JPH02182447A - Dielectric multilayer reflecting film - Google Patents

Dielectric multilayer reflecting film

Info

Publication number
JPH02182447A
JPH02182447A JP253589A JP253589A JPH02182447A JP H02182447 A JPH02182447 A JP H02182447A JP 253589 A JP253589 A JP 253589A JP 253589 A JP253589 A JP 253589A JP H02182447 A JPH02182447 A JP H02182447A
Authority
JP
Japan
Prior art keywords
layer
reflective film
multilayer reflective
aluminum oxide
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP253589A
Other languages
Japanese (ja)
Inventor
Shungo Tsuboi
俊吾 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP253589A priority Critical patent/JPH02182447A/en
Publication of JPH02182447A publication Critical patent/JPH02182447A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0833Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain high laser resistance and to extend life by laminating aluminum oxide and silicone dioxide to a substrate alternately to form a multilayer film and laminating a fluoride-containing layer to said multilayer film as the outermost layer thereof. CONSTITUTION:An aluminum oxide layer 31 is laminated to the upper surface of a substrate 1 composed of quartz glass and a silicon dioxide layer 2 and the aluminum oxide layer 31 are laminated to the upper surface thereof repeatedly in this order. Further, a silicon dioxide layer 32a and a magnesium fluoride layer 33 are laminated and formed to the upper surface of the aluminum oxide layer 31. That is, a dielectric multilayer reflecting film has a structure wherein the magnesium fluoride layer 33 is laminated as the outermost layer of the multilayer film formed by alternately laminating the aluminum oxide layers 31 and the silicone dioxide layers 32.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエキシマレーザのような紫外域レーザの光部品
に用いられる誘電体多層反射膜、特にエタロンの誘電体
多層反射膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dielectric multilayer reflective film used in optical components of ultraviolet lasers such as excimer lasers, and particularly to a dielectric multilayer reflective film for etalons.

〔従来の技術〕[Conventional technology]

第4図は[ト1経マイクロデバイス、 1907年2月
号、81Q〜Jに掲載されている従来のエタロンの誘電
体の多層反射膜を模式的に示す構造断面図であり、図中
1は石英ガラスの!5板を示している。
Figure 4 is a structural cross-sectional view schematically showing a multilayer reflective film of a dielectric material of a conventional etalon published in [To1 Microdevice, February 1907 issue, 81Q-J; Of quartz glass! 5 boards are shown.

基板lの上面には、光学膜1¥が2波長である酸化アル
ミニウム層31が積層されており、その上面にはいずれ
も光学膜厚が2波長である二酸化シリコン層32.酸化
アルミニウム層31がこの順に11回繰り返して積層さ
れている。そして、これら積層されている層の最外層即
ち、酸化アルミニウム層31の上面の層としては光学膜
厚が2波長の二酸化シリコン層32aがさらに積層形成
されている。このように、従来のエタロンの誘電体の多
層反射膜は基+Fy、 1上に酸化アルミニウム層31
と二酸化シリコン層32とを交互に24層積層形成した
交互多N膜構造を有している。
An aluminum oxide layer 31 having an optical film 1 of two wavelengths is laminated on the upper surface of the substrate l, and a silicon dioxide layer 32 . Aluminum oxide layers 31 are repeatedly stacked in this order 11 times. As the outermost layer of these laminated layers, that is, the layer on the upper surface of the aluminum oxide layer 31, a silicon dioxide layer 32a having an optical thickness of two wavelengths is further laminated. In this way, the dielectric multilayer reflective film of the conventional etalon consists of an aluminum oxide layer 31 on the base +Fy, 1.
It has an alternating multi-N film structure in which 24 layers and silicon dioxide layers 32 are alternately stacked.

