、基板 12の屈折力を P とおき、基板 13の屈折力を Pとおく。また、 2種類の  Here, let the refractive power of the substrate 12 be P, and let the refractive power of the substrate 13 be P. There are also two types
out in  out in
ハーフミラー l ib , l ibの全体の擬似的屈折力を、 Pとおく。  Let P denote the pseudo refractive power of the entire half mirror l ib, l ib.
L R m  L R m
このとき、外界光束 L'が受ける合成屈折力 Pは、次式 (4)のとおり表される。  At this time, the combined refractive power P received by the external light flux L ′ is expressed by the following equation (4).
s  s
P =P +P …(4)  P = P + P (4)
s in out  s in out
また、表示光束 Lが受ける合成屈折力 Pは、次式(5)のとおり表される。  Further, the combined refractive power P received by the display light beam L is expressed by the following equation (5).
[0081] P =P +P · · · (5) [0081] P = P + P · · · · (5)
i m in  i m in
このうち、外界光束 L'が受ける合成屈折力 Pは、ゼロ (又は観察眼 Eの視度補正量 に応じた値)に設定される。また、表示光束 Lが受ける合成屈折力 Pは、虚像の形成 距離 Dに応じた値に設定される。  Among these, the combined refractive power P received by the external light beam L ′ is set to zero (or a value corresponding to the diopter correction amount of the observation eye E). The combined refractive power P received by the display light beam L is set to a value corresponding to the virtual image formation distance D.
しかし、式 (4) , (5)を参照すると明らかなとおり、本アイグラスディスプレイでは、外 界光束 L'が受ける合成屈折力 Pと、表示光束 Lが受ける合成屈折力 Pとは、互いに 異なる組み合わせのパラメータによって決まる。  However, as is clear from the equations (4) and (5), in this eyeglass display, the combined refractive power P received by the external light beam L ′ and the combined refractive power P received by the display light beam L are different from each other. It depends on the parameters of the combination.
[0082] よって、本アイグラスディスプレイの製造者が 3つのパラメータ P , P , Pを決定す  [0082] Therefore, the manufacturer of this eyeglass display determines three parameters P 1, P 2 and P 3.
in out m  in out m
る際には、本アイグラスディスプレイの仕様 (視度補正量及び虚像の形成距離)だけ でなぐ製造上の制約(寸法上の制約、調整上の制約、加工上の制約など)を加味す ることがでさる。  When manufacturing, consider the manufacturing restrictions (dimension restrictions, adjustment restrictions, processing restrictions, etc.) that are not limited only by the specifications of this eyeglass display (diopter correction amount and virtual image formation distance). That's right.
例えば、基板 13の曲率や縁厚を抑えるために、基板 13の屈折力 Pの絶対値を小  For example, to suppress the curvature and edge thickness of the substrate 13, the absolute value of the refractive power P of the substrate 13 is reduced.
in  in
さめに設定することが可能である。  It is possible to set it earlier.
[0083] 或いは、基板 12の曲率や縁厚を抑えるために、基板 12の屈折力 P の絶対値を小 [0083] Alternatively, in order to suppress the curvature and edge thickness of the substrate 12, the absolute value of the refractive power P of the substrate 12 is reduced.
out  out
さめに設定することが可能である。  It is possible to set it earlier.
或いは、ハーフミラー l ib , l ibの姿勢差を大きくしてそれらの加工'調整を容易 し R  Alternatively, the posture difference between the half mirrors l ib and l ib is increased to facilitate their adjustment.
にするために、ハーフミラー l ib , l ibの全体の擬似的屈折力 Pの絶対値を大きめ  To increase the absolute value of the pseudo power P of the entire half mirror l ib, l ib
L R m  L R m
に設定することが可能である。  Can be set.
[0084] 特に、虚像の形成距離 Dが短い場合には、ハーフミラー l ib , l ibの姿勢差が微 し R [0084] In particular, when the virtual image formation distance D is short, the posture difference between the half mirrors l ib and l ib is small.
量になり、それらの加工'調整が困難になる。例えば、虚像の形成距離 Dが 5mである ときには、図 24にも示したように、姿勢差が数十分となる。よって、この場合、ハーフミ ラー l ib , l ibの全体の擬似的屈折力 Pの絶対値を大きめに設定することは、極The amount of processing becomes difficult to adjust. For example, when the virtual image formation distance D is 5 m, as shown in FIG. 24, the posture difference is several tens of minutes. Therefore, in this case, half Setting a large absolute value of the pseudo refractive power P of L l ib and l ib as a whole
L R m L R m
めて有意である。  Significantly significant.
[0085] 以上、本アイグラスディスプレイでは、視度補正量及び虚像の形成距離を決めるパ ラメータが 3つ(P , P , P )に増えたので、設計の自由度が増し、製造上の制約ま  [0085] As described above, in this eyeglass display, the parameters for determining the diopter correction amount and the virtual image formation distance have been increased to three (P 1, P 2, P 3). Ma
in out m  in out m
でカ卩味することが可能となる。  It becomes possible to enjoy it.
なお、本アイグラスディスプレイは、屋根型ミラータイプのアイグラスディスプレイに おいて屈折力を持つ基板を追加すると共に各部の位置関係を調整したものであるが 、平行ミラータイプのアイグラスディスプレイや、内面反射に供される面の数が多いァ ィグラスディスプレイなどにっ 、ても、同様に変形することができる。  In addition, this eyeglass display is the one in which a substrate having refractive power is added to the roof type mirror type eyeglass display and the positional relationship of each part is adjusted. Even a glass display with a large number of surfaces subjected to reflection can be similarly deformed.
産業上の利用可能性  Industrial applicability
[0086] 上述した各実施形態では、画像表示素子の虚像と外界とを重畳して表示するアイ グラスディスプレイについて説明した力 本発明は、画像表示素子の虚像のみを表 示する画像表示装置 (ヘッドマウントディスプレイ)にも同様に適用できる。また、本発 明は、カメラ、携帯電話、双眼鏡、顕微鏡、望遠鏡などの各種の光学機器の光学ファ インダにも適用することができる。 [0086] In each of the above-described embodiments, the power described for the eyeglass display that displays the virtual image of the image display element and the outside world in a superimposed manner. The present invention provides an image display device (head) that displays only the virtual image of the image display element. The same applies to a mount display. The present invention can also be applied to optical finders of various optical devices such as cameras, mobile phones, binoculars, microscopes, and telescopes.

