JP2023086139A - Heat dissipation structure, and battery including the same - Google Patents

Heat dissipation structure, and battery including the same Download PDF

Info

Publication number
JP2023086139A
JP2023086139A JP2021200456A JP2021200456A JP2023086139A JP 2023086139 A JP2023086139 A JP 2023086139A JP 2021200456 A JP2021200456 A JP 2021200456A JP 2021200456 A JP2021200456 A JP 2021200456A JP 2023086139 A JP2023086139 A JP 2023086139A
Authority
JP
Japan
Prior art keywords
heat
heat dissipation
members
insulating film
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021200456A
Other languages
Japanese (ja)
Inventor
純一 奥田
Junichi Okuda
真帆子 原田
Mahoko Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2021200456A priority Critical patent/JP2023086139A/en
Publication of JP2023086139A publication Critical patent/JP2023086139A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide; a heat dissipation structure which is adaptable to different forms of heat sources, highly elastically deformable, excellent in heat dissipation efficiency, and also capable of suppressing an electrical short circuit with a peripheral component; and a battery.SOLUTION: The present invention pertains to a heat dissipation structure 1 and a battery. The heat dissipation structure 1 includes: a plurality of heat dissipation members 20 increasing heat dissipation from a heat source: a first insulation film 10 disposed at least between the heat source and the heat dissipation members 20 in a state where the heat dissipation members 20 are arranged along a direction perpendicular to the longitudinal direction of the heat dissipation members; and a holding member 12 holding the heat dissipation members 20. The heat dissipation members 20 each include a plurality of cushion members 22 each having a hollow or solid shape, and a heat-conductive sheet 21 for transferring heat from the heat source, the heat-conductive sheet covering an outer surface of the cushion member 22.SELECTED DRAWING: Figure 1

Description

本発明は、放熱構造体およびそれを備えるバッテリーに関する。 TECHNICAL FIELD The present invention relates to a heat dissipation structure and a battery having the same.

自動車、航空機、船舶あるいは家庭用若しくは業務用電子機器の制御システムは、より高精度かつ複雑化してきており、それに伴って、回路基板上の小型電子部品の集積密度が増加の一途を辿っている。この結果、回路基板周辺の発熱による電子部品の故障や短寿命化を解決することが強く望まれている。 Control systems for automobiles, aircraft, ships, or household or business electronic equipment have become more precise and complex, and the integration density of small electronic components on circuit boards has been increasing accordingly. . As a result, there is a strong demand for a solution to the problem of malfunction and shortened life of electronic components due to heat generation around the circuit board.

回路基板からの速やかな放熱を実現するには、従来から、回路基板自体を放熱性に優れた材料で構成し、ヒートシンクを取り付け、あるいは冷却ファンを駆動するといった手段を単一で若しくは複数組み合わせて行われている。これらの内、回路基板自体を放熱性に優れた材料、例えばダイヤモンド、窒化アルミニウム(AlN)、立方晶窒化ホウ素(cBN)等から構成する方法は、回路基板のコストを極めて高くしてしまう。また、冷却ファンの配置は、ファンという回転機器の故障、故障防止のためのメンテナンスの必要性や設置スペースの確保が難しいという問題を生じる。これに対して、放熱フィンは、熱伝導性の高い金属(例えば、アルミニウム)を用いた柱状あるいは平板状の突出部位を数多く形成することによって表面積を大きくして放熱性をより高めることのできる簡易な部材であるため、放熱部品として汎用的に用いられている(特許文献1を参照)。 In order to quickly dissipate heat from a circuit board, conventionally, the circuit board itself is made of a material with excellent heat dissipation properties, a heat sink is attached, or a cooling fan is driven. It is done. Among these methods, the method of forming the circuit board itself from a material having excellent heat dissipation properties, such as diamond, aluminum nitride (AlN), cubic boron nitride (cBN), etc., makes the cost of the circuit board extremely high. In addition, the arrangement of the cooling fan causes problems such as the need for maintenance to prevent failures of the fan, which is a rotating device, and the difficulty in securing the installation space. On the other hand, heat radiation fins have a large number of pillar-shaped or plate-shaped protruding parts made of a metal with high thermal conductivity (e.g., aluminum). Since it is a flexible member, it is widely used as a heat dissipation component (see Patent Document 1).

ところで、現在、世界中で、地球環境への負荷軽減を目的として、従来からのガソリン車あるいはディーゼル車を徐々に電気自動車に転換しようとする動きが活発化している。特に、フランス、オランダ、ドイツをはじめとする欧州諸国の他、中国でも、電気自動車の普及が進行してきている。電気自動車の普及には、高性能バッテリーの開発の他、多数の充電スタンドの設置などが必要となる。特に、リチウム系の自動車用バッテリーの充放電機能を高めるための技術開発が重要である。上記自動車バッテリーは、摂氏60度以上の高温下では充放電の機能を十分に発揮できないことが良く知られている。このため、先に説明した回路基板と同様、バッテリーにおいても、放熱性を高めることが重要視されている。 By the way, at present, in order to reduce the burden on the global environment, there is a growing movement to gradually convert conventional gasoline or diesel vehicles to electric vehicles. In particular, in addition to European countries such as France, the Netherlands, and Germany, the spread of electric vehicles is also progressing in China. The spread of electric vehicles requires the development of high-performance batteries and the installation of numerous charging stations. In particular, it is important to develop technology to improve the charge/discharge function of lithium-based automotive batteries. It is well known that the above-mentioned automobile battery cannot fully exhibit its charging/discharging function at a high temperature of 60 degrees Celsius or higher. For this reason, as with the circuit board described above, it is important to improve heat dissipation in the battery as well.

バッテリーの速やかな放熱を実現するには、熱の移動経路を高熱伝導性の材料で形成すること、およびバッテリーセルと当該高熱伝導性の材料との熱抵抗を下げることが必要になる。例えば、グラファイト製のシートを熱の移動経路に利用して、当該シートにゴム状弾性体を積層したものを筒状に形成した放熱構造体が考えられる。バッテリーセルは種々の形態(段差等の凹凸あるいは非平滑な表面状態を含む)をとり得ることから、かかる放熱構造体をバッテリーセルと冷却部材との間、あるいはバッテリーセル同士の間に配置すると、放熱構造体はバッテリーセルの種々の形態に順応しやすく、かつ熱の移動経路も構築しやすくなる。加えて、バッテリーセルを除去したときに元の形状に近い形状に戻りやすくなる。 In order to quickly dissipate the heat from the battery, it is necessary to form the heat transfer path with a material of high thermal conductivity and to lower the thermal resistance between the battery cell and the material of high thermal conductivity. For example, a heat dissipating structure may be considered in which a sheet made of graphite is used as a heat transfer path and a rubber-like elastic body is laminated on the sheet to form a tubular shape. Since the battery cells can have various forms (including irregularities such as steps or uneven surface conditions), when such a heat dissipation structure is arranged between the battery cells and the cooling member or between the battery cells, The heat dissipating structure can easily adapt to various forms of battery cells, and can easily establish heat transfer paths. In addition, when the battery cell is removed, it becomes easier to return to a shape close to its original shape.

特開2008-243999JP 2008-243999

ところで、当該高熱伝導性の材料として、高熱伝導性かつ導電性を有する熱伝導性材料を放熱構造体に使用することが望まれている。しかし、かかる場合、当該熱伝導性材料とバッテリーセルの周辺部品との電気的短絡が生じる虞がある。また、放熱構造体とバッテリーセルとの間にフィルム状の絶縁部材を配置する方法も考えられるが、当該絶縁部材は非伸縮性の部材であることが多いため、当該熱伝導性材料への変形追従性が乏しく、当該熱伝導性材料の変形に応じて伝熱効率が低くなる虞がある。これは、バッテリーセルのみならず、DC/DCコンバータ、回路基板、電子部品あるいは電子機器本体のような他の熱源にも通じる。このような要望に応えることは、「すべての人々の、安価かつ信頼できる持続可能な近代的エネルギーへのアクセスを確保する」という本出願人の持続可能な開発目標の達成にも資する。 By the way, it is desired to use a thermally conductive material having high thermal conductivity and electrical conductivity as the high thermal conductivity material for the heat dissipation structure. However, in such a case, an electrical short circuit may occur between the thermally conductive material and peripheral parts of the battery cell. A method of placing a film-like insulating member between the heat dissipation structure and the battery cell is also conceivable. Due to poor followability, there is a risk that the heat transfer efficiency will decrease according to the deformation of the thermally conductive material. This applies not only to battery cells, but also to other heat sources such as DC/DC converters, circuit boards, electronic components or electronic equipment bodies. Meeting such demands also contributes to achieving the Sustainable Development Goal of the Applicant to "ensure access to affordable, reliable, sustainable and modern energy for all".

本発明は、上記課題に鑑みてなされたものであり、熱源の種々の形態に順応可能であって、弾性変形性に富み、放熱効率に優れ、かつ周辺部品との電気的短絡を抑制することができる放熱構造体、およびそれを備えるバッテリーを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and provides a heat source that is adaptable to various forms of heat sources, has excellent elastic deformation properties, excels in heat radiation efficiency, and suppresses electrical short-circuiting with peripheral components. The purpose of the present invention is to provide a heat dissipation structure capable of

(1)上記目的を達成するための一実施形態に係る放熱構造体は、熱源からの放熱を高める複数の放熱部材と、前記複数の放熱部材をその長手方向と直交する方向に沿って並べた状態で、少なくとも前記熱源と前記放熱部材との間に配置される第1絶縁フィルムと、前記複数の放熱部材を保持する保持部材と、を備える放熱構造体であって、前記放熱部材は、中空若しくは中実の形状を有する複数のクッション部材と、前記熱源からの熱を伝えるためのシートであって、前記クッション部材の外側面を覆う熱伝導シートと、を備える。
(2)別の実施形態に係る放熱構造体では、好ましくは、前記第1絶縁フィルムは、前記複数の放熱部材をその長手方向と直交する方向に沿って並べた状態で、前記放熱部材の外形に沿って撓んだ凹凸形状をなして前記複数の放熱部材に面接触し、前記保持部材は、前記複数の放熱部材における前記熱源と反対側に面接触し、かつ少なくとも前記第1絶縁フィルムの凹部と接合しても良い。
(3)別の実施形態に係る放熱構造体では、好ましくは、前記保持部材は、少なくとも一方の面に粘着層を有する粘着テープであって、前記粘着層が前記複数の放熱部材および前記第1絶縁フィルムの前記凹部と接合しても良い。
(4)別の実施形態に係る放熱構造体では、好ましくは、前記保持部材は、その両面に前記粘着層を有する粘着テープであって、前記放熱部材の長手方向の両端部にそれぞれ配置される両面粘着テープと、その一方の面に前記粘着層を有する粘着テープであって、前記放熱部材の長手方向の中央部に少なくとも1つ配置される片面粘着テープと、を備えても良い。
(5)別の実施形態に係る放熱構造体では、好ましくは、前記保持部材は、前記複数の放熱部材をその長手方向と直交する方向に沿って並べた状態で、前記複数の放熱部材における前記熱源と反対側に面接触する第2絶縁フィルムであって、少なくとも前記第1絶縁フィルムの凹部と前記第2絶縁フィルムとが熱溶着しても良い。
(6)別の実施形態に係る放熱構造体では、好ましくは、前記保持部材は、その両面に粘着層を有する両面粘着テープであって、一方の面の前記粘着層が前記第1絶縁フィルムと接合し、他方の面の前記粘着層が前記放熱部材に面接触しても良い。
(7)別の実施形態に係る放熱構造体では、好ましくは、前記保持部材は、前記放熱部材の長手方向に沿って隙間を空けて配置される2枚以上のシートであっても良い。
(8)別の実施形態に係る放熱構造体では、好ましくは、前記保持部材は、糸であって、前記複数の放熱部材をその長手方向と直交する方向に連結し、かつ前記複数の放熱部材を前記第1絶縁フィルムに固定しても良い。
(9)別の実施形態に係る放熱構造体では、好ましくは、前記保持部材は、前記第1絶縁フィルムを兼ねており、前記複数の放熱部材を包む袋であっても良い。
(10)別の実施形態に係る放熱構造体では、好ましくは、前記保持部材は、前記袋と、前記袋の内部において前記複数の放熱部材を固定する糸と、を含んでも良い。
(11)別の実施形態に係る放熱構造体では、好ましくは、前記放熱部材は、前記長手方向に沿う中空部を備える筒状部材であっても良い。
(12)一実施形態に係るバッテリーは、冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、上述のいずれかの放熱構造体を備える。
(1) A heat dissipating structure according to one embodiment for achieving the above object includes a plurality of heat dissipating members that enhance heat dissipation from a heat source, and the plurality of heat dissipating members arranged along a direction perpendicular to the longitudinal direction thereof. a first insulating film disposed between at least the heat source and the heat dissipating member; and a holding member that holds the plurality of heat dissipating members, wherein the heat dissipating member is hollow. Alternatively, it comprises a plurality of cushion members having a solid shape, and a heat conductive sheet which is a sheet for conducting heat from the heat source and covers the outer surface of the cushion members.
(2) In the heat dissipating structure according to another embodiment, preferably, the first insulating film is arranged such that the plurality of heat dissipating members are aligned in a direction orthogonal to the longitudinal direction thereof, and the outer shape of the heat dissipating member is The holding member is in surface contact with the plurality of heat dissipating members, and the holding member is in surface contact with the side of the plurality of heat dissipating members opposite to the heat source, and at least the first insulating film You may join with a recessed part.
(3) In the heat dissipating structure according to another embodiment, preferably, the holding member is an adhesive tape having an adhesive layer on at least one surface, and the adhesive layer comprises the plurality of heat dissipating members and the first You may join with the said recessed part of an insulating film.
(4) In the heat dissipating structure according to another embodiment, preferably, the holding member is an adhesive tape having the adhesive layer on both sides thereof, and is arranged at both ends of the heat dissipating member in the longitudinal direction. A double-sided adhesive tape, and at least one single-sided adhesive tape having the adhesive layer on one surface thereof, and at least one single-sided adhesive tape arranged in the central portion in the longitudinal direction of the heat radiating member may be provided.
(5) In a heat dissipating structure according to another embodiment, preferably, the holding member arranges the plurality of heat dissipating members in a direction perpendicular to the longitudinal direction of the heat dissipating members. The second insulating film may be in surface contact with the side opposite to the heat source, and at least the concave portion of the first insulating film and the second insulating film may be thermally welded.
(6) In the heat dissipation structure according to another embodiment, preferably, the holding member is a double-sided adhesive tape having adhesive layers on both sides thereof, and the adhesive layer on one side is the first insulating film. The adhesive layer on the other surface may be in surface contact with the heat radiating member.
(7) In a heat dissipation structure according to another embodiment, preferably, the holding member may be two or more sheets arranged with a gap along the longitudinal direction of the heat dissipation member.
(8) In the heat dissipating structure according to another embodiment, preferably, the holding member is a thread that connects the plurality of heat dissipating members in a direction orthogonal to the longitudinal direction thereof, and may be fixed to the first insulating film.
(9) In a heat dissipation structure according to another embodiment, preferably, the holding member also serves as the first insulating film, and may be a bag that wraps the plurality of heat dissipation members.
(10) In a heat dissipation structure according to another embodiment, the holding member may preferably include the bag and a thread for fixing the plurality of heat dissipation members inside the bag.
(11) In a heat dissipating structure according to another embodiment, preferably, the heat dissipating member may be a cylindrical member having a hollow portion along the longitudinal direction.
(12) A battery according to one embodiment is a battery comprising one or more battery cells as heat sources in a housing having a structure for flowing a cooling member, and , comprising any one of the heat dissipation structures described above.