一般に反射膜等、光学系に用いられる薄膜のレーザ耐性
は薄膜に用いられる材料、膜構成及び薄膜の内部応力に
依存している。ところで、従来交互多層膜の材料として
用いられている酸化アルミニウムは屈折率が高く、引張
り応力を有する一方で、レーザ耐性が小さいという特性
があり同様に交互多層膜の材料として用いられている二
酸化シリコンはレーザ耐性が大きく、圧縮応力を有する
一方で屈折率が低いという特性がある。従って上述した
従来のエタロンの多層反射膜は酸化アルミニウム層と二
酸化シリコン層とを交互に積層した交互多層膜構造を有
しているので、夫々の不具合いを打ち消し合うように作
用し、好ましい組合せとなっている。
Generally, the laser resistance of a thin film used in an optical system, such as a reflective film, depends on the material used for the thin film, the film configuration, and the internal stress of the thin film. By the way, aluminum oxide, which has been conventionally used as a material for alternating multilayer films, has a high refractive index and has tensile stress, but has low laser resistance, and silicon dioxide, which is also used as a material for alternating multilayer films, has the characteristics of low laser resistance. has high laser resistance, has compressive stress, and has a low refractive index. Therefore, since the multilayer reflective film of the conventional etalon described above has an alternating multilayer film structure in which aluminum oxide layers and silicon dioxide layers are alternately laminated, they act to cancel out the disadvantages of each layer, resulting in a preferable combination. It has become.

また、レーザ光が多層反射膜に入射する場合の電解強度
は最外層即ち、第4図では二酸化シリコン層32aが最
も高く、多層反射膜の内部に侵入するにつれてその強度
が減衰していく。従来のエタロンの多層反射膜の最外層
に光学膜厚が2波長である低屈折率の二酸化シリコン層
32aを設けているのはこのためであり、低屈折率の二
酸化シリコンを用いることで多層反射膜のレーザ耐性を
向上させ、光学膜厚を2波長とすることで、異物質界面
において最大電解強度となるのを防いでいる。
Further, when the laser beam is incident on the multilayer reflective film, the electrolytic strength is highest in the outermost layer, that is, the silicon dioxide layer 32a in FIG. 4, and the intensity decreases as it penetrates into the multilayer reflective film. This is why the low refractive index silicon dioxide layer 32a with an optical thickness of 2 wavelengths is provided as the outermost layer of the multilayer reflective film of the conventional etalon. By improving the laser resistance of the film and setting the optical film thickness to two wavelengths, the maximum electrolytic strength is prevented at the interface of foreign substances.

さて、レーザ光の光学系に用いられているエタロンには
エアギャップ型、単板型の2種類がある。
Now, there are two types of etalons used in laser beam optical systems: air gap type and single plate type.

第5図は従来のエアギャップ型エタロンを模式的に示す
平面図であり、第6図は第5図の■−■綿断面断面図る
。第5図及び第6図において、lは石英ガラスの基板で
あり、基板1の一方の面の周縁部には等間隔でスペーサ
4が置設されている。
FIG. 5 is a plan view schematically showing a conventional air gap type etalon, and FIG. 6 is a cross-sectional view taken along the line 1--2 in FIG. In FIGS. 5 and 6, reference numeral 1 denotes a quartz glass substrate, and spacers 4 are placed at equal intervals around the periphery of one surface of the substrate 1. In FIG.

該スペーサ4を介して基板1と所定長離隔し、しかも対
向する位置には前述と同様の基板1が設けられている。
A substrate 1 similar to that described above is provided at a position facing and separated from the substrate 1 by a predetermined distance via the spacer 4 .

そして、基板1.1の対向している夫々の面、前記一方
の面には第4図に示した構造を有する誘電体の交互多層
反射膜3が夫々形成されている。また、基板1.1の交
互多層反射膜3゜3が形成されている面と反対の面、即
ち他方の面には略円形の反射防止!1*2が夫々形成さ
れている。
Alternating multilayer reflective films 3 made of dielectric material and having the structure shown in FIG. 4 are formed on each of the opposing surfaces of the substrate 1.1 and the one surface. Further, on the surface of the substrate 1.1 opposite to the surface on which the alternating multilayer reflective film 3.3 is formed, that is, on the other surface, there is a substantially circular anti-reflection film! 1*2 are formed respectively.

このような構造をなすエアギャップ型エタロンでは、エ
タロンに入射したレーザ光は対向する交互多層反射膜3
.3間で反射干渉する。
In the air-gap etalon having such a structure, the laser beam incident on the etalon passes through the opposing alternating multilayer reflective film 3.
.. Reflection interference occurs between the three.

