JP2023124332A - 弾性波デバイス、フィルタおよびマルチプレクサ - Google Patents

弾性波デバイス、フィルタおよびマルチプレクサ Download PDF

Info

Publication number
JP2023124332A
JP2023124332A JP2022028037A JP2022028037A JP2023124332A JP 2023124332 A JP2023124332 A JP 2023124332A JP 2022028037 A JP2022028037 A JP 2022028037A JP 2022028037 A JP2022028037 A JP 2022028037A JP 2023124332 A JP2023124332 A JP 2023124332A
Authority
JP
Japan
Prior art keywords
piezoelectric layer
layer
crystal
support substrate
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022028037A
Other languages
English (en)
Inventor
崇 五丿井
Takashi Gonoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2022028037A priority Critical patent/JP2023124332A/ja
Publication of JP2023124332A publication Critical patent/JP2023124332A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】伝搬損失を小さくし、周波数温度特性を向上させることが可能な弾性波デバイスを提供する。【解決手段】弾性波デバイスは、支持基板10と、支持基板10上に設けられオイラー角が(0±5°、80°≦θ≦160°、0±5°)である単結晶タンタル酸リチウムからなる圧電層14と、支持基板10と圧電層14との間に設けられ、オイラー角が(0±5°、0°≦θ≦76°、0±5°)、(0±5°、167°≦θ≦180°、0±5°)または(0±5°、0°≦θ≦180°、90±5°)である単結晶水晶からなる水晶層12と、圧電層14における支持基板10に対し反対側の面に設けられ、平均ピッチDが、圧電層14の厚さT4の1/2倍以上かつ反対側の面と水晶層12において支持基板10側の面との距離T5の1/4倍以上である複数の電極指18を有する一対の櫛型電極20とを備える。【選択図】図1