本発明によれば、熱源の種々の形態に順応可能であって、弾性変形性に富み、放熱効率に優れ、かつ周辺部品との電気的短絡を抑制することができる放熱構造体、およびそれを備えるバッテリーを提供できる。 According to the present invention, there is provided a heat dissipating structure that is adaptable to various forms of heat sources, is highly elastically deformable, has excellent heat dissipating efficiency, and is capable of suppressing electrical short-circuiting with peripheral components. We can provide you with the batteries you need.

図1は、第1実施形態に係る放熱構造体の平面図を示す。FIG. 1 shows a plan view of a heat dissipation structure according to a first embodiment. 図2は、図1におけるA-A線断面図およびその一部Cの拡大図をそれぞれ示す。FIG. 2 shows a cross-sectional view taken along the line AA in FIG. 1 and an enlarged view of a part C thereof, respectively. 図3は、図1におけるB-B線断面図およびその一部Dの拡大図をそれぞれ示す。FIG. 3 shows a cross-sectional view taken along the line BB in FIG. 1 and an enlarged view of a part D thereof, respectively. 図4は、第2実施形態に係る放熱構造体の平面図を示す。FIG. 4 shows a plan view of a heat dissipation structure according to the second embodiment. 図5は、図4におけるE-E線断面図およびその一部Fの拡大図をそれぞれ示す。FIG. 5 shows a cross-sectional view taken along line EE in FIG. 4 and an enlarged view of a portion F thereof, respectively. 図6は、第3実施形態に係る放熱構造体の平面図を示す。FIG. 6 shows a plan view of a heat dissipation structure according to the third embodiment. 図7は、図6におけるG-G線断面図およびその一部Hの拡大図をそれぞれ示す。FIG. 7 shows a cross-sectional view taken along the line GG in FIG. 6 and an enlarged view of a portion H thereof, respectively. 図8は、第4実施形態に係る放熱構造体の平面図を示す。FIG. 8 shows a plan view of a heat dissipation structure according to a fourth embodiment. 図9は、図8におけるI-I線断面図およびその一部Jの拡大図をそれぞれ示す。FIG. 9 shows a cross-sectional view taken along the line II in FIG. 8 and an enlarged view of a part J thereof, respectively. 図10は、第5実施形態に係る放熱構造体の平面図を示す。FIG. 10 shows a plan view of a heat dissipation structure according to a fifth embodiment. 図11は、図10におけるK-K線断面図およびその一部Lの拡大図をそれぞれ示す。FIG. 11 shows a cross-sectional view taken along the line KK in FIG. 10 and an enlarged view of a part L thereof, respectively. 図12は、図1の放熱構造体の製造方法の一部を説明するための図を示す。FIG. 12 shows a diagram for explaining a part of the manufacturing method of the heat dissipation structure of FIG. 図13は、図1の放熱構造体を構成する放熱部材の変形例1の製造方法の一部を説明するための図を示す。13A and 13B are diagrams for explaining a part of the manufacturing method of Modification 1 of the heat dissipating member that constitutes the heat dissipating structure of FIG. 図14は、図1の放熱構造体を構成する放熱部材の変形例2の側面図、平面図および当該平面図の拡大図を示す。FIG. 14 shows a side view, a plan view, and an enlarged view of the plan view of Modification 2 of the heat dissipation member that constitutes the heat dissipation structure of FIG. 図15は、図1の放熱構造体を構成する放熱部材の変形例3の側面図、平面図および当該平面図の拡大図を示す。FIG. 15 shows a side view, a plan view, and an enlarged view of the plan view of Modification 3 of the heat dissipation member that constitutes the heat dissipation structure of FIG. 図16は、図1の放熱構造体を構成する放熱部材の変形例4の側面図、平面図および当該平面図の拡大図を示す。FIG. 16 shows a side view, a plan view, and an enlarged view of the plan view of Modification 4 of the heat dissipation member that constitutes the heat dissipation structure of FIG. 図17は、一実施形態に係るバッテリーの縦断面図を示す。FIG. 17 shows a vertical cross-sectional view of a battery according to one embodiment. 図18は、放熱構造体の上に、バッテリーセルの側面を接触させるように横置きにしたときの断面図、その一部拡大図および充放電時にバッテリーセルが膨張した際の一部断面図をそれぞれ示す。FIG. 18 shows a cross-sectional view when the battery cell is placed horizontally so that the side surface of the battery cell is in contact with the heat dissipation structure, a partially enlarged view thereof, and a partial cross-sectional view when the battery cell expands during charging and discharging. each shown.

次に、本発明の各実施形態について、図面を参照して説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。 Next, each embodiment of the present invention will be described with reference to the drawings. It should be noted that each embodiment described below does not limit the invention according to the scope of claims, and all of the elements described in each embodiment and combinations thereof are means for solving the present invention. is not necessarily required for

1.放熱構造体
(第1実施形態)
図1は、第1実施形態に係る放熱構造体の平面図を示す。図2は、図1におけるA-A線断面図およびその一部Cの拡大図をそれぞれ示す。図3は、図1におけるB-B線断面図およびその一部Dの拡大図をそれぞれ示す。なお、この実施形態において、熱源は、図2および図3の紙面上方に配置されるものとする。以後の実施形態においても同様である。また、図1は、放熱構造体1は、14本の放熱部材20を備えているが、放熱部材20の数は特に限定されない。以後の実施形態においても同様である。
1. Heat dissipation structure (first embodiment)
FIG. 1 shows a plan view of a heat dissipation structure according to a first embodiment. FIG. 2 shows a cross-sectional view taken along the line AA in FIG. 1 and an enlarged view of a part C thereof, respectively. FIG. 3 shows a cross-sectional view taken along the line BB in FIG. 1 and an enlarged view of a part D thereof, respectively. In addition, in this embodiment, the heat source shall be arrange|positioned above the paper surface of FIG.2 and FIG.3. The same applies to the following embodiments. Moreover, although FIG. 1 shows the heat dissipation structure 1 having 14 heat dissipation members 20, the number of the heat dissipation members 20 is not particularly limited. The same applies to the following embodiments.

(1)概略構成
第1実施形態に係る放熱構造体1は、熱源からの放熱を高める複数の放熱部材20と、複数の放熱部材20をその長手方向と直交する方向(図1の左右方向)に沿って並べた状態で、少なくとも熱源と放熱部材20との間に配置される第1絶縁フィルム10と、第1絶縁フィルム10と別体であって複数の放熱部材20を保持する保持部材12と、を備える部材である。放熱部材20は、中空若しくは中実の形状を有する複数のクッション部材22と、熱源からの熱を伝えるためのシートであって、クッション部材22の外側面を覆う熱伝導シート21と、を備える。「第1絶縁フィルム」および後述の「第2絶縁フィルム」は、好ましくは、1.0×10Ω・m以上の電気抵抗率を有するフィルムである。
(1) Schematic configuration The heat dissipation structure 1 according to the first embodiment includes a plurality of heat dissipation members 20 that enhance heat dissipation from a heat source, and a direction perpendicular to the longitudinal direction of the plurality of heat dissipation members 20 (horizontal direction in FIG. 1) A first insulating film 10 disposed between at least a heat source and a heat radiating member 20, and a holding member 12 that is separate from the first insulating film 10 and holds a plurality of heat radiating members 20 in a state of being arranged along the and a member. The heat radiating member 20 includes a plurality of hollow or solid cushion members 22 and a heat conductive sheet 21 that covers the outer surface of the cushion member 22 and is a sheet for transferring heat from a heat source. The "first insulating film" and the later-described "second insulating film" are preferably films having an electrical resistivity of 1.0×10 7 Ω·m or more.

(2)熱伝導シート
熱伝導シート21は、その構成材料を問わないが、好ましくは炭素を含むシートであり、さらに好ましくは90質量%以上を炭素から構成されるシートである。例えば、熱伝導シート21に、樹脂を焼成して成るグラファイト製のフィルムを用いることもできる。ただし、熱伝導シート21は、炭素と樹脂とを含むシートであっても良い。その場合、樹脂は、合成繊維でも良く、その場合には、樹脂として好適にはアラミド繊維を用いることができる。本願でいう「炭素」は、グラファイト、グラファイトより結晶性の低いカーボンブラック、ダイヤモンド、ダイヤモンドに近い構造を持つダイヤモンドライクカーボン等の炭素(元素記号:C)から成る如何なる構造のものも含むように広義に解釈される。熱伝導シート21は、この実施形態では、樹脂に、グラファイト繊維やカーボン粒子を配合分散した材料を硬化させた薄いシートとすることができる。熱伝導シート21は、メッシュ状に編んだカーボンファイバーであっても良く、さらには混紡してあっても混編みしてあっても良い。なお、グラファイト繊維、カーボン粒子あるいはカーボンファイバーといった各種フィラーも、すべて、炭素フィラーの概念に含まれる。
(2) Heat-Conducting Sheet The heat-conducting sheet 21 may be made of any material, but is preferably a sheet containing carbon, and more preferably a sheet composed of 90% by mass or more of carbon. For example, the heat conductive sheet 21 may be a graphite film obtained by baking a resin. However, the heat conductive sheet 21 may be a sheet containing carbon and resin. In that case, the resin may be a synthetic fiber, and in that case, an aramid fiber can be preferably used as the resin. "Carbon" as used in the present application is broadly defined to include any structure composed of carbon (element symbol: C) such as graphite, carbon black with lower crystallinity than graphite, diamond, and diamond-like carbon having a structure similar to diamond. is interpreted as In this embodiment, the thermally conductive sheet 21 can be a thin sheet obtained by curing a material obtained by blending and dispersing graphite fibers and carbon particles in a resin. The heat conductive sheet 21 may be made of carbon fibers woven in a mesh shape, or may be blended or woven together. Various fillers such as graphite fibers, carbon particles, and carbon fibers are all included in the concept of carbon filler.

熱伝導シート21を炭素と樹脂とを備えるシートとする場合には、当該樹脂が熱伝導シート21の全質量に対して50質量%を超えていても、あるいは50質量%以下であっても良い。すなわち、熱伝導シート21は、熱伝導に大きな支障が無い限り、樹脂を主材とするか否かを問わない。樹脂としては、例えば、熱可塑性樹脂を好適に使用できる。熱可塑性樹脂としては、熱源からの熱を伝導する際に溶融しない程度の高融点を備える樹脂が好ましく、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、芳香族ポリアミド(アラミド繊維)等を好適に挙げることができる。樹脂は、熱伝導シート21の成形前の状態において、炭素フィラーの隙間に、例えば粒子状あるいは繊維状に分散している。熱伝導シート21は、炭素フィラー、樹脂の他、熱伝導をより高めるためのフィラーとして、Al、AlNあるいはダイヤモンドを分散していても良い。また、樹脂に代えて、樹脂よりも柔軟なエラストマーを用いても良い。熱伝導シート21は、また、上述のような炭素に代えて若しくは炭素と共に、金属および/またはセラミックスを含むシートとすることができる。金属としては、アルミニウム、銅、それらの内の少なくとも1つを含む合金などの熱伝導性の比較的高いものを選択できる。また、セラミックスとしては、Al、AlN、cBN、hBNなどの熱伝導性の比較的高いものを選択できる。 When the thermally conductive sheet 21 is a sheet comprising carbon and resin, the resin may exceed 50% by mass or may be 50% by mass or less of the total mass of the thermally conductive sheet 21. . That is, it does not matter whether the heat conductive sheet 21 is mainly made of resin as long as it does not interfere with heat conduction. As the resin, for example, a thermoplastic resin can be preferably used. As the thermoplastic resin, a resin having a high melting point that does not melt when conducting heat from a heat source is preferable. Group polyamides (aramid fibers) and the like can be preferably used. The resin is dispersed, for example, in the form of particles or fibers in the gaps between the carbon fillers before the heat conductive sheet 21 is molded. The thermally conductive sheet 21 may have Al 2 O 3 , AlN, or diamond dispersed therein as a filler for further enhancing thermal conductivity, in addition to carbon filler and resin. Also, instead of the resin, an elastomer that is softer than the resin may be used. Thermally conductive sheet 21 may also be a sheet containing metals and/or ceramics instead of or in combination with carbon as described above. As the metal, a metal having relatively high thermal conductivity such as aluminum, copper, or an alloy containing at least one of them can be selected. Moreover, as ceramics, those with relatively high thermal conductivity such as Al 2 O 3 , AlN, cBN, and hBN can be selected.

熱伝導シート21は、導電性に優れるか否かは問わない。熱伝導シート21の熱伝導率は、好ましくは10W/mK以上である。この実施形態では、熱伝導シート21は、好ましくは、グラファイト製のフィルムであり、熱伝導性と導電性に優れる材料から成る。熱伝導シート21は、湾曲性(若しくは屈曲性)に優れるシートであるのが好ましく、その厚さに制約はないが、0.02~3mmが好ましく、0.03~0.5mmがより好ましい。ただし、熱伝導シート21の熱伝導率は、その厚さが増加するほど厚さ方向で低下するが、熱伝送量は厚い方が多くなるため、シートの強度、可撓性および熱伝導性を総合的に考慮して、その厚さを決定するのが好ましい。熱伝導シート21は、好ましくは、クッション部材22の外側面を被覆する筒状体である。ただし、熱伝導シート21は、クッション部材22の外側面をスパイラル状に巻く細帯体でも良い。 It does not matter whether the heat conductive sheet 21 has excellent conductivity. The heat conductivity of the heat conductive sheet 21 is preferably 10 W/mK or higher. In this embodiment, the thermally conductive sheet 21 is preferably a graphite film, which is made of a material with excellent thermal and electrical conductivity. The heat-conducting sheet 21 is preferably a sheet having excellent curvature (or bendability), and although there are no restrictions on its thickness, it is preferably 0.02 to 3 mm, more preferably 0.03 to 0.5 mm. However, although the thermal conductivity of the thermal conductive sheet 21 decreases in the thickness direction as its thickness increases, the amount of heat transfer increases as the thickness increases. It is preferable to determine the thickness with comprehensive consideration. The heat-conducting sheet 21 is preferably a tubular body that covers the outer surface of the cushion member 22 . However, the heat-conducting sheet 21 may be a narrow belt that spirally wraps around the outer surface of the cushion member 22 .