第7図は単板型エタロンを模式的に示す平面図であり、
第8図は単板型エタロンの模式的断面図である。第7図
及び第8図において1は略円形の石英ガラスの基板であ
り、基板lの両面には略円形の第4図に示した構造を有
する交互多層反射膜3が夫々設けられている。このよう
な構造をなす単板型エタロンではエタロンに入射したレ
ーザ光は交互多層の反射膜3.3間即ち、基板1の面間
で反射干渉する。従ってレーザ等の光学系でエアギャッ
プ型又は単板型のエタロンを用いエタロン内でレーザ光
を反射干渉させることにより、その帯域を更に狭くする
ことができる。
FIG. 7 is a plan view schematically showing a single-plate etalon,
FIG. 8 is a schematic cross-sectional view of a single-plate etalon. In FIGS. 7 and 8, reference numeral 1 denotes a substantially circular quartz glass substrate, and on both surfaces of the substrate 1 are provided alternating multilayer reflective films 3 having the structure shown in FIG. 4, each having a substantially circular shape. In the single-plate etalon having such a structure, the laser light incident on the etalon is reflected and interfered between the alternate multilayer reflective films 3 and 3, that is, between the surfaces of the substrate 1. Therefore, the band can be further narrowed by using an air gap type or single plate type etalon in an optical system such as a laser and causing the laser beam to be reflected and interfered within the etalon.

[発明が解決しようとする課題] 上述した如く、従来のエタロンの多層反射膜では使用材
料及び膜構成の点では十分耐レーザ性を配慮した構造が
なされている。ところが、エタロンを実際にエキシマレ
ーザ等の光学系の所定部分に保持させて用いる場合では
以下の理由により上述した構造では不十分であることが
判明した。
[Problems to be Solved by the Invention] As described above, the multilayer reflective film of the conventional etalon has a structure that sufficiently takes laser resistance into consideration in terms of the materials used and the film structure. However, when the etalon is actually used by being held in a predetermined part of an optical system such as an excimer laser, it has been found that the above-described structure is insufficient for the following reasons.

前述したようにエタロンはレーザ光の帯域をさらに狭く
するために設けられているので、反射干渉部分の狂いは
数10Å以下に抑えて用いられており、従ってエタロン
を保持する材料がエタロンの特性に影響する。
As mentioned above, the etalon is provided to further narrow the band of laser light, so the deviation of the reflection interference part is suppressed to less than a few tens of angstroms. Therefore, the material that holds the etalon depends on its characteristics. Affect.

一方、エキシマレーザのような短波長光はエネルギが高
いため、物質を活性化する作用があり、特に有機物は分
解されやすい。これらのことから一般にエタロンを保持
する材料には、化学的に安定であるフッ素樹脂が用いら
れている。また、フッ素樹脂は軟質であるため、エタロ
ンを変形させることなく保持することができる。しかし
ながら、フッ素樹脂を用いてもエキシマレーザ等の短波
長光によりわずかにフッ素が解離するので、反射膜の最
外層の二酸化シリコンとフッ素とが反応し、これが反射
膜のレーザ損傷の引き金となり、反射膜のレーザ耐性を
低下させることがわかった。
On the other hand, short-wavelength light such as excimer laser has high energy, so it has the effect of activating substances, and organic substances are particularly easily decomposed. For these reasons, chemically stable fluororesin is generally used as the material for holding the etalon. Furthermore, since fluororesin is soft, it is possible to hold the etalon without deforming it. However, even when fluororesin is used, fluorine is slightly dissociated by short wavelength light such as excimer laser, so the silicon dioxide in the outermost layer of the reflective film reacts with fluorine, which triggers laser damage to the reflective film and causes the reflection It was found that this decreases the laser resistance of the film.

本発明は斯かる事情に鑑みてなされたものであり、最外
層としてフッ化物を含有する層を積層することにより高
いレーザ耐性を有し、長寿命の誘電体多層反射膜を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a dielectric multilayer reflective film with high laser resistance and long life by laminating a layer containing fluoride as the outermost layer. shall be.