Description

本発明は、弾性波デバイス、フィルタおよびマルチプレクサに関し、例えば一対の櫛型電極を有する弾性波デバイス、フィルタおよびマルチプレクサに関する。
スマートフォン等の通信機器に用いられる弾性波共振器として、弾性表面波共振器が知られている。弾性表面波共振器を形成する圧電層を支持基板に接合することが知られている。圧電層の厚さを弾性表面波の波長以下とすることが知られている(例えば特許文献1)。圧電層と支持基板との間に温度補償膜を設け、圧電層と温度補償膜との合計の厚さを弾性表面波の波長の2倍以下とすることが知られている(例えば特許文献2)。圧電層と支持基板との間にアモルファス石英基板を設けることが知られている(例えば特許文献3)。支持基板として、単結晶水晶基板を用いることが知られている(例えば特許文献4)。
特開2017-34363号公報 特開2019-201345号公報 特開2020-129726号公報 特開2021-177665号公報
特許文献2では、温度補償膜として非結晶状の酸化シリコン膜を用いている。酸化シリコン膜が非結晶状である場合、圧電層および酸化シリコン膜を伝搬する弾性波の伝搬損失が大きくなることがある。また、非晶質状の酸化シリコン膜は温度補償膜としての機能が十分ではなく、周波数温度特性が低下することがある。
本発明は、上記課題に鑑みなされたものであり、伝搬損失を小さくし、周波数温度特性を向上させることを目的とする。
本発明は、支持基板と、前記支持基板上に設けられオイラー角が(0±5°、80°≦θ≦160°、0±5°)である単結晶タンタル酸リチウムからなる圧電層と、前記支持基板と前記圧電層との間に設けられ、オイラー角が(0±5°、0°≦θ≦76°、0±5°)、(0±5°、167°≦θ≦180°、0±5°)または(0±5°、0°≦θ≦180°、90±5°)である単結晶水晶からなる水晶層と、前記圧電層における前記支持基板に対し反対側の面に設けられ、平均ピッチが、前記圧電層の厚さの1/2倍以上かつ前記反対側の面と前記水晶層において前記支持基板側の面との距離の1/4倍以上である複数の電極指を有する一対の櫛型電極と、を備える弾性波デバイスである。
上記構成において、前記単結晶タンタル酸リチウムのオイラー角は(0±5°、120°≦θ≦150°、0±5°)である構成とすることができる。
上記構成において、前記単結晶水晶のオイラー角は(0±5°、0°≦θ≦76°、0±5°)または(0±5°、167°≦θ≦180°、0±5°)である構成とすることができる。
上記構成において、前記単結晶水晶のオイラー角は(0±5°、0°≦θ≦180°、90±5°)である構成とすることができる。
本発明は、支持基板と、
前記支持基板上に設けられるオイラー角が(0±5°、80°≦θ≦160°、0±5°)である単結晶ニオブ酸リチウムからなる圧電層と、前記支持基板と前記圧電層との間に設けられ、オイラー角が(0±5°、0°≦θ≦98°、0±5°)、(0±5°、145°≦θ≦180°、0±5°)または(0±5°、0°≦θ≦180°、90±5°)である単結晶水晶からなる水晶層と、前記圧電層における前記支持基板に対し反対側の面に設けられ、平均ピッチが、前記圧電層の厚さの1/2倍以上かつ前記反対側の面と前記水晶層において前記支持基板側の面との距離の1/4倍以上である複数の電極指を有する一対の櫛型電極と、を備える弾性波デバイスである。
上記構成において、前記単結晶ニオブ酸リチウムのオイラー角は(0±5°、100°≦θ≦130°、0±5°)である構成とすることができる。
上記構成において、前記単結晶水晶のオイラー角は(0±5°、0°≦θ≦98°、0±5°)または(0±5°、145°≦θ≦180°、0±5°)である構成とすることができる。
上記構成において、前記単結晶水晶のオイラー角は(0±5°、0°≦θ≦180°、90±5°)である構成とすることができる。
本発明は、支持基板と、前記支持基板上に設けられる圧電層と、前記支持基板と前記圧電層との間に設けられ、配列方向に伝搬する横波音速が前記圧電層内を前記配列方向に伝搬する横波音速以下である単結晶水晶からなる水晶層と、前記圧電層における前記支持基板に対し反対側の面に設けられ、平均ピッチが、前記圧電層の厚さの1/2倍以上かつ前記反対側の面と前記水晶層において前記支持基板側の面との距離の1/4倍以上であり、前記配列方向に配列する複数の電極指を有する一対の櫛型電極と、を備える弾性波デバイスである。
上記構成において、前記圧電層と前記支持基板との間に絶縁層を備える構成とすることができる。
本発明は、上記弾性波デバイスを備えるフィルタである。
本発明は、上記フィルタを備えるマルチプレクサである。
本発明によれば、伝搬損失を小さくし、周波数温度特性を向上させることができる。
図1(a)は、実施例1における弾性波共振器の平面図、図1(b)は、図1(a)のA-A断面図である。 図2(a)から図2(d)は、実施例1に係る弾性波デバイスの製造方法を示す断面図である。 図3(a)から図3(c)は、実施例1に係る弾性波デバイスの製造方法を示す断面図である。 図4(a)は、シミュレーションにおけるθに対するTCVを示す図、図4(b)は、θに対するΔTCVを示す図である。 図5(a)は、シミュレーションにおけるθに対するΔYおよびkを示す図、図5(b)は、θに対する周波数感度を示す図である。 図6は、単結晶水晶におけるθに対するX方向に伝搬する横波音速をシミュレーションした図である。 図7は、タンタル酸リチウム基板と単結晶水晶基板におけるθに対する横波音速を示す図である。 図8は、ニオブ酸リチウム基板と単結晶水晶基板におけるθに対する横波音速を示す図である。 図9は、単結晶水晶基板におけるθおよびψに対する横波音速を示す図である。 図10は、実施例1の変形例1に係る弾性波デバイスの断面図である。 図11(a)は、実施例2に係るフィルタの回路図、図11(b)は、実施例2の変形例1に係るデュプレクサの回路図である。
以下、図面を参照し本発明の実施例について説明する。
実施例1では弾性波デバイスとして弾性波共振器の例を説明する。図1(a)は、実施例1における弾性波共振器の平面図、図1(b)は、図1(a)のA-A断面図である。電極指の配列方向をX方向、電極指の延伸方向をY方向、支持基板および圧電層の積層方向をZ方向とする。X方向、Y方向およびZ方向は、圧電層の結晶方位のX軸方向およびY軸方向とは必ずしも対応しない。圧電層が回転YカットX伝搬基板の場合、X方向は結晶方位のX軸方向となる。
図1(a)および図1(b)に示すように、支持基板10上に圧電層14が設けられている。支持基板10と圧電層14との間に水晶層12が設けられている。支持基板10と水晶層12との間に絶縁層11が設けられている。水晶層12と圧電層14との間に接合層13が設けられている。
圧電層14上に弾性波共振器26が設けられている。弾性波共振器26はIDT(Interdigital Transducer)22および反射器24を有する。反射器24はIDT22のX方向の両側に設けられている。IDT22および反射器24は、圧電層14上の金属膜16により形成される。