(3)クッション部材
クッション部材22の重要な機能は変形容易性と、回復力である。回復力は、弾性変形性による。変形容易性は、熱源の形状に追従するために必要な特性であり、特にリチウムイオンバッテリーなどの半固形物、液体的性状も持つ内容物などを変形しやすいパッケージに収めてあるようなバッテリーセルの場合には、設計寸法的にも不定形または寸法精度があげられない場合が多い。このため、クッション部材22の変形容易性や追従力を保持するための回復力の保持は重要である。
(3) Cushion Member Important functions of the cushion member 22 are ease of deformation and recovery force. Resilience is due to elastic deformability. Ease of deformation is a characteristic necessary to follow the shape of the heat source, especially for battery cells that contain semi-solid materials such as lithium-ion batteries and contents that also have liquid properties in easily deformable packages. In the case of , there are many cases where the design dimensions are irregular or the dimensional accuracy cannot be improved. For this reason, it is important to maintain the recovery force for maintaining the ease of deformation of the cushion member 22 and the follow-up force.

クッション部材22は、好ましくは、放熱部材20の長手方向(図2の紙面奥行方向)に沿う中空部23を備える筒状部材である。クッション部材22は、熱伝導シート21に接触する熱源が平坦でない場合でも、熱伝導シート21と熱源との接触を良好にする。さらに、中空部23は、クッション部材22の変形を容易にし、加えて放熱構造体1の軽量化に寄与し、また、熱伝導シート21と熱源との接触を高める機能を有する。クッション部材22は、熱伝導シート21に加わる荷重によって熱伝導シート21が破損等しないようにする保護部材としての機能も有する。この実施形態では、クッション部材22は、熱伝導シート21に比べて低熱伝導性の部材である。なお、この実施形態では、中空部23は、断面円形状に形成されているが、中空部23の断面形状は円に限定されず、例えば、多角形、楕円形、半円形、頂点が丸みを帯びた略多角形等であっても良い。また、中空部23は、例えば、断面円形状が上下または左右に2つに分割された2つの断面半円形状の中空部等、複数の中空部から構成されていても良い。また、クッション部材22は、シートを完全に閉じないようにU字形状に丸めた形態、あるいはシートを、一周超に丸めた形態でも良い。なお、クッション部材22は、中空部23を備えていない中実の形状であっても良い。 The cushion member 22 is preferably a cylindrical member having a hollow portion 23 along the longitudinal direction of the heat radiating member 20 (the depth direction of the paper surface of FIG. 2). The cushion member 22 makes good contact between the heat conductive sheet 21 and the heat source even when the heat source in contact with the heat conductive sheet 21 is not flat. Further, the hollow portion 23 facilitates deformation of the cushion member 22, contributes to weight reduction of the heat dissipation structure 1, and has a function of enhancing contact between the heat conductive sheet 21 and the heat source. The cushion member 22 also functions as a protective member that prevents the heat conductive sheet 21 from being damaged by a load applied to the heat conductive sheet 21 . In this embodiment, the cushion member 22 is a member with a lower heat conductivity than the heat conductive sheet 21 . In this embodiment, the hollow portion 23 is formed to have a circular cross-section, but the cross-sectional shape of the hollow portion 23 is not limited to a circle. It may be a substantially polygonal shape or the like. Further, the hollow portion 23 may be composed of a plurality of hollow portions such as two hollow portions each having a semicircular cross section obtained by dividing a circular cross section vertically or horizontally into two. In addition, the cushion member 22 may have a form in which the seat is rolled into a U-shape so as not to completely close the seat, or a form in which the seat is rolled more than once. Note that the cushion member 22 may have a solid shape without the hollow portion 23 .

クッション部材22は、好ましくは、シリコーンゴム、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、ニトリルゴム(NBR)あるいはスチレンブタジエンゴム(SBR)等の熱硬化性エラストマー; ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系、フッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を含むように構成される。クッション部材22は、熱伝導シート21を伝わる熱によって溶融あるいは分解等せずにその形態を維持できる程度の耐熱性の高い材料から構成されるのが好ましい。この実施形態では、クッション部材22は、より好ましくは、ウレタン系エラストマー中にシリコーンを含浸したもの、あるいはシリコーンゴムにより構成される。クッション部材22は、その熱伝導性を少しでも高めるために、ゴム中にAl、AlN、cBN、hBN、ダイヤモンドの粒子等に代表されるフィラーを分散して構成されていても良い。クッション部材22は、その内部に気泡を含むものの他、気泡を含まないものでも良い。また、「クッション部材」は、柔軟性に富み、熱源の表面に密着可能に弾性変形可能な部材を意味し、かかる意味では「ゴム状弾性体」と読み替えることもできる。さらに、クッション部材22の変形例としては、上記ゴム状弾性体ではなく、金属を用いて構成することもできる。例えば、クッション部材22は、バネ鋼で構成することも可能である。さらに、クッション部材22として、コイルバネを配置することも可能である。また、スパイラル状に巻いた金属をバネ鋼にしてクッション部材として熱伝導シート21の環状裏面に配置しても良い。また、クッション部材22は、樹脂やゴム等から形成されたスポンジあるいはソリッド(スポンジのような多孔質ではない構造のもの)で構成することも可能である。 The cushion member 22 is preferably made of thermosetting elastomer such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR) or styrene butadiene rubber (SBR); , ester-based, styrene-based, olefin-based, butadiene-based, fluorine-based thermoplastic elastomers, or composites thereof. The cushion member 22 is preferably made of a highly heat-resistant material that can maintain its shape without being melted or decomposed by the heat transmitted through the heat conductive sheet 21 . In this embodiment, the cushion member 22 is more preferably made of urethane-based elastomer impregnated with silicone or silicone rubber. The cushion member 22 may be formed by dispersing fillers such as Al 2 O 3 , AlN, cBN, hBN, and diamond particles in rubber in order to improve its thermal conductivity. The cushion member 22 may contain air bubbles inside, or may not contain air bubbles. Further, the "cushion member" means a member that is highly flexible and elastically deformable so as to be in close contact with the surface of the heat source. Furthermore, as a modified example of the cushion member 22, it is possible to use a metal instead of the rubber-like elastic body. For example, the cushion member 22 can be made of spring steel. Furthermore, it is possible to arrange a coil spring as the cushion member 22 . Alternatively, metal wound in a spiral shape may be used as a spring steel and arranged on the annular rear surface of the heat conductive sheet 21 as a cushion member. Also, the cushion member 22 can be configured by a sponge or solid (having a non-porous structure such as a sponge) made of resin, rubber, or the like.

(4)第1絶縁フィルム
第1絶縁フィルム10は、この実施形態では、放熱部材20の長手方向(図1の上下方向)に沿う1枚のシートである。この実施形態において、第1絶縁フィルム10は、複数の放熱部材20をその長手方向と直交する方向(図2および図3の左右方向)に沿って並べた状態で、放熱部材20の外形に沿って撓んだ凹凸形状をなして複数の放熱部材20に面接触する(図2の一部Cの拡大図および図3の一部Dの拡大図を参照)。また、第1絶縁フィルム10は、好ましくは、当該凹凸形状を構成する凹部11が保持部材12と接合するよう配置される(図2の一部Cの拡大図および図3の一部Dの拡大図を参照)。
(4) First Insulating Film In this embodiment, the first insulating film 10 is a single sheet along the longitudinal direction of the heat radiating member 20 (vertical direction in FIG. 1). In this embodiment, the first insulating film 10 is arranged along the outer shape of the heat dissipating members 20 in a state in which the plurality of heat dissipating members 20 are arranged in a direction perpendicular to the longitudinal direction (horizontal direction in FIGS. 2 and 3). 2, and come into surface contact with a plurality of heat dissipating members 20 (see the enlarged view of part C in FIG. 2 and the enlarged view of part D in FIG. 3). In addition, the first insulating film 10 is preferably arranged so that the concave portions 11 forming the concave-convex shape are joined to the holding member 12 (an enlarged view of part C in FIG. 2 and an enlarged view of part D in FIG. 3). (see diagram).

第1絶縁フィルム10は、保持部材12に比べて絶縁性が高いシート状部材であり、好ましくは、耐熱性を有するシート状部材である。第1絶縁フィルム10は、その構成材料を問わないが、例えばポリエステル系、ポリプロピレン系、ポリエチレン、ポリエチレンテレフタレート、ポリカーボネート、ポリアミド、ポリイミド、フェノール樹脂系、ガラス繊維含浸エポキシ樹脂、アクリル系の絶縁フィルム等が好ましく、寸法安定性、絶縁性、耐熱性に優れる可塑性のポリエチレンテレフタレート、ポリカーボネート、ポリエーテルエーテルケトン、ポリイミド等の絶縁フィルムがより好ましい。第1絶縁フィルム10の厚さは、5μm~200μmが好ましく、5μm~150μmがより好ましい。ただし、第1絶縁フィルム10は、フィルムの強度、可撓性および絶縁性等を総合的に考慮して、その厚さを決定するのが好ましい。 The first insulating film 10 is a sheet-like member having higher insulating properties than the holding member 12, and is preferably a sheet-like member having heat resistance. The first insulating film 10 may be made of any material, but for example polyester, polypropylene, polyethylene, polyethylene terephthalate, polycarbonate, polyamide, polyimide, phenol resin, glass fiber impregnated epoxy resin, acrylic insulating film, and the like. More preferred are insulating films such as plastic polyethylene terephthalate, polycarbonate, polyetheretherketone and polyimide, which are excellent in dimensional stability, insulation and heat resistance. The thickness of the first insulating film 10 is preferably 5 μm to 200 μm, more preferably 5 μm to 150 μm. However, it is preferable to determine the thickness of the first insulating film 10 by comprehensively considering the strength, flexibility, insulating properties, etc. of the film.

(5)保持部材
保持部材12は、この実施形態では、第1絶縁フィルム10とは別体にて、複数の放熱部材20における熱源と反対側(図2および図3の下側)に面接触し、かつ少なくとも第1絶縁フィルム10の凹部11と接合する部材である(図2の一部Cの拡大図および図3の一部Dの拡大図を参照)。この実施形態において、保持部材12は、基材17を挟んでその両面に粘着層15を有する粘着テープであって、放熱部材20の長手方向(図1の上下方向)の両端部にそれぞれ配置される両面粘着テープ13,13と、その一方の面に粘着層15を有する粘着テープであって、放熱部材20の長手方向の中央部に少なくとも1つ配置される片面粘着テープ14と、を備える(図1を参照)。両面粘着テープ13および片面粘着テープ14(以後、単に「粘着テープ13,14」とも称する。)は、好ましくは、粘着層15が複数の放熱部材20および第1絶縁フィルム10の凹部11と面接触して固定する(図2の一部Cの拡大図および図3の一部Dの拡大図を参照)。両面粘着テープ13は、好ましくは、一方の面の粘着層15を、放熱部材20および第1絶縁フィルム10の凹部11にそれぞれ面接触させて固定し、他方の面の粘着層15を、冷却部材を備える冷却部位と接合させる。なお、粘着テープ13,14は、少なくとも粘着層15を放熱部材20および第1絶縁フィルム10の凹部11にそれぞれ面接触させて固定可能であれば、互いに異なる材料で構成されていても良いし、互いに異なる形態であっても良い。両面粘着テープ13,13もまた、互いに異なる材料で構成されていても良いし、互いに異なる形態であっても良い。また、両面粘着テープ13,13は、一方の面にのみ粘着層を有する片面粘着テープであっても良い。この場合、粘着テープ13,13は、粘着層15の面を放熱部材20および第1絶縁フィルム10の凹部11に面接触させ、基材17の面を冷却部位に接着剤等を介して接合させても良いし、接着剤等を介さずに接合させても良い。片面粘着テープ14は、放熱部材20の長手方向のうち両端部を除く領域に2以上備えられていても良い。また、片面粘着テープ14は、その両面に粘着層15を有する両面粘着テープであっても良い。
(5) Holding Member In this embodiment, the holding member 12 is a separate member from the first insulating film 10 and is in surface contact with the side opposite to the heat source (lower side in FIGS. 2 and 3) of the plurality of heat radiating members 20. and at least a member that joins with the concave portion 11 of the first insulating film 10 (see the enlarged view of part C in FIG. 2 and the enlarged view of part D in FIG. 3). In this embodiment, the holding member 12 is an adhesive tape having adhesive layers 15 on both sides of the base material 17, and is arranged at both ends of the heat radiating member 20 in the longitudinal direction (vertical direction in FIG. 1). and an adhesive tape having an adhesive layer 15 on one side thereof, and at least one single-sided adhesive tape 14 arranged in the central part in the longitudinal direction of the heat dissipation member 20 ( See Figure 1). The double-sided adhesive tape 13 and the single-sided adhesive tape 14 (hereinafter also simply referred to as "adhesive tapes 13 and 14") preferably have the adhesive layer 15 in surface contact with the plurality of heat dissipation members 20 and the concave portions 11 of the first insulating film 10. (see enlarged view of part C in FIG. 2 and enlarged view of part D in FIG. 3). The adhesive layer 15 on one side of the double-sided adhesive tape 13 is preferably fixed in surface contact with the heat radiating member 20 and the concave portion 11 of the first insulating film 10, respectively, and the adhesive layer 15 on the other side is attached to the cooling member. is joined with a cooling portion comprising a The adhesive tapes 13 and 14 may be made of materials different from each other as long as at least the adhesive layer 15 can be brought into surface contact with the concave portion 11 of the heat radiating member 20 and the concave portion 11 of the first insulating film 10 and fixed. They may have forms different from each other. The double-sided adhesive tapes 13, 13 may also be made of different materials and may have different forms. Also, the double-sided adhesive tapes 13, 13 may be single-sided adhesive tapes having an adhesive layer only on one side. In this case, the surface of the adhesive layer 15 of the adhesive tapes 13, 13 is brought into surface contact with the heat radiating member 20 and the concave portion 11 of the first insulating film 10, and the surface of the base material 17 is bonded to the cooling portion via an adhesive or the like. Alternatively, they may be joined without using an adhesive or the like. Two or more single-sided adhesive tapes 14 may be provided in the longitudinal direction of the heat radiating member 20 except for both ends. Also, the single-sided adhesive tape 14 may be a double-sided adhesive tape having adhesive layers 15 on both sides thereof.