〔課題を解決するための手段] 本発明に係る誘電体多層反射膜は基板上の酸化アルミニ
ウムと二酸化シリコンとを交互に複数積層した多層膜の
最外層としてフッ化物を含有する層を積層しであるもの
である。
[Means for Solving the Problems] The dielectric multilayer reflective film according to the present invention is a multilayer film in which a layer containing fluoride is laminated as the outermost layer of a multilayer film in which aluminum oxide and silicon dioxide are alternately laminated on a substrate. It is something.

〔作用〕[Effect]

本発明の誘電体多層反射膜にあっては酸化アルミニウム
と酸化シリコンとを交互に複数積層した多層膜の最外層
としてフッ化物を含有する層を積層しであるので、レー
ザにより光部品の一部が分解されて生じたフッ素と誘電
体多層反射膜の最外層との反応を防ぐことができ、高い
レーザ耐性を有し、長寿命である誘電体多層反射膜が得
られる。
In the dielectric multilayer reflective film of the present invention, a layer containing fluoride is laminated as the outermost layer of a multilayer film in which aluminum oxide and silicon oxide are alternately laminated. It is possible to prevent the reaction between fluorine produced by the decomposition of fluorine and the outermost layer of the dielectric multilayer reflective film, and thus a dielectric multilayer reflective film with high laser resistance and long life can be obtained.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき具体的に
詳述する。第1図は本発明に係る誘電体多層反射膜の構
成を示す模式的断面図であり、図中1は石英ガラスの基
板を示している。基板1の上面には光学膜厚がX波長で
ある酸化アルミニウム層31が積層されており、その上
面にはいずれも光学膜厚がX波長である二酸化シリコン
層32.酸化アルミニウム層31がこの順に11回繰り
返して積層されている。さらに、これら積層されている
層の上面即ち、酸化アルミニウム層31の上面には光学
膜厚がX波長の二酸化シリコン層32a、やはり光学膜
厚が2波長のフッ化マグネシウム層33がこの順に積層
形成されている。即ち、本実施例の誘電体多層反射膜は
酸化アルミニウム層31と二酸化ジノコン層32とを交
互に24層積層形成した多層膜の最外層としてフッ化マ
グネシウム層33を積層した構造を有している。第2図
は上述して得た誘電体多層反射膜の分光透過率を示した
スペクトル図であり、第3図は従来の誘電体多層反射膜
の分光透過率を示したスペクトル図である。第2図及び
第3図において線軸には透過率(%)が、横軸には波長
(nm)が夫々とっである。第2図及び第3図から明ら
かな如く、本実施例、従来例とも多層反射膜の中心波長
が248nm付近にTlTl1認され、最外層としてフ
ッ化マグネシウム層を積層形成させることによる光学的
問題はないことが確認される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described in detail below based on drawings showing embodiments thereof. FIG. 1 is a schematic cross-sectional view showing the structure of a dielectric multilayer reflective film according to the present invention, and numeral 1 in the figure indicates a quartz glass substrate. An aluminum oxide layer 31 having an optical thickness of X wavelength is laminated on the upper surface of the substrate 1, and a silicon dioxide layer 32. Aluminum oxide layers 31 are repeatedly stacked in this order 11 times. Further, on the upper surface of these laminated layers, that is, on the upper surface of the aluminum oxide layer 31, a silicon dioxide layer 32a with an optical thickness of X wavelength and a magnesium fluoride layer 33 with an optical thickness of 2 wavelengths are laminated in this order. has been done. That is, the dielectric multilayer reflective film of this example has a structure in which a magnesium fluoride layer 33 is laminated as the outermost layer of a multilayer film in which 24 aluminum oxide layers 31 and 24 dinocon dioxide layers 32 are laminated alternately. . FIG. 2 is a spectral diagram showing the spectral transmittance of the dielectric multilayer reflective film obtained as described above, and FIG. 3 is a spectral diagram showing the spectral transmittance of the conventional dielectric multilayer reflective film. In FIGS. 2 and 3, the line axis represents transmittance (%), and the horizontal axis represents wavelength (nm). As is clear from FIGS. 2 and 3, in both this example and the conventional example, the center wavelength of the multilayer reflective film was found to be around 248 nm, and the optical problem caused by laminating the magnesium fluoride layer as the outermost layer was It is confirmed that there is no

また、本実施例で得られる多層反射膜の内部応力に関し
ては最外層の材料であるフッ化マグネシウムが引張り応
力を有し、最外層の下層の材料である二酸化シリコンが
圧縮応力を有するので、互いに応力を打ち消し合い理想
的な膜構成となっている。
Regarding the internal stress of the multilayer reflective film obtained in this example, magnesium fluoride, which is the material of the outermost layer, has tensile stress, and silicon dioxide, which is the material of the lower layer of the outermost layer, has compressive stress. It has an ideal membrane structure that cancels out stress.