IDT22は、対向する一対の櫛型電極20を備える。櫛型電極20は、複数の電極指18と、複数の電極指18が接続されたバスバー19と、を備える。X方向からみて一対の櫛型電極20の電極指18が交差する領域が交差領域25である。交差領域25の長さが開口長である。一対の櫛型電極20は、交差領域25の少なくとも一部において電極指18が1本おきに交互に設けられている。交差領域25において複数の電極指18が主に励振する弾性波は、主にX方向に伝搬する。一対の櫛型電極20のうち一方の櫛型電極20の電極指18のピッチがほぼ弾性波の波長λとなる。複数の電極指18のピッチ(電極指18の中心間のピッチ)をDとすると、一方の櫛型電極20の電極指18のピッチは電極指18の2本分のピッチDとなる。反射器24は、IDT22の電極指18が励振した弾性波(弾性表面波)を反射する。これにより弾性波はIDT22の交差領域25内に閉じ込められる。
圧電層14は、例えば回転YカットX伝搬単結晶タンタル酸リチウム(LiTaO)基板または回転YカットX伝搬単結晶ニオブ酸リチウム(LiNbO)基板からなる。圧電層14の厚さT4は、例えば弾性波の波長λ以下であり、0.1λ以上である。
支持基板10は、例えばサファイア基板、アルミナ基板、シリコン基板、ムライト基板、スピネル基板、水晶基板または石英基板である。サファイア基板は単結晶Al基板であり、アルミナ基板は多結晶または非晶質Al基板であり、シリコン基板は単結晶または多結晶のシリコン基板であり、ムライト基板は、多結晶または非晶質Al13Si基板であり、スピネル基板は多結晶または非晶質MgAl基板であり、水晶基板は単結晶SiO基板であり、石英基板は多結晶または非晶質SiO基板である。支持基板10のX方向の線膨張係数は圧電層14のX方向の線膨張係数より小さい。これにより、弾性波共振器の周波数温度依存性を小さくできる。
水晶層12は単結晶水晶(単結晶のSiO)からなる。水晶層12は、温度補償膜として機能し、圧電層14の弾性定数の温度係数の符号と反対の符号の弾性定数の温度係数を有する。例えば圧電層14の弾性定数の温度係数は負であり、水晶層12の弾性定数の温度係数は正である。
水晶層12が温度補償の機能を有するためにはメイン応答の弾性波のエネルギーが水晶層12内にある程度存在することが求められる。弾性表面波のエネルギーが集中する範囲は弾性表面波の種類に依存するものの、典型的には弾性表面波のエネルギーは圧電層14の上面から2λ(λは弾性波の波長)の範囲に集中し、特に圧電層14の上面からλの範囲に集中する。そこで、水晶層12の下面から圧電層14の上面までの距離T5は、2λ以下である。水晶層12の厚さT2は例えば弾性波の波長λ以下であり、0.1λ以上である。
絶縁層11は、例えば多結晶または非晶質であり、酸化アルミニウム膜、窒化シリコン膜、窒化アルミニウム膜またシリコン膜である。絶縁層11は異なる材料からなる複数の層が積層されていてもよい。弾性表面波を圧電層14および水晶層12に閉じ込めるため、絶縁層11の横波音速は水晶層12の横波音速より速いことが好ましい。支持基板10の横波音速は絶縁層11の横波音速より速い。なお、支持基板10の横波音速は絶縁層11の横波音速より遅くてもよい。絶縁層11の厚さT1は例えば弾性波の波長λ以上かつ10λ以下である。
接合層13は、水晶層12と圧電層14を接合する層であり、例えば酸化アルミニウム層、窒化酸化アルミニウム層である。表面活性化法等を用い水晶層12と圧電層14とを直接接合することが難しい場合に、接合層13を設ける。接合層13は設けなくてもよい。接合層13の横波音速は圧電層14の横波音速より速い。接合層13の厚さT3は例えば1nm以上かつ50nm以下である。
金属膜16は、例えばアルミニウム(Al)、銅(Cu)またはモリブデン(Mo)を主成分とする膜である。電極指18と圧電層14との間にチタン(Ti)膜またはクロム(Cr)膜等の密着膜が設けられていてもよい。密着膜は電極指18より薄い。電極指18を覆うように絶縁膜が設けられていてもよい。絶縁膜は保護膜または温度補償膜として機能する。
図2(a)から図3(c)は、実施例1に係る弾性波デバイスの製造方法を示す断面図である。図2(a)に示すように、支持基板10を準備する。支持基板10の上面は略平坦面である。図2(b)に示すように、支持基板10上に絶縁層11および接合層13aを形成する。絶縁層11および接合層13aの形成には、例えばCVD(Chemical Vapor Deposition)法、真空蒸着法またはスパッタリング法を用いる。接合層13aの材料および厚さの例は接合層13と同様である。
図2(c)に示すように、接合層13a上に水晶層12を接合する。水晶層12の接合には例えば表面活性化法を用いる。水晶層12と絶縁層11とを直接接合することが難しい場合に接合層13aを設ける。接合層13aは設けなくてもよい。図2(d)に示すように、水晶層12の上面を研磨し、水晶層12を薄膜化する。水晶層12の研磨には例えばCMP(Chemical Mechanical Polishing)法を用いる。
図3(a)に示すように、水晶層12上に接合層13を形成する。接合層13の形成には、例えばCVD法、真空蒸着法またはスパッタリング法を用いる。図3(b)に示すように、接合層13上に圧電層14を接合する。圧電層14の接合には例えば表面活性化法を用いる。水晶層12と圧電層14とを直接接合することが難しい場合に接合層13を設ける。接合層13は設けなくてもよい。図3(c)に示すように、圧電層14の上面を研磨し、圧電層14を薄膜化する。圧電層14の研磨には例えばCMP法を用いる。その後、圧電層14上に弾性波共振器26を形成する。これにより、弾性波デバイスが製造される。
[シミュレーション]
水晶層12の結晶方位を変え、弾性波共振器の特性をシミュレーションした。シミュレーション条件は以下である。
弾性波の波長λ:1.5μm
支持基板10:厚さが4.5μmのサファイア基板
絶縁層11:厚さが6μmの酸化アルミニウム層
水晶層12:厚さが300nm(0.2λ)の単結晶水晶
接合層13:厚さが10nmの窒化酸化アルミニウム層
圧電層14:厚さが450nm(0.3λ)の42°YカットX伝搬タンタル酸リチウム基板
金属膜16:厚さが150nm(0.1λ)のアルミニウム膜
弾性波の伝搬方向はタンタル酸リチウム基板の結晶方位におけるX軸方向である。
比較例では、水晶層12を非晶質状の酸化シリコン膜とした。
圧電層14および水晶層12の結晶方位を弾性表面波デバイスにおいて一般的に用いられるオイラー角で表現する。弾性表面波デバイスにおけるオイラー角(φ、θ、ψ)の定義は以下である。右手系のXYZ座標系において、弾性波の伝搬方向(すなわち電極指18の配列方向)をX方向とし、圧電層14の上面の法線方向をZ方向とし、X方向およびZ方向に直交する方向(すなわち電極指18の延伸方向)をY方向とする。まず、X方向、Y方向およびZ方向をそれぞれ結晶方位のX軸方向、Y軸方向およびZ軸方向とする。次に、Z軸を中心に+X軸から+Y軸の方向にφ回転させる。φ回転後のX軸を中心に+Y軸から+Z軸の方向にθ回転させる。θ回転後のZ軸を中心に+X軸から+Y軸の方向にψ回転させる。このように、結晶方位を回転させた結晶のオイラー角が(φ、θ、ψ)である。例えば、42°YカットX伝搬タンタル酸リチウム基板のオイラー角は(0°、132°、0°)である。なお、ここでは、φ、θおよびψとして0°~180°を用い表現するが、(φ、θ、ψ)を用い表現されるオイラー角は、等価なオイラー角を含む。