粘着テープ13,14は、第1絶縁フィルム10に比べて低硬度のテープであって、好ましくは、第1絶縁フィルム10に比べて高熱伝導性を有するテープである。また、粘着テープ13,14は、好ましくは、熱源からの放熱による温度上昇に耐え得るテープである。より具体的には、粘着テープ13,14は、100℃程度の高温に耐え得るテープであって、シリコーンゴム、アクリル系樹脂からなる熱伝導性粘着テープで構成されることが好ましい。 The adhesive tapes 13 and 14 are tapes having a lower hardness than the first insulating film 10 and preferably having a higher thermal conductivity than the first insulating film 10 . Also, the adhesive tapes 13 and 14 are preferably tapes that can withstand a temperature rise due to heat radiation from a heat source. More specifically, the adhesive tapes 13 and 14 are tapes that can withstand a high temperature of about 100° C., and are preferably composed of thermally conductive adhesive tapes made of silicone rubber or acrylic resin.

粘着テープ13,14は、熱伝導をより高めるためのフィラーとして、炭素フィラー、Al、AlNあるいはダイヤモンドを分散していても良い。粘着テープ13,14は、また、上述のような樹脂に代えて若しくは樹脂と共に、金属および/またはセラミックスを含むテープとすることができる。金属としては、アルミニウム、銅、それらの内の少なくとも1つを含む合金等の熱伝導性の比較的高いものを選択できる。また、セラミックスとしては、Al、AlN、cBN、hBN等の熱伝導性の比較的高いものを選択できる。また、粘着テープ13,14は、導電性に優れるか否かは問わない。粘着テープ13,14の熱伝導率は、好ましくは1W/mK以上である。ただし、粘着テープ13,14は、第1絶縁フィルム10と同等の熱伝導性或いは第1絶縁フィルム10に比べて低熱伝導性のテープであっても良い。粘着テープ13,14は、湾曲性(若しくは屈曲性)に優れるテープであるのが好ましく、その厚さに制約はないが、1μm~20μmが好ましく、3μm~10μmがより好ましい。ただし、粘着テープ13,14の熱伝導率は、その厚さが増加するほど厚さ方向で低下するが、熱伝送量は厚い方が多くなるため、シートの強度、可撓性および熱伝導性を総合的に考慮して、その厚さを決定するのが好ましい。 The adhesive tapes 13 and 14 may have dispersed carbon filler, Al 2 O 3 , AlN, or diamond as a filler for further enhancing heat conduction. Adhesive tapes 13, 14 may also be tapes containing metals and/or ceramics instead of or in combination with resins as described above. As the metal, a metal having relatively high thermal conductivity such as aluminum, copper, or an alloy containing at least one of them can be selected. As the ceramics, those having relatively high thermal conductivity such as Al 2 O 3 , AlN, cBN and hBN can be selected. Moreover, it does not matter whether the adhesive tapes 13 and 14 are excellent in conductivity. The thermal conductivity of the adhesive tapes 13, 14 is preferably 1 W/mK or more. However, the adhesive tapes 13 and 14 may be tapes having thermal conductivity equivalent to that of the first insulating film 10 or having thermal conductivity lower than that of the first insulating film 10 . The adhesive tapes 13 and 14 are preferably tapes having excellent curvature (or bendability), and although there are no restrictions on the thickness, the thickness is preferably 1 μm to 20 μm, more preferably 3 μm to 10 μm. However, although the thermal conductivity of the adhesive tapes 13 and 14 decreases in the thickness direction as the thickness increases, the amount of heat transfer increases as the thickness increases. should be taken into account when determining the thickness.

放熱部材20間の距離L1は、放熱部材20が熱源からの押圧を受けて潰れる際に、狭くなる。放熱部材20がほとんど潰れない場合には、熱伝導シート21と熱源等との密着性が低くなる可能性がある。かかるリスクを低減するのに適切な放熱部材20の上下方向、すなわち熱源から冷却部材を備える冷却部位に向かう方向に圧縮されたときの厚みは、少なくとも、放熱部材20の管径(=円換算直径:D)の80%である。ここで、「円換算直径」とは、放熱部材20をその長手方向と垂直に切断したときの管断面の面積と同じ面積の真円の直径を意味する。放熱部材20が真円の断面をもった円筒の場合には、その直径は円換算直径と同一である。放熱部材20は、上記の圧縮を受けると、第1絶縁フィルム10を介して熱源と接する面および冷却部位と接する面を平面とし、放熱部材20間の距離L1の方向を略円弧断面とするように変形するとみなすことができる(図2の一部Cの拡大図を参照)。距離L1を十分に大きくすれば、放熱部材20は隣接する放熱部材20と接触しない。逆に、隙間L1が小さすぎると、放熱部材20が上下方向に圧縮されても、隣接する放熱部材20に接触して、それ以上に潰れなくなる可能性がある。距離L1を放熱部材20の円換算直径Dの11.4%以上にすれば、放熱部材20が円換算直径Dの80%の厚さに圧縮されて変形する際に、放熱部材20同士が接触して、当該変形の障害となることを防止できる。よって、放熱構造体1は、放熱部材20間の距離L1が放熱部材20の円換算直径Dの11.4%以上となるように、複数の放熱部材20が配置されることが好ましい。 The distance L1 between the heat dissipating members 20 becomes narrower when the heat dissipating members 20 are pressed by the heat source and crushed. If the heat radiating member 20 is hardly crushed, there is a possibility that the adhesion between the heat conductive sheet 21 and the heat source or the like will be low. The thickness of the heat radiating member 20 suitable for reducing such risk when compressed in the vertical direction, that is, in the direction from the heat source to the cooling portion provided with the cooling member, is at least the tube diameter of the heat radiating member 20 (= circle conversion diameter : 80% of D). Here, the "circular equivalent diameter" means the diameter of a perfect circle having the same area as the cross-sectional area of the pipe when the heat radiating member 20 is cut perpendicularly to its longitudinal direction. When the heat radiating member 20 is a cylinder having a perfectly circular cross section, its diameter is the same as the equivalent circle diameter. When the heat dissipating member 20 receives the above compression, the surface in contact with the heat source and the surface in contact with the cooling part through the first insulating film 10 are made flat, and the direction of the distance L1 between the heat dissipating members 20 is made to have a substantially circular arc cross section. (see enlarged view of part C in FIG. 2). If the distance L1 is sufficiently large, the heat dissipating member 20 will not come into contact with the adjacent heat dissipating member 20 . Conversely, if the gap L1 is too small, even if the heat radiating member 20 is vertically compressed, it may come into contact with the adjacent heat radiating member 20 and may not be crushed further. If the distance L1 is set to 11.4% or more of the circle-equivalent diameter D of the heat radiating member 20, the heat radiating members 20 are in contact with each other when the heat radiating member 20 is compressed to a thickness of 80% of the circle-equivalent diameter D and deformed. By doing so, it is possible to prevent the deformation from becoming an obstacle. Therefore, in the heat dissipation structure 1, the plurality of heat dissipation members 20 are preferably arranged such that the distance L1 between the heat dissipation members 20 is 11.4% or more of the circle conversion diameter D of the heat dissipation members 20. FIG.

放熱構造体1は、複数の放熱部材20がその長手方向と直交する方向に沿って並べられた状態で、保持部材12を構成する粘着テープ13,14の粘着層15が当該複数の放熱部材20および第1絶縁フィルム10の凹部11にそれぞれ面接触することにより、複数の放熱部材20が保持される。これにより、複数の熱源の下端部が平坦でない場合でも、熱伝導シート21と当該下端部との接触が良好になる。また、第1絶縁フィルム10は、複数の放熱部材20をその長手方向と直交する方向に沿って並べた状態で、放熱部材20の外形に沿って撓んだ凹凸形状をなしており、当該凹凸形状を構成する凹部11が保持部材12と接合するよう配置される(図2の一部Cの拡大図および図3の一部Dの拡大図を参照)。このため、放熱構造体1は、放熱部材20の変形に応じた伝熱効率の低下を抑制し、かつ周辺部品との電気的短絡を抑制することができる。高い伝熱効率を実現するためには、多数の熱源各々の温度が均一となるように、多数の熱源各々から均一に放熱させることが望ましい。そのためには、各熱源に接触する放熱部材20の数が均一となるように、複数の放熱部材20を配置することが好ましい。放熱構造体1は、放熱部材20が第1絶縁フィルム10の凹凸形状を形成する凸部と保持部材12との間の空間に配置され、当該凸部の両側の凹部11,11が保持部材12と接合する。これにより、放熱構造体1は、放熱部材20が第1絶縁フィルム10と保持部材12とにより位置決めされているので、熱源からの押圧を受けて潰れた際にも放熱部材20間の距離L1のばらつきが小さくなる。よって、放熱構造体1は、多数の熱源各々における放熱性の均一化を高めることができる。なお、複数の放熱部材20は、放熱部材20間の距離L1が等間隔となるよう配置されることに限定されない。放熱構造体1は、好ましくは、複数の熱源のうち温度の高い熱源の位置に放熱部材20を密集させるように、距離L1を変化させて配置する。すなわち、放熱構造体1は、温度の高い熱源に接触する放熱部材20の数がその他の熱源に接触する放熱部材20の数より多くなるように、当該温度の高い熱源に接触する放熱部材20間の距離L1を小さくすることが好ましい。このように、放熱構造体1は、熱源の形態等に応じて、複数の熱源各々における放熱性が均一となるように、容易かつ確実に熱源との位置決めを行うことができる。 The heat dissipating structure 1 has a plurality of heat dissipating members 20 arranged in a direction orthogonal to the longitudinal direction, and the adhesive layers 15 of the adhesive tapes 13 and 14 constituting the holding member 12 are attached to the plurality of heat dissipating members 20 . and the concave portions 11 of the first insulating film 10, respectively, to hold the plurality of heat radiating members 20. As shown in FIG. Thereby, even when the lower ends of the plurality of heat sources are not flat, the contact between the heat conductive sheet 21 and the lower ends is improved. In addition, the first insulating film 10 has an uneven shape bent along the outer shape of the heat radiating member 20 in a state in which the plurality of heat radiating members 20 are arranged in a direction orthogonal to the longitudinal direction thereof. A recess 11 forming a shape is arranged to mate with the retaining member 12 (see enlarged view of part C in FIG. 2 and enlarged view of part D in FIG. 3). Therefore, the heat dissipation structure 1 can suppress a decrease in heat transfer efficiency due to deformation of the heat dissipation member 20 and can suppress an electrical short circuit with peripheral components. In order to achieve high heat transfer efficiency, it is desirable to uniformly dissipate heat from each of the multiple heat sources so that the temperatures of each of the multiple heat sources become uniform. For this purpose, it is preferable to arrange a plurality of heat dissipating members 20 so that the number of heat dissipating members 20 in contact with each heat source is uniform. In the heat dissipating structure 1, the heat dissipating member 20 is arranged in the space between the convex portion forming the uneven shape of the first insulating film 10 and the holding member 12. Join with Accordingly, in the heat dissipation structure 1, since the heat dissipation members 20 are positioned by the first insulating film 10 and the holding member 12, the distance L1 between the heat dissipation members 20 is maintained even when the heat dissipation structure 1 is crushed by being pressed by the heat source. Variation becomes smaller. Therefore, the heat dissipation structure 1 can improve the uniformity of heat dissipation in each of a large number of heat sources. Note that the plurality of heat dissipating members 20 are not limited to being arranged such that the distance L1 between the heat dissipating members 20 is equal. The heat dissipation structure 1 is preferably arranged by changing the distance L1 so that the heat dissipation members 20 are densely arranged at the position of the heat source with the highest temperature among the plurality of heat sources. That is, in the heat dissipation structure 1, the number of heat dissipation members 20 in contact with a high temperature heat source is set to be greater than the number of heat dissipation members 20 in contact with other heat sources. It is preferable to reduce the distance L1 of . In this manner, the heat dissipation structure 1 can be easily and reliably positioned with respect to the heat sources so that the heat dissipation properties of each of the plurality of heat sources are uniform according to the form of the heat sources.

(第2実施形態)
次に、第2実施形態に係る放熱構造体について説明する。先の実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Second embodiment)
Next, a heat dissipation structure according to the second embodiment will be described. Parts common to the previous embodiment are given the same reference numerals, and duplicate descriptions are omitted.

図4は、第2実施形態に係る放熱構造体の平面図を示す。図5は、図4におけるE-E線断面図およびその一部Fの拡大図をそれぞれ示す。 FIG. 4 shows a plan view of a heat dissipation structure according to the second embodiment. FIG. 5 shows a cross-sectional view taken along line EE in FIG. 4 and an enlarged view of a portion F thereof, respectively.

第2実施形態に係る放熱構造体1aは、第1実施形態に係る放熱構造体1と類似の構造を有するが、保持部材12に代えて、保持部材12aを備える点において、第1実施形態に係る放熱構造体1と異なる。なお、放熱構造体1aは、保持部材12a以外の構成は、第1実施形態に係る放熱構造体1と同様のため、詳細な説明を省略する。 The heat dissipation structure 1a according to the second embodiment has a structure similar to that of the heat dissipation structure 1 according to the first embodiment. It is different from the heat dissipation structure 1 which concerns. The heat dissipation structure 1a has the same configuration as the heat dissipation structure 1 according to the first embodiment except for the holding member 12a, so detailed description thereof will be omitted.