次にエタロンに本実施例の多層反射膜と従来の多層反射
膜とを夫々置設し、夫々のエタロンに波長が248nm
のエキシマレーザを15mJ、 200ppsの条件で
照射してレーザによる夫々の多層反射膜の損傷を調べた
。その結果、従来のエタロンの多層反射膜では1×10
7シヨツトで損傷が発生したが、本実施例のエタロンの
多層反射膜では5XIO’シヨツトまでt員傷が発生し
ないことがわかった。
Next, the multilayer reflective film of this embodiment and the conventional multilayer reflective film were placed on each etalon, and a wavelength of 248 nm was applied to each etalon.
Damage to each multilayer reflective film caused by the laser was examined by irradiating with an excimer laser at 15 mJ and 200 pps. As a result, the multilayer reflective film of the conventional etalon has 1×10
Although damage occurred at 7 shots, it was found that no damage occurred up to 5XIO' shots in the multilayer reflective film of the etalon of this example.

また、本実施例の多層反射膜を有するエタロンをステッ
パ用エキシマレーザの狭帯域化素子に使用すると従来の
多層反射膜を有するエタロンに比べて約50倍の長寿命
となった。
Furthermore, when the etalon having the multilayer reflective film of this example was used as a band narrowing element for an excimer laser for a stepper, the life span was about 50 times longer than that of the conventional etalon having a multilayer reflective film.

なお、本実施例では誘電体の多層反射膜の最外層として
設けたフッ化マグネシウム層の光学膜厚を各波長とした
ので多層反射膜の異物質界面で最大電解強度となるのを
防ぐことができる。
In this example, since the optical thickness of the magnesium fluoride layer provided as the outermost layer of the dielectric multilayer reflective film was set to each wavelength, it was possible to prevent the maximum electrolytic strength from occurring at the interface of a foreign material in the multilayer reflective film. can.

また、本実施例では多層反射膜の最外層のフッ化物にフ
ッ化マグネシウムを用いたが、これに代えてバリウム、
ストロンチウム、カルシウム等の■族元素のフッ化物を
用いることができる。そして、本発明の誘電体の多層反
射膜はエタロンの他に反射ミラー等の光学部品に利用す
ることができる。
In addition, in this example, magnesium fluoride was used as the fluoride in the outermost layer of the multilayer reflective film, but barium,
Fluorides of Group I elements such as strontium and calcium can be used. The dielectric multilayer reflective film of the present invention can be used not only for etalons but also for optical components such as reflective mirrors.

〔発明の効果] 以上詳述した如く本発明に係る誘電体多層反射膜は基板
上の酸化アルミニウムと二酸化シリコンとを交互に複数
積層した多層膜の最外層としてフッ化物を含有する層を
積層しであるので、高いレーザ耐性を有することができ
、長寿命となる。
[Effects of the Invention] As detailed above, the dielectric multilayer reflective film according to the present invention has a fluoride-containing layer laminated as the outermost layer of a multilayer film in which aluminum oxide and silicon dioxide are alternately laminated on a substrate. Therefore, it can have high laser resistance and has a long life.