Claims

請求の範囲 The scope of the claims
[1] 画像表示素子の各画素から射出した表示光束を平行光束化する第 1の光学素子と 前記平行光束化された前記表示光束を導入して内部で伝播させる基体と、 前記基体の内部を伝播する前記表示光束を偏向して前記基体の外部に導出する 平行な複数のミラーと、  [1] A first optical element that converts a display light beam emitted from each pixel of the image display element into a parallel light beam, a base body that introduces the display light beam that has been converted into a parallel light beam and propagates the inside, and an interior of the base body A plurality of parallel mirrors for deflecting the propagating display light beam to be led out of the substrate;
有限距離の所定位置に前記画像表示素子の虚像が形成されるように、前記基体か ら導出された前記表示光束の全てに対し光学的パワーを付与する第 2の光学素子と を備えたことを特徴とする画像表示光学系。  A second optical element that provides optical power to all of the display light beam derived from the substrate so that a virtual image of the image display element is formed at a predetermined position of a finite distance. A characteristic image display optical system.
[2] 請求項 1に記載の画像表示光学系において、 [2] In the image display optical system according to claim 1,
前記基体及び前記複数のミラーは、  The base and the plurality of mirrors are:
射出瞳への入射時における前記表示光束と略同じ角度で外界から前記基体に到 来する外界光束を透過する性質を有し、  Having the property of transmitting the external light flux coming from the outside world to the substrate at substantially the same angle as the display light flux when entering the exit pupil;
前記基体に到来する前記外界光束に対し光学的パワーを付与する第 3の光学素 子を更に備えた  A third optical element for providing optical power to the external light flux arriving at the substrate;
ことを特徴とする画像表示光学系。  An image display optical system characterized by the above.
[3] 請求項 2に記載の画像表示光学系において、 [3] In the image display optical system according to claim 2,
前記第 3の光学素子及び前記第 2の光学素子の光学的パワーの和は、ゼロに設定 されている  The sum of the optical powers of the third optical element and the second optical element is set to zero.
ことを特徴とする画像表示光学系。  An image display optical system characterized by the above.
[4] 請求項 2に記載の画像表示光学系において、 [4] In the image display optical system according to claim 2,
前記第 3の光学素子及び前記第 2の光学素子の光学的パワーの和は、前記射出 瞳に配置される観察眼の前記外界に対する視度を補正する値に設定されている ことを特徴とする画像表示光学系。  The sum of the optical powers of the third optical element and the second optical element is set to a value that corrects the diopter of the observation eye arranged on the exit pupil with respect to the outside world. Image display optical system.
[5] 画像表示素子から射出した表示光束を導入して内部で伝播させる基体と、 [5] a substrate that introduces a display light beam emitted from the image display element and propagates the light beam inside;
前記基体の内部を伝播する前記表示光束を偏向して前記基体の外部に導出する 複数のミラーと  A plurality of mirrors for deflecting the display light beam propagating through the inside of the base and leading it out of the base;
を備えた画像表示光学系にお 、て、 有限距離に前記画像表示素子の虚像が形成されるように、前記基体に導入される 前記表示光束に対し光学的パワーを付与する第 1の光学素子を備えると共に、 前記複数のミラーが個別に形成する前記虚像が、前記有限距離の所定位置にお いて重なるように、前記複数のミラーの間に姿勢の偏りを設けた In an image display optical system equipped with A first optical element for applying optical power to the display light beam introduced into the substrate so that a virtual image of the image display element is formed at a finite distance; and the plurality of mirrors are individually formed. The posture is provided between the plurality of mirrors so that the virtual image to be overlapped at a predetermined position of the finite distance.
ことを特徴とする画像表示光学系。  An image display optical system characterized by the above.
[6] 請求項 1〜請求項 5の何れか一項に記載の画像表示光学系にお 、て、  [6] In the image display optical system according to any one of claims 1 to 5,
前記基体に導入された前記表示光束を、内面反射しながら伝播するように偏向す る導入ミラーを更に備えた  An introduction mirror is further provided for deflecting the display light beam introduced into the substrate so as to propagate while reflecting from the inner surface.
ことを特徴とする画像表示光学系。  An image display optical system characterized by the above.
[7] 請求項 6に記載の画像表示光学系にお 、て、 [7] In the image display optical system according to claim 6,
前記複数のミラーは、前記基体のうち前記表示光束が内面反射する何れかの面上 に設けられ、  The plurality of mirrors are provided on any surface of the base body on which the display light beam is internally reflected,
前記複数のミラーと前記面との間には、前記内面反射を妨げることなく前記表示光 束の一部を前記複数のミラーの側に導出する機能膜が設けられる  A functional film is provided between the plurality of mirrors and the surface to guide part of the display light flux to the plurality of mirrors without interfering with the inner surface reflection.
ことを特徴とする画像表示光学系。  An image display optical system characterized by the above.
[8] 請求項 6又は請求項 7に記載の画像表示光学系にお 、て、 [8] In the image display optical system according to claim 6 or claim 7,
前記導入ミラーは、前記基体に導入された前記表示光束を、前記基体の 3以上の 面で内面反射するように偏向する  The introduction mirror deflects the display light beam introduced into the base so as to be internally reflected by three or more surfaces of the base.
ことを特徴とする画像表示光学系。  An image display optical system characterized by the above.
[9] 画像表示素子と、前記画像表示素子から射出した表示光束に基づき前記射出瞳 を形成する請求項 1〜請求項 8の何れか一項に記載の画像表示光学系と [9] The image display optical system according to any one of [1] to [8], wherein the exit pupil is formed based on an image display element and a display light beam emitted from the image display element.
を備えたことを特徴とする画像表示装置。  An image display device comprising:
[10] 請求項 9に記載の画像表示装置において、 [10] In the image display device according to claim 9,
前記画像表示素子及び前記画像表示光学系を観察者の頭部に固定し、その観察 者の観察眼の近傍に前記射出瞳を配置する装着手段を更に備えた  The image display device and the image display optical system are further fixed to an observer's head, and further equipped with a mounting means for disposing the exit pupil in the vicinity of the observer's observation eye.
ことを特徴とする画像表示装置。  An image display device characterized by that.
PCT/JP2006/301994 2005-03-14 2006-02-06 Image display optical system and image display WO2006098097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-070838 2005-03-14
JP2005070838 2005-03-14