保持部材12aは、好ましくは、複数の放熱部材20をその長手方向と直交する方向(図5の左右方向)に沿って並べた状態で、複数の放熱部材20における熱源と反対側(図5の下側)に面接触する第2絶縁フィルムである。第2絶縁フィルム12aは、好ましくは、放熱部材20の長手方向(図3の上下方向)に沿う1枚のシートである。放熱構造体1aは、第1絶縁フィルム10の凹部11と第2絶縁フィルム12aとが熱溶着により接合されている。第2絶縁フィルム12aの構成材料等は、第1絶縁フィルム10と同様であるため、詳細な説明を省略する。このように構成された放熱構造体1aもまた、第1実施形態と同様の効果を奏する。 The holding member 12a is preferably arranged on the opposite side of the plurality of heat radiating members 20 to the heat source (in FIG. 5) in a state in which the plurality of heat radiating members 20 are arranged in a direction perpendicular to the longitudinal direction (horizontal direction in FIG. 5). bottom) is a second insulating film in surface contact. The second insulating film 12a is preferably a single sheet along the longitudinal direction of the heat radiating member 20 (vertical direction in FIG. 3). In the heat dissipation structure 1a, the concave portion 11 of the first insulating film 10 and the second insulating film 12a are joined by heat welding. Since the constituent materials and the like of the second insulating film 12a are the same as those of the first insulating film 10, detailed description thereof will be omitted. The heat dissipation structure 1a configured in this way also has the same effect as the first embodiment.

(第3実施形態)
次に、第3実施形態に係る放熱構造体について説明する。先の実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Third Embodiment)
Next, a heat dissipation structure according to the third embodiment will be described. Parts common to the previous embodiment are given the same reference numerals, and duplicate descriptions are omitted.

図6は、第3実施形態に係る放熱構造体の平面図を示す。図7は、図6におけるG-G線断面図およびその一部Hの拡大図をそれぞれ示す。 FIG. 6 shows a plan view of a heat dissipation structure according to the third embodiment. FIG. 7 shows a cross-sectional view taken along the line GG in FIG. 6 and an enlarged view of a portion H thereof, respectively.

第3実施形態に係る放熱構造体1bは、第1実施形態に係る放熱構造体1と類似の構造を有するが、保持部材12に代えて、保持部材12bを備える点において、第1実施形態に係る放熱構造体1と異なる。なお、放熱構造体1aは、保持部材12b以外の構成は、第1実施形態に係る放熱構造体1と同様のため、詳細な説明を省略する。 A heat dissipation structure 1b according to the third embodiment has a structure similar to that of the heat dissipation structure 1 according to the first embodiment, but is different from the first embodiment in that a holding member 12b is provided instead of the holding member 12. It is different from the heat dissipation structure 1 which concerns. The heat dissipation structure 1a has the same configuration as the heat dissipation structure 1 according to the first embodiment except for the holding member 12b, so detailed description thereof will be omitted.

保持部材12bは、好ましくは、第1絶縁フィルム10とは別体にて、基材17を挟んでその両面に粘着層15,15を有する両面粘着テープである。保持部材12bは、好ましくは、一方の面の粘着層15が第1絶縁フィルム10と接合し、他方の面の粘着層15が放熱部材20に面接触する(図7の一部Hの拡大図を参照)。なお、保持部材12bの構成材料等は、第1実施形態の両面粘着テープ13と同様であるため、詳細な説明を省略する。保持部材12bは、好ましくは、放熱部材20の長手方向(図6の上下方向)に沿って隙間を空けて配置される2枚以上のシートである。この実施形態において、保持部材12bは、放熱部材20の長手方向の両端部にそれぞれ配置される2枚のシートである。保持部材12bは、各シートの大きさが大きいほど、第1絶縁フィルム10および放熱部材20にそれぞれ面接触させてより強固に固定することができる。また、保持部材12bは、各シート間の隙間が小さいほど、周辺部品との電気的短絡を抑制することができる。ただし、保持部材12bを構成するシートの大きさおよび各シート間の隙間は、熱源および放熱部材20の形態に応じて、適宜決定されることが好ましい。このように構成された放熱構造体1bもまた、第1実施形態と同様の効果を奏する。なお、保持部材12bを構成するシートの数は、2以上であれば特に制約されない。また、複数のシートは、互いに異なる形状および/または大きさであっても良い。また、保持部材12bは、各シート間の隙間が等間隔となるよう配置されることに限定されない。 The holding member 12b is preferably a double-sided adhesive tape that is separate from the first insulating film 10 and has adhesive layers 15, 15 on both sides of the substrate 17 therebetween. The holding member 12b preferably has the adhesive layer 15 on one side bonded to the first insulating film 10 and the adhesive layer 15 on the other side in surface contact with the heat dissipation member 20 (enlarged view of part H in FIG. 7). ). In addition, since the constituent material and the like of the holding member 12b are the same as those of the double-sided adhesive tape 13 of the first embodiment, detailed description thereof will be omitted. The holding member 12b is preferably two or more sheets arranged with a gap along the longitudinal direction of the heat radiating member 20 (vertical direction in FIG. 6). In this embodiment, the holding members 12b are two sheets arranged at both ends of the heat radiating member 20 in the longitudinal direction. As the size of each sheet of the holding member 12b increases, the holding member 12b can be brought into surface contact with the first insulating film 10 and the heat radiating member 20 and fixed more firmly. In addition, the smaller the gap between the sheets, the more the holding member 12b can suppress electrical short-circuiting with peripheral components. However, it is preferable that the sizes of the sheets constituting the holding member 12b and the gaps between the sheets are appropriately determined according to the form of the heat source and the heat radiating member 20. FIG. The heat dissipation structure 1b configured in this way also has the same effect as the first embodiment. Note that the number of sheets forming the holding member 12b is not particularly limited as long as it is two or more. Also, the multiple sheets may be of different shapes and/or sizes. Further, the holding members 12b are not limited to being arranged so that the gaps between the sheets are equal.

(第4実施形態)
次に、第4実施形態に係る放熱構造体について説明する。先の実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Fourth embodiment)
Next, a heat dissipation structure according to the fourth embodiment will be described. Parts common to the previous embodiment are given the same reference numerals, and duplicate descriptions are omitted.

図8は、第4実施形態に係る放熱構造体の平面図を示す。図9は、図8におけるI-I線断面図およびその一部Jの拡大図をそれぞれ示す。 FIG. 8 shows a plan view of a heat dissipation structure according to a fourth embodiment. FIG. 9 shows a cross-sectional view taken along the line II in FIG. 8 and an enlarged view of a part J thereof, respectively.

第4実施形態に係る放熱構造体1cは、第1実施形態に係る放熱構造体1と類似の構造を有するが、保持部材12に代えて保持部材12cを備え、かつ2枚の第1絶縁フィルム10を備える点において、第1実施形態に係る放熱構造体1と異なる。なお、放熱構造体1aは、第1絶縁フィルム10および保持部材12c以外の構成は、第1実施形態に係る放熱構造体1と同様のため、詳細な説明を省略する。 A heat dissipation structure 1c according to the fourth embodiment has a structure similar to that of the heat dissipation structure 1 according to the first embodiment, but includes a holding member 12c instead of the holding member 12 and two first insulating films. 10 is different from the heat dissipation structure 1 according to the first embodiment. The heat dissipation structure 1a has the same configuration as that of the heat dissipation structure 1 according to the first embodiment except for the first insulating film 10 and the holding member 12c, so detailed description thereof will be omitted.

放熱構造体1cは、好ましくは、複数の放熱部材20をその長手方向と直交する方向(図9の左右方向)に沿って並べた状態で、熱源と放熱部材20との間および放熱部材20と冷却部位との間にそれぞれ配置される2枚の第1絶縁フィルム10,10を備える。すなわち、2枚の第1絶縁フィルム10,10は、好ましくは、複数の放熱部材20をその長手方向と直交する方向(図9の左右方向)に沿って並べた状態で、当該放熱部材20の厚さ方向(図9の上下方向)の両側に配置される。この実施形態において、第1絶縁フィルム10,10は、好ましくは、放熱部材20の長手方向(図8の上下方向)に沿う1枚のシートである。保持部材12cは、好ましくは、第1絶縁フィルム10と別体の糸であり、より好ましくは、熱源からの放熱による温度上昇に耐え得る糸である。より具体的には、保持部材12cは、120℃程度の高温に耐え得る糸であって、天然繊維、合成繊維、カーボン繊維、金属繊維等の繊維からなる撚糸で構成されることが好ましい。 The heat dissipation structure 1c is preferably arranged between the heat source and the heat dissipation member 20 and between the heat dissipation member 20 and the heat dissipation member 20 in a state in which the plurality of heat dissipation members 20 are arranged in a direction perpendicular to the longitudinal direction (horizontal direction in FIG. 9). It has two first insulating films 10, 10 respectively arranged between the cooling parts. That is, the two first insulating films 10, 10 are preferably arranged in a state in which a plurality of heat radiating members 20 are arranged along a direction perpendicular to the longitudinal direction (horizontal direction in FIG. 9). They are arranged on both sides in the thickness direction (vertical direction in FIG. 9). In this embodiment, the first insulating films 10, 10 are preferably one sheet along the longitudinal direction of the heat radiating member 20 (vertical direction in FIG. 8). The holding member 12c is preferably a thread separate from the first insulating film 10, and more preferably a thread that can withstand a temperature rise due to heat radiation from a heat source. More specifically, the holding member 12c is preferably made of twisted yarn made of fibers such as natural fibers, synthetic fibers, carbon fibers, and metal fibers that can withstand a high temperature of about 120°C.

保持部材12cは、好ましくは、複数の放熱部材20をその長手方向と直交する方向に連結し、かつ複数の放熱部材20を第1絶縁フィルム10に固定する部材である。より具体的には、保持部材12cは、ミシン等を用いて、複数の放熱部材20を当該放熱部材20の厚さ方向両側に配置される第1絶縁フィルム10,10に縫い付けて固定する部材である。保持部材12cの縫い方は、特に制約されず、例えば、手縫い、本縫い、千鳥縫い、単環縫い、二重環縫い、縁かがり縫い、扁平縫い、安全縫い、オーバーロック等の如何なる縫い方でも良い。また、JIS L 0120の規定する表示記号によれば、好適な縫い方として、「101」、「209」、「301」、「304」、「401」、「406」、「407」、「410」、「501」、「502」、「503」、「504」、「505」、「509」、「512」、「514」、「602」および「605」の各種縫い目を構成する縫い方を例示できる。このように構成された放熱構造体1cもまた、第1実施形態と同様の効果を奏する。なお、第1絶縁フィルム10は、放熱部材20の長手方向(図8の上下方向)に沿って隙間を空けて配置される2枚以上のシートで構成されていても良い。この場合、第1絶縁フィルム10は、少なくとも放熱部材20の長手方向の両端部に配置される2枚以上のシートで構成されることが好ましい。また、放熱構造体1cは、熱源と放熱部材20との間に配置される1枚の第1絶縁フィルム10を備えていても良い。すなわち、放熱構造体1cは、放熱部材20と冷却部位との間に第1絶縁フィルム10が配置されていなくとも良い。この場合、保持部材12cは、ミシン等を用いて、複数の放熱部材20を第1絶縁フィルム10に縫い付けて固定することが好ましい。 The holding member 12 c is preferably a member that connects the plurality of heat radiating members 20 in a direction perpendicular to the longitudinal direction and fixes the plurality of heat radiating members 20 to the first insulating film 10 . More specifically, the holding member 12c is a member that sews and fixes the plurality of heat radiating members 20 to the first insulating films 10, 10 arranged on both sides of the heat radiating member 20 in the thickness direction using a sewing machine or the like. is. The sewing method of the holding member 12c is not particularly limited, and any sewing method such as hand stitching, lockstitching, zigzag stitching, single chain stitching, double chain stitching, overlock stitching, flat stitching, safety stitching, overlocking, etc. can be used. good. In addition, according to the display symbols defined by JIS L 0120, suitable sewing methods include "101", "209", "301", "304", "401", "406", "407", and "410". , 501, 502, 503, 504, 505, 509, 512, 514, 602 and 605. I can give an example. The heat dissipation structure 1c configured in this way also has the same effect as the first embodiment. The first insulating film 10 may be composed of two or more sheets arranged with a gap along the longitudinal direction of the heat radiating member 20 (vertical direction in FIG. 8). In this case, it is preferable that the first insulating film 10 is composed of at least two sheets arranged at both ends of the heat radiating member 20 in the longitudinal direction. Moreover, the heat dissipation structure 1 c may include one first insulating film 10 arranged between the heat source and the heat dissipation member 20 . That is, in the heat dissipation structure 1c, the first insulating film 10 may not be arranged between the heat dissipation member 20 and the cooling portion. In this case, the holding member 12c is preferably fixed by sewing the plurality of heat radiating members 20 to the first insulating film 10 using a sewing machine or the like.

(第5実施形態)
次に、第5実施形態に係る放熱構造体について説明する。先の実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Fifth embodiment)
Next, a heat dissipation structure according to the fifth embodiment will be described. Parts common to the previous embodiment are given the same reference numerals, and duplicate descriptions are omitted.

図10は、第5実施形態に係る放熱構造体の平面図を示す。図11は、図10におけるK-K線断面図およびその一部Lの拡大図をそれぞれ示す。 FIG. 10 shows a plan view of a heat dissipation structure according to a fifth embodiment. FIG. 11 shows a cross-sectional view taken along the line KK in FIG. 10 and an enlarged view of a part L thereof, respectively.

第5実施形態に係る放熱構造体1dは、第4実施形態に係る放熱構造体1cと類似の構造を有するが、第1絶縁フィルム10および保持部材12cに代えて、保持部材12dを備える点において、第4実施形態に係る放熱構造体1cと異なる。なお、放熱構造体1dは、保持部材12d以外の構成は、第4実施形態に係る放熱構造体1cと同様のため、詳細な説明を省略する。 A heat dissipation structure 1d according to the fifth embodiment has a structure similar to that of the heat dissipation structure 1c according to the fourth embodiment, except that a holding member 12d is provided instead of the first insulating film 10 and the holding member 12c. , different from the heat dissipation structure 1c according to the fourth embodiment. The heat dissipation structure 1d has the same configuration as the heat dissipation structure 1c according to the fourth embodiment except for the holding member 12d, so detailed description thereof will be omitted.