また本発明に係る誘電体多層反射膜を有するエタロンを
ステッパ用エキシマレーザの狭帯域化素子に用いると、
前記誘電体多層反射膜が長寿命であるため、ステッパの
ランニングコストが大幅に下がり、半導体集積回路、特
に16MBのダイナミックランダムアクセスメモリ(D
RAM)のコスト低下に寄与する等、本発明は優れた効
果を奏する。
Furthermore, when the etalon having the dielectric multilayer reflective film according to the present invention is used as a band narrowing element of an excimer laser for a stepper,
Since the dielectric multilayer reflective film has a long life, the running cost of the stepper is significantly reduced, and it is suitable for semiconductor integrated circuits, especially 16MB dynamic random access memory (DRAM).
The present invention has excellent effects such as contributing to a reduction in the cost of RAM).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の誘電体多層反射膜の構成を示す模式的
断面図、第2図は本発明の誘電体多層反射膜の分光透過
率を示したスペクトル図、第3図は従来の誘電体多層反
射膜の分光透過率を示したスペクトル図、第4図は従来
のエタロンの誘電体多層反射膜を模式的に示す構造断面
図、第5図は従来のエアギャップ型エタロンを模式的に
示す平面図、第6図は第5図のVl−Vl線断面図、第
7図は単板型エタロンを模式的に示す平面図、第8図は
単板型エタロンの模式的断面図である。 ■・・・基板 3・・・反射膜 31・・・酸化アルミ
ニウム層 32・・・二酸化シリコン層 33・・・フ
ッ化物層なお、図中、同一符号は同一、又は相当部分を
示す。 代理人  大   岩   増   雄1:基板 3:反射膜 3に酸化アルミニウム層 32二二酸化シリコン居 33:フッ化物層 第 1   図 図 図 図 図 図 手 続 補 正 書(自発) 騙1工10□16B
FIG. 1 is a schematic cross-sectional view showing the structure of the dielectric multilayer reflective film of the present invention, FIG. 2 is a spectral diagram showing the spectral transmittance of the dielectric multilayer reflective film of the present invention, and FIG. 3 is a conventional dielectric multilayer reflective film. Figure 4 is a spectral diagram showing the spectral transmittance of a dielectric multilayer reflective film, Figure 4 is a structural cross-sectional view schematically showing a dielectric multilayer reflective film of a conventional etalon, and Figure 5 is a schematic diagram of a conventional air gap type etalon. 6 is a cross-sectional view taken along the line Vl-Vl in FIG. 5, FIG. 7 is a plan view schematically showing a single-plate etalon, and FIG. 8 is a schematic cross-sectional view of the single-plate etalon. . ■...Substrate 3...Reflection film 31...Aluminum oxide layer 32...Silicon dioxide layer 33...Fluoride layer Note that in the drawings, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa 1: Substrate 3: Reflective film 3 with aluminum oxide layer 32 silicon dioxide layer 33: Fluoride layer 1 Diagrams, diagrams, diagrams, diagrams, diagrams, procedures corrections (self-motivated), trick 1, 10□16B

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に酸化アルミニウムと酸化シリコンとを交
互に複数積層してなる誘電体多層反射膜において、 最外層としてフッ化物を含有する層を積層 してなることを特徴とする誘電体多層反射膜。
(1) A dielectric multilayer reflective film formed by alternately laminating a plurality of aluminum oxides and silicon oxides on a substrate, characterized in that a layer containing fluoride is laminated as the outermost layer. film.
JP253589A 1989-01-09 1989-01-09 Dielectric multilayer reflecting film Pending JPH02182447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP253589A JPH02182447A (en) 1989-01-09 1989-01-09 Dielectric multilayer reflecting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP253589A JPH02182447A (en) 1989-01-09 1989-01-09 Dielectric multilayer reflecting film

Publications (1)

Publication Number Publication Date
JPH02182447A true JPH02182447A (en) 1990-07-17

Family

ID=11532077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP253589A Pending JPH02182447A (en) 1989-01-09 1989-01-09 Dielectric multilayer reflecting film

Country Status (1)

Country Link
JP (1) JPH02182447A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114266A1 (en) * 2004-05-24 2005-12-01 Jenoptik Laser Optik Systeme Gmbh High-reflecting dielectric mirror and method for the production thereof
DE102010017106A1 (en) * 2010-05-27 2011-12-01 Carl Zeiss Laser Optics Gmbh Mirror with dielectric coating
JP2020525830A (en) * 2017-07-03 2020-08-27 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ Microelectromechanical (MEMS) Fabry-Perot interferometer, apparatus, and method of manufacturing Fabry-Perot interferometer
EP3956604A4 (en) * 2019-04-15 2022-06-08 Lumus Ltd. Method of fabricating a light-guide optical element
US11536975B2 (en) 2017-03-22 2022-12-27 Lumus Ltd. Overlapping facets
US11543583B2 (en) 2018-09-09 2023-01-03 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
US11543661B2 (en) 2014-11-11 2023-01-03 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
US11567316B2 (en) 2016-10-09 2023-01-31 Lumus Ltd. Aperture multiplier with depolarizer
US11729359B2 (en) 2019-12-08 2023-08-15 Lumus Ltd. Optical systems with compact image projector
US11747537B2 (en) 2017-02-22 2023-09-05 Lumus Ltd. Light guide optical assembly
US11927734B2 (en) 2016-11-08 2024-03-12 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US11994705B2 (en) 2022-06-15 2024-05-28 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114266A1 (en) * 2004-05-24 2005-12-01 Jenoptik Laser Optik Systeme Gmbh High-reflecting dielectric mirror and method for the production thereof
DE102010017106A1 (en) * 2010-05-27 2011-12-01 Carl Zeiss Laser Optics Gmbh Mirror with dielectric coating
JP2013529318A (en) * 2010-05-27 2013-07-18 カール ツァイス レーザー オプティクス ゲーエムベーハー Dielectric coated mirror
US9297936B2 (en) 2010-05-27 2016-03-29 Carl Zeiss Laser Optics Gmbh Mirror with dielectric coating
US11543661B2 (en) 2014-11-11 2023-01-03 Lumus Ltd. Compact head-mounted display system protected by a hyperfine structure
US11567316B2 (en) 2016-10-09 2023-01-31 Lumus Ltd. Aperture multiplier with depolarizer
US11927734B2 (en) 2016-11-08 2024-03-12 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US11747537B2 (en) 2017-02-22 2023-09-05 Lumus Ltd. Light guide optical assembly
US11536975B2 (en) 2017-03-22 2022-12-27 Lumus Ltd. Overlapping facets
JP2020525830A (en) * 2017-07-03 2020-08-27 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ Microelectromechanical (MEMS) Fabry-Perot interferometer, apparatus, and method of manufacturing Fabry-Perot interferometer
US11543583B2 (en) 2018-09-09 2023-01-03 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
EP3956604A4 (en) * 2019-04-15 2022-06-08 Lumus Ltd. Method of fabricating a light-guide optical element
US11729359B2 (en) 2019-12-08 2023-08-15 Lumus Ltd. Optical systems with compact image projector
US11994705B2 (en) 2022-06-15 2024-05-28 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion

Similar Documents

Publication Publication Date Title
US6310905B1 (en) Mirror for an ultraviolet laser and method
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US20090128894A1 (en) Reflective optical element for ultraviolet radiation, projection optical system and projection exposure system therewith, and method for forming the same
JPH02182447A (en) Dielectric multilayer reflecting film
JP4161387B2 (en) Multilayer antireflection film
JPH08307008A (en) Multilayer film structure and face luminescence laser
JP2002250801A (en) Ultraviolet antireflection coating at large incident angle
US5608577A (en) Optical mirror and optical device using the same
EP0780880B1 (en) Discharge lamp
JPH10160915A (en) Mirror for excimer laser
US5557466A (en) Two-wavelength antireflection film
JP2019059986A (en) Method for forming thin film, and optical element
US5581395A (en) Non-linear optical crystal element
JP3315494B2 (en) Reflective film
JPH06160602A (en) Two-wavelength antireflection film
JP2979651B2 (en) Method for forming wiring of semiconductor device
JPS63142301A (en) Optical thin film influenced only slightly by cummulative effect
JP3069641B2 (en) Dielectric multilayer film
JPH07225316A (en) Polarization beam splitter
JPS6419787A (en) Semiconductor laser
JPH11248903A (en) Reflection preventive film
JP2004085975A (en) Oxide multilayer optical element and manufacturing method therefor
JP2004069865A (en) Multilayer film optical filter and its manufacturing method and optical part using it
JPH09265005A (en) Mirror for excimer laser
JPH01286476A (en) Laser mirror having flat spectral characteristics in narrow wavelength band