水晶層12におけるオイラー角を(0°、θ、0°)とし、共振周波数frおよび***振周波数faにおける弾性波のTCV(Temperature Coefficient of Velocity)をシミュレーションした。TCF(Temperature Coefficient of Frequency)はTCV-CTE(Coefficient of Thermal Expansion)である。CTEが同じであれば、TCVの絶対値を小さくするとTCFの絶対値が小さくなる。
図4(a)は、シミュレーションにおけるθに対するTCVを示す図である。黒丸および黒三角は、単結晶の水晶層12を用いた弾性波共振器におけるそれぞれ共振周波数frおよび***振周波数faにおけるTCVのシミュレーション値である。曲線は、黒丸をつなぐ線および黒三角をつなぐ線である。白丸および白三角は、水晶層12に非晶質状の酸化シリコン層を用いた比較例である。図4(a)に示すように、θが20°~30°においてTCVが最も大きくなる。θが130°においてTCVが最も小さくなる。θが0°~90°または160°~180°では、共振周波数frおよび***振周波数faにおけるTCVの絶対値は、それぞれ比較例における共振周波数frおよび***振周波数faにおけるTCVの絶対値より小さくなる。
図4(b)は、θに対するΔTCVを示す図である。ΔTCVは、(共振周波数frにおけるTCV)-(***振周波数faにおけるTCV)である。黒丸は、単結晶の水晶層12を用いたΔTCV、白丸は比較例におけるΔTCVである。図4(b)に示すように、θが0°~90°または130°~180°では、ΔTCVは比較例のΔTCVより小さくなる。
図5(a)は、シミュレーションにおけるθに対するΔYおよびkを示す図である。ΔYは、共振周波数にけるアドミッタンスの絶対値と***振周波数におけるアドミッタンスの絶対値の差である。kは電気機械結合係数である。黒丸および黒三角は、単結晶の水晶層12を用いた弾性波共振器におけるそれぞれΔYおよびkのシミュレーション値である。曲線は、黒丸をつなぐ線および黒三角をつなぐ線である。白丸は、比較例におけるΔYである。図5(a)に示すように、単結晶の水晶層12を用いた弾性波共振器のΔYは比較例のΔYより大きい。θが90°~150°においてΔYおよび電気機械結合係数kが大きくなる。
図5(b)は、θに対する周波数感度を示す図である。周波数感度は、圧電層14の厚さT4が変化したときの共振周波数frおよび***振周波数faの変化を示す指標である。黒丸および黒三角は、単結晶の水晶層12を用いた弾性波共振器におけるそれぞれ共振周波数frおよび***振周波数faの周波数感度のシミュレーション値である。曲線は、黒丸をつなぐ線および黒三角をつなぐ線である。破線直線は、比較例における共振周波数frの周波数感度である。図5(b)に示すように、θが30°において周波数感度が最大となり、θが120°~130°において周波数感度が最小となる。θが0°~70°および170°~180°において周波数感度は比較例より大きくなる。
図6は、単結晶水晶におけるθに対するX方向に伝搬する横波音速をシミュレーションした図である。破線は、オイラー角が(0°、132°、0°)のタンタル酸リチウム基板の音速である。図6に示すように、単結晶水晶の横波音速はθが30°が最小であり、θが120°が最大である。(0°、132°、0°)のタンタル酸リチウム基板の横波音速は約4250m/sである。
図6と図4(a)および図4(b)を比較すると、単結晶の水晶層12のX方向に伝搬する横波音速が小さいと、TCVの絶対値およびΔTCVは小さくなる。特に、水晶層12の横波音速が圧電層14のX方向に伝搬する横波音速より遅いθの範囲ではTCVの絶対値およびΔTCVが小さい。この理由は以下と考えられる。特許文献2の図5(a)および図5(b)のように、弾性表面波の変位は、圧電層14の表面近くが最も大きく、圧電層14の表面から2λ程度の深さまでに収まる。水晶層12の横波音速が圧電層14の横波音速より速い場合、弾性表面波は水晶層12を伝搬しにくくなり、水晶層12内の弾性表面波の変位は小さくなる。このため、水晶層12における温度補償の機能が低下する。一方、水晶層12の横波音速が圧電層14の横波音速より遅い場合、水晶層12内の弾性表面波の変位が大きくなる。このため、水晶層12における温度補償の機能が増大するためと考えられる。
図6と図5(a)を比較すると、水晶層12の横波音速が圧電層14の横波音速より遅いθの範囲では、水晶層12の横波音速が圧電層14の横波音速より速いθの範囲に比べ、ΔYおよびkが小さい。これは、圧電層14を伝搬する水晶層12の横波音速が圧電層14の横波音速より速い場合、水晶層12より圧電性の高い圧電層14内の弾性表面波の変位が大きくなる。このため、ΔYおよびkが大きくなる。水晶層12の横波音速が圧電層14の横波音速より遅い場合、圧電層14内の弾性表面波の変位が小さくなる。このため、ΔYおよびkが小さくなると考えられる。水晶層12の横波音速が圧電層14の横波音速より遅い場合でも、比較例よりはΔYおよびkが大きい。これは、比較例では温度補償膜は非晶質状の酸化シリコン膜であることから、温度補償膜を伝搬する弾性表面波の伝搬損失が大きくなる。これに対し、実施例1のように温度補償膜を単結晶水晶とすることで、水晶層12を伝搬する弾性表面波の伝搬損失を抑制できるためと考えられる。
図6と図5(b)を比較すると、水晶層12の横波音速が圧電層14の横波音速より遅いθの範囲では、水晶層12の横波音速が圧電層14の横波音速より速いθの範囲より周波数感度が大きい。共振周波数frおよび***振周波数faを制御する観点からは、水晶層12の横波音速を圧電層14の横波音速より速くする方が有利である。
以上のように、θの範囲を水晶層12の横波音速が圧電層14の横波音速より遅い範囲とすることで、TCVの絶対値およびΔTCVが小さくなり、周波数温度特性を向上できる。この範囲では、水晶層12の横波音速が圧電層14の横波音速より速い範囲よりΔYおよびkが小さく、周波数感度が大きいものの、比較例よりΔYおよびkを大きくできる。水晶層12を設ける目的は温度補償のためであることから、θの範囲を水晶層12の横波音速が圧電層14の横波音速より遅い範囲とすることで、周波数温度特性を向上させ、かつ比較例より伝搬損失を向上できる。
圧電層14にタンタル酸リチウム基板またはニオブ酸リチウム基板を用いる場合には、SH(Shear Horizontal)波等の漏洩弾性表面波(LSAW:Leaky Surface Acoustic Wave)またはレイリー波を主モードとして用いるためYカットX伝搬基板を用いる。この場合、圧電層14のオイラー角は(0°、θ、0°)である。単結晶水晶を水晶層12に用いる場合、弾性表面波の伝搬方向とエネルギーの伝搬方向との角度であるパワーフロー角が0°であることが好ましい。この観点から水晶層12のオイラー角は(0°、θ、ψ)であり、ψは0°または90°である。
まず、オイラー角が(0°、θ、0°)のタンタル酸リチウム基板とオイラー角が(0°、θ、0°)の水晶基板のX方向に伝搬する横波音速をシミュレーションして比較した。なお、タンタル酸リチウム基板における横波音速はLSAWの音速に相当する。図7は、タンタル酸リチウム基板と単結晶水晶基板におけるθに対する横波音速を示す図である。水晶は、単結晶水晶基板の横波音速を示し、LTは、タンタル酸リチウム基板の横波音速を示す。