放熱構造体1dにおいて、保持部材12dは、好ましくは、第1絶縁フィルム10を兼ねており、複数の放熱部材20を包む袋10aと、袋10aの内部において複数の放熱部材20を固定する糸18と、を含む部材である。袋10aは、複数の放熱部材20をその長手方向と直交する方向(図10および図11の左右方向)に沿って並べた状態で、当該複数の放熱部材20を包む袋である。袋10aは、その構成材料を問わないが、第1絶縁フィルム10を構成する材料の上記好適な選択肢の内の1または2以上の材料であることが好ましい。また、袋10aは、(図10および図11の左右方向)に沿って並べた状態で当該複数の放熱部材20を包むことが可能な形態であれば、その形態は特に制約されない。糸18は、ミシン等により、複数の放熱部材20をその長手方向と直交する方向に沿って並べた状態で、当該放熱部材20同士を縫い付けて連結する。糸18の縫い方は、特に制約されないが、第4実施形態の保持部材12cの縫い方の上記好適な選択肢の内の何れかの縫い方であることが好ましい。このように構成された放熱構造体1dもまた、第1実施形態と同様の効果を奏する。なお、糸18は、複数の放熱部材20の間に、撚りが加えられていても良い。放熱構造体1dは、糸18が複数の放熱部材20の間に撚りを加えることにより、熱源の表面への追従・密着性を高めることができる。 In the heat dissipating structure 1d, the holding member 12d preferably also serves as the first insulating film 10, and includes a bag 10a that wraps the plurality of heat dissipating members 20, and threads 18 that fix the plurality of heat dissipating members 20 inside the bag 10a. And, it is a member including. The bag 10a is a bag that wraps the plurality of heat radiating members 20 in a state in which the plurality of heat radiating members 20 are arranged in a direction perpendicular to the longitudinal direction (horizontal direction in FIGS. 10 and 11). Although the bag 10a may be made of any material, it is preferable that the bag 10a is made of one or more of the above preferred materials for the first insulating film 10. FIG. Moreover, the form of the bag 10a is not particularly limited as long as it can wrap the plurality of heat radiating members 20 in a state of being arranged along (left and right direction in FIGS. 10 and 11). The thread 18 sews and connects the plurality of heat radiating members 20 with a sewing machine or the like in a state in which the heat radiating members 20 are arranged in a direction orthogonal to the longitudinal direction. The method of sewing the thread 18 is not particularly limited, but it is preferable that the method of sewing be any one of the above preferred options for the method of sewing the holding member 12c of the fourth embodiment. The heat dissipating structure 1d configured in this way also has the same effect as the first embodiment. Note that the thread 18 may be twisted between the plurality of heat radiating members 20 . In the heat dissipation structure 1d, by twisting the threads 18 between the plurality of heat dissipation members 20, it is possible to enhance the followability and adhesion to the surface of the heat source.

2.放熱構造体の製造方法
次に、第1実施形態に係る放熱構造体1の好適な製造方法の一例を説明する。
2. Method for Manufacturing Heat Dissipating Structure Next, an example of a suitable method for manufacturing the heat dissipating structure 1 according to the first embodiment will be described.

図12は、図1の放熱構造体の製造方法の一部を説明するための図を示す。 FIG. 12 shows a diagram for explaining a part of the manufacturing method of the heat dissipation structure of FIG.

まず、放熱構造体1を構成している放熱部材20の好適な製造方法の一例を説明する。まず、中空部23を有するクッション部材22を成形する。次に、帯状の熱伝導シート21をクッション部材22の外側面にスパイラル状に巻く。このとき、クッション部材22が完全には硬化していない未硬化状態で、熱伝導シート21をクッション部材22の外側面に巻き、その後、加温によりクッション部材22を完全に硬化させる。そして、帯状の熱伝導シート21のクッション部材22の両端からはみ出した部分があればカットする。放熱部材20をこのように製造することにより、熱伝導シート21の微視的な隙間に未硬化状態のクッション部材22が入り込んだ状態で硬化されるため、接着剤等を使用しなくともクッション部材22と熱伝導シート21とを強固に固定することができる。こうして出来上がった放熱部材20は、クッション部材22の外側面よりも熱伝導シート21の厚さ分だけ突出した形態を有する。ただし、熱伝導シート21とクッション部材22とは、面一であっても良い。なお、クッション部材22の外側面が粘着性有していなければ、接着剤等を使用して熱伝導シート21をクッション部材22に固定してもよい。 First, an example of a suitable manufacturing method for the heat dissipation member 20 constituting the heat dissipation structure 1 will be described. First, the cushion member 22 having the hollow portion 23 is molded. Next, the band-shaped heat-conducting sheet 21 is spirally wound around the outer surface of the cushion member 22 . At this time, the heat-conducting sheet 21 is wrapped around the outer surface of the cushion member 22 while the cushion member 22 is not completely cured, and then the cushion member 22 is completely cured by heating. Then, if there is a portion protruding from both ends of the cushion member 22 of the strip-shaped heat-conducting sheet 21, it is cut. By manufacturing the heat dissipating member 20 in this manner, the uncured cushion member 22 is cured in a state in which the uncured cushion member 22 enters the microscopic gaps of the heat conductive sheet 21, so that the cushion member can be formed without using an adhesive or the like. 22 and the heat conductive sheet 21 can be firmly fixed. The heat dissipating member 20 thus completed has a shape that protrudes from the outer surface of the cushion member 22 by the thickness of the heat conductive sheet 21 . However, the heat conductive sheet 21 and the cushion member 22 may be flush with each other. If the outer surface of the cushion member 22 is not sticky, the heat conductive sheet 21 may be fixed to the cushion member 22 using an adhesive or the like.

放熱構造体1は、次のように製造される。まず、両面粘着テープ13、片面粘着テープ14、両面粘着テープ13の順に隙間を空けて配置された状態の保持部材12上に、上述の製造方法により製造された複数の放熱部材20を、粘着テープ13,14の長手方向(図1の左右方向)に沿って、放熱部材20の長手方向と直交する方向に並べる。このとき、粘着テープ13,14は、放熱部材20の長手方向(図1の上下方向)に沿って隙間を空けて配置されることが好ましい。また、粘着テープ13,14は、粘着層15が複数の放熱部材20と面接触するように配置されることが好ましい。そして、複数の放熱部材20がその長手方向と直交する方向に並べられた状態で、第1絶縁フィルム10を、放熱部材20の外形に沿って撓んだ凹凸形状をなすよう複数の放熱部材20にそれぞれ面接触させ、かつ第1絶縁フィルム10の凹部11を粘着テープ13,14の粘着層15と接合させることにより、放熱構造体1が製造される。 The heat dissipation structure 1 is manufactured as follows. First, on the holding member 12 in which the double-sided adhesive tape 13, the single-sided adhesive tape 14, and the double-sided adhesive tape 13 are arranged in this order with a gap therebetween, a plurality of heat radiating members 20 manufactured by the manufacturing method described above are placed on the adhesive tape. They are arranged in a direction orthogonal to the longitudinal direction of the heat radiating member 20 along the longitudinal direction (horizontal direction in FIG. 1) of 13 and 14 . At this time, it is preferable that the adhesive tapes 13 and 14 are arranged with a gap along the longitudinal direction of the heat radiating member 20 (vertical direction in FIG. 1). Moreover, the adhesive tapes 13 and 14 are preferably arranged such that the adhesive layer 15 is in surface contact with the plurality of heat radiating members 20 . Then, in a state in which the plurality of heat dissipating members 20 are arranged in a direction orthogonal to the longitudinal direction thereof, the first insulating film 10 is bent along the outer shape of the heat dissipating members 20 to form the plurality of heat dissipating members 20 . are brought into surface contact with each other, and the concave portions 11 of the first insulating film 10 are joined to the adhesive layers 15 of the adhesive tapes 13 and 14, whereby the heat dissipation structure 1 is manufactured.

第2実施形態に係る放熱構造体1aは、保持部材である第2絶縁フィルム12a上に、上述の製造方法により製造された複数の放熱部材20を放熱部材20の長手方向と直交する方向(図4の左右方向)に並べた状態で、第1絶縁フィルム10を、放熱部材20の外形に沿って撓んだ凹凸形状をなすよう複数の放熱部材20にそれぞれ面接触させ、かつ第1絶縁フィルム10の凹部11と第2絶縁フィルム12aとを熱溶着させることにより製造される。なお、熱溶着の方法は、第1絶縁フィルム10の凹部11と第2絶縁フィルム12aとが溶着可能な方法であれば、特に制約されない。 In the heat dissipation structure 1a according to the second embodiment, a plurality of heat dissipation members 20 manufactured by the above-described manufacturing method are placed on the second insulating film 12a, which is a holding member, in a direction orthogonal to the longitudinal direction of the heat dissipation members 20 (Fig. 4), the first insulating film 10 is in surface contact with each of the plurality of heat radiating members 20 so as to form an uneven shape bent along the outer shape of the heat radiating member 20, and the first insulating film It is manufactured by heat-sealing the concave portion 11 of 10 and the second insulating film 12a. The heat welding method is not particularly limited as long as it is a method capable of welding the concave portion 11 of the first insulating film 10 and the second insulating film 12a.

第3実施形態に係る放熱構造体1bは、上述の製造方法により製造された複数の放熱部材20を、放熱部材20の長手方向と直交する方向(図6の左右方向)に並べた状態で、保持部材12bの一方の面の粘着層15が放熱部材20と面接触するように保持部材12bを複数の放熱部材20上に配置させ、第1絶縁フィルム10を当該保持部材12bの他方の面の粘着層15と接合させることにより製造される。この場合、保持部材12bは、放熱部材20の長手方向(図6の上下方向)に沿って隙間を空けて複数枚配置されることが好ましく、放熱部材20の長手方向の両端部にそれぞれ配置されることがより好ましい(図6を参照)。 In the heat dissipation structure 1b according to the third embodiment, a plurality of heat dissipation members 20 manufactured by the above-described manufacturing method are arranged in a direction orthogonal to the longitudinal direction of the heat dissipation members 20 (horizontal direction in FIG. 6), The holding member 12b is placed on the plurality of heat radiating members 20 so that the adhesive layer 15 on one surface of the holding member 12b is in surface contact with the heat radiating member 20, and the first insulating film 10 is placed on the other surface of the holding member 12b. It is manufactured by joining with the adhesive layer 15 . In this case, it is preferable that a plurality of holding members 12b be arranged with a gap along the longitudinal direction of the heat radiating member 20 (vertical direction in FIG. 6). is more preferred (see FIG. 6).

第4実施形態に係る放熱構造体1cは、次のように製造される。まず、2枚の第1絶縁フィルム10のうち一方の第1絶縁フィルム10上に、上述の製造方法により製造された複数の放熱部材20が放熱部材20の長手方向と直交する方向(図4の左右方向)に並べられ、さらに当該複数の放熱部材20の上に他方の第1絶縁フィルム10が配置される。そして、ミシン等を用いて、糸である保持部材12cにより、複数の放熱部材20が当該放熱部材20の厚さ方向(図9の上下方向)両側に配置される2枚の第1絶縁フィルム10,10に縫い付けて固定されることにより、放熱構造体1cが製造される。 A heat dissipation structure 1c according to the fourth embodiment is manufactured as follows. First, on one first insulating film 10 of the two first insulating films 10, a plurality of heat dissipating members 20 manufactured by the manufacturing method described above are placed in a direction orthogonal to the longitudinal direction of the heat dissipating members 20 (see FIG. 4). left-right direction), and the other first insulating film 10 is arranged on the plurality of heat radiating members 20 . Then, using a sewing machine or the like, a plurality of heat radiating members 20 are arranged on both sides of the heat radiating member 20 in the thickness direction (vertical direction in FIG. 9) by holding members 12c, which are threads. , 10 to produce the heat dissipation structure 1c.

第5実施形態に係る放熱構造体1dは、上述の製造方法により製造された複数の放熱部材20を、放熱部材20の長手方向と直交する方向(図10の左右方向)に並べた状態で、糸18により縫い付けて連結し、当該連結された複数の放熱部材20を袋10aの内部に挿入させることにより製造される。 In the heat dissipating structure 1d according to the fifth embodiment, a plurality of heat dissipating members 20 manufactured by the above-described manufacturing method are arranged in a direction perpendicular to the longitudinal direction of the heat dissipating members 20 (horizontal direction in FIG. 10). It is manufactured by sewing and connecting with a thread 18 and inserting the connected plurality of heat radiating members 20 into the inside of the bag 10a.

3.放熱部材の変形例 3. Modified example of heat dissipation member

(変形例1)
図13は、図1の放熱構造体を構成する放熱部材の変形例1の製造方法の一部を説明するための図を示す。
(Modification 1)
13A and 13B are diagrams for explaining a part of the manufacturing method of Modification 1 of the heat dissipating member that constitutes the heat dissipating structure of FIG.

変形例1の放熱部材20aは、クッション部材22を、筒状クッション部材とせずに、熱伝導シート21の裏側に備えられる帯状のクッション部材であって熱伝導シート21と共にスパイラル状に巻回されているスパイラル状のクッション部材とする。 The heat dissipating member 20a of Modification 1 does not use the cushion member 22 as a cylindrical cushion member, but is a strip-shaped cushion member provided on the back side of the heat conductive sheet 21, and is spirally wound together with the heat conductive sheet 21. A spiral cushion member is used.

上述のスパイラル状のクッション部材(「スパイラル状クッション部材」ともいう)を備える放熱部材20aおよび放熱部材20aを複数備える放熱構造体の製造方法の一例は、次の通りである。 An example of a method for manufacturing the heat dissipation member 20a including the above-described spiral cushion member (also referred to as “spiral cushion member”) and the heat dissipation structure including a plurality of heat dissipation members 20a is as follows.

まず、略同等の幅を持つ熱伝導シート21およびクッション部材22の二層からなる積層体30を製造する。次に、積層体30をスパイラル状(コイル状と称しても良い)に、一方向に進行するように巻回する。こうして、積層体30をスパイラル状に巻回した細長い形状の放熱部材20aが完成する。積層体30は、好ましくは、クッション部材22が完全には硬化していない未硬化状態で、熱伝導シート21をクッション部材22に積層し、その後、加温によりクッション部材22を完全に硬化させて形成される。 First, a laminate 30 composed of two layers of the heat conductive sheet 21 and the cushion member 22 having substantially the same width is manufactured. Next, the laminate 30 is spirally wound (which may be referred to as a coil) so as to advance in one direction. In this way, the elongated heat radiation member 20a is completed by winding the laminate 30 in a spiral shape. The laminated body 30 is preferably obtained by laminating the heat conductive sheet 21 on the cushion member 22 in an uncured state where the cushion member 22 is not completely cured, and then completely curing the cushion member 22 by heating. It is formed.

放熱構造体1,1a,1b,1c,1dは、放熱部材20を放熱部材20aに代える以外は、上述の各製造方法と同様の方法により製造される。 The heat-dissipating structures 1, 1a, 1b, 1c, and 1d are manufactured by the same manufacturing methods as described above, except that the heat-dissipating member 20 is replaced with the heat-dissipating member 20a.