Publications (1)

Publication Number Publication Date
WO2006098097A1 true WO2006098097A1 (en) 2006-09-21

Family

ID=36991452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301994 WO2006098097A1 (en) 2005-03-14 2006-02-06 Image display optical system and image display

Country Status (1)

Country Link
WO (1) WO2006098097A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077803A1 (en) * 2007-12-17 2009-06-25 Nokia Corporation Exit pupil expanders with spherical and aspheric substrates
WO2011110728A1 (en) * 2010-03-12 2011-09-15 Nokia Corporation Light-guiding structures
WO2013012484A2 (en) 2011-07-15 2013-01-24 Google Inc. Eyepiece for near-to-eye display with multi-reflectors
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
JP2014085425A (en) * 2012-10-22 2014-05-12 Seiko Epson Corp Optical device, image display device, and manufacturing method for optical device
WO2016132347A1 (en) * 2015-02-19 2016-08-25 Lumus Ltd. Compact head-mounted display system having uniform image
CN105911700A (en) * 2016-07-01 2016-08-31 成都理想境界科技有限公司 Near-to-eye display system, virtual reality equipment and augmented reality equipment
CN105911699A (en) * 2016-07-01 2016-08-31 成都理想境界科技有限公司 Near-to-eye display system, virtual-reality equipment and augmented reality equipment
WO2017001402A1 (en) * 2015-07-02 2017-01-05 Essilor International (Compagnie Générale d'Optique) Optical device adapted for a wearer
JP2017535825A (en) * 2014-11-11 2017-11-30 ラマス リミテッド Compact head-mounted display system protected by ultra-fine structure
JP2018041096A (en) * 2017-10-30 2018-03-15 セイコーエプソン株式会社 Optical device, image display device, and manufacturing method for optical device
CN108027514A (en) * 2015-10-26 2018-05-11 谷歌有限责任公司 Head-mounted display apparatus with multiple stage display and optics
CN108254931A (en) * 2018-01-22 2018-07-06 上海天马微电子有限公司 Display device
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
US10302835B2 (en) 2017-02-22 2019-05-28 Lumus Ltd. Light guide optical assembly
WO2019144596A1 (en) * 2018-01-26 2019-08-01 华为技术有限公司 Optical waveguide structure and display device
TWI669530B (en) * 2016-08-18 2019-08-21 以色列商盧姆斯有限公司 Compact head-mounted display system having uniform image
US10437031B2 (en) 2016-11-08 2019-10-08 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
JP2019191590A (en) * 2019-05-29 2019-10-31 株式会社東芝 Wearable terminal, system, and display method
US10481319B2 (en) 2017-03-22 2019-11-19 Lumus Ltd. Overlapping facets
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US10564417B2 (en) 2016-10-09 2020-02-18 Lumus Ltd. Aperture multiplier using a rectangular waveguide
US10649214B2 (en) 2005-02-10 2020-05-12 Lumus Ltd. Substrate-guide optical device
US10671849B2 (en) 2015-09-01 2020-06-02 Kabushiki Kaisha Toshiba System and method for sensor based visual adjustments
US10895679B2 (en) 2017-04-06 2021-01-19 Lumus Ltd. Light-guide optical element and method of its manufacture
US10908426B2 (en) 2014-04-23 2021-02-02 Lumus Ltd. Compact head-mounted display system