図7に示すように、タンタル酸リチウム基板では、θが135°付近で横波音速が最も速く、このときの横波音速は4250m/sである。このとき、水晶層12のθを0°≦θ≦θQ1(θQ1=76°)またはθQ2≦θ≦180°(θQ2=167°)とすることで、水晶層12の横波音速を圧電層14の横波音速以下とすることができる。タンタル酸リチウムのθが120°≦θ≦150°では、横波音速はほぼ4250m/sで一定である。よって、圧電層14のθが120°~150°のとき、水晶層12のθを0°≦θ≦76°または167°≦θ≦180°とすることで、水晶層12の横波音速を圧電層14の横波音速より遅くできる。
弾性表面波としてLSAWを用いる場合、圧電層14のθはθL1=80°以上かつθL2=160°以下の回転YカットX伝搬タンタル酸リチウム基板を用いることが多い。この範囲のθにおいて圧電層14の横波音速が最も遅いのはθL1=80°のときである。このときの圧電層14の横波音速は約4000m/sである。そこで、水晶層12のθを0°≦θ≦θQ3(θQ3=67°)またはθQ4≦θ≦180°(θQ4=176°)とすることで、水晶層12の横波音速を圧電層14の横波音速より遅くできる。
次に、オイラー角が(0°、θ、0°)のニオブ酸リチウム基板とオイラー角が(0°、θ、0°)の水晶基板のX方向に伝搬する横波音速をシミュレーションして比較した。図8は、ニオブ酸リチウム基板と単結晶水晶基板におけるθに対する横波音速を示す図である。水晶は、単結晶水晶基板の横波音速を示し、LNは、ニオブ酸リチウム基板の横波音速を示す。
図8に示すように、ニオブ酸リチウム基板では、θが113°付近で横波音速が最も速く、このときの横波音速は4880m/sである。このとき、水晶層12のθを0°≦θ≦θQ1(θQ1=98°)またはθQ2≦θ≦180°(θQ2=145°)とすることで、水晶層12の横波音速を圧電層14の横波音速以下とすることができる。ニオブ酸リチウムのθが100°≦θ≦130°では、横波音速はほぼ4880m/sで一定である。よって、圧電層14のθが100°~130°のとき、水晶層12のθを0°≦θ≦98°または145°≦θ≦180°とすることで、水晶層12の横波音速を圧電層14の横波音速より遅くできる。
弾性表面波としてLSAWを用いる場合、圧電層14のθはθL1=80°以上かつθL2=160°以下の回転YカットX伝搬ニオブ酸リチウム基板を用いることが多い。この範囲のθにおいて圧電層14の横波音速が最も遅いのはθL2=160°のときである。このときの圧電層14の横波音速は約4600m/sである。そこで、水晶層12のθを0°≦θ≦θQ3(θQ3=72°)またはθQ4≦θ≦180°(θQ4=156°)とすることで、水晶層12の横波音速を圧電層14の横波音速より遅くできる。
図9は、単結晶水晶基板におけるθおよびψに対する横波音速を示す図である。横波音速が4000m/sの線を太実線で示し、横波音速が4000m/sより大きい線を細実線で示し、横波音速が4000m/sより小さい線を細破線で示した。図9に示すように、ψが0°および180°では、θが10°~50°において横波音速が遅く、θが90°~160°において横波音速が速い。ψが40°~70°では、θが30°~50°において横波音速が速く、θが100°~140°において横波音速が遅い。ψが90°付近では、θによらず横波音速は3500m/s~4250m/sである。ψが90°付近では、θによらず、水晶層12の横波音速を回転YカットX伝搬タンタル酸リチウムおよび回転YカットX伝搬ニオブ酸リチウム基板の横波音速より遅くできる。ψが90°付近において、水晶層12におけるθを0°≦θ≦60°または110°≦θ≦180°とすることで、横波音速を4000m/s以下とすることができる。
以上のように、一対の櫛型電極20の複数の電極指18の平均ピッチを、圧電層14の厚さT4の1/2倍以上(すなわち厚さT4を弾性波の波長λ以下)とし、かつ圧電層14における支持基板10に対し反対側の面と水晶層12において支持基板10側の面との距離T5の1/4倍以上(すなわち距離T5を2λ以下)とする。このとき、水晶層12はX方向(配列方向)に伝搬する横波音速が圧電層14内をX方向に伝搬する横波音速以下である単結晶水晶とする。これにより、図5(a)のように、水晶層12を伝搬する弾性波の伝搬損失を抑制し、かつ図4(a)および図4(b)のように、周波数温度特性を向上できる。水晶層12におけるX方向に伝搬する横波音速は、圧電層14におけるX方向に伝搬する横波音速の0.98倍以下が好ましく、0.95倍以下がより好ましく、0.9倍以下がさらに好ましい。
スプリアスおよび損失を抑制するため、電極指18の平均ピッチは、圧電層14の厚さT4の1/1.6倍以上(すなわち厚さT4は0.8λ以下)がより好ましく、厚さT4の1倍以上(すなわち厚さT4は0.5λ以下)がさらに好ましい。圧電層14が薄すぎると、圧電特性が劣化する。この観点から、電極指18の平均ピッチは、圧電層14の厚さT4の1/0.2倍以下(すなわち厚さT4は0.1λ以上)が好ましく、厚さT4の1/0.4倍以下(すなわち厚さT4は0.2λ以上)がよりに好ましい。
弾性表面波を圧電層14および水晶層12に閉じ込め、損失の抑制および周波数温度特性を向上させるため、電極指18の平均ピッチは、圧電層14の上面と水晶層12の下面との距離T5の1/3倍以上(すなわち距離T5は1.5λ以下)がより好ましく、距離T5は1/2倍以上(すなわち距離T5は1λ以下)がさらに好ましい。距離T5が小さすぎると、弾性表面波が絶縁層11に漏れてしまう。この観点から、電極指18の平均ピッチは、距離T5の1/0.4倍以下(すなわち距離T5は0.2λ以上)が好ましく、距離T5の1倍以下(すなわち距離T5は0.5λ以上)がより好ましい。
弾性表面波を圧電層14および水晶層12に閉じ込めるため、電極指18の平均ピッチは、水晶層12の厚さT2の1/1.6倍以上(すなわち厚さT2は0.8λ以下)がより好ましく、厚さT2の1倍以上(すなわち厚さT2は0.5λ以下)がさらに好ましい。水晶層12が薄すぎると、温度補償の機能が劣化する。この観点から、電極指18の平均ピッチは、水晶層12の厚さT2の1/0.2倍以下(すなわち厚さT2は0.1λ以上)が好ましく、厚さT4の1/0.4倍以下(すなわち厚さT2は0.2λ以上)がより好ましい。
オイラー角φおよびψは厳密に0°でなくても、0±5°であれば、図4(a)~図9のシミュレーション結果を一般化できる。そこで、図7および図9のように、単結晶タンタル酸リチウムからなる圧電層14のとき、圧電層14のオイラー角を(0±5°、80°≦θ≦160°、0±5°)とし、水晶層12のオイラー角を(0±5°、0°≦θ≦76°、0±5°)、(0±5°、167°≦θ≦180°、0±5°)または(0±5°、0°≦θ≦180°、90±5°)とする。圧電層14および水晶層12のθの範囲が上記の場合、水晶層12の横波音速が圧電層14の横波音速より速い場合も含まれる。このθの範囲において最も遅い圧電層14の横波音速は4000m/sであり、最も速い水晶層12の横波音速は4250m/sである。このθの範囲において、水晶層12の最も速い横波音速は、圧電層14の最も遅い横波音速の1.0625倍である。この程度であれば、伝搬損失を小さくし、かつ周波数温度特性を向上させることができる。