(変形例2)
図14は、図1の放熱構造体を構成する放熱部材の変形例2の側面図、平面図および当該平面図の拡大図を示す。
(Modification 2)
FIG. 14 shows a side view, a plan view, and an enlarged view of the plan view of Modification 2 of the heat dissipation member that constitutes the heat dissipation structure of FIG.

変形例2の放熱部材20bは、クッション部材22の外側面に熱伝導シート21をスパイラル状に巻回せず、クッション部材22の外側面を熱伝導シート21で被覆したものである。熱伝導シート21は、クッション部材22の端面の周囲に沿って巻かれても良い。また、熱伝導シート21を筒状にして、その中にクッション部材22を挿入しても良い。 The heat-dissipating member 20 b of Modification 2 does not spirally wind the heat-conducting sheet 21 around the outer surface of the cushion member 22 , but covers the outer surface of the cushion member 22 with the heat-conducting sheet 21 . The heat-conducting sheet 21 may be wrapped around the end surface of the cushion member 22 . Alternatively, the heat-conducting sheet 21 may be shaped like a cylinder and the cushion member 22 may be inserted therein.

放熱構造体1,1a,1b,1c,1dは、放熱部材20を放熱部材20bに代える以外は、上述の各製造方法と同様の方法により製造される。 The heat-dissipating structures 1, 1a, 1b, 1c, and 1d are manufactured by the same manufacturing methods as described above, except that the heat-dissipating member 20 is replaced with the heat-dissipating member 20b.

(変形例3)
図15は、図1の放熱構造体を構成する放熱部材の変形例3の側面図、平面図および当該平面図の拡大図を示す。
(Modification 3)
FIG. 15 shows a side view, a plan view, and an enlarged view of the plan view of Modification 3 of the heat dissipation member that constitutes the heat dissipation structure of FIG.

変形例3の放熱部材20cは、クッション部材22の外側面に、クッション部材22の長さ方向に沿って長いスリット25を形成するように、熱伝導シート21で覆ったものである。 A heat dissipating member 20c of Modified Example 3 is formed by covering the outer surface of the cushion member 22 with a heat conductive sheet 21 so as to form a long slit 25 along the length direction of the cushion member 22 .

放熱構造体1,1a,1b,1c,1dは、放熱部材20を放熱部材20cに代える以外は、上述の各製造方法と同様の方法により製造される。 The heat-dissipating structures 1, 1a, 1b, 1c, and 1d are manufactured by the same manufacturing methods as described above, except that the heat-dissipating member 20 is replaced with the heat-dissipating member 20c.

(変形例4)
図16は、図1の放熱構造体を構成する放熱部材の変形例4の側面図、平面図および当該平面図の拡大図を示す。
(Modification 4)
FIG. 16 shows a side view, a plan view, and an enlarged view of the plan view of Modification 4 of the heat dissipation member that constitutes the heat dissipation structure of FIG.

変形例4の放熱部材20dは、上述の放熱部材20b(図14を参照)のクッション部材22から中空部23を無くした形態のものである。クッション部材22は、中空部23を有していなくとも、十分に柔軟で、あるいは軽量であれば良い。 20 d of heat radiating members of the modification 4 are the things of the form which eliminated the hollow part 23 from the cushion member 22 of the above-mentioned heat radiating member 20b (refer FIG. 14). Even if the cushion member 22 does not have the hollow portion 23, it is sufficient if it is sufficiently flexible or lightweight.

放熱構造体1,1a,1b,1c,1dは、放熱部材20を放熱部材20dに代える以外は、上述の各製造方法と同様の方法により製造される。 The heat-dissipating structures 1, 1a, 1b, 1c, and 1d are manufactured by the same manufacturing methods as described above, except that the heat-dissipating member 20 is replaced with a heat-dissipating member 20d.

4.バッテリー
次に、本実施形態に係るバッテリーについて説明する。
4. Battery Next, the battery according to this embodiment will be described.

図17は、一実施形態に係るバッテリーの縦断面図を示す。ここで、「縦断面図」は、バッテリーの筐体内部の上方開口面から底部へと垂直に切断する図を意味する。 FIG. 17 shows a vertical cross-sectional view of a battery according to one embodiment. Here, the "longitudinal cross-sectional view" means a view cut vertically from the upper opening inside the battery housing to the bottom.

この実施形態において、バッテリー40は、例えば、電気自動車用のバッテリーであって、多数のバッテリーセル50を備える。バッテリー40は、好ましくは、リチウムイオンバッテリーである。バッテリー40は、一方に開口する有底型の筐体41を備える。筐体41は、好ましくは、アルミニウム若しくはアルミニウム基合金から成る。バッテリーセル50は、筐体41の内部44に配置される。バッテリーセル50の上方には、電極(不図示)が突出して設けられている。複数のバッテリーセル50は、好ましくは、筐体41内において、その両側からネジ等を利用して圧縮する方向に力を与えられて、互いに密着するようになっている(不図示)。筐体41の底部42には、冷却部材45の一例である冷却水を流すために、1または複数の水冷パイプ43が備えられている。バッテリーセル50は、底部42との間に、放熱構造体1を挟むようにして筐体41内に配置される。 In this embodiment, the battery 40 is, for example, a battery for an electric vehicle and comprises a large number of battery cells 50 . Battery 40 is preferably a lithium ion battery. The battery 40 includes a bottomed housing 41 that is open on one side. Housing 41 is preferably made of aluminum or an aluminum-based alloy. The battery cell 50 is arranged inside 44 of the housing 41 . An electrode (not shown) protrudes from above the battery cell 50 . Preferably, the plurality of battery cells 50 are applied with screws or the like from both sides in the housing 41 in a compressing direction so that the battery cells 50 are brought into close contact with each other (not shown). A bottom portion 42 of the housing 41 is provided with one or more water cooling pipes 43 for flowing cooling water, which is an example of a cooling member 45 . The battery cell 50 is arranged in the housing 41 so as to sandwich the heat dissipation structure 1 between the battery cell 50 and the bottom portion 42 .

バッテリー40は、冷却部材45を流す構造を持つ筐体41内に、1または2以上の熱源としてのバッテリーセル50を備える。放熱構造体1は、バッテリーセル50と冷却部材45との間に介在する。放熱構造体1は、バッテリーセル50に第1絶縁フィルム10を面接触させ、かつ冷却部材45を備える冷却部位に粘着テープ13,14を面接触させる。特に、両面粘着テープ13,13の一方の粘着層15,15を冷却部位に面接触させて固定する。このような構造のバッテリー40では、バッテリーセル50は、放熱構造体1を通じて筐体41に伝熱して、水冷によって効果的に除熱される。なお、冷却部材45は、「冷却媒体」あるいは「冷却剤」と読み替えても良い。冷却部材45は、冷却水に限定されず、液体窒素、エタノール等の有機溶剤も含むように解釈される。冷却部材45は、冷却に用いられる状況下にて、液体であるとは限らず、気体あるいは固体でも良い。 The battery 40 includes one or more battery cells 50 as heat sources in a housing 41 having a structure for flowing a cooling member 45 . The heat dissipation structure 1 is interposed between the battery cell 50 and the cooling member 45 . In the heat dissipation structure 1 , the first insulating film 10 is in surface contact with the battery cell 50 , and the adhesive tapes 13 and 14 are in surface contact with the cooling portion provided with the cooling member 45 . In particular, one of the adhesive layers 15, 15 of the double-sided adhesive tapes 13, 13 is brought into surface contact with the cooling portion and fixed. In the battery 40 having such a structure, the battery cells 50 conduct heat to the housing 41 through the heat dissipation structure 1 and are effectively removed by water cooling. The cooling member 45 may be read as a "cooling medium" or a "coolant". The cooling member 45 is not limited to cooling water, and is interpreted to include organic solvents such as liquid nitrogen and ethanol. The cooling member 45 need not be liquid, but may be gaseous or solid under the conditions in which it is used for cooling.

バッテリーセル50を筐体41内にセットした状態では(図17を参照)、放熱構造体1は、バッテリーセル50と、水冷パイプ43を備える底部42との間において、放熱構造体1の厚さ方向に圧縮される。この結果、バッテリーセル50からの熱は、第1絶縁フィルム10、熱伝導シート21、底部42、水冷パイプ43、冷却部材45へと伝わりやすくなる。また、放熱構造体1は、第1絶縁フィルム10が放熱部材20の外形に沿って撓んだ凹凸形状をなして複数の放熱部材20および熱源と面接触するよう配置され、かつ保持部材12を構成する粘着テープ13,14の粘着層15が複数の放熱部材20および第1絶縁フィルム10の凹部11と接合されるため、放熱部材20の変形に追従しやすく、当該変形に応じた伝熱効率の低下を抑制することができる。また、放熱構造体1は、第1絶縁フィルム10を備えるため、熱伝導シート21が導電性を有する場合であっても周辺部品との電気的短絡を抑制することができる。なお、バッテリー40は、放熱構造体1に代えて、先述の放熱構造体1a,1b,1c,1dを備えていても良い。この場合、放熱構造体1a,1b,1c,1dは、保持部材12a,12b,12c,12dにより複数の放熱部材20が保持された状態で、第1絶縁フィルム10,10aが複数の放熱部材20および熱源と面接触するよう配置されるため、上述の放熱構造体1を備えるバッテリー40と同様の効果を奏する。 When the battery cell 50 is set in the housing 41 (see FIG. 17), the heat dissipation structure 1 has the thickness direction is compressed. As a result, the heat from the battery cells 50 is easily conducted to the first insulating film 10 , the heat conductive sheet 21 , the bottom portion 42 , the water cooling pipe 43 and the cooling member 45 . In the heat dissipation structure 1, the first insulating film 10 is bent along the outer shape of the heat dissipation member 20 to form an uneven shape, and is arranged so as to be in surface contact with the plurality of heat dissipation members 20 and the heat source. Since the adhesive layer 15 of the constituent adhesive tapes 13 and 14 is bonded to the plurality of heat dissipating members 20 and the concave portion 11 of the first insulating film 10, it is easy to follow the deformation of the heat dissipating member 20, and the heat transfer efficiency is improved according to the deformation. Decrease can be suppressed. Moreover, since the heat dissipation structure 1 includes the first insulating film 10, it is possible to suppress electrical short-circuiting with peripheral components even when the heat conductive sheet 21 has conductivity. Note that the battery 40 may include the aforementioned heat dissipation structures 1a, 1b, 1c, and 1d instead of the heat dissipation structure 1. FIG. In this case, the heat dissipation structures 1a, 1b, 1c, and 1d are arranged such that the plurality of heat dissipation members 20 are held by the holding members 12a, 12b, 12c, and 12d, and the first insulating films 10 and 10a are held by the plurality of heat dissipation members 20. And, since it is arranged so as to be in surface contact with the heat source, the same effect as the battery 40 provided with the above-described heat dissipation structure 1 can be obtained.

5.その他の実施形態
上述のように、本発明の好適な各実施形態について説明したが、本発明は、これらに限定されることなく、種々変形して実施可能である。
5. Other Embodiments As described above, preferred embodiments of the present invention have been described, but the present invention is not limited to these and can be implemented in various modifications.

図18は、放熱構造体の上に、バッテリーセルの側面を接触させるように横置きにしたときの断面図、その一部拡大図および充放電時にバッテリーセルが膨張した際の一部断面図をそれぞれ示す。 FIG. 18 shows a cross-sectional view when the battery cell is placed horizontally so that the side surface of the battery cell is in contact with the heat dissipation structure, a partially enlarged view thereof, and a partial cross-sectional view when the battery cell expands during charging and discharging. each shown.

先述の第1実施形態では、バッテリーセル50を縦にしてその下端に放熱構造体1を接触せしめている状況について説明したが、バッテリーセル50の配置形態は、これに限定されない。図18に示すように、バッテリーセル50の側面を放熱構造体1の各放熱部材20に接触させるように、バッテリーセル50を配置しても良い。バッテリーセル50は、充電および放電の際に温度上昇する。バッテリーセル50の容器自体が柔軟性に富む材料にて形成されていると、バッテリーセル50の特に側面が膨らむ可能性がある。そのような場合でも、図18に示すように、放熱構造体1の構成している各放熱部材20がバッテリーセル50の外面の形状に合わせて変形できるので、充放電時にも放熱性を高く維持できる。また、放熱構造体1a,1b,1c,1dにおいても同様に、バッテリーセル50の側面を放熱構造体1a,1b,1c,1dの各放熱部材20に接触させるように、バッテリーセル50を配置しても良い。 In the above-described first embodiment, the battery cells 50 are arranged vertically and the heat dissipation structure 1 is brought into contact with the lower ends of the battery cells 50. However, the arrangement of the battery cells 50 is not limited to this. As shown in FIG. 18 , the battery cells 50 may be arranged such that the side surfaces of the battery cells 50 are in contact with the heat dissipation members 20 of the heat dissipation structure 1 . Battery cells 50 heat up during charging and discharging. If the container of the battery cell 50 itself is made of a highly flexible material, the side surface of the battery cell 50 in particular may swell. Even in such a case, as shown in FIG. 18, each heat dissipation member 20 constituting the heat dissipation structure 1 can be deformed according to the shape of the outer surface of the battery cell 50, so that high heat dissipation can be maintained during charging and discharging. can. Similarly, in the heat dissipation structures 1a, 1b, 1c, and 1d, the battery cells 50 are arranged such that the side surfaces of the battery cells 50 are in contact with the heat dissipation members 20 of the heat dissipation structures 1a, 1b, 1c, and 1d. can be

また、第1絶縁フィルム10は、その形態に制約はなく、少なくとも複数の放熱部材20をその長手方向と直交する方向に沿って並べた状態で、熱源と放熱部材20との間に配置可能な形態であれば、例えば、平面視において、多角形、楕円形、円形、頂点が丸みを帯びた略多角形等の形状であっても良い。 In addition, the first insulating film 10 is not limited in its form, and can be arranged between the heat source and the heat radiating member 20 in a state in which at least a plurality of heat radiating members 20 are arranged along the direction orthogonal to the longitudinal direction. As for the form, for example, in a plan view, the shape may be a polygon, an ellipse, a circle, or a substantially polygon with rounded vertices.

前記各実施形態における保持部材は、第1絶縁フィルムと兼ねているか否かを問わない。また、保持部材12を構成する両面粘着テープ13および片面粘着テープ14は、その形態に制約はなく、少なくとも複数の放熱部材20をその長手方向と直交する方向に沿って並べた状態で、粘着層15を放熱部材20および第1絶縁フィルム10の凹部11にそれぞれ面接触させて固定可能な形態であれば、例えば、平面視において、多角形、楕円形、円形、頂点が丸みを帯びた略多角形等の形状であっても良い。 The holding member in each of the above embodiments may or may not also serve as the first insulating film. Moreover, the double-sided adhesive tape 13 and the single-sided adhesive tape 14 that constitute the holding member 12 are not limited in their form, and at least a plurality of heat radiating members 20 are arranged along the direction orthogonal to the longitudinal direction, and the adhesive layer 15 can be fixed by making surface contact with the recesses 11 of the heat radiating member 20 and the first insulating film 10, respectively. A shape such as a square may be used.

また、保持部材12aは、その形態に制約はなく、少なくとも複数の放熱部材20をその長手方向と直交する方向に沿って並べた状態で、第1絶縁フィルム10の凹部11と熱溶着可能な形態であれば、例えば、平面視において、多角形、楕円形、円形、頂点が丸みを帯びた略多角形等の形状であっても良い。 The holding member 12a is not restricted in its form, and can be thermally welded to the concave portion 11 of the first insulating film 10 in a state in which at least a plurality of heat radiating members 20 are arranged along the direction orthogonal to the longitudinal direction thereof. If so, for example, in a plan view, the shape may be a polygon, an ellipse, a circle, or a substantially polygon with rounded vertices.

また、保持部材12bは、その形態に制約はなく、少なくとも複数の放熱部材20をその長手方向と直交する方向に沿って並べた状態で、粘着層15を熱源および放熱部材20にそれぞれ面接触させて固定可能な形態であれば、例えば、平面視において、多角形、楕円形、円形、頂点が丸みを帯びた略多角形等の形状であっても良い。 Moreover, the holding member 12b is not limited in its form, and the adhesive layer 15 is brought into surface contact with the heat source and the heat radiating member 20 in a state in which at least a plurality of the heat radiating members 20 are arranged along the direction orthogonal to the longitudinal direction thereof. As long as it can be fixed by pressing, it may be, for example, a polygonal, elliptical, circular, or substantially polygonal shape with rounded vertices in a plan view.

また、保持部材12dは、糸18を備えていなくとも良い。この場合、放熱構造体1dは、複数の放熱部材20をその長手方向と直交する方向に沿って並べた状態で、袋10aに包まれて保持される。 Also, the holding member 12 d may not have the thread 18 . In this case, the heat dissipation structure 1d is wrapped and held in the bag 10a with the plurality of heat dissipation members 20 arranged along the direction orthogonal to the longitudinal direction.

また、放熱構造体1cにおいて、2枚の第1絶縁フィルム10,10は、放熱構造体1d(図11を参照)と同様に、袋10aであっても良い。 Moreover, in the heat dissipation structure 1c, the two first insulating films 10, 10 may be the bags 10a, as in the heat dissipation structure 1d (see FIG. 11).

また、放熱部材20は、クッション部材22に中空部23が形成されていなくても良い。その場合、放熱部材20は、熱伝導シート21の中空部内にクッション部材22を充填した構成を有する。中空部は、熱伝導シート21およびクッション部材22のうち、少なくとも熱伝導シート21の巻回構造によって形成されていれば、クッション部材22に形成されていなくとも良い。 Further, the heat radiating member 20 does not have to have the hollow portion 23 formed in the cushion member 22 . In that case, the heat radiating member 20 has a configuration in which the hollow portion of the heat conductive sheet 21 is filled with the cushion member 22 . Of the heat conductive sheet 21 and the cushion member 22, the hollow portion need not be formed in the cushion member 22 as long as it is formed by at least the winding structure of the heat conductive sheet 21.

また、熱源は、バッテリーセル50のみならず、回路基板や電子機器本体などの熱を発する対象物を全て含む。例えば、熱源は、DC/DCコンバータ、キャパシタおよびICチップ等の電子部品であっても良い。同様に、冷却媒体45は、冷却用の水のみならず、有機溶剤、液体窒素、冷却用の気体であっても良い。また、放熱構造体1,1a,1b,1c,1dは、バッテリー40以外の構造物、例えば、電子機器、家電、発電装置等に配置されていても良い。 Further, the heat source includes not only the battery cells 50 but also all heat-generating objects such as circuit boards and electronic device bodies. For example, heat sources may be electronic components such as DC/DC converters, capacitors, and IC chips. Similarly, the cooling medium 45 may be not only water for cooling, but also an organic solvent, liquid nitrogen, or gas for cooling. Also, the heat dissipation structures 1, 1a, 1b, 1c, and 1d may be arranged in structures other than the battery 40, such as electronic devices, home appliances, and power generators.

また、上述の各実施形態の複数の構成要素は、互いに組み合わせ不可能な場合を除いて、自由に組み合わせ可能である。例えば、放熱構造体1aは、バッテリー40に備えられていても良い。 In addition, the plurality of constituent elements of each of the above-described embodiments can be freely combined except when they cannot be combined with each other. For example, the heat dissipation structure 1 a may be provided in the battery 40 .

1,1a,1b,1c,1d・・・放熱構造体、10・・・第1絶縁フィルム、10a・・・袋、12,12a,12b,12c,12d・・・保持部材、13・・・両面粘着テープ、14・・・片面粘着テープ、15・・・粘着層、18・・・糸、20,20a,20b,20c,20d・・・放熱部材、21・・・熱伝導シート、22・・・クッション部材、23・・・中空部、40・・・バッテリー、41・・・筐体、45・・・冷却部材、50・・・バッテリーセル(熱源の一例)。

1, 1a, 1b, 1c, 1d... Heat dissipation structure 10... First insulating film 10a... Bag 12, 12a, 12b, 12c, 12d... Holding member 13... Double-sided adhesive tape 14 Single-sided adhesive tape 15 Adhesive layer 18 Thread 20, 20a, 20b, 20c, 20d Heat dissipation member 21 Thermal conductive sheet 22. Cushion member 23 Hollow portion 40 Battery 41 Housing 45 Cooling member 50 Battery cell (an example of a heat source).

Claims (12)

熱源からの放熱を高める複数の放熱部材と、
前記複数の放熱部材をその長手方向と直交する方向に沿って並べた状態で、少なくとも前記熱源と前記放熱部材との間に配置される第1絶縁フィルムと、
前記複数の放熱部材を保持する保持部材と、
を備える放熱構造体であって、
前記放熱部材は、
中空若しくは中実の形状を有する複数のクッション部材と、
前記熱源からの熱を伝えるためのシートであって、前記クッション部材の外側面を覆う熱伝導シートと、
を備えることを特徴とする放熱構造体。
a plurality of heat dissipating members that enhance heat dissipation from a heat source;
a first insulating film disposed between at least the heat source and the heat radiating member in a state in which the plurality of heat radiating members are arranged along a direction orthogonal to the longitudinal direction thereof;
a holding member that holds the plurality of heat radiating members;
A heat dissipating structure comprising:
The heat dissipation member is
a plurality of cushion members having a hollow or solid shape;
a heat-conducting sheet for transferring heat from the heat source, the heat-conducting sheet covering the outer surface of the cushion member;
A heat dissipation structure comprising:
前記第1絶縁フィルムは、前記複数の放熱部材をその長手方向と直交する方向に沿って並べた状態で、前記放熱部材の外形に沿って撓んだ凹凸形状をなして前記複数の放熱部材に面接触し、
前記保持部材は、前記複数の放熱部材における前記熱源と反対側に面接触し、かつ少なくとも前記第1絶縁フィルムの凹部と接合することを特徴とする請求項1に記載の放熱構造体。
The first insulating film is arranged in a direction orthogonal to the longitudinal direction of the plurality of heat dissipating members, and the first insulating film has an uneven shape bent along the outer shape of the heat dissipating members. face-to-face contact,
2. The heat dissipating structure according to claim 1, wherein the holding member is in surface contact with a side of the plurality of heat dissipating members opposite to the heat source, and is joined to at least the concave portion of the first insulating film.
前記保持部材は、少なくとも一方の面に粘着層を有する粘着テープであって、前記粘着層が前記複数の放熱部材および前記第1絶縁フィルムの前記凹部と接合することを特徴とする請求項2に記載の放熱構造体。 3. The method according to claim 2, wherein the holding member is an adhesive tape having an adhesive layer on at least one surface, and the adhesive layer is bonded to the plurality of heat radiating members and the concave portion of the first insulating film. A heat dissipating structure as described. 前記保持部材は、
その両面に前記粘着層を有する粘着テープであって、前記放熱部材の長手方向の両端部にそれぞれ配置される両面粘着テープと、
その一方の面に前記粘着層を有する粘着テープであって、前記放熱部材の長手方向の中央部に少なくとも1つ配置される片面粘着テープと、
を備えることを特徴とする請求項3に記載の放熱構造体。
The holding member is
a double-sided adhesive tape having the adhesive layer on both sides thereof, the double-sided adhesive tape being arranged at both ends in the longitudinal direction of the heat radiating member;
an adhesive tape having the adhesive layer on one surface thereof, wherein at least one single-sided adhesive tape is arranged in the central portion in the longitudinal direction of the heat radiating member;
4. The heat dissipation structure of claim 3, comprising:
前記保持部材は、前記複数の放熱部材をその長手方向と直交する方向に沿って並べた状態で、前記複数の放熱部材における前記熱源と反対側に面接触する第2絶縁フィルムであって、少なくとも前記第1絶縁フィルムの凹部と前記第2絶縁フィルムとが熱溶着することを特徴とする請求項2に記載の放熱構造体。 The holding member is a second insulating film that is in surface contact with a side of the plurality of heat radiating members opposite to the heat source when the plurality of heat radiating members are arranged in a direction perpendicular to the longitudinal direction of the heat radiating members. 3. The heat dissipating structure according to claim 2, wherein the concave portion of the first insulating film and the second insulating film are heat-sealed. 前記保持部材は、その両面に粘着層を有する両面粘着テープであって、一方の面の前記粘着層が前記第1絶縁フィルムと接合し、他方の面の前記粘着層が前記放熱部材に面接触することを特徴とする請求項1に記載の放熱構造体。 The holding member is a double-sided adhesive tape having adhesive layers on both sides thereof, wherein the adhesive layer on one side is bonded to the first insulating film, and the adhesive layer on the other side is in surface contact with the heat radiating member. The heat dissipation structure according to claim 1, characterized in that: 前記保持部材は、前記放熱部材の長手方向に沿って隙間を空けて配置される2枚以上のシートであることを特徴とする請求項6に記載の放熱構造体。 7. The heat dissipating structure according to claim 6, wherein the holding member is two or more sheets arranged with a gap along the longitudinal direction of the heat dissipating member. 前記保持部材は、糸であって、前記複数の放熱部材をその長手方向と直交する方向に連結し、かつ前記複数の放熱部材を前記第1絶縁フィルムに固定することを特徴とする請求項1に記載の放熱構造体。 2. The holding member is a thread that connects the plurality of heat radiating members in a direction orthogonal to the longitudinal direction thereof and fixes the plurality of heat radiating members to the first insulating film. The heat dissipation structure according to . 前記保持部材は、前記第1絶縁フィルムを兼ねており、前記複数の放熱部材を包む袋であることを特徴とする請求項1に記載の放熱構造体。 2. The heat dissipating structure according to claim 1, wherein the holding member also serves as the first insulating film and is a bag that encloses the plurality of heat dissipating members. 前記保持部材は、前記袋と、前記袋の内部において前記複数の放熱部材を固定する糸と、を含むことを特徴とする請求項9に記載の放熱構造体。 10. The heat dissipating structure according to claim 9, wherein the holding member includes the bag and threads for fixing the plurality of heat dissipating members inside the bag. 前記放熱部材は、前記長手方向に沿う中空部を備える筒状部材であることを特徴とする請求項1から10のいずれか1項に記載の放熱構造体。 The heat dissipating structure according to any one of claims 1 to 10, wherein the heat dissipating member is a cylindrical member having a hollow portion along the longitudinal direction. 冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、請求項1から11のいずれか1項に記載の放熱構造体を備えるバッテリー。

A battery comprising one or more battery cells as heat sources in a housing having a structure for flowing a cooling member, wherein any one of claims 1 to 11 is provided between the battery cells and the housing. A battery comprising a heat dissipation structure according to any one of the preceding paragraphs.

JP2021200456A 2021-12-10 2021-12-10 Heat dissipation structure, and battery including the same Pending JP2023086139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021200456A JP2023086139A (en) 2021-12-10 2021-12-10 Heat dissipation structure, and battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021200456A JP2023086139A (en) 2021-12-10 2021-12-10 Heat dissipation structure, and battery including the same

Publications (1)

Publication Number Publication Date
JP2023086139A true JP2023086139A (en) 2023-06-22

Family

ID=86850388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021200456A Pending JP2023086139A (en) 2021-12-10 2021-12-10 Heat dissipation structure, and battery including the same

Country Status (1)

Country Link
JP (1) JP2023086139A (en)

Similar Documents

Publication Publication Date Title
JP6871183B2 (en) Heat dissipation structure and battery with it
CN110048041B (en) Heat dissipation structure and battery provided with same
JP6894933B2 (en) Heat dissipation structure and battery with it
WO2021241161A1 (en) Heat radiation structure, and battery provided with same
JP2020191171A (en) Heat dissipation structure and battery including the same
JP2021015696A (en) Heat dissipation structure and battery having the same
KR102644474B1 (en) Heat dissipation structure and battery comprising the same
JP6857783B2 (en) Heat dissipation structure and battery with it
JP7190311B2 (en) Thermal structure and battery
JP2023086139A (en) Heat dissipation structure, and battery including the same
JP7402717B2 (en) Heat dissipation structure and battery equipped with the same
JP2022175357A (en) Heat conduction member and battery with the same
JP7503432B2 (en) Heat dissipation structure and battery equipped with same
JP2021166140A (en) Heat dissipation member, heat dissipation structure, and battery
JP7254661B2 (en) Heat dissipation structure and battery with same
JP2021005508A (en) Heat dissipation structure and battery including the same
JP2021005582A (en) Heat dissipation structure and battery including the same
JP7402716B2 (en) Heat dissipation structure and battery equipped with the same
WO2022034759A1 (en) Heat dissipation member, heat dissipation structure, and battery
JP7399760B2 (en) Heat dissipation structure and battery equipped with the same
JP7394666B2 (en) Heat dissipation structure and battery equipped with the same
JP7399764B2 (en) Heat dissipation structure and battery equipped with the same
JP2022106327A (en) Heat dissipation structure and battery with the same
JP2021150088A (en) Heat dissipation structure and battery having the same
JP2021166141A (en) Heat dissipation structure and battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240419