US11448816B2 (en) 2019-01-24 2022-09-20 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11523092B2 (en) 2019-12-08 2022-12-06 Lumus Ltd. Optical systems with compact image projector
US11526003B2 (en) 2018-05-23 2022-12-13 Lumus Ltd. Optical system including light-guide optical element with partially-reflective internal surfaces
US11543583B2 (en) 2018-09-09 2023-01-03 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11561335B2 (en) 2019-12-05 2023-01-24 Lumus Ltd. Light-guide optical element employing complementary coated partial reflectors, and light-guide optical element having reduced light scattering
US11630260B2 (en) 2020-05-24 2023-04-18 Lumus Ltd. Production method and corresponding structures of compound light-guide optical elements
US11644676B2 (en) 2020-09-11 2023-05-09 Lumus Ltd. Image projector coupled to a light guide optical element
US11789264B2 (en) 2021-07-04 2023-10-17 Lumus Ltd. Display with stacked light-guide elements providing different parts of field of view
US11796729B2 (en) 2021-02-25 2023-10-24 Lumus Ltd. Optical aperture multipliers having a rectangular waveguide
US11886008B2 (en) 2021-08-23 2024-01-30 Lumus Ltd. Methods of fabrication of compound light-guide optical elements having embedded coupling-in reflectors
US11885966B2 (en) 2019-12-30 2024-01-30 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11914187B2 (en) 2019-07-04 2024-02-27 Lumus Ltd. Image waveguide with symmetric beam multiplication
US11914161B2 (en) 2019-06-27 2024-02-27 Lumus Ltd. Apparatus and methods for eye tracking based on eye imaging via light-guide optical element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315815A (en) * 1989-05-23 1991-01-24 Thomson Csf Device for introducing collimation image to visual field of obserber
JPH08129146A (en) * 1994-09-05 1996-05-21 Olympus Optical Co Ltd Video display device
JPH08160344A (en) * 1994-12-05 1996-06-21 Olympus Optical Co Ltd Head mounted video display device
JP2002089928A (en) * 2000-09-13 2002-03-27 Toshiba Kyaria Kk Air-conditioning system
JP2002287077A (en) * 2001-03-23 2002-10-03 Nikon Corp Video display device
JP2003536102A (en) * 2000-06-05 2003-12-02 ラマス リミテッド Optical beam expander guided by substrate
JP2004021078A (en) * 2002-06-19 2004-01-22 Nikon Corp Combiner optical system and information display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315815A (en) * 1989-05-23 1991-01-24 Thomson Csf Device for introducing collimation image to visual field of obserber
JPH08129146A (en) * 1994-09-05 1996-05-21 Olympus Optical Co Ltd Video display device
JPH08160344A (en) * 1994-12-05 1996-06-21 Olympus Optical Co Ltd Head mounted video display device
JP2003536102A (en) * 2000-06-05 2003-12-02 ラマス リミテッド Optical beam expander guided by substrate
JP2002089928A (en) * 2000-09-13 2002-03-27 Toshiba Kyaria Kk Air-conditioning system
JP2002287077A (en) * 2001-03-23 2002-10-03 Nikon Corp Video display device
JP2004021078A (en) * 2002-06-19 2004-01-22 Nikon Corp Combiner optical system and information display device