水晶層12の横波音速を圧電層14の横波音速に対しより遅くするため、圧電層14のオイラー角は(0±5°、110°≦θ≦150°、0±5°)がより好ましく、(0±5°、115°≦θ≦145°、0±5°)がさらに好ましい。水晶層12のオイラー角は、(0±5°、0°≦θ≦67°、0±5°)または(0±5°、176°≦θ≦180°、0±5°)が好ましく、(0±5°、0°≦θ≦60°、0±5°)がさらに好ましい。
図9のように、単結晶タンタル酸リチウムからなる圧電層14のとき、圧電層14のオイラー角を(0±5°、80°≦θ≦160°、0±5°)とし、水晶層12のオイラー角を(0±5°、0°≦θ≦180°、90±5°)とする。これにより、水晶層12の最も速い横波音速は4250m/sであり、圧電層14の最も遅い横波音速は4000m/sとなる。よって、伝搬損失を小さくし、かつ周波数温度特性を向上させることができる。水晶層12のオイラー角を(0±5°、0°≦θ≦60°または110°≦θ≦180°、90±5°)とすることで、水晶層12の横波音速を圧電層14の横波音速より遅くできる。よって、伝搬損失を小さくし、かつ周波数温度特性を向上させることができる。水晶層12のオイラー角は、(0±5°、0°≦θ≦40°または140°≦θ≦180°、90±5°)がより好ましい。
図8および図9のように、単結晶ニオブ酸リチウムからなる圧電層14のとき、圧電層14のオイラー角を(0±5°、80°≦θ≦160°、0±5°)とし、水晶層12のオイラー角を(0±5°、0°≦θ≦98°、0±5°)、(0±5°、145°≦θ≦180°、0±5°)または(0±5°、0°≦θ≦180°、90±5°)とする。圧電層14および水晶層12のθの範囲が上記の場合、水晶層12の横波音速が圧電層14の横波音速より速い場合も含まれる。このθの範囲において最も遅い圧電層14の横波音速は4600m/sであり、最も速い水晶層12の横波音速は4880m/sである。このθの範囲において、水晶層12の最も速い横波音速は、圧電層14の最も遅い横波音速の1.054倍である。この程度であれば、伝搬損失を小さくし、かつ周波数温度特性を向上させることができる。
水晶層12の横波音速を圧電層14の横波音速に対しより遅くするため、圧電層14のオイラー角は(0±5°、100°≦θ≦140°、0±5°)がより好ましく、(0±5°、110°≦θ≦130°、0±5°)がさらに好ましい。水晶層12のオイラー角は、(0±5°、0°≦θ≦72°、0±5°)または(0±5°、156°≦θ≦180°、0±5°)が好ましく、(0±5°、0°≦θ≦60°、0±5°)がさらに好ましい。
図9のように、単結晶タンタル酸リチウムからなる圧電層14のとき、圧電層14のオイラー角を(0±5°、80°≦θ≦160°、0±5°)とし、水晶層12のオイラー角を(0±5°、0°≦θ≦180°、90±5°)とする。これにより、水晶層12の最も速い横波音速は4250m/sであり、圧電層14の最も遅い横波音速は4600m/sとなる。水晶層12の横波音速を圧電層14の横波音速より遅くできる。よって、伝搬損失を小さくし、かつ周波数温度特性を向上させることができる。水晶層12のオイラー角を(0±5°、0°≦θ≦60°または110°≦θ≦180°、90±5°)とすることで、水晶層12の横波音速を圧電層14の横波音速より遅くできる。よって、伝搬損失を小さくし、かつ周波数温度特性を向上させることができる。水晶層12のオイラー角は、(0±5°、0°≦θ≦40°または140°≦θ≦180°、90±5°)がより好ましい。
水晶層12と支持基板10との間に、横波音速が水晶層12の横波音速より速い絶縁層11を備える。これにより、圧電層14および水晶層12に弾性表面を閉じ込めることができる。よって、水晶層12が温度補償膜としてより機能することができる。
絶縁層11が薄くなると弾性波が圧電層14および水晶層12に閉じ込められにくくなる。この観点から、絶縁層11の厚さT1は電極指18の平均ピッチDの2倍(1λ)以上が好ましく、3.0倍(1.5λ)以上がより好ましい。絶縁層11を厚くすると、製造工程が増大および製造プロセスの難易度が上昇する。この観点から、絶縁層11の厚さT1は電極指18の平均ピッチDの10倍(5λ)以下が好ましく、8倍(4λ)以下がより好ましい。
弾性表面波を圧電層14および水晶層12に閉じ込めるため、絶縁層11の横波音速は、水晶層12の横波音速の1.1倍以上が好ましく、1.2倍以上がより好ましい。また、絶縁層11の横波音速は圧電層14の横波音速より大きいことが好ましい。絶縁層11の横波音速が速すぎると、バルク波を含む弾性波が絶縁層11と水晶層12との界面で反射されてしまう。この観点から絶縁層11の横波音速は水晶層12の横波音速の2.0倍以下が好ましく、1.5倍以下がより好ましい。
[実施例1の変形例1]
図10は、実施例1の変形例1に係る弾性波デバイスの断面図である。図10に示すように、支持基板10と絶縁層11との界面30は粗面または凹凸面でもよい。これにより、水晶層12から絶縁層11を通過したバルク波等の不要波が支持基板10と絶縁層11との界面30において散乱される。よって、スプリアスを抑制できる。その他の構成は実施例1と同じであり説明を省略する。
図11(a)は、実施例2に係るフィルタの回路図である。図11(a)に示すように、入力端子Tinと出力端子Toutとの間に、1または複数の直列共振器S1からS3が直列に接続されている。入力端子Tinと出力端子Toutとの間に、1または複数の並列共振器P1およびP2が並列に接続されている。1または複数の直列共振器S1からS3および1または複数の並列共振器P1およびP2の少なくとも1つに実施例1およびその変形例の弾性波共振器を用いることができる。ラダー型フィルタの共振器の個数等は適宜設定できる。フィルタは、一対の櫛型電極を2対以上有する多重モード型フィルタでもよい。
[実施例2の変形例1]
図11(b)は、実施例2の変形例1に係るデュプレクサの回路図である。図11(b)に示すように、共通端子Antと送信端子Txとの間に送信フィルタ40が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ42が接続されている。送信フィルタ40は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ42は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ40および受信フィルタ42の少なくとも一方を実施例2のフィルタとすることができる。
マルチプレクサとしてデュプレクサを例に説明したがトリプレクサまたはクワッドプレクサでもよい。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 支持基板
11 絶縁層
12 水晶層
13、13a 接合層
14 圧電層
16 金属膜
18 電極指
20 櫛型電極
22 IDT
25 交差領域
26 弾性波共振器
40 送信フィルタ
42 受信フィルタ

Claims (12)

  1. 支持基板と、
    前記支持基板上に設けられオイラー角が(0±5°、80°≦θ≦160°、0±5°)である単結晶タンタル酸リチウムからなる圧電層と、
    前記支持基板と前記圧電層との間に設けられ、オイラー角が(0±5°、0°≦θ≦76°、0±5°)、(0±5°、167°≦θ≦180°、0±5°)または(0±5°、0°≦θ≦180°、90±5°)である単結晶水晶からなる水晶層と、
    前記圧電層における前記支持基板に対し反対側の面に設けられ、平均ピッチが、前記圧電層の厚さの1/2倍以上かつ前記反対側の面と前記水晶層において前記支持基板側の面との距離の1/4倍以上である複数の電極指を有する一対の櫛型電極と、
    を備える弾性波デバイス。
  2. 前記単結晶タンタル酸リチウムのオイラー角は(0±5°、120°≦θ≦150°、0±5°)である請求項1に記載の弾性波デバイス。
  3. 前記単結晶水晶のオイラー角は(0±5°、0°≦θ≦76°、0±5°)または(0±5°、167°≦θ≦180°、0±5°)である請求項1に記載の弾性波デバイス。
  4. 前記単結晶水晶のオイラー角は(0±5°、0°≦θ≦180°、90±5°)である請求項1に記載の弾性波デバイス。
  5. 支持基板と、
    前記支持基板上に設けられるオイラー角が(0±5°、80°≦θ≦160°、0±5°)である単結晶ニオブ酸リチウムからなる圧電層と、
    前記支持基板と前記圧電層との間に設けられ、オイラー角が(0±5°、0°≦θ≦98°、0±5°)、(0±5°、145°≦θ≦180°、0±5°)または(0±5°、0°≦θ≦180°、90±5°)である単結晶水晶からなる水晶層と、
    前記圧電層における前記支持基板に対し反対側の面に設けられ、平均ピッチが、前記圧電層の厚さの1/2倍以上かつ前記反対側の面と前記水晶層において前記支持基板側の面との距離の1/4倍以上である複数の電極指を有する一対の櫛型電極と、
    を備える弾性波デバイス。
  6. 前記単結晶ニオブ酸リチウムのオイラー角は(0±5°、100°≦θ≦130°、0±5°)である請求項5に記載の弾性波デバイス。
  7. 前記単結晶水晶のオイラー角は(0±5°、0°≦θ≦98°、0±5°)または(0±5°、145°≦θ≦180°、0±5°)である請求項5に記載の弾性波デバイス。
  8. 前記単結晶水晶のオイラー角は(0±5°、0°≦θ≦180°、90±5°)である請求項5に記載の弾性波デバイス。
  9. 支持基板と、
    前記支持基板上に設けられる圧電層と、
    前記支持基板と前記圧電層との間に設けられ、配列方向に伝搬する横波音速が前記圧電層内を前記配列方向に伝搬する横波音速以下である単結晶水晶からなる水晶層と、
    前記圧電層における前記支持基板に対し反対側の面に設けられ、平均ピッチが、前記圧電層の厚さの1/2倍以上かつ前記反対側の面と前記水晶層において前記支持基板側の面との距離の1/4倍以上であり、前記配列方向に配列する複数の電極指を有する一対の櫛型電極と、
    を備える弾性波デバイス。
  10. 前記圧電層と前記支持基板との間に絶縁層を備える請求項1から9のいずれか一項に記載の弾性波デバイス。
  11. 請求項1から10のいずれか一項に記載の弾性波デバイスを備えるフィルタ。
  12. 請求項11に記載のフィルタを備えるマルチプレクサ。
JP2022028037A 2022-02-25 2022-02-25 弾性波デバイス、フィルタおよびマルチプレクサ Pending JP2023124332A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022028037A JP2023124332A (ja) 2022-02-25 2022-02-25 弾性波デバイス、フィルタおよびマルチプレクサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022028037A JP2023124332A (ja) 2022-02-25 2022-02-25 弾性波デバイス、フィルタおよびマルチプレクサ

Publications (1)

Publication Number Publication Date
JP2023124332A true JP2023124332A (ja) 2023-09-06

Family

ID=87886064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022028037A Pending JP2023124332A (ja) 2022-02-25 2022-02-25 弾性波デバイス、フィルタおよびマルチプレクサ

Country Status (1)

Country Link
JP (1) JP2023124332A (ja)

Similar Documents

Publication Publication Date Title
JP4419961B2 (ja) 弾性境界波装置
WO2020130128A1 (ja) 弾性波装置、分波器および通信装置
US6933810B2 (en) Surface acoustic wave device with lithium tantalate on a sapphire substrate and filter using the same
JPWO2018163805A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP2019201345A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
US11722117B2 (en) Acoustic wave resonator, filter, multiplexer, and wafer
JP7485478B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
CN113454912B (zh) 弹性波装置
JP2023060058A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
JP2020182130A (ja) フィルタおよびマルチプレクサ
JPWO2019082806A1 (ja) 弾性波素子
US11916531B2 (en) Acoustic wave device, filter, and multiplexer
US11962282B2 (en) Acoustic wave device, filter, and multiplexer
JP2022176790A (ja) 弾性波デバイス、ウエハ、フィルタおよびマルチプレクサ
JP2022176856A (ja) ラダー型フィルタおよびマルチプレクサ
WO2021090861A1 (ja) 弾性波装置
JP7403960B2 (ja) 弾性波デバイスおよびその製造方法、フィルタ並びにマルチプレクサ
JP2023124332A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7509598B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
CN112929004B (zh) 声波谐振器、滤波器、多路复用器和晶片
EP4099565A1 (en) Surface acoustic wave device
JP2022172569A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7355210B2 (ja) 弾性波装置
US20230208395A1 (en) Acoustic wave device, wafer, and method of manufacturing wafer
US20240136997A1 (en) Acoustic wave device, filter, multiplexer, and wafer