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962784B2 (en) 2005-02-10 2021-03-30 Lumus Ltd. Substrate-guide optical device
US10649214B2 (en) 2005-02-10 2020-05-12 Lumus Ltd. Substrate-guide optical device
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
US10598937B2 (en) 2005-11-08 2020-03-24 Lumus Ltd. Polarizing optical system
US8830584B2 (en) 2007-12-17 2014-09-09 Nokia Corporation Exit pupil expanders with spherical and aspheric substrates
WO2009077803A1 (en) * 2007-12-17 2009-06-25 Nokia Corporation Exit pupil expanders with spherical and aspheric substrates
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
US20130088780A1 (en) * 2010-03-12 2013-04-11 Toni J. Jarvenpaa Light-Guiding Structures
WO2011110728A1 (en) * 2010-03-12 2011-09-15 Nokia Corporation Light-guiding structures
US9766381B2 (en) 2010-03-12 2017-09-19 Nokia Technologies Oy Light-guiding structures
EP2732328A4 (en) * 2011-07-15 2014-12-03 Google Inc Eyepiece for near-to-eye display with multi-reflectors
EP2732328A2 (en) * 2011-07-15 2014-05-21 Google, Inc. Eyepiece for near-to-eye display with multi-reflectors
WO2013012484A2 (en) 2011-07-15 2013-01-24 Google Inc. Eyepiece for near-to-eye display with multi-reflectors
JP2014085425A (en) * 2012-10-22 2014-05-12 Seiko Epson Corp Optical device, image display device, and manufacturing method for optical device
US10908426B2 (en) 2014-04-23 2021-02-02 Lumus Ltd. Compact head-mounted display system
US10782532B2 (en) 2014-11-11 2020-09-22 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
US11543661B2 (en) 2014-11-11 2023-01-03 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
US10520731B2 (en) 2014-11-11 2019-12-31 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
JP2017535825A (en) * 2014-11-11 2017-11-30 ラマス リミテッド Compact head-mounted display system protected by ultra-fine structure
JP2018512608A (en) * 2015-02-19 2018-05-17 ラマス リミテッド Compact head-mounted display system that displays uniform images
EP3936762A1 (en) * 2015-02-19 2022-01-12 Lumus Ltd. Compact head-mounted display system having uniform image
EP3587916A1 (en) * 2015-02-19 2020-01-01 Lumus Ltd. Compact head-mounted display system having uniform image
CN107430275A (en) * 2015-02-19 2017-12-01 鲁姆斯有限公司 Compact wear-type display system with homogeneous image
EP4235238A3 (en) * 2015-02-19 2023-10-18 Lumus Ltd. Compact head-mounted display system having uniform image
RU2717897C2 (en) * 2015-02-19 2020-03-26 Лумус Лтд. Information display system which generates a uniform image
WO2016132347A1 (en) * 2015-02-19 2016-08-25 Lumus Ltd. Compact head-mounted display system having uniform image
US20180188555A1 (en) * 2015-07-02 2018-07-05 Essilor International Optical device adapted for a wearer
US10845616B2 (en) 2015-07-02 2020-11-24 Essilor International Optical device adapted for a wearer
WO2017001402A1 (en) * 2015-07-02 2017-01-05 Essilor International (Compagnie Générale d'Optique) Optical device adapted for a wearer
CN107924058A (en) * 2015-07-02 2018-04-17 依视路国际公司 The optical device being adapted with wearer
US10671849B2 (en) 2015-09-01 2020-06-02 Kabushiki Kaisha Toshiba System and method for sensor based visual adjustments
US11002975B2 (en) 2015-09-01 2021-05-11 Kabushiki Kaisha Toshiba System and method for image generation based on a display-attachable wearable device
US11789279B2 (en) 2015-09-01 2023-10-17 Kabushiki Kaisha Toshiba System and method for virtual image adjustment
US11428944B2 (en) 2015-09-01 2022-08-30 Kabushiki Kaisha Toshiba Wearable device and method for visual image adjustment
US10679059B2 (en) 2015-09-01 2020-06-09 Kabushiki Kaisha Toshiba System and method for visual image adjustment
US10685232B2 (en) 2015-09-01 2020-06-16 Kabushiki Kaisha Toshiba Wearable device for displaying checklist of a work
US10682405B2 (en) 2015-09-01 2020-06-16 Kabushiki Kaisha Toshiba System and method and device for adjusting image positioning
CN108027514A (en) * 2015-10-26 2018-05-11 谷歌有限责任公司 Head-mounted display apparatus with multiple stage display and optics
CN105911699A (en) * 2016-07-01 2016-08-31 成都理想境界科技有限公司 Near-to-eye display system, virtual-reality equipment and augmented reality equipment
CN105911700A (en) * 2016-07-01 2016-08-31 成都理想境界科技有限公司 Near-to-eye display system, virtual reality equipment and augmented reality equipment
TWI669530B (en) * 2016-08-18 2019-08-21 以色列商盧姆斯有限公司 Compact head-mounted display system having uniform image
US11567316B2 (en) 2016-10-09 2023-01-31 Lumus Ltd. Aperture multiplier with depolarizer
US10564417B2 (en) 2016-10-09 2020-02-18 Lumus Ltd. Aperture multiplier using a rectangular waveguide
US10437031B2 (en) 2016-11-08 2019-10-08 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US11378791B2 (en) 2016-11-08 2022-07-05 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US10302835B2 (en) 2017-02-22 2019-05-28 Lumus Ltd. Light guide optical assembly
US10684403B2 (en) 2017-02-22 2020-06-16 Lumus Ltd. Light guide optical assembly
JP7365717B2 (en) 2017-02-22 2023-10-20 ルムス エルティーディー. light guide optical assembly
US11194084B2 (en) 2017-02-22 2021-12-07 Lumus Ltd. Light guide optical assembly
JP2022028761A (en) * 2017-02-22 2022-02-16 ルムス エルティーディー. Light guide optical assembly
US10481319B2 (en) 2017-03-22 2019-11-19 Lumus Ltd. Overlapping facets
US11125927B2 (en) 2017-03-22 2021-09-21 Lumus Ltd. Overlapping facets
US10895679B2 (en) 2017-04-06 2021-01-19 Lumus Ltd. Light-guide optical element and method of its manufacture
JP2018041096A (en) * 2017-10-30 2018-03-15 セイコーエプソン株式会社 Optical device, image display device, and manufacturing method for optical device
US11385393B2 (en) 2018-01-21 2022-07-12 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
CN108254931A (en) * 2018-01-22 2018-07-06 上海天马微电子有限公司 Display device
WO2019144596A1 (en) * 2018-01-26 2019-08-01 华为技术有限公司 Optical waveguide structure and display device
US11526003B2 (en) 2018-05-23 2022-12-13 Lumus Ltd. Optical system including light-guide optical element with partially-reflective internal surfaces
US11543583B2 (en) 2018-09-09 2023-01-03 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11448816B2 (en) 2019-01-24 2022-09-20 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
JP2019191590A (en) * 2019-05-29 2019-10-31 株式会社東芝 Wearable terminal, system, and display method
US11914161B2 (en) 2019-06-27 2024-02-27 Lumus Ltd. Apparatus and methods for eye tracking based on eye imaging via light-guide optical element
US11914187B2 (en) 2019-07-04 2024-02-27 Lumus Ltd. Image waveguide with symmetric beam multiplication
US11561335B2 (en) 2019-12-05 2023-01-24 Lumus Ltd. Light-guide optical element employing complementary coated partial reflectors, and light-guide optical element having reduced light scattering
US11523092B2 (en) 2019-12-08 2022-12-06 Lumus Ltd. Optical systems with compact image projector
US11885966B2 (en) 2019-12-30 2024-01-30 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11630260B2 (en) 2020-05-24 2023-04-18 Lumus Ltd. Production method and corresponding structures of compound light-guide optical elements
US11644676B2 (en) 2020-09-11 2023-05-09 Lumus Ltd. Image projector coupled to a light guide optical element
US11796729B2 (en) 2021-02-25 2023-10-24 Lumus Ltd. Optical aperture multipliers having a rectangular waveguide
US11789264B2 (en) 2021-07-04 2023-10-17 Lumus Ltd. Display with stacked light-guide elements providing different parts of field of view
US11886008B2 (en) 2021-08-23 2024-01-30 Lumus Ltd. Methods of fabrication of compound light-guide optical elements having embedded coupling-in reflectors

Similar Documents

Publication Publication Date Title
WO2006098097A1 (en) Image display optical system and image display
EP3688526B1 (en) Augmented reality display
US11867906B2 (en) Wearable AR system and AR display device
JP4609160B2 (en) Optical element, combiner optical system, and information display device
CN215982382U (en) Display for displaying images into the eyes of an observer
CN113156647B (en) Optical device
US9513481B2 (en) Collimating optical device and system
JP4605152B2 (en) Image display optical system and image display apparatus
US11073693B2 (en) Optical device, head mounted display, assembling method for the same, holographic diffraction grating, display device, and alignment device
US20180203236A1 (en) Optical system and head-mounted display device
US9189829B2 (en) Head mounted display, and image displaying method in head mounted display
US7936519B2 (en) Head mounted display
US7944616B2 (en) Head-mounted display
US20200096780A1 (en) Optical system
CN107167919B (en) Light guide device and virtual image display device
JP4039045B2 (en) BANDPASS FILTER AND VIDEO DISPLAY DEVICE
JP2020020859A (en) Virtual image display device
CN114428402B (en) Virtual image display device and method for manufacturing virtual image display device
WO2023097806A1 (en) Optical module and electronic device
US20220128826A1 (en) Optical module, virtual image display device, and light-guiding device
WO2022179428A1 (en) Optical assembly, projection module and augmented reality apparatus
JP2023056172A (en) Optical unit, virtual image display device, and method for measuring optical unit
CN115561907A (en) Head-up display device and vehicle
CN116990979A (en) Near-eye display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06713137

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713137

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP