JP7399760B2 - Heat dissipation structure and battery equipped with the same - Google Patents

Heat dissipation structure and battery equipped with the same Download PDF

Info

Publication number
JP7399760B2
JP7399760B2 JP2020045247A JP2020045247A JP7399760B2 JP 7399760 B2 JP7399760 B2 JP 7399760B2 JP 2020045247 A JP2020045247 A JP 2020045247A JP 2020045247 A JP2020045247 A JP 2020045247A JP 7399760 B2 JP7399760 B2 JP 7399760B2
Authority
JP
Japan
Prior art keywords
heat
heat dissipation
dissipation structure
members
conductive sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020045247A
Other languages
Japanese (ja)
Other versions
JP2021150018A (en
Inventor
真広 手島
登 中藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2020045247A priority Critical patent/JP7399760B2/en
Publication of JP2021150018A publication Critical patent/JP2021150018A/en
Application granted granted Critical
Publication of JP7399760B2 publication Critical patent/JP7399760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、放熱構造体およびそれを備えるバッテリーに関する。 The present invention relates to a heat dissipation structure and a battery including the same.

自動車、航空機、船舶あるいは家庭用若しくは業務用電子機器の制御システムは、より高精度かつ複雑化してきており、それに伴って、回路基板上の小型電子部品の集積密度が増加の一途を辿っている。この結果、回路基板周辺の発熱による電子部品の故障や短寿命化を解決することが強く望まれている。 Control systems for automobiles, aircraft, ships, and household and commercial electronic equipment are becoming more precise and complex, and as a result, the integration density of small electronic components on circuit boards continues to increase. . As a result, there is a strong desire to solve the problems of failure and shortened life of electronic components due to heat generation around circuit boards.

回路基板からの速やかな放熱を実現するには、従来から、回路基板自体を放熱性に優れた材料で構成し、ヒートシンクを取り付け、あるいは冷却ファンを駆動するといった手段を単一で若しくは複数組み合わせて行われている。これらの内、回路基板自体を放熱性に優れた材料、例えばダイヤモンド、窒化アルミニウム(AlN)、立方晶窒化ホウ素(cBN)等から構成する方法は、回路基板のコストを極めて高くしてしまう。また、冷却ファンの配置は、ファンという回転機器の故障、故障防止のためのメンテナンスの必要性や設置スペースの確保が難しいという問題を生じる。これに対して、放熱フィンは、熱伝導性の高い金属(例えば、アルミニウム)を用いた柱状あるいは平板状の突出部位を数多く形成することによって表面積を大きくして放熱性をより高めることのできる簡易な部材であるため、放熱部品として汎用的に用いられている(特許文献1を参照)。 In order to quickly dissipate heat from a circuit board, conventional methods have been used, either singly or in combination, such as constructing the circuit board itself from a material with excellent heat dissipation properties, attaching a heat sink, or driving a cooling fan. It is being done. Among these methods, methods in which the circuit board itself is made of a material with excellent heat dissipation properties, such as diamond, aluminum nitride (AlN), cubic boron nitride (cBN), etc., make the cost of the circuit board extremely high. Further, the arrangement of the cooling fan causes problems such as failure of the rotating device called the fan, the necessity of maintenance to prevent failure, and difficulty in securing installation space. On the other hand, heat dissipation fins are simple products that increase heat dissipation by increasing the surface area by forming many columnar or flat plate-like protrusions made of metal with high thermal conductivity (e.g. aluminum). Since it is a material that is suitable for use in heat dissipation, it is commonly used as a heat dissipation component (see Patent Document 1).

ところで、現在、世界中で、地球環境への負荷軽減を目的として、従来からのガソリン車あるいはディーゼル車を徐々に電気自動車に転換しようとする動きが活発化している。特に、フランス、オランダ、ドイツをはじめとする欧州諸国の他、中国でも、電気自動車の普及が進行してきている。電気自動車の普及には、高性能バッテリーの開発の他、多数の充電スタンドの設置などが必要となる。特に、リチウム系の自動車用バッテリーの充放電機能を高めるための技術開発が重要である。上記自動車バッテリーは、摂氏60度以上の高温下では充放電の機能を十分に発揮できないことが良く知られている。このため、先に説明した回路基板と同様、バッテリーにおいても、放熱性を高めることが重要視されている。 Incidentally, there is currently an active movement around the world to gradually convert conventional gasoline or diesel vehicles to electric vehicles with the aim of reducing the burden on the global environment. In particular, electric vehicles are becoming more popular in European countries such as France, the Netherlands, and Germany, as well as in China. The spread of electric vehicles requires the development of high-performance batteries and the installation of numerous charging stations. In particular, it is important to develop technology to improve the charging and discharging functions of lithium-based automotive batteries. It is well known that the above-mentioned automobile batteries cannot fully exhibit their charging and discharging functions at high temperatures of 60 degrees Celsius or higher. For this reason, as with the circuit board described above, it is important to improve heat dissipation in batteries as well.

バッテリーの速やかな放熱を実現するには、アルミニウム等の熱伝導性に優れた金属製の筐体に水冷パイプを配置し、当該筐体にバッテリーセルを多数配置し、バッテリーセルと筐体の底面との間に密着性のゴムシートを挟んだ構造が採用されている。このような構造のバッテリーでは、バッテリーセルは、ゴムシートを通じて筐体に伝熱して、水冷によって効果的に除熱される。 In order to quickly dissipate heat from the battery, a water cooling pipe is placed in a metal case with excellent thermal conductivity such as aluminum, and a large number of battery cells are placed in the case, and the battery cells and the bottom of the case are A structure is adopted in which an adhesive rubber sheet is sandwiched between the two. In a battery having such a structure, heat is transferred from the battery cells to the housing through the rubber sheet, and the heat is effectively removed by water cooling.

特開2008-243999JP2008-243999

しかし、上述のような従来のバッテリーにおいて、ゴムシートは、アルミニウムやグラファイトと比べて熱伝導性が低いため、バッテリーセルから筐体に効率よく熱を移動させることが難しい。また、ゴムシートに代えてグラファイト等のスペーサを挟む方法も考えられるが、複数のバッテリーセルの下面が平らではなく段差を有することから、バッテリーセルとスペーサとの間に隙間が生じ、伝熱効率が低下する。かかる一例にもみられるように、バッテリーセルは種々の形態(段差等の凹凸あるいは非平滑な表面状態を含む)をとり得ることから、バッテリーセルの種々の形態に順応可能であって高い伝熱効率を実現することの要望が高まっている。また、高い伝熱効率を実現するためには、多数のバッテリーセルの温度が均一となるように、多数のバッテリーセル各々から均一に放熱させることが望ましい。さらには、バッテリーセルの容器の材質をより軽量で弾性変形することが要望されており、バッテリーセルの軽量化やバッテリーセルを除去したときに元の形状に近い形状に戻る放熱構造体が望まれている。 However, in conventional batteries as described above, the rubber sheet has lower thermal conductivity than aluminum or graphite, making it difficult to efficiently transfer heat from the battery cells to the casing. Another option is to insert a spacer such as graphite instead of a rubber sheet, but since the bottom surfaces of multiple battery cells are not flat and have steps, a gap is created between the battery cells and the spacer, which reduces heat transfer efficiency. descend. As seen in this example, battery cells can take various forms (including unevenness such as steps or non-smooth surface conditions), so it is possible to adapt to various forms of battery cells and achieve high heat transfer efficiency. There is a growing demand for this to become a reality. Furthermore, in order to achieve high heat transfer efficiency, it is desirable to radiate heat uniformly from each of the many battery cells so that the temperature of the many battery cells becomes uniform. Furthermore, there is a demand for lighter and more elastically deformable materials for battery cell containers, and a heat dissipation structure that returns to its original shape when the battery cell is lighter and the battery cell is removed is also desired. ing.

上記課題に鑑みて、本願に先立ち、本出願人は、以下の構成を有する放熱構造体を開発し、特許出願(特願2018-218082)およびそれをパリ条約優先権の基礎とする国際出願(PCT/JP2019/042192)を行った。
熱源からの放熱を高める複数の放熱部材が連結された放熱構造体であって、
前記放熱部材は、
前記熱源からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シートと、
前記熱伝導シートの環状裏面に備えられ、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易なクッション部材と、
前記熱伝導シートの巻回しながら進行する方向に貫通する貫通路と、
を備え、
前記複数の放熱部材は、前記熱伝導シートの巻回しながら進行する方向と直交する方向に並んだ状態で連結部材により連結されている放熱構造体。
上記放熱構造体は、放熱性と柔軟性に優れる部材であり、さらに、放熱構造体と熱源との位置決めを容易かつ確実にすることも求められている。これは、バッテリーセルのみならず、回路基板、電子部品あるいは電子機器本体のような他の熱源にも通じる。
In view of the above issues, prior to filing this application, the applicant has developed a heat dissipation structure having the following configuration, and filed a patent application (Japanese Patent Application No. 2018-218082) and an international application based on the Paris Convention priority right ( PCT/JP2019/042192).
A heat dissipation structure in which a plurality of heat dissipation members are connected to increase heat dissipation from a heat source,
The heat dissipation member is
a heat conductive sheet having a spirally wound shape for transmitting heat from the heat source;
a cushion member provided on the annular back surface of the heat conductive sheet and more easily deformed to match the surface shape of the heat source than the heat conductive sheet;
a through path that penetrates in the direction in which the thermally conductive sheet advances while being wound;
Equipped with
A heat radiating structure in which the plurality of heat radiating members are connected by a connecting member while being lined up in a direction perpendicular to a direction in which the heat conductive sheet moves while being wound.
The heat dissipation structure is a member having excellent heat dissipation properties and flexibility, and is also required to be able to easily and reliably position the heat dissipation structure and the heat source. This applies not only to battery cells, but also to other heat sources such as circuit boards, electronic components, or the electronic device itself.

本発明は、上記課題に鑑みてなされたものであり、熱源の種々の形態に順応可能であって、軽量で、弾性変形性に富み、放熱効率に優れ、複数の熱源各々における放熱性の均一化を高め、かつ熱源との位置決めを容易かつ確実にできる放熱構造体、およびそれを備えるバッテリーを提供することを目的とする。 The present invention has been made in view of the above problems, and is adaptable to various forms of heat sources, is lightweight, has excellent elastic deformability, has excellent heat dissipation efficiency, and has uniform heat dissipation properties for each of a plurality of heat sources. It is an object of the present invention to provide a heat dissipation structure that can increase heat dissipation and position with a heat source easily and reliably, and a battery equipped with the same.

(1)上記目的を達成するための一実施形態に係る放熱構造体は、熱源からの放熱を高める複数の放熱部材が連結された放熱構造体であって、前記放熱部材は、前記熱源からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シートと、前記熱伝導シートの環状裏面に備えられ、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易なクッション部材と、前記熱伝導シートの巻回しながら進行する方向に貫通する貫通路と、を備え、前記複数の放熱部材をその長手方向と直交する方向に沿って並べた状態で、前記複数の放熱部材の前記長手方向の両端部を連結する連結部材と、前記複数の放熱部材の周縁の四隅部にそれぞれ配置され、前記連結部材を固定する固定部材と、を備える。
(2)別の実施形態に係る放熱構造体では、好ましくは、前記固定部材は、前記複数の放熱部材を囲むように前記四隅部にそれぞれ配置された略L字状の部材であっても良い。
(3)別の実施形態に係る放熱構造体は、好ましくは、隣接する他の前記放熱構造体と嵌合可能に構成されており、前記固定部材は、前記他の放熱構造体の前記固定部材と嵌合可能な嵌合部を備えても良い。
(4)別の実施形態に係る放熱構造体では、好ましくは、前記固定部材は、その厚さが、前記熱源からの押圧により変形した前記放熱部材の厚さより薄くなるよう形成されても良い。
(5)別の実施形態に係る放熱構造体では、好ましくは、前記クッション部材は、前記長手方向に前記貫通路を有する筒状クッション部材であって、前記熱伝導シートは、前記筒状クッション部材の外側面をスパイラル状に巻回していても良い。
(6)別の実施形態に係る放熱構造体では、好ましくは、前記クッション部材は、前記熱伝導シートの前記環状裏面に沿ってスパイラル状に巻回しているスパイラル状クッション部材であっても良い。
(7)別の実施形態に係る放熱構造体では、好ましくは、前記連結部材は、糸で構成されても良い。
(8)別の実施形態に係る放熱構造体は、好ましくは、前記熱伝導シートの表面に、当該表面に接触する熱源から当該表面への熱伝導性を高めるための熱伝導性オイルを有しても良い。
(9)別の実施形態に係る放熱構造体では、好ましくは、前記熱伝導性オイルは、シリコーンオイルと、前記シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーと、を含んでも良い。
(10)一実施形態に係るバッテリーは、冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、上述のいずれかの放熱構造体を備える。
(1) A heat dissipation structure according to an embodiment for achieving the above object is a heat dissipation structure in which a plurality of heat dissipation members are connected to enhance heat dissipation from a heat source, and the heat dissipation member is configured to increase heat dissipation from the heat source. A heat conductive sheet that is spirally wound and progresses to transmit heat, and a cushion that is provided on the annular back surface of the heat conductive sheet and that is more easily deformed to match the surface shape of the heat source than the heat conductive sheet. a member, and a through path penetrating in the direction in which the thermally conductive sheet advances while being wound, and the plurality of heat radiating members are arranged in a direction perpendicular to the longitudinal direction thereof. and a fixing member arranged at each of the four corners of the periphery of the plurality of heat radiating members to fix the coupling member.
(2) In the heat dissipation structure according to another embodiment, preferably, the fixing member may be a substantially L-shaped member arranged at each of the four corners so as to surround the plurality of heat dissipation members. .
(3) The heat dissipation structure according to another embodiment is preferably configured to be able to fit with the other adjacent heat dissipation structure, and the fixing member is the fixing member of the other heat dissipation structure. It may also include a fitting part that can be fitted with.
(4) In the heat dissipation structure according to another embodiment, preferably, the fixing member may be formed to have a thickness thinner than the thickness of the heat dissipation member deformed by pressure from the heat source.
(5) In the heat dissipation structure according to another embodiment, preferably, the cushion member is a cylindrical cushion member having the through passage in the longitudinal direction, and the heat conductive sheet is a cylindrical cushion member that has the through passage in the longitudinal direction. The outer surface may be spirally wound.
(6) In the heat dissipation structure according to another embodiment, preferably, the cushion member may be a spiral cushion member wound spirally along the annular back surface of the heat conductive sheet.
(7) In the heat dissipation structure according to another embodiment, preferably, the connecting member may be made of thread.
(8) The heat dissipation structure according to another embodiment preferably includes a thermally conductive oil on the surface of the thermally conductive sheet for increasing thermal conductivity from a heat source in contact with the surface to the surface. It's okay.
(9) In the heat dissipation structure according to another embodiment, preferably, the thermally conductive oil is made of silicone oil, which has higher thermal conductivity than the silicone oil, and is made of one or more of metals, ceramics, and carbon. It may also contain a sexual filler.
(10) The battery according to one embodiment is a battery that includes one or more battery cells as a heat source in a housing having a structure in which a cooling member flows, and wherein the battery cell is disposed between the battery cell and the housing. is provided with any of the heat dissipation structures described above.

本発明によれば、熱源の種々の形態に順応可能であって、軽量で、弾性変形性に富み、放熱効率に優れ、かつ複数の熱源各々における放熱性の均一化を高め、かつ熱源との位置決めを容易かつ確実にできる放熱構造体、およびそれを備えるバッテリーを提供できる。 According to the present invention, it is adaptable to various forms of heat sources, is lightweight, has excellent elastic deformability, has excellent heat dissipation efficiency, improves the uniformity of heat dissipation in each of a plurality of heat sources, and It is possible to provide a heat dissipation structure that can be easily and reliably positioned, and a battery equipped with the same.

図1は、第1実施形態に係る放熱構造体の平面図を示す。FIG. 1 shows a plan view of a heat dissipation structure according to a first embodiment. 図2は、図1におけるA-A線断面図およびその一部Dの拡大図をそれぞれ示す。FIG. 2 shows a cross-sectional view taken along the line AA in FIG. 1 and an enlarged view of a portion D thereof. 図3は、図1に示す放熱構造体を矢印B方向から見た側面図およびその一部Eの拡大図をそれぞれ示す。FIG. 3 shows a side view of the heat dissipation structure shown in FIG. 1 when viewed from the direction of arrow B, and an enlarged view of a portion E thereof. 図4は、図1に示す放熱構造体を矢印C方向から見た側面図およびその一部Fの拡大図をそれぞれ示す。FIG. 4 shows a side view of the heat dissipation structure shown in FIG. 1 when viewed from the direction of arrow C, and an enlarged view of a portion F thereof. 図5は、第2実施形態に係る放熱構造体の平面図を示す。FIG. 5 shows a plan view of the heat dissipation structure according to the second embodiment. 図6は、第2実施形態に係る放熱構造体の集合体の平面図およびその一部Gの拡大図をそれぞれ示す。FIG. 6 shows a plan view and an enlarged view of a part G of the heat dissipation structure assembly according to the second embodiment, respectively. 図7は、第2実施形態に係る放熱構造体の変形例1の一部を図6の拡大図と同視の図にて示す。FIG. 7 shows a part of Modified Example 1 of the heat dissipation structure according to the second embodiment in an enlarged view and the same view as in FIG. 6 . 図8は、第2実施形態に係る放熱構造体の変形例2の一部を図6の拡大図と同視の図にて示す。FIG. 8 shows a part of Modified Example 2 of the heat dissipation structure according to the second embodiment in an enlarged view and the same view as in FIG. 6 . 図9は、第3実施形態に係る放熱構造体の平面図を示す。FIG. 9 shows a plan view of a heat dissipation structure according to the third embodiment. 図10は、第4実施形態に係る放熱構造体の平面図を示す。FIG. 10 shows a plan view of a heat dissipation structure according to the fourth embodiment. 図11は、放熱構造体を構成している放熱部材の製造工程を説明するための図を示す。FIG. 11 shows diagrams for explaining the manufacturing process of the heat radiating member that constitutes the heat radiating structure. 図12は、放熱構造体を構成している放熱部材の変形例の好適な製造工程を説明するための図を示す。FIG. 12 shows a diagram for explaining a preferred manufacturing process of a modified example of the heat dissipation member constituting the heat dissipation structure. 図13は、放熱構造体を備えるバッテリーの縦断面図を示す。FIG. 13 shows a longitudinal cross-sectional view of a battery including a heat dissipation structure. 図14は、放熱構造体の上に、バッテリーセルの側面を接触させるように横置きにしたときの断面図、その一部拡大図および充放電時にバッテリーセルが膨張した際の一部断面図をそれぞれ示す。Figure 14 shows a cross-sectional view of a battery cell placed horizontally on a heat dissipation structure with its side surfaces in contact with each other, a partially enlarged view thereof, and a partial cross-sectional view of the battery cell expanded during charging and discharging. Each is shown below.

次に、本発明の各実施形態について、図面を参照して説明する。なお、以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、各実施形態の中で説明されている諸要素及びその組み合わせの全てが本発明の解決手段に必須であるとは限らない。 Next, each embodiment of the present invention will be described with reference to the drawings. It should be noted that each embodiment described below does not limit the claimed invention, and all of the various elements and combinations thereof described in each embodiment are the solution of the present invention. is not necessarily required.

1.放熱構造体
(第1実施形態)
図1は、第1実施形態に係る放熱構造体の平面図を示す。図2は、図1におけるA-A線断面図およびその一部Dの拡大図をそれぞれ示す。図3は、図1に示す放熱構造体を矢印B方向から見た側面図およびその一部Eの拡大図をそれぞれ示す。図4は、図1に示す放熱構造体を矢印C方向から見た側面図およびその一部Fの拡大図をそれぞれ示す。なお、この実施形態において、放熱部材の長手方向をY方向、当該長手方向に直交する方向をX方向とする(図1参照)。また、この実施形態において、熱源は、図2~図4の紙面上方に配置され、冷却部材は、図2~図4の紙面下方に配置されるものとする。以後の実施形態においても同様である。
1. Heat dissipation structure (first embodiment)
FIG. 1 shows a plan view of a heat dissipation structure according to a first embodiment. FIG. 2 shows a cross-sectional view taken along the line AA in FIG. 1 and an enlarged view of a portion D thereof. FIG. 3 shows a side view of the heat dissipation structure shown in FIG. 1 when viewed from the direction of arrow B, and an enlarged view of a portion E thereof. FIG. 4 shows a side view of the heat dissipation structure shown in FIG. 1 when viewed from the direction of arrow C, and an enlarged view of a portion F thereof. In this embodiment, the longitudinal direction of the heat dissipation member is the Y direction, and the direction perpendicular to the longitudinal direction is the X direction (see FIG. 1). Further, in this embodiment, the heat source is arranged above the paper plane of FIGS. 2 to 4, and the cooling member is arranged below the paper plane of FIGS. 2 to 4. The same applies to subsequent embodiments.

(1)概略構成
第1実施形態に係る放熱構造体1は、熱源からの放熱を高める複数の放熱部材20が連結された部材である。放熱部材20は、熱源からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シート21と、熱伝導シート21の環状裏面に備えられ、熱伝導シート21に比べて熱源の表面形状に合わせて変形容易なクッション部材22と、熱伝導シート21の巻回しながら進行する方向に貫通する貫通路23と、を備える。また、放熱構造体1は、複数の放熱部材20をその長手方向と直交する方向(図1に示すX方向)に沿って並べた状態で、複数の放熱部材20の長手方向(図1に示すY方向)の両端部を連結する連結部材30と、複数の放熱部材20の周縁の四隅部にそれぞれ配置され、連結部材30を固定する固定部材10と、を備える。放熱部材20は、「熱伝導部材」または「伝熱部材」と称しても良い。
(1) General configuration The heat dissipation structure 1 according to the first embodiment is a member in which a plurality of heat dissipation members 20 are connected to each other to enhance heat dissipation from a heat source. The heat dissipation member 20 is provided with a heat conductive sheet 21 having a spirally wound shape that advances while transmitting heat from the heat source, and an annular back surface of the heat conductive sheet 21, and is provided on the annular back surface of the heat conductive sheet 21. It includes a cushion member 22 that can be easily deformed according to the shape, and a through path 23 that penetrates in the direction in which the heat conductive sheet 21 advances while being wound. The heat dissipation structure 1 also includes a plurality of heat dissipation members 20 arranged in a direction perpendicular to the longitudinal direction thereof (X direction shown in FIG. 1). A connecting member 30 that connects both ends in the Y direction) and a fixing member 10 that is arranged at each of the four corners of the periphery of the plurality of heat radiating members 20 and that fixes the connecting member 30. The heat dissipation member 20 may also be referred to as a "thermal conduction member" or a "heat transfer member."

(2)熱伝導シート
熱伝導シート21は、その構成材料を問わないが、好ましくは炭素を含むシートであり、さらに好ましくは90質量%以上を炭素から構成されるシートである。例えば、熱伝導シート21に、樹脂を焼成して成るグラファイト製のフィルムを用いることもできる。ただし、熱伝導シート21は、炭素と樹脂とを含むシートであっても良い。その場合、樹脂は、合成繊維でも良く、その場合には、樹脂として好適にはアラミド繊維を用いることができる。本願でいう「炭素」は、グラファイト、グラファイトより結晶性の低いカーボンブラック、ダイヤモンド、ダイヤモンドに近い構造を持つダイヤモンドライクカーボン等の炭素(元素記号:C)から成る如何なる構造のものも含むように広義に解釈される。熱伝導シート21は、この実施形態では、樹脂に、グラファイト繊維やカーボン粒子を配合分散した材料を硬化させた薄いシートとすることができる。熱伝導シート21は、メッシュ状に編んだカーボンファイバーであっても良く、さらには混紡してあっても混編みしてあっても良い。なお、グラファイト繊維、カーボン粒子あるいはカーボンファイバーといった各種フィラーも、すべて、炭素フィラーの概念に含まれる。
(2) Thermal conductive sheet The thermally conductive sheet 21 may be made of any material, but is preferably a sheet containing carbon, more preferably a sheet composed of 90% by mass or more of carbon. For example, the heat conductive sheet 21 may be a graphite film made of fired resin. However, the heat conductive sheet 21 may be a sheet containing carbon and resin. In that case, the resin may be synthetic fiber, and in that case, aramid fiber can be suitably used as the resin. "Carbon" in this application has a broad definition that includes any structure made of carbon (element symbol: C) such as graphite, carbon black with lower crystallinity than graphite, diamond, and diamond-like carbon with a structure similar to diamond. be interpreted as In this embodiment, the heat conductive sheet 21 can be a thin sheet made of a hardened material in which graphite fibers and carbon particles are blended and dispersed in resin. The thermally conductive sheet 21 may be made of carbon fiber knitted into a mesh shape, or may be blended or knitted. Note that various fillers such as graphite fibers, carbon particles, and carbon fibers are all included in the concept of carbon filler.

熱伝導シート21を炭素と樹脂とを備えるシートとする場合には、当該樹脂が熱伝導シート21の全質量に対して50質量%を超えていても、あるいは50質量%以下であっても良い。すなわち、熱伝導シート21は、熱伝導に大きな支障が無い限り、樹脂を主材とするか否かを問わない。樹脂としては、例えば、熱可塑性樹脂を好適に使用できる。熱可塑性樹脂としては、熱源からの熱を伝導する際に溶融しない程度の高融点を備える樹脂が好ましく、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、芳香族ポリアミド(アラミド繊維)等を好適に挙げることができる。樹脂は、熱伝導シート21の成形前の状態において、炭素フィラーの隙間に、例えば粒子状あるいは繊維状に分散している。熱伝導シート21は、炭素フィラー、樹脂の他、熱伝導をより高めるためのフィラーとして、AlNあるいはダイヤモンドを分散していても良い。また、樹脂に代えて、樹脂よりも柔軟なエラストマーを用いても良い。熱伝導シート21は、また、上述のような炭素に代えて若しくは炭素と共に、金属および/またはセラミックスを含むシートとすることができる。金属としては、アルミニウム、銅、それらの内の少なくとも1つを含む合金などの熱伝導性の比較的高いものを選択できる。また、セラミックスとしては、Al、AlN、cBN、hBNなどの熱伝導性の比較的高いものを選択できる。 When the thermally conductive sheet 21 is a sheet comprising carbon and resin, the resin may be more than 50% by mass or less than 50% by mass based on the total mass of the thermally conductive sheet 21. . That is, the heat conductive sheet 21 may be made of resin or not, as long as there is no major problem in heat conduction. As the resin, for example, thermoplastic resin can be suitably used. The thermoplastic resin is preferably a resin with a high melting point that does not melt when conducting heat from a heat source, such as polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyamideimide (PAI), aromatic Preferred examples include group polyamides (aramid fibers). The resin is dispersed, for example, in the form of particles or fibers in the gaps between the carbon fillers before the thermally conductive sheet 21 is formed. In addition to carbon filler and resin, the heat conductive sheet 21 may have AlN or diamond dispersed therein as a filler to further enhance heat conduction. Furthermore, instead of resin, an elastomer that is more flexible than resin may be used. The thermally conductive sheet 21 can also be a sheet containing metal and/or ceramics instead of or in addition to carbon as described above. As the metal, a metal with relatively high thermal conductivity such as aluminum, copper, or an alloy containing at least one of them can be selected. Further, as the ceramic, one having relatively high thermal conductivity such as Al 2 O 3 , AlN, cBN, hBN, etc. can be selected.

熱伝導シート21は、導電性に優れるか否かは問わない。熱伝導シート21の熱伝導率は、好ましくは10W/mK以上である。この実施形態では、熱伝導シート21は、好ましくは、グラファイト製のフィルムであり、熱伝導性と導電性に優れる材料から成る。熱伝導シート21は、湾曲性(若しくは屈曲性)に優れるシートであるのが好ましく、その厚さに制約はないが、0.02~3mmが好ましく、0.03~0.5mmがより好ましい。ただし、熱伝導シート21の熱伝導率は、その厚さが増加するほど厚さ方向で低下するが、熱伝送量は厚い方が多くなるため、シートの強度、可撓性および熱伝導性を総合的に考慮して、その厚さを決定するのが好ましい。 It does not matter whether the thermally conductive sheet 21 has excellent electrical conductivity or not. The thermal conductivity of the thermally conductive sheet 21 is preferably 10 W/mK or more. In this embodiment, the thermally conductive sheet 21 is preferably a graphite film, and is made of a material with excellent thermal conductivity and electrical conductivity. The thermally conductive sheet 21 is preferably a sheet with excellent curvature (or flexibility), and its thickness is not limited, but is preferably 0.02 to 3 mm, more preferably 0.03 to 0.5 mm. However, the thermal conductivity of the thermally conductive sheet 21 decreases in the thickness direction as the thickness increases, but the amount of heat transfer increases as the thickness increases, so the strength, flexibility, and thermal conductivity of the sheet are It is preferable to decide the thickness by taking comprehensive consideration.

(3)クッション部材
クッション部材22の重要な機能は変形容易性と、回復力である。回復力は、弾性変形性による。変形容易性は、熱源の形状に追従するために必要な特性であり、特にリチウムイオンバッテリーなどの半固形物、液体的性状も持つ内容物などを変形しやすいパッケージに収めてあるようなバッテリーセルの場合には、設計寸法的にも不定形または寸法精度があげられない場合が多い。このため、クッション部材22の変形容易性や追従力を保持するための回復力の保持は重要である。
(3) Cushion member The important functions of the cushion member 22 are ease of deformation and resilience. The recovery force is due to elastic deformability. Ease of deformation is a necessary property to follow the shape of the heat source, especially for battery cells such as lithium-ion batteries whose semi-solid or liquid contents are housed in easily deformable packages. In this case, the design dimensions are often irregular or dimensional accuracy cannot be achieved. Therefore, it is important to maintain the resilience of the cushion member 22 to maintain its deformability and follow-up force.

クッション部材22は、この実施形態では貫通路23を備える筒状クッション部材である。クッション部材22は、熱伝導シート21に接触する熱源が平坦でない場合でも、熱伝導シート21と熱源との接触を良好にする。さらに、貫通路23は、クッション部材22の変形を容易にし、加えて放熱構造体1の軽量化に寄与し、また、熱伝導シート21と熱源との接触を高める機能を有する。クッション部材22は、熱伝導シート21に加わる荷重によって熱伝導シート21が破損等しないようにする保護部材としての機能も有する。この実施形態では、クッション部材22は、熱伝導シート21に比べて低熱伝導性の部材である。なお、この実施形態では、貫通路23は、断面円形状に形成されているが、貫通路23の断面形状は円に限定されず、例えば、多角形、楕円形、半円形、頂点が丸みを帯びた略多角形等であっても良い。また、貫通路23は、例えば、断面円形状が上下または左右に2つに分割された2つの断面半円形状の貫通路等、複数の貫通路から構成されていても良い。 The cushion member 22 is a cylindrical cushion member including a through passage 23 in this embodiment. The cushion member 22 makes good contact between the heat conductive sheet 21 and the heat source even when the heat source that contacts the heat conductive sheet 21 is not flat. Furthermore, the through passage 23 has the function of facilitating deformation of the cushion member 22, contributing to weight reduction of the heat dissipation structure 1, and increasing contact between the heat conductive sheet 21 and the heat source. The cushion member 22 also has a function as a protection member that prevents the heat conductive sheet 21 from being damaged due to the load applied to the heat conductive sheet 21. In this embodiment, the cushion member 22 is a member with lower thermal conductivity than the thermally conductive sheet 21. In this embodiment, the through passage 23 is formed to have a circular cross section, but the cross sectional shape of the through passage 23 is not limited to a circle, and may be, for example, polygonal, elliptical, semicircular, or with a rounded apex. It may also be a substantially curved polygon. Further, the through-path 23 may be composed of a plurality of through-paths, such as a through-path with a circular cross-section divided into two halves vertically or horizontally, each having a semicircular cross-section.

クッション部材22は、好ましくは、シリコーンゴム、ウレタンゴム、イソプレンゴム、エチレンプロピレンゴム、天然ゴム、エチレンプロピレンジエンゴム、ニトリルゴム(NBR)あるいはスチレンブタジエンゴム(SBR)等の熱硬化性エラストマー; ウレタン系、エステル系、スチレン系、オレフィン系、ブタジエン系、フッ素系等の熱可塑性エラストマー、あるいはそれらの複合物等を含むように構成される。クッション部材22は、熱伝導シート21を伝わる熱によって溶融あるいは分解等せずにその形態を維持できる程度の耐熱性の高い材料から構成されるのが好ましい。この実施形態では、クッション部材22は、より好ましくは、ウレタン系エラストマー中にシリコーンを含浸したもの、あるいはシリコーンゴムにより構成される。クッション部材22は、その熱伝導性を少しでも高めるために、ゴム中にAlN、cBN、hBN、ダイヤモンドの粒子等に代表されるフィラーを分散して構成されていても良い。クッション部材22は、その内部に気泡を含むものの他、気泡を含まないものでも良い。また、「クッション部材」は、柔軟性に富み、熱源の表面に密着可能に弾性変形可能な部材を意味し、かかる意味では「ゴム状弾性体」と読み替えることもできる。さらに、クッション部材22の変形例としては、上記ゴム状弾性体ではなく、金属を用いて構成することもできる。例えば、クッション部材22は、バネ鋼で構成することも可能である。さらに、クッション部材22として、コイルバネを配置することも可能である。また、スパイラル状に巻いた金属をバネ鋼にしてクッション部材として熱伝導シート21の環状裏面に配置しても良い。また、クッション部材22は、樹脂やゴム等から形成されたスポンジあるいはソリッド(スポンジのような多孔質ではない構造のもの)で構成することも可能である。 The cushion member 22 is preferably made of a thermosetting elastomer such as silicone rubber, urethane rubber, isoprene rubber, ethylene propylene rubber, natural rubber, ethylene propylene diene rubber, nitrile rubber (NBR), or styrene butadiene rubber (SBR); urethane-based , ester-based, styrene-based, olefin-based, butadiene-based, fluorine-based, etc. thermoplastic elastomers, or composites thereof. The cushion member 22 is preferably made of a material with high heat resistance that allows it to maintain its shape without melting or decomposing due to the heat transmitted through the heat conductive sheet 21. In this embodiment, the cushion member 22 is more preferably made of a urethane elastomer impregnated with silicone or silicone rubber. The cushion member 22 may be configured by dispersing filler such as AlN, cBN, hBN, diamond particles, etc. in rubber in order to increase its thermal conductivity as much as possible. The cushion member 22 may contain air bubbles or may not contain air bubbles. In addition, the term "cushion member" refers to a member that is highly flexible and can be elastically deformed so as to be in close contact with the surface of a heat source, and in this sense, it can also be read as a "rubber-like elastic body." Further, as a modification of the cushion member 22, it may be constructed using metal instead of the rubber-like elastic body described above. For example, the cushion member 22 may be made of spring steel. Furthermore, it is also possible to arrange a coil spring as the cushion member 22. Alternatively, a spirally wound metal may be made of spring steel and placed on the annular back surface of the heat conductive sheet 21 as a cushion member. Further, the cushion member 22 can also be made of a sponge or solid (having a non-porous structure like a sponge) made of resin, rubber, or the like.

(4)連結部材
連結部材30は、複数の放熱部材20をその長手方向と直交する方向に沿って並べた状態で、複数の放熱部材20の長手方向の両端部を連結する部材である。連結部材30は、例えば、糸やゴム等、少なくとも複数の放熱部材20の間に位置する部分が変形自在な材料で構成された部材である。連結部材30は、糸で構成されることが好ましく、熱源からの放熱による温度上昇に耐え得る糸であることがより好ましい。より具体的には、連結部材30は、120℃程度の高温に耐え得る糸であって、天然繊維、合成繊維、カーボン繊維、金属繊維等の繊維からなる撚糸で構成されることが好ましい。この実施形態において、連結部材30は、ミシン等を用いて複数の放熱部材20を後述の固定部材10に縫い付けて連結させる部材である。連結部材30の縫い方は、特に制約されず、手縫い、本縫い、千鳥縫い、単環縫い、二重環縫い、縁かがり縫い、扁平縫い、安全縫い、オーバーロック等の如何なる縫い方でも良い。また、JIS L 0120の規定する表示記号によれば、好適な縫い方として、「101」、「209」、「301」、「304」、「401」、「406」、「407」、「410」、「501」、「502」、「503」、「504」、「505」、「509」、「512」、「514」、「602」および「605」の各種縫い目を構成する縫い方を例示できる。放熱構造体1は、放熱部材20が熱源からの押圧により圧縮され扁平した形態となっても、放熱部材20の変形に追従して連結部材30が撓むため、熱源に追従・密着することができる。
(4) Connecting Member The connecting member 30 is a member that connects both ends of the plurality of heat radiating members 20 in the longitudinal direction in a state where the plurality of heat radiating members 20 are arranged along a direction perpendicular to the longitudinal direction thereof. The connecting member 30 is a member made of a material such as thread or rubber, in which at least a portion located between the plurality of heat dissipating members 20 is deformable. The connecting member 30 is preferably made of thread, and more preferably is a thread that can withstand temperature increases due to heat dissipation from the heat source. More specifically, the connecting member 30 is preferably made of twisted yarn that can withstand high temperatures of about 120° C. and is made of fibers such as natural fibers, synthetic fibers, carbon fibers, and metal fibers. In this embodiment, the connecting member 30 is a member that connects a plurality of heat dissipating members 20 to a fixing member 10, which will be described later, by sewing them using a sewing machine or the like. The method of sewing the connecting member 30 is not particularly limited, and may be any sewing method such as hand stitching, lock stitching, zigzag stitching, single chain stitching, double chain stitching, overedge stitching, flat stitching, safety stitching, overlock stitching, etc. Furthermore, according to the display symbols stipulated by JIS L 0120, suitable sewing methods include "101", "209", "301", "304", "401", "406", "407", and "410". ”, “501”, “502”, “503”, “504”, “505”, “509”, “512”, “514”, “602” and “605”. I can give an example. In the heat dissipation structure 1, even if the heat dissipation member 20 is compressed and becomes flat due to the pressure from the heat source, the connecting member 30 bends following the deformation of the heat dissipation member 20, so that the heat dissipation structure 1 cannot follow and adhere to the heat source. can.

(5)固定部材
固定部材10は、連結部材30を固定する部材である。固定部材10は、好ましくは、複数の放熱部材20を長手方向と直交する方向に沿って並べた状態において、複数の放熱部材20を囲むように、複数の放熱部材20の周縁の四隅部にそれぞれ配置された略L字状の部材である。固定部材10は、好ましくは、放熱部材20の長手方向に沿う一辺と当該長手方向と直交する方向(放熱部材20の短手方向)に沿う一辺とからそれぞれ形成される4つの略L字状の部材である。固定部材10は、略L字状を形成する2辺が同一幅であっても良いし、当該2辺がそれぞれ異なる幅であっても良い。
(5) Fixing member The fixing member 10 is a member that fixes the connecting member 30. The fixing member 10 is preferably provided at each of the four corners of the periphery of the plurality of heat radiating members 20 so as to surround the plurality of heat radiating members 20 when the plurality of heat radiating members 20 are arranged in a direction perpendicular to the longitudinal direction. It is a substantially L-shaped member arranged. Preferably, the fixing member 10 has four approximately L-shaped parts each formed by one side along the longitudinal direction of the heat radiating member 20 and one side along the direction perpendicular to the longitudinal direction (the lateral direction of the heat radiating member 20). It is a member. The fixing member 10 may have two sides forming a substantially L-shape with the same width, or may have different widths.

固定部材10は、好ましくは、4つの略L字状部材のうち、複数の放熱部材20の長手方向の一端部側(例えば、図1に示す上側)に配置された2つの部材が、複数の放熱部材20の当該一端部とともに、ミシン等を用いて連結部材30で縫い付けられる。また、固定部材10は、好ましくは、4つの略L字状部材のうち、複数の放熱部材20の長手方向の他端部側(例えば、図1に示す下側)に配置された2つの部材が、複数の放熱部材20の当該他端部とともに、ミシン等を用いて連結部材30で縫い付けられる。このようにして、複数の放熱部材20は、固定部材10および連結部材30により連結される。この実施形態において、固定部材10は、4つの略L字状部材が、複数の放熱部材20の長手方向端部より外側、かつ複数の放熱部材20の短手方向端部より外側に配置される。すなわち、固定部材10は、放熱部材20と重なることなく配置される。固定部材10は、好ましくは、樹脂あるいはゴムで形成され、より好ましくは、PETフィルムで形成される。 Preferably, in the fixing member 10, among the four substantially L-shaped members, two members disposed at one end side in the longitudinal direction (for example, the upper side shown in FIG. 1) of the plurality of heat dissipating members 20 are The connecting member 30 is sewn together with the one end of the heat dissipating member 20 using a sewing machine or the like. Further, the fixing member 10 preferably includes two members disposed on the other longitudinal end side (for example, the lower side shown in FIG. 1) of the plurality of heat dissipating members 20 among the four substantially L-shaped members. is sewn together with the other ends of the plurality of heat radiating members 20 by the connecting member 30 using a sewing machine or the like. In this way, the plurality of heat radiating members 20 are connected by the fixing member 10 and the connecting member 30. In this embodiment, the fixing member 10 has four substantially L-shaped members disposed outside the longitudinal ends of the plurality of heat radiating members 20 and outside the lateral ends of the plurality of heat radiating members 20. . That is, the fixing member 10 is arranged without overlapping the heat radiating member 20. The fixing member 10 is preferably made of resin or rubber, and more preferably made of PET film.

固定部材10は、複数の放熱部材20を連結した連結部材30を固定することにより、放熱構造体1における複数の放熱部材20の位置決めを可能とする。高い伝熱効率を実現するためには、多数の熱源各々の温度が均一となるように、多数の熱源各々から均一に放熱させることが望ましい。そのためには、各熱源に接触する放熱部材20の数が均一となるように、複数の放熱部材20を配置することが好ましい。放熱構造体1は、固定部材10および連結部材30により複数の放熱部材20が位置決めされるため、各熱源に放熱部材20を確実に接触するようにできる。したがって、放熱構造体1は、多数の熱源各々における放熱性の均一化を高めることができ、高い伝熱効率を実現できる。なお、固定部材10は、熱源からの放熱により変形しない材料であれば、樹脂あるいはゴムに限定されず、例えば、金属、プラスチック、木材、セラミックス等で形成されていても良い。 The fixing member 10 makes it possible to position the plurality of heat radiating members 20 in the heat radiating structure 1 by fixing the connecting member 30 that connects the plurality of heat radiating members 20. In order to achieve high heat transfer efficiency, it is desirable to radiate heat uniformly from each of the multiple heat sources so that the temperature of each of the multiple heat sources becomes uniform. For this purpose, it is preferable to arrange a plurality of heat radiating members 20 so that the number of heat radiating members 20 in contact with each heat source is uniform. In the heat dissipation structure 1, since the plurality of heat dissipation members 20 are positioned by the fixing member 10 and the connecting member 30, the heat dissipation members 20 can be reliably brought into contact with each heat source. Therefore, the heat dissipation structure 1 can improve the uniformity of heat dissipation in each of the many heat sources, and can realize high heat transfer efficiency. Note that the fixing member 10 is not limited to resin or rubber, and may be made of metal, plastic, wood, ceramics, etc., as long as it does not deform due to heat radiation from the heat source.

放熱部材20間の距離L1は、放熱部材20が熱源からの押圧を受けて潰れる際に、狭くなる。放熱部材20がほとんど潰れない場合には、熱伝導シート21と熱源等との密着性が低くなる可能性がある。かかるリスクを低減するのに適切な放熱部材20の上下方向、すなわち熱源から冷却部材を備える冷却部位に向かう方向に圧縮されたときの厚みは、少なくとも、放熱部材20の管径(=円換算直径:D)の80%である。ここで、「円換算直径」とは、放熱部材20をその長手方向と垂直に切断したときの管断面の面積と同じ面積の真円の直径を意味する。放熱部材20が真円の断面をもった円筒の場合には、その直径は円換算直径と同一である。放熱部材20は、上記の圧縮を受けると、熱源および冷却部位と接する面を平面とし、放熱部材20間の距離L1の方向を略円弧断面とするように変形するとみなすことができる(図2Dの拡大図を参照)。距離L1を十分に大きくすれば、放熱部材20は隣接する放熱部材20と接触しない。逆に、隙間L1が小さすぎると、放熱部材20が上下方向に圧縮されても、隣接する放熱部材20に接触して、それ以上に潰れなくなる可能性がある。距離L1を放熱部材20の円換算直径Dの11.4%以上にすれば、放熱部材20が円換算直径Dの80%の厚さに圧縮されて変形する際に、放熱部材20同士が接触して、当該変形の障害となることを防止できる。よって、放熱構造体1は、放熱部材20間の距離L1が放熱部材20の円換算直径Dの11.4%以上となるように、複数の放熱部材20が配置されることが好ましい。ただし、距離L1が小さいほど、連結部材30で連結する際に複数の放熱部材20をより安定して連結することができる。これらの点を考慮して、距離L1が設定されることがより好ましい。なお、この実施形態では、距離L1を0.114Dとしている。 The distance L1 between the heat radiating members 20 becomes narrower when the heat radiating members 20 are crushed under pressure from the heat source. If the heat dissipation member 20 is hardly crushed, there is a possibility that the adhesion between the heat conductive sheet 21 and the heat source etc. will be reduced. The thickness of the heat dissipating member 20 when compressed in the vertical direction, that is, in the direction from the heat source to the cooling part provided with the cooling member, is at least the tube diameter of the heat dissipating member 20 (=circular equivalent diameter) to reduce this risk. :D) is 80%. Here, the "circular equivalent diameter" means the diameter of a perfect circle having the same area as the area of the tube cross section when the heat radiating member 20 is cut perpendicularly to its longitudinal direction. When the heat dissipation member 20 is a cylinder with a perfect circular cross section, its diameter is the same as the equivalent circle diameter. When the heat dissipation member 20 is subjected to the above compression, it can be considered that the heat dissipation member 20 deforms so that the surface in contact with the heat source and the cooling part becomes a plane, and the direction of the distance L1 between the heat dissipation members 20 becomes a substantially circular arc cross section (as shown in FIG. 2D). (see enlarged view). If the distance L1 is made sufficiently large, the heat radiating member 20 will not come into contact with the adjacent heat radiating member 20. On the other hand, if the gap L1 is too small, even if the heat radiating member 20 is compressed in the vertical direction, it may come into contact with an adjacent heat radiating member 20 and may not be crushed any further. If the distance L1 is set to 11.4% or more of the circular diameter D of the heat dissipating member 20, the heat dissipating members 20 will come into contact with each other when the heat dissipating member 20 is compressed and deformed to a thickness of 80% of the circular diameter D. This can prevent the deformation from becoming an obstacle. Therefore, in the heat dissipation structure 1, it is preferable that the plurality of heat dissipation members 20 are arranged such that the distance L1 between the heat dissipation members 20 is 11.4% or more of the equivalent circular diameter D of the heat dissipation members 20. However, the smaller the distance L1 is, the more stably the plurality of heat radiating members 20 can be connected when connected by the connecting member 30. It is more preferable to set the distance L1 in consideration of these points. Note that in this embodiment, the distance L1 is 0.114D.

固定部材10は、好ましくは、その厚さT1が、熱源からの押圧により変形した放熱部材20の厚さ(0.8D)より薄くなるよう形成される(図3Eの拡大図および図4Fの拡大図を参照)。このように放熱構造体1を構成することにより、熱源からの押圧により放熱部材20が上下方向に圧縮されても、熱源が固定部材10に接触してそれ以上に潰れなくなる虞を抑制でき、放熱部材20が円換算直径Dの80%の厚さに圧縮されて変形する際に、当該変形の障害となることを防止できる。なお、放熱部材20の冷却部位側(図3および図4の下側)の面は、固定部材10の冷却部位側の面と同じ高さか、若しくは冷却部位側に若干突出させているのが好ましい。固定部材10を冷却部位に接触させやすいからである。 The fixing member 10 is preferably formed so that its thickness T1 is thinner than the thickness (0.8D) of the heat dissipating member 20 deformed by the pressure from the heat source (enlarged view of FIG. 3E and enlarged view of FIG. 4F). (see diagram). By configuring the heat dissipation structure 1 in this way, even if the heat dissipation member 20 is compressed in the vertical direction due to pressure from the heat source, it is possible to suppress the possibility that the heat source will come into contact with the fixing member 10 and not be crushed further, and the heat dissipation When the member 20 is compressed and deformed to a thickness of 80% of the equivalent circular diameter D, it can be prevented from becoming an obstacle to the deformation. Note that it is preferable that the surface of the heat dissipation member 20 on the cooling site side (the lower side of FIGS. 3 and 4) be at the same height as the surface of the fixing member 10 on the cooling site side, or that it slightly protrudes toward the cooling site side. . This is because it is easier to bring the fixing member 10 into contact with the cooling region.

(6)熱伝導性オイル
熱伝導性オイルは、好ましくは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。熱伝導シート21は、微視的に、隙間(孔あるいは凹部)を有する。通常、当該隙間には空気が存在し、熱伝導性に悪影響を及ぼす可能性が有る。熱伝導性オイルは、その隙間を埋めて、空気に代わって存在することになり、熱伝導シート21の熱伝導性を向上させる機能を有する。
(6) Thermal conductive oil The thermally conductive oil preferably includes silicone oil and a thermally conductive filler that has higher thermal conductivity than silicone oil and is made of one or more of metals, ceramics, or carbon. The thermally conductive sheet 21 has microscopic gaps (holes or recesses). Usually, air exists in the gap, which may have an adverse effect on thermal conductivity. The thermally conductive oil fills the gap and exists in place of air, and has the function of improving the thermal conductivity of the thermally conductive sheet 21.

熱伝導性オイルは、熱伝導シート21の表面、少なくとも熱源と熱伝導シート21とが接触する面に備えられている。本願において、熱伝導性オイルの「オイル」は、非水溶性の常温(20~25℃の範囲の任意の温度)で液状若しくは半固形状の可燃物質をいう。「オイル」という文言に代え、「グリース」あるいは「ワックス」を用いることもできる。熱伝導性オイルは、熱源から熱伝導シート21に熱を伝える際に熱伝導の障害にならない性質のオイルである。熱伝導性オイルには、炭化水素系のオイル、シリコーンオイルを用いることができる。熱伝導性オイルは、好ましくは、シリコーンオイルと、シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーとを含む。 The thermally conductive oil is provided on the surface of the thermally conductive sheet 21, at least on the surface where the heat source and the thermally conductive sheet 21 come into contact. In the present application, "oil" of thermally conductive oil refers to a water-insoluble combustible substance that is liquid or semi-solid at room temperature (any temperature in the range of 20 to 25° C.). Instead of the word "oil", "grease" or "wax" can also be used. Thermal conductive oil is an oil that does not impede heat conduction when heat is transferred from the heat source to the heat conductive sheet 21. Hydrocarbon oil and silicone oil can be used as the thermally conductive oil. The thermally conductive oil preferably includes silicone oil and a thermally conductive filler that has higher thermal conductivity than silicone oil and is made of one or more of metals, ceramics, or carbon.

シリコーンオイルは、好ましくは、シロキサン結合が2000以下の直鎖構造の分子から成る。シリコーンオイルは、ストレートシリコーンオイルと、変性シリコーンオイルとに大別される。ストレートシリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルを例示できる。変性シリコーンオイルとしては、反応性シリコーンオイル、非反応性シリコーンオイルを例示できる。反応性シリコーンオイルは、例えば、アミノ変性タイプ、エポキシ変性タイプ、カルボキシ変性タイプ、カルビノール変性タイプ、メタクリル変性タイプ、メルカプト変性タイプ、フェノール変性タイプ等の各種シリコーンオイルを含む。非反応性シリコーンオイルは、ポリエーテル変性タイプ、メチルスチリル変性タイプ、アルキル変性タイプ、高級脂肪酸エステル変性タイプ、親水性特殊変性タイプ、高級脂肪酸含有タイプ、フッ素変性タイプ等の各種シリコーンオイルを含む。シリコーンオイルは、耐熱性、耐寒性、粘度安定性、熱伝導性に優れたオイルであるため、熱伝導シート21の表面に塗布して、熱源と熱伝導シート21との間に介在させる熱伝導性オイルとして特に好適である。 The silicone oil preferably consists of molecules with a linear structure having 2000 or less siloxane bonds. Silicone oil is broadly classified into straight silicone oil and modified silicone oil. Examples of straight silicone oil include dimethyl silicone oil, methylphenyl silicone oil, and methyl hydrogen silicone oil. Examples of the modified silicone oil include reactive silicone oil and non-reactive silicone oil. The reactive silicone oil includes various silicone oils such as amino-modified type, epoxy-modified type, carboxy-modified type, carbinol-modified type, methacrylic-modified type, mercapto-modified type, and phenol-modified type. Non-reactive silicone oils include various silicone oils such as polyether-modified types, methylstyryl-modified types, alkyl-modified types, higher fatty acid ester-modified types, hydrophilic specially modified types, higher fatty acid-containing types, and fluorine-modified types. Silicone oil is an oil with excellent heat resistance, cold resistance, viscosity stability, and thermal conductivity, so it is applied to the surface of the heat conductive sheet 21 to provide heat conduction between the heat source and the heat conductive sheet 21. It is particularly suitable as a sex oil.

熱伝導性オイルは、好ましくは、油分以外に、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーを含む。金属としては、金、銀、銅、アルミニウム、ベリリウム、タングステンなどを例示できる。セラミックスとしては、アルミナ、窒化アルミニウム、キュービック窒化ホウ素、ヘキサゴナル窒化ホウ素などを例示できる。炭素としては、ダイヤモンド、グラファイト、ダイヤモンドライクカーボン、アモルファスカーボン、カーボンナノチューブなどを例示できる。 The thermally conductive oil preferably contains, in addition to oil, a thermally conductive filler made of one or more of metals, ceramics, and carbon. Examples of metals include gold, silver, copper, aluminum, beryllium, and tungsten. Examples of ceramics include alumina, aluminum nitride, cubic boron nitride, hexagonal boron nitride, and the like. Examples of carbon include diamond, graphite, diamond-like carbon, amorphous carbon, and carbon nanotubes.

熱伝導性オイルは、熱源と熱伝導シート21との間に介在する他、熱伝導シート21と後述のバッテリーの筐体との間に介在する方が好ましい。熱伝導性オイルは、熱伝導シート21の全面に塗布されていても、熱伝導シート21の一部分に塗布されていても良い。熱伝導性オイルを熱伝導シート21に存在させる方法は、特に制約はなく、スプレーを用いた噴霧、刷毛等を用いた塗布、熱伝導性オイル中への熱伝導シート21の浸漬など、如何なる方法によるものでも良い。なお、熱伝導性オイルは、放熱構造体1あるいは後述のバッテリーにとって必須の構成ではなく、好適に備えることのできる追加的な構成である。これは、以後の実施形態においても同様である。 The thermally conductive oil is preferably interposed not only between the heat source and the thermally conductive sheet 21 but also between the thermally conductive sheet 21 and a battery casing, which will be described later. The thermally conductive oil may be applied to the entire surface of the thermally conductive sheet 21 or to a portion of the thermally conductive sheet 21. There are no particular restrictions on the method of making the thermally conductive oil present in the thermally conductive sheet 21, and any method may be used, such as spraying with a sprayer, application using a brush, etc., or dipping the thermally conductive sheet 21 into the thermally conductive oil. It may also be based on Note that the thermally conductive oil is not an essential component for the heat dissipation structure 1 or the battery described below, but is an additional component that can be suitably provided. This also applies to subsequent embodiments.

放熱構造体1は、複数の放熱部材20の長手方向(図1に示すY方向)の両端部を連結した連結部材30が固定部材10に固定されることにより、複数の放熱部材20が固定部材10に固定されている。これにより、放熱部材20の長手方向の両端部が固定された状態で熱源からの押圧を受けて潰れるため、複数の熱源の下端部が平坦でない場合でも、熱伝導シート21と当該下端部との接触が良好になる。放熱構造体1は、放熱部材20が固定部材10および連結部材30により位置決めされているので、熱源からの押圧を受けて潰れた際にも放熱部材20間の距離L1のばらつきが小さくなる。よって、放熱構造体1は、多数の熱源各々における放熱性の均一化を高めることができる。また、放熱構造体1は、各放熱部材20がクッション部材22の外側面に熱伝導シート21をスパイラル状に巻いた構造を有しているため、クッション部材22の変形を過度に拘束しない。なお、複数の放熱部材20は、放熱部材20間の距離L1が等間隔となるよう配置されることに限定されない。放熱構造体1は、好ましくは、複数の熱源のうち温度の高い熱源の位置に放熱部材20を密集させるように、距離L1を変化させて配置する。すなわち、放熱構造体1は、温度の高い熱源に接触する放熱部材20の数がその他の熱源に接触する放熱部材20の数より多くなるように、当該温度の高い熱源に接触する放熱部材20間の距離L1を小さくすることが好ましい。このように、放熱構造体1は、熱源の形態等に応じて、複数の熱源各々における放熱性が均一となるように、容易かつ確実に熱源との位置決めを行うことができる。 In the heat dissipation structure 1, a connecting member 30 connecting both ends of the plurality of heat dissipation members 20 in the longitudinal direction (Y direction shown in FIG. 1) is fixed to the fixed member 10, so that the plurality of heat dissipation members 20 are connected to It is fixed at 10. As a result, both ends of the heat dissipating member 20 in the longitudinal direction are fixed and crushed under pressure from the heat sources, so even if the lower ends of the plurality of heat sources are not flat, the thermal conductive sheet 21 and the lower ends thereof are flat. Good contact. In the heat dissipation structure 1, since the heat dissipation members 20 are positioned by the fixing member 10 and the connecting member 30, the variation in the distance L1 between the heat dissipation members 20 is reduced even when the heat dissipation structure 1 is crushed under pressure from a heat source. Therefore, the heat dissipation structure 1 can improve the uniformity of heat dissipation in each of the multiple heat sources. Moreover, since each heat dissipation member 20 of the heat dissipation structure 1 has a structure in which the heat conductive sheet 21 is spirally wound around the outer surface of the cushion member 22, deformation of the cushion member 22 is not excessively restrained. Note that the plurality of heat radiating members 20 are not limited to being arranged so that the distance L1 between the heat radiating members 20 is equal. The heat dissipation structure 1 is preferably arranged with a distance L1 varied so that the heat dissipation members 20 are concentrated at the position of the heat source with the highest temperature among the plurality of heat sources. That is, the heat dissipation structure 1 is arranged such that the number of heat dissipation members 20 that come into contact with a high temperature heat source is greater than the number of heat dissipation members 20 that come into contact with other heat sources. It is preferable to make the distance L1 small. In this manner, the heat dissipation structure 1 can be easily and reliably positioned with respect to the heat sources so that the heat dissipation properties of each of the plurality of heat sources are uniform, depending on the form of the heat sources and the like.

(第2実施形態)
次に、第2実施形態に係る放熱構造体について説明する。先の実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Second embodiment)
Next, a heat dissipation structure according to a second embodiment will be described. Portions common to those in the previous embodiment are given the same reference numerals and redundant explanation will be omitted.

図5は、第2実施形態に係る放熱構造体の平面図を示す。図6は、第2実施形態に係る放熱構造体の集合体の平面図およびその一部Gの拡大図をそれぞれ示す。 FIG. 5 shows a plan view of the heat dissipation structure according to the second embodiment. FIG. 6 shows a plan view and an enlarged view of a part G of the heat dissipation structure assembly according to the second embodiment, respectively.

第2実施形態に係る放熱構造体1aは、第1実施形態に係る放熱構造体1と類似の構造を有するが、固定部材10に代えて、固定部材10aを備える点において、第1実施形態に係る放熱構造体1と異なる。 The heat dissipation structure 1a according to the second embodiment has a similar structure to the heat dissipation structure 1 according to the first embodiment, but is different from the first embodiment in that it includes a fixing member 10a instead of the fixing member 10. This is different from the heat dissipation structure 1.

放熱構造体1aは、他の放熱構造体1aと嵌合可能に構成される。すなわち、放熱構造体1aは、複数の他の放熱構造体1aと嵌合することにより、放熱構造体の集合体70(以下、単に「集合体70」とも称する。)を形成することができる(図6を参照)。このように形成された集合体70は、複数の熱源の下端部の面積が大きい場合であっても、熱源の下端部と熱伝導シート21とを確実に接触させることができる。よって、放熱構造体1aは、放熱の対象となる複数の熱源の下端部の面積に応じて、少なくとも1以上の他の放熱構造体1aと嵌合して集合体70を形成することができる。なお、図6では、集合体70は、4つの放熱構造体1aが嵌合されて形成されているが、集合体70を形成する放熱構造体1aの個数は、特に限定されない。 The heat dissipation structure 1a is configured to be able to fit into another heat dissipation structure 1a. That is, the heat dissipation structure 1a can form a heat dissipation structure assembly 70 (hereinafter also simply referred to as "aggregate 70") by fitting with a plurality of other heat dissipation structures 1a ( (see Figure 6). The assembly 70 formed in this manner can ensure that the lower ends of the heat sources are in contact with the heat conductive sheet 21 even if the lower ends of the plurality of heat sources have a large area. Therefore, the heat dissipation structure 1a can be fitted with at least one other heat dissipation structure 1a to form the assembly 70, depending on the area of the lower end portions of the plurality of heat sources to be heat dissipated. In addition, although the assembly 70 is formed by fitting four heat dissipation structures 1a in FIG. 6, the number of heat dissipation structures 1a forming the assembly 70 is not particularly limited.

固定部材10aは、他の放熱構造体1aの固定部材10aと嵌合可能な嵌合部15を備える。嵌合部15は、放熱構造体1aが集合体70を形成する際に隣接する他の放熱構造体1aの固定部材10aと嵌合可能な部位である。この実施形態において、嵌合部15は、矩形状に突出した部位或いは矩形状に窪んだ部位である(図6Gの拡大図を参照)。集合体70は、例えば、放熱構造体1aの固定部材10aの矩形状に突出した嵌合部15と、隣接する他の放熱構造体1aの固定部材10aの矩形状に窪んだ嵌合部15とが嵌合する(所謂、パズル式に連結する)ことにより、形成される。なお、嵌合部15は、隣接する少なくとも1の他の放熱構造体1aの嵌合部15と嵌合可能であれば、その位置および個数に制約はない。放熱構造体1aは、固定部材10a以外の構成は、第1実施形態に係る放熱構造体1と同様のため、詳細な説明を省略する。 The fixing member 10a includes a fitting part 15 that can be fitted to the fixing member 10a of another heat dissipation structure 1a. The fitting portion 15 is a portion that can be fitted to the fixing member 10a of another adjacent heat dissipation structure 1a when the heat dissipation structure 1a forms the assembly 70. In this embodiment, the fitting portion 15 is a rectangular protruding portion or a rectangular recessed portion (see the enlarged view of FIG. 6G). The assembly 70 includes, for example, a rectangularly protruding fitting portion 15 of the fixing member 10a of the heat dissipating structure 1a, and a rectangularly recessed fitting portion 15 of the fixing member 10a of another adjacent heat dissipating structure 1a. are formed by fitting together (so-called puzzle-like connection). Note that there are no restrictions on the position and number of the fitting portions 15 as long as they can fit with the fitting portions 15 of at least one other adjacent heat dissipation structure 1a. The configuration of the heat dissipation structure 1a other than the fixing member 10a is the same as that of the heat dissipation structure 1 according to the first embodiment, so a detailed explanation will be omitted.

図7は、第2実施形態に係る放熱構造体の変形例1の一部を図6の拡大図と同視の図にて示す。 FIG. 7 shows a part of Modified Example 1 of the heat dissipation structure according to the second embodiment in an enlarged view and the same view as in FIG. 6 .

変形例1において、放熱構造体1aは、嵌合部15に代えて、嵌合部15aを固定部材10aが備える点で先述の第2実施形態に係る放熱構造体1aと異なる。なお、変形例1において、嵌合部15a以外の構成は、先述の第2実施形態に係る放熱構造体1aと同様であるため、詳細な説明を省略する。また、変形例1において、固定部材10aにおける嵌合部15aの位置および個数は、先述の第2実施形態に係る放熱構造体1aの嵌合部15と同様である。 In modification 1, the heat dissipation structure 1a differs from the heat dissipation structure 1a according to the second embodiment described above in that the fixing member 10a includes a fitting part 15a instead of the fitting part 15. Note that in Modification 1, the configuration other than the fitting portion 15a is the same as that of the heat dissipation structure 1a according to the second embodiment described above, and therefore detailed description thereof will be omitted. Furthermore, in Modification 1, the position and number of fitting portions 15a in fixing member 10a are the same as those of fitting portions 15 of heat dissipation structure 1a according to the second embodiment described above.

嵌合部15aは、略T字状に突出した部位、或いは当該略T字状に突出した部位が挿入可能な穴である。放熱構造体の集合体70は、例えば、放熱構造体1aの固定部材10aの略T字状に突出した嵌合部15aを、隣接する他の放熱構造体1aの固定部材10aの穴(嵌合部)15aに挿入して嵌合させることにより、形成される。このようにして、変形例1においても、放熱構造体1aは、複数の他の放熱構造体1aと嵌合することにより、集合体70を形成することができる。 The fitting portion 15a is a substantially T-shaped protruding portion or a hole into which the substantially T-shaped protruding portion can be inserted. The heat dissipation structure assembly 70 is configured, for example, to connect the fitting portion 15a of the fixing member 10a of the heat dissipation structure 1a protruding in a substantially T-shape to the hole (fitting portion) of the fixing member 10a of another adjacent heat dissipation structure 1a. part) 15a and fit together. In this manner, also in Modification 1, the heat dissipation structure 1a can form the assembly 70 by fitting with a plurality of other heat dissipation structures 1a.

図8は、第2実施形態に係る放熱構造体の変形例2の一部を図6の拡大図と同視の図にて示す。 FIG. 8 shows a part of Modified Example 2 of the heat dissipation structure according to the second embodiment in an enlarged view and the same view as in FIG. 6 .

変形例2において、放熱構造体1aは、嵌合部15に代えて、嵌合部15bを固定部材10aが備える点で先述の第2実施形態に係る放熱構造体1aと異なる。なお、変形例2において、嵌合部15b以外の構成は、先述の第2実施形態に係る放熱構造体1aと同様であるため、詳細な説明を省略する。また、変形例2において、固定部材10aにおける嵌合部15bの位置および個数は、先述の第2実施形態に係る放熱構造体1aの嵌合部15と同様である。 In the second modification, the heat radiation structure 1a differs from the heat radiation structure 1a according to the second embodiment described above in that the fixing member 10a includes a fitting part 15b instead of the fitting part 15. Note that in Modification 2, the configuration other than the fitting portion 15b is the same as that of the heat dissipation structure 1a according to the second embodiment described above, so detailed description thereof will be omitted. Furthermore, in the second modification, the position and number of fitting portions 15b in the fixing member 10a are the same as those of the fitting portions 15 of the heat dissipation structure 1a according to the second embodiment described above.

嵌合部15bは、略T字状に突出した部位、或いは略T字状に窪んだ部位である。嵌合部15bは、好ましくは、略T字状に突出した部位の方が、略T字状に窪んだ部位よりも大きく形成される。放熱構造体の集合体70は、例えば、放熱構造体1aの固定部材10aの略T字状に突出した嵌合部15bと、隣接する他の放熱構造体1aの固定部材10aの略T字状に窪んだ嵌合部15bとが嵌合することにより、形成される。このようにして、変形例2においても、放熱構造体1aは、複数の他の放熱構造体1aと嵌合することにより、集合体70を形成することができる。 The fitting portion 15b is a substantially T-shaped protruding portion or a substantially T-shaped depressed portion. Preferably, the fitting portion 15b is formed so that the approximately T-shaped protruding portion is larger than the approximately T-shaped depressed portion. The heat dissipation structure assembly 70 includes, for example, a substantially T-shaped fitting portion 15b of the fixing member 10a of the heat dissipation structure 1a, and a substantially T-shaped fitting portion 15b of the fixing member 10a of another adjacent heat dissipation structure 1a. It is formed by fitting with the recessed fitting part 15b. In this manner, also in Modification 2, the heat dissipation structure 1a can form the assembly 70 by fitting with a plurality of other heat dissipation structures 1a.

(第3実施形態)
次に、第3実施形態に係る放熱構造体について説明する。先の実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Third embodiment)
Next, a heat dissipation structure according to a third embodiment will be described. Portions common to those in the previous embodiment are given the same reference numerals and redundant explanation will be omitted.

図9は、第3実施形態に係る放熱構造体の平面図を示す。 FIG. 9 shows a plan view of a heat dissipation structure according to the third embodiment.

第3実施形態に係る放熱構造体1bは、第1実施形態に係る放熱構造体1と類似の構造を有するが、固定部材10に代えて、固定部材10bを備える点において、第1実施形態に係る放熱構造体1と異なる。 The heat dissipation structure 1b according to the third embodiment has a similar structure to the heat dissipation structure 1 according to the first embodiment, but is different from the first embodiment in that it includes a fixing member 10b instead of the fixing member 10. This is different from the heat dissipation structure 1.

固定部材10bは、好ましくは、複数の放熱部材20を長手方向と直交する方向に沿って並べた状態において、複数の放熱部材20の周縁の四隅部にそれぞれ配置された矩形状の部材である。固定部材10bは、好ましくは、4つの矩形状部材の長辺が放熱部材20の長手方向に沿うように、当該四隅部にそれぞれ配置される。また、固定部材10bは、好ましくは、4つの矩形状部材が、複数の放熱部材20の短手方向(図9におけるX方向)端部より外側に配置される。すなわち、固定部材10bは、放熱部材20と重なることなく当該四隅部に配置される。 The fixing member 10b is preferably a rectangular member disposed at each of the four corners of the periphery of the plurality of heat radiating members 20 in a state where the plurality of heat radiating members 20 are arranged in a direction perpendicular to the longitudinal direction. The fixing members 10b are preferably arranged at each of the four corners so that the long sides of the four rectangular members extend along the longitudinal direction of the heat radiating member 20. Further, in the fixing member 10b, preferably, four rectangular members are arranged outside the ends of the plurality of heat radiating members 20 in the short direction (X direction in FIG. 9). That is, the fixing member 10b is arranged at the four corners without overlapping the heat dissipating member 20.

固定部材10bは、好ましくは、4つの矩形状部材のうち、複数の放熱部材20の長手方向の一端部側(例えば、図9に示す上側)に配置された2つの部材が、複数の放熱部材20の当該一端部とともに、ミシン等を用いて連結部材30で縫い付けられる。また、固定部材10bは、好ましくは、4つの矩形状部材のうち、複数の放熱部材20の長手方向の他端部側(例えば、図9に示す下側)に配置された2つの部材が、複数の放熱部材20の当該他端部とともに、ミシン等を用いて連結部材30で縫い付けられる。このようにして、複数の放熱部材20は、固定部材10bおよび連結部材30により連結される。よって、放熱構造体1bは、熱源との位置決めを容易かつ確実にすることができる。なお、固定部材10bのその他の構成については、第1実施形態に係る放熱構造体1の固定部材10と同様であるため、詳細な説明を省略する。また、固定部材10bは、複数の放熱部材20の長手方向端部を連結した連結部材30を固定可能であれば、連結部材30により縫い付けられる位置に特に制約はない。 Preferably, of the four rectangular members of the fixing member 10b, two members disposed on one longitudinal end side (for example, the upper side shown in FIG. 9) of the plurality of heat radiating members 20 are The connecting member 30 is sewn together with the one end of the connecting member 20 using a sewing machine or the like. Further, in the fixing member 10b, preferably, two members disposed on the other end side in the longitudinal direction of the plurality of heat dissipating members 20 (for example, on the lower side shown in FIG. 9) among the four rectangular members are The connecting member 30 is sewn together with the other ends of the plurality of heat radiating members 20 using a sewing machine or the like. In this way, the plurality of heat radiating members 20 are connected by the fixing member 10b and the connecting member 30. Therefore, the heat radiation structure 1b can be easily and reliably positioned with respect to the heat source. Note that the other configurations of the fixing member 10b are the same as those of the fixing member 10 of the heat dissipation structure 1 according to the first embodiment, so a detailed explanation will be omitted. Further, there is no particular restriction on the position where the fixing member 10b is sewn by the connecting member 30 as long as it can fix the connecting member 30 that connects the longitudinal ends of the plurality of heat radiating members 20.

(第4実施形態)
次に、第4実施形態に係る放熱構造体について説明する。先の実施形態と共通する部分については同じ符号を付して重複した説明を省略する。
(Fourth embodiment)
Next, a heat dissipation structure according to a fourth embodiment will be described. Portions common to those in the previous embodiment are given the same reference numerals and redundant explanation will be omitted.

図10は、第4実施形態に係る放熱構造体の平面図を示す。 FIG. 10 shows a plan view of a heat dissipation structure according to the fourth embodiment.

第4実施形態に係る放熱構造体1cは、第1実施形態に係る放熱構造体1と類似の構造を有するが、固定部材10に代えて、固定部材10cを備える点において、第1実施形態に係る放熱構造体1と異なる。 The heat dissipation structure 1c according to the fourth embodiment has a similar structure to the heat dissipation structure 1 according to the first embodiment, but is different from the first embodiment in that it includes a fixing member 10c instead of the fixing member 10. This is different from the heat dissipation structure 1.

固定部材10cは、好ましくは、複数の放熱部材20を長手方向と直交する方向に沿って並べた状態において、複数の放熱部材20の周縁の四隅部にそれぞれ配置された矩形状の部材である。固定部材10cは、好ましくは、4つの矩形状部材の短辺が放熱部材20の長手方向に沿うように、当該四隅部にそれぞれ配置される。また、固定部材10cは、好ましくは、4つの矩形状部材が、複数の放熱部材20の長手方向の両端部の一部と重なる位置となるよう配置される。 The fixing member 10c is preferably a rectangular member disposed at each of the four corners of the periphery of the plurality of heat radiating members 20 in a state in which the plurality of heat radiating members 20 are arranged in a direction perpendicular to the longitudinal direction. The fixing members 10c are preferably arranged at each of the four corners so that the short sides of the four rectangular members extend along the longitudinal direction of the heat radiating member 20. Further, the fixing member 10c is preferably arranged such that the four rectangular members overlap a portion of both ends of the plurality of heat dissipating members 20 in the longitudinal direction.

固定部材10cは、好ましくは、4つの矩形状部材のうち、複数の放熱部材20の長手方向の一端部側(例えば、図10に示す上側)に配置された2つの部材の上に、複数の放熱部材20の当該一端部の一部が載置された状態で、当該2つの部材が当該複数の放熱部材20の一端部とともに、ミシン等を用いて連結部材30により縫い付けられる。また、固定部材10cは、好ましくは、4つの矩形状部材のうち、複数の放熱部材20の長手方向の他端部側(例えば、図10に示す下側)に配置された2つの部材の上に、複数の放熱部材20の当該他端部の一部が載置された状態で、当該2つの部材が当該複数の放熱部材20の他端部とともに、ミシン等を用いて連結部材30により縫い付けられる。このようにして、複数の放熱部材20は、固定部材10cおよび連結部材30により連結される。よって、放熱構造体1cは、熱源との位置決めを容易かつ確実にすることができる。なお、固定部材10cのその他の構成については、第1実施形態に係る放熱構造体1の固定部材10と同様であるため、詳細な説明を省略する。 The fixing member 10c preferably has a plurality of rectangular members disposed on two members disposed on one end side (for example, the upper side shown in FIG. 10) of the plurality of heat dissipating members 20 in the longitudinal direction among the four rectangular members. In a state where a part of the one end of the heat radiating member 20 is placed, the two members are sewn together with the one end of the plurality of heat radiating members 20 by the connecting member 30 using a sewing machine or the like. Further, the fixing member 10c is preferably arranged on two members arranged on the other longitudinal end side (for example, the lower side shown in FIG. 10) of the plurality of heat dissipating members 20 among the four rectangular members. With a part of the other end portions of the plurality of heat radiating members 20 placed on the holder, the two members are sewn together with the other end portions of the plurality of heat radiating members 20 by the connecting member 30 using a sewing machine or the like. Can be attached. In this way, the plurality of heat radiating members 20 are connected by the fixing member 10c and the connecting member 30. Therefore, the heat radiation structure 1c can be easily and reliably positioned with respect to the heat source. Note that the other configurations of the fixing member 10c are the same as those of the fixing member 10 of the heat dissipation structure 1 according to the first embodiment, so a detailed explanation will be omitted.

2.放熱構造体の製造方法
次に、第1実施形態に係る放熱構造体1の好適な製造方法の一例を説明する。まず、放熱構造体1を構成している放熱部材20の好適な製造方法の一例を説明する。
2. Method for Manufacturing Heat Dissipation Structure Next, an example of a suitable method for manufacturing the heat dissipation structure 1 according to the first embodiment will be described. First, an example of a suitable method for manufacturing the heat radiating member 20 that constitutes the heat radiating structure 1 will be described.

図11は、放熱構造体を構成している放熱部材の製造工程を説明するための図を示す。 FIG. 11 shows diagrams for explaining the manufacturing process of the heat radiating member that constitutes the heat radiating structure.

まず、貫通路23を有するクッション部材22を成形する。次に、クッション部材22の外側面に接着剤を塗布する。次に、帯状の熱伝導シート21を、クッション部材22の外側面上にスパイラル状に巻いた後、熱伝導シート21がクッション部材22の両端からはみ出した部分があれば、そのはみ出した部分をカット若しくはクッション部材22ごとカットする。最後に、熱伝導シート21の表面に、熱伝導性オイルを塗布する。クッション部材22と熱伝導シート21との間に接着剤を介在させないで固定することも可能である。その場合には、完全硬化する前の状態のクッション部材22を用意して、その外側面に帯状の熱伝導シート21を巻く。その後、クッション部材22を加温して完全硬化させて、クッション部材22の外側面に熱伝導シート21を固定する。 First, the cushion member 22 having the through passage 23 is molded. Next, adhesive is applied to the outer surface of the cushion member 22. Next, after winding the band-shaped heat conductive sheet 21 in a spiral shape on the outer surface of the cushion member 22, if any portion of the heat conductive sheet 21 protrudes from both ends of the cushion member 22, the protruding portion is cut. Alternatively, the entire cushion member 22 may be cut. Finally, thermally conductive oil is applied to the surface of the thermally conductive sheet 21. It is also possible to fix the cushion member 22 and the heat conductive sheet 21 without interposing an adhesive between them. In that case, the cushion member 22 is prepared before being completely cured, and the band-shaped heat conductive sheet 21 is wrapped around the outer surface of the cushion member 22. Thereafter, the cushion member 22 is heated and completely cured, and the heat conductive sheet 21 is fixed to the outer surface of the cushion member 22.

熱伝導シート21のクッション部材22の両端からはみ出した部分をカットするカット工程および熱伝導性オイルを塗布する塗布工程は、上述のタイミングで行うことに限定されない。例えば、カット工程は、塗布工程後に行っても良い。 The cutting process of cutting the portions of the thermally conductive sheet 21 protruding from both ends of the cushion member 22 and the coating process of applying the thermally conductive oil are not limited to being performed at the above-mentioned timing. For example, the cutting process may be performed after the coating process.

放熱構造体1は、上述の製造方法により製造された複数の放熱部材20をその長手方向と直交する方向に並べた状態で、固定部材10を配置し、複数の放熱部材20と固定部材10とを連結部材30により縫い付けて固定することにより製造される。この場合、固定部材10は、4つの略L字状部材が、複数の放熱部材20の長手方向端部より外側、かつ複数の放熱部材20の短手方向端部より外側に配置されることが好ましい。また、連結部材30は、複数の放熱部材20の長手方向の両端部と固定部材10とを縫い付けることが好ましい。なお、放熱構造体1は、固定部材10を配置した状態で、固定部材10により囲まれた空間に、複数の放熱部材20をその長手方向と直交する方向に並べ、複数の放熱部材20と固定部材10とを連結部材30により縫い付けて製造されても良い。 The heat dissipation structure 1 has a plurality of heat dissipation members 20 manufactured by the above-described manufacturing method arranged in a direction perpendicular to the longitudinal direction thereof, and a fixing member 10 arranged therein, and the plurality of heat dissipation members 20 and the fixing member 10 It is manufactured by sewing and fixing with the connecting member 30. In this case, the four substantially L-shaped members of the fixing member 10 may be arranged outside the longitudinal ends of the plurality of heat radiating members 20 and outside the lateral ends of the plurality of heat radiating members 20. preferable. Further, it is preferable that the connecting member 30 is sewn between both ends of the plurality of heat dissipating members 20 in the longitudinal direction and the fixing member 10 . The heat dissipation structure 1 is constructed by arranging a plurality of heat dissipation members 20 in a space surrounded by the fixation members 10 in a direction perpendicular to the longitudinal direction thereof, and fixing the plurality of heat dissipation members 20 with each other. It may also be manufactured by sewing the member 10 with the connecting member 30.

第2実施形態に係る放熱構造体1aは、放熱構造体1と同様に、上述の製造方法により製造された複数の放熱部材20をその長手方向と直交する方向に並べた状態で、固定部材10aを配置し、複数の放熱部材20と固定部材10aとを連結部材30により縫い付けて固定することにより製造される。 Similar to the heat dissipation structure 1, the heat dissipation structure 1a according to the second embodiment has a fixed member 10a in which a plurality of heat dissipation members 20 manufactured by the above-described manufacturing method are arranged in a direction perpendicular to the longitudinal direction thereof. It is manufactured by arranging the plurality of heat dissipating members 20 and the fixing member 10a and sewing and fixing them using the connecting member 30.

第3実施形態に係る放熱構造体1bは、上述の製造方法により製造された複数の放熱部材20をその長手方向と直交する方向に並べた状態で、固定部材10bを配置し、複数の放熱部材20と固定部材10bとを連結部材30により縫い付けて固定することにより製造される。この場合、固定部材10bは、4つの矩形状部材が、複数の放熱部材20の短手方向端部より外側に配置されることが好ましい。また、連結部材30は、複数の放熱部材20の長手方向の両端部と固定部材10bとを縫い付けることが好ましい。なお、放熱構造体1bは、固定部材10bを配置した状態で、固定部材10bにより囲まれた空間に、複数の放熱部材20をその長手方向と直交する方向に並べ、複数の放熱部材20と固定部材10bとを連結部材30により縫い付けて製造されても良い。 The heat dissipation structure 1b according to the third embodiment has a plurality of heat dissipation members 20 manufactured by the above-described manufacturing method arranged in a direction perpendicular to the longitudinal direction thereof, a fixing member 10b is arranged, and the plurality of heat dissipation members 20 and the fixing member 10b are sewn and fixed using the connecting member 30. In this case, it is preferable that the four rectangular members of the fixing member 10b are arranged outside the short-side ends of the plurality of heat radiating members 20. Further, it is preferable that the connecting member 30 is sewn between both ends of the plurality of heat dissipating members 20 in the longitudinal direction and the fixing member 10b. Note that the heat dissipation structure 1b is constructed by arranging a plurality of heat dissipation members 20 in a direction orthogonal to the longitudinal direction thereof in a space surrounded by the fixing member 10b, and fixing the plurality of heat dissipation members 20 with the fixed member 10b. It may also be manufactured by sewing the member 10b with the connecting member 30.

第4実施形態に係る放熱構造体1cは、固定部材10cを配置し、上述の製造方法により製造された複数の放熱部材20をその長手方向と直交する方向に並べた状態で、複数の放熱部材20と固定部材10cとを連結部材30により縫い付けて固定することにより製造される。この場合、固定部材10cは、4つの矩形状部材が、複数の放熱部材20の長手方向の両端部の一部と重なる位置となるよう配置されることが好ましい。また、連結部材30は、固定部材10c上に複数の放熱部材20の長手方向の両端部の一部が載置された状態で、当該長手方向と直交する方向に沿って、固定部材10cと複数の放熱部材20の長手方向の両端部それぞれとを縫い付けることが好ましい。 The heat dissipation structure 1c according to the fourth embodiment has a plurality of heat dissipation members 20 manufactured by the above-described manufacturing method arranged in a direction orthogonal to the longitudinal direction of the heat dissipation structure 1c. 20 and the fixing member 10c are sewn and fixed using the connecting member 30. In this case, it is preferable that the fixing member 10c is arranged such that the four rectangular members overlap a part of both ends of the plurality of heat dissipating members 20 in the longitudinal direction. Further, the connecting member 30 connects the plurality of fixing members 10c along a direction perpendicular to the longitudinal direction with a part of both ends of the plurality of heat dissipating members 20 in the longitudinal direction placed on the fixing member 10c. It is preferable to sew both ends of the heat dissipating member 20 in the longitudinal direction, respectively.

放熱構造体1の変形例の好適な製造方法の一例を説明する。この変形例において、上述の放熱構造体1を構成している放熱部材20を放熱部材20aに代える点以外は、上述の放熱構造体1と同様の製造方法により製造されているため、詳細な説明を省略する。以下、放熱部材20aの好適な製造方法について説明する。 An example of a suitable manufacturing method for a modification of the heat dissipation structure 1 will be described. In this modification, the heat dissipation structure 1 described above is manufactured by the same manufacturing method as the heat dissipation structure 1, except that the heat dissipation member 20 constituting the heat dissipation structure 1 described above is replaced with a heat dissipation member 20a, so a detailed explanation will be provided. omitted. A preferred method of manufacturing the heat dissipating member 20a will be described below.

図12は、放熱構造体を構成している放熱部材の変形例の好適な製造工程を説明するための図を示す。 FIG. 12 shows a diagram for explaining a preferred manufacturing process of a modified example of the heat dissipation member constituting the heat dissipation structure.

まず、帯状の積層シート28を製造する。帯状の積層シート28の製造において、熱伝導シート21とクッション部材22とは、好ましくは接着剤にて固定されている。次に、帯状の積層シート28を、スパイラル状に巻回しながら一方向に進行させて、長尺状の放熱部材20aを製造する。熱伝導シート21とクッション部材22との間に接着剤を介在させない製造方法としては、以下のような方法を例示できる。例えば、クッション部材22が完全には硬化していない未硬化状態で、熱伝導シート21をクッション部材22の上に貼る。その後、加温により、クッション部材22を完全に硬化させる。 First, a strip-shaped laminated sheet 28 is manufactured. In manufacturing the strip-shaped laminated sheet 28, the heat conductive sheet 21 and the cushion member 22 are preferably fixed with an adhesive. Next, the strip-shaped laminated sheet 28 is spirally wound and advanced in one direction to manufacture the elongated heat dissipation member 20a. As a manufacturing method in which no adhesive is interposed between the heat conductive sheet 21 and the cushion member 22, the following method can be exemplified. For example, the thermally conductive sheet 21 is pasted on the cushion member 22 while the cushion member 22 is in an uncured state that is not completely cured. Thereafter, the cushion member 22 is completely hardened by heating.

帯状の積層シート28をスパイラル状に巻回した後、積層シート28の両端をカットして形状を整えても良い。最後に、熱伝導シート21の表面に、熱伝導性オイルを塗布する。放熱部材20aは、その長手方向に貫通する貫通路23aを備えている。貫通路23aは、上述の実施形態における放熱部材20と異なり、放熱部材20aの外側面方向にも貫通している。このように、クッション部材22は、熱伝導シート21の内側に配置され、熱伝導シート21とクッション部材22は、一体にてスパイラル状に一方向に進行する形態を有する。放熱部材20aは、その全体がスパイラル状であるため、上述の放熱部材20に比べて、放熱部材20aの長手方向に伸縮容易である。 After the strip-shaped laminated sheet 28 is wound in a spiral shape, both ends of the laminated sheet 28 may be cut to adjust the shape. Finally, thermally conductive oil is applied to the surface of the thermally conductive sheet 21. The heat dissipation member 20a is provided with a through passage 23a that penetrates in its longitudinal direction. Unlike the heat radiating member 20 in the above-described embodiment, the through path 23a also penetrates in the direction of the outer surface of the heat radiating member 20a. In this way, the cushion member 22 is arranged inside the heat conductive sheet 21, and the heat conductive sheet 21 and the cushion member 22 have a form in which they move together in a spiral shape in one direction. Since the heat radiating member 20a has a spiral shape as a whole, it is easier to expand and contract in the longitudinal direction of the heat radiating member 20a than the heat radiating member 20 described above.

なお、放熱構造体1a,1b,1cもまた、放熱部材20に代えて放熱部材20aを備えることができる。この場合、放熱構造体1a,1b,1cは、放熱部材20を放熱部材20aに代える点以外は、上述の放熱構造体1a,1b,1cと同様の製造方法により製造することができる。 Note that the heat dissipation structures 1a, 1b, and 1c can also be provided with a heat dissipation member 20a instead of the heat dissipation member 20. In this case, the heat dissipation structures 1a, 1b, 1c can be manufactured by the same manufacturing method as the above-described heat dissipation structures 1a, 1b, 1c, except that the heat dissipation member 20 is replaced with the heat dissipation member 20a.

3.バッテリー
次に、本実施形態に係るバッテリーについて説明する。
3. Battery Next, the battery according to this embodiment will be explained.

図13は、放熱構造体を備えるバッテリーの縦断面図を示す。ここで、「縦断面図」は、バッテリーの筐体内部の上方開口面から底部へと垂直に切断する図を意味する。 FIG. 13 shows a longitudinal cross-sectional view of a battery including a heat dissipation structure. Here, the term "longitudinal cross-sectional view" means a view cut vertically from the upper opening surface to the bottom inside the battery case.

この実施形態において、バッテリー40は、例えば、電気自動車用のバッテリーであって、多数のバッテリーセル50を備える。バッテリー40は、一方に開口する有底型の筐体41を備える。筐体41は、好ましくは、アルミニウム若しくはアルミニウム基合金から成る。バッテリーセル50は、筐体41の内部44に配置される。バッテリーセル50の上方には、電極(不図示)が突出して設けられている。複数のバッテリーセル50は、好ましくは、筐体41内において、その両側からネジ等を利用して圧縮する方向に力を与えられて、互いに密着するようになっている(不図示)。筐体41の底部42には、冷却部材45の一例である冷却水を流すために、1または複数の水冷パイプ43が備えられている。バッテリーセル50は、底部42との間に、放熱構造体1を挟むようにして筐体41内に配置される。 In this embodiment, the battery 40 is, for example, a battery for an electric vehicle, and includes a large number of battery cells 50. The battery 40 includes a bottomed casing 41 that is open on one side. The housing 41 is preferably made of aluminum or an aluminum-based alloy. The battery cell 50 is arranged inside the housing 41 . An electrode (not shown) is provided above the battery cell 50 to protrude. The plurality of battery cells 50 are preferably compressed from both sides of the housing 41 using screws or the like so that they come into close contact with each other (not shown). The bottom portion 42 of the housing 41 is provided with one or more water cooling pipes 43 for flowing cooling water, which is an example of a cooling member 45. The battery cell 50 is arranged in the housing 41 with the heat dissipation structure 1 sandwiched between the battery cell 50 and the bottom part 42 .

バッテリー40は、冷却部材45を流す構造を持つ筐体41内に、1または2以上の熱源としてのバッテリーセル50を備える。放熱構造体1は、バッテリーセル50と冷却部材45との間に介在する。このような構造のバッテリー40では、バッテリーセル50は、放熱構造体1を通じて筐体41に伝熱して、水冷によって効果的に除熱される。なお、冷却部材45は、「冷却媒体」あるいは「冷却剤」と読み替えても良い。冷却部材45は、冷却水に限定されず、液体窒素、エタノール等の有機溶剤も含むように解釈される。冷却部材45は、冷却に用いられる状況下にて、液体であるとは限らず、気体あるいは固体でも良い。 The battery 40 includes one or more battery cells 50 as a heat source within a casing 41 having a structure in which a cooling member 45 flows. The heat dissipation structure 1 is interposed between the battery cell 50 and the cooling member 45. In the battery 40 having such a structure, the battery cell 50 transfers heat to the casing 41 through the heat dissipation structure 1 and is effectively removed by water cooling. Note that the cooling member 45 may be read as a "cooling medium" or a "coolant." The cooling member 45 is not limited to cooling water, but is also interpreted to include organic solvents such as liquid nitrogen and ethanol. The cooling member 45 is not necessarily a liquid, but may be a gas or a solid under the conditions used for cooling.

バッテリーセル50を筐体41内にセットした状態では(図13参照)、放熱構造体1は、バッテリーセル50と、水冷パイプ43を備える底部42との間において、放熱構造体1の厚さ方向に圧縮される。この結果、バッテリーセル50からの熱は、熱伝導シート21、底部42、水冷パイプ43、冷却部材45へと伝わりやすくなる。また、放熱構造体1は固定部材10を備えるため、作業者が固定部材10を持ってバッテリー1に放熱構造体1を取り付けることができ、作業性が向上する。なお、バッテリー40は、放熱構造体1に代えて、先述の放熱構造体1a,1b,1cを備えていても良い。 When the battery cell 50 is set in the casing 41 (see FIG. 13), the heat dissipation structure 1 is arranged in the thickness direction of the heat dissipation structure 1 between the battery cell 50 and the bottom portion 42 provided with the water cooling pipe 43. compressed into As a result, heat from the battery cell 50 is easily transmitted to the heat conductive sheet 21, the bottom 42, the water cooling pipe 43, and the cooling member 45. Furthermore, since the heat dissipation structure 1 includes the fixing member 10, the worker can attach the heat dissipation structure 1 to the battery 1 by holding the fixing member 10, improving work efficiency. Note that the battery 40 may include the above-mentioned heat dissipation structures 1a, 1b, and 1c instead of the heat dissipation structure 1.

4.その他の実施形態
上述のように、本発明の好適な各実施形態について説明したが、本発明は、これらに限定されることなく、種々変形して実施可能である。
4. Other Embodiments As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to these and can be implemented with various modifications.

図14は、放熱構造体の上に、バッテリーセルの側面を接触させるように横置きにしたときの断面図、その一部拡大図および充放電時にバッテリーセルが膨張した際の一部断面図をそれぞれ示す。 FIG. 14 shows a cross-sectional view of a battery cell placed horizontally on a heat dissipation structure with its side surfaces touching, a partially enlarged view, and a partial cross-sectional view of the battery cell expanding during charging and discharging. Each is shown below.

先述の各実施形態では、バッテリーセル50を縦にしてその下端に放熱構造体1,1a,1b,1c(以後、総称する場合には、「放熱構造体1等」と称する。)を接触せしめている状況について説明したが、バッテリーセル50の配置形態は、これに限定されない。図14に示すように、バッテリーセル50の側面を放熱構造体1等の各放熱部材20,20aに接触させるように、バッテリーセル50を配置しても良い。バッテリーセル50は、充電および放電の際に温度上昇する。バッテリーセル50の容器自体が柔軟性に富む材料にて形成されていると、バッテリーセル50の特に側面が膨らむ可能性がある。そのような場合でも、図14に示すように、放熱構造体1等の構成している各放熱部材20,20aがバッテリーセル50の外面の形状に合わせて変形できるので、充放電時にも放熱性を高く維持できる。 In each of the embodiments described above, the battery cell 50 is placed vertically and the heat dissipation structures 1, 1a, 1b, and 1c (hereinafter collectively referred to as "heat dissipation structures 1, etc.") are brought into contact with the lower ends of the battery cells 50. However, the arrangement of the battery cells 50 is not limited to this. As shown in FIG. 14, the battery cell 50 may be arranged so that the side surface of the battery cell 50 is brought into contact with each heat radiating member 20, 20a such as the heat radiating structure 1. The temperature of battery cell 50 increases during charging and discharging. If the container of the battery cell 50 itself is made of a highly flexible material, there is a possibility that the battery cell 50 may swell, especially at the sides. Even in such a case, as shown in FIG. 14, each heat dissipating member 20, 20a constituting the heat dissipating structure 1 etc. can be deformed to match the shape of the outer surface of the battery cell 50, so that heat dissipation is maintained even during charging and discharging. can be maintained high.

また、放熱構造体1aにおいて、固定部材10aは、2種類以上の嵌合部15,15a,15bを備えていても良い。 Furthermore, in the heat dissipation structure 1a, the fixing member 10a may include two or more types of fitting portions 15, 15a, and 15b.

また、固定部材10,10a,10b,10c(以後、総称する場合には、「固定部材10等」と称する。)は、バッテリー40の筐体41(底部42等)に備えられた位置決めピンを挿通可能な1以上の位置決め穴が形成されていても良い。位置決め穴は、バッテリー40の底部42から突出した位置決めピンを挿通可能な穴である。位置決め穴に位置決めピンが挿通することにより、バッテリー40と放熱構造体1等との位置決めが容易となる。なお、位置決め穴および位置決めピンの形状および位置は、特に制約はない。 In addition, the fixing members 10, 10a, 10b, and 10c (hereinafter collectively referred to as "fixing members 10, etc.") have positioning pins provided in the casing 41 (bottom 42, etc.) of the battery 40. One or more positioning holes that can be inserted may be formed. The positioning hole is a hole through which a positioning pin protruding from the bottom 42 of the battery 40 can be inserted. By inserting the positioning pin into the positioning hole, positioning of the battery 40 and the heat dissipation structure 1 etc. becomes easy. Note that there are no particular restrictions on the shapes and positions of the positioning holes and positioning pins.

また、固定部材10等は、冷却部材45側の面(例えば、図1に示す紙面裏面)に、バッテリー40の底部42に接着可能な粘着剤或いは粘着テープが備えられていても良い。このように固定部材10等が構成されることにより、バッテリー40の底部42に固定部材10等を固定することができるため、バッテリー40と放熱構造体1等との位置決めが容易となる。なお、粘着剤および粘着テープは、少なくとも固定部材10等を底部42に固定可能なものであれば、特に制約されない。また、固定部材10等における粘着剤および粘着テープが備えられる位置および大きさは、少なくとも固定部材10等を底部42に固定可能な位置および大きさであれば、特に制約されない。 Further, the fixing member 10 and the like may be provided with an adhesive or an adhesive tape that can be adhered to the bottom portion 42 of the battery 40 on the surface facing the cooling member 45 (for example, the back surface of the paper shown in FIG. 1). By configuring the fixing member 10 and the like in this manner, the fixing member 10 and the like can be fixed to the bottom portion 42 of the battery 40, so that positioning of the battery 40 and the heat dissipation structure 1 and the like becomes easy. Note that the adhesive and the adhesive tape are not particularly limited as long as they can fix at least the fixing member 10 and the like to the bottom portion 42. Further, the position and size of the adhesive and the adhesive tape on the fixing member 10 and the like are not particularly limited as long as the position and size allow fixing at least the fixing member 10 and the like to the bottom portion 42 .

また、放熱構造体1等は、例えば、複数の放熱部材20,20aの長手方向における中央部等、当該長手方向の両端部以外の1以上の位置が連結部材30により連結されていても良い。 Further, the heat dissipation structure 1 or the like may be connected by a connecting member 30 at one or more positions other than both end portions in the longitudinal direction, such as a central portion in the longitudinal direction of the plurality of heat dissipation members 20 and 20a.

また、放熱構造体1cは、接着あるいは嵌め込み等の手法で、複数の放熱部材20の長手方向の両端部の一部を固定部材10cに固定していても良い。 Furthermore, the heat dissipation structure 1c may have a portion of both ends of the plurality of heat dissipation members 20 in the longitudinal direction fixed to the fixing member 10c by a method such as adhesion or fitting.

また、放熱構造体1,1a,1bにおいて、固定部材10,10a,10bは、複数の放熱部材20の周縁の四隅部に配置される4つの部材が、複数の放熱部材20の長手方向端部より外側、かつ複数の放熱部材20の短手方向端部より外側に配置されている。しかし、固定部材10,10a,10bは、当該4つの部材が、複数の放熱部材20の長手方向端部と重なる位置或いは当該長手方向端部より内側となるよう配置されていても良い。この場合、放熱部材1,1a,1bは、接着あるいは嵌め込み等の手法で、複数の放熱部材20の長手方向の両端部の一部を固定部材10,10a,10bに固定していても良い。また、固定部材10,10a,10bは、当該4つの部材が、複数の放熱部材20の短手方向端部と重なる位置或いは当該短手方向端部より内側となるよう配置されていても良い。この場合、放熱構造体1,1a,1bは、接着あるいは嵌め込み等の手法で、複数の放熱部材20の短手方向の両端部の一部を固定部材10,10a,10bに固定していても良い。 Further, in the heat dissipation structures 1, 1a, 1b, the fixing members 10, 10a, 10b are arranged so that the four members disposed at the four corners of the periphery of the plurality of heat dissipation members 20 are arranged at the longitudinal ends of the plurality of heat dissipation members 20. The heat dissipating member 20 is disposed further outward and outward than the short-side end portions of the plurality of heat dissipating members 20 . However, the fixing members 10, 10a, and 10b may be arranged such that the four members overlap the longitudinal ends of the plurality of heat radiating members 20 or are located inside the longitudinal ends. In this case, the heat radiating members 1, 1a, 1b may be fixed to the fixing members 10, 10a, 10b at a portion of both ends in the longitudinal direction of the plurality of heat radiating members 20 by a method such as adhesion or fitting. Furthermore, the fixing members 10, 10a, and 10b may be arranged such that the four members overlap with the ends in the width direction of the plurality of heat radiating members 20, or are located inside the ends in the width direction. In this case, the heat dissipation structures 1, 1a, 1b may be fixed to the fixing members 10, 10a, 10b at both ends of the plurality of heat dissipation members 20 in the transverse direction by a method such as adhesion or fitting. good.

また、放熱構造体1cにおいて、固定部材10cは、複数の放熱部材20の周縁の四隅部に配置される4つの矩形状部材が、複数の放熱部材20の長手方向の両端部の一部と重なる位置となるよう配置されている。しかし、固定部材10cは、当該4つの矩形状部材が、複数の放熱部材20の短手方向端部より外側に配置されていても良い。この場合、放熱構造体1cは、複数の放熱部材20の長手方向の両端部を連結した連結部材30が固定部材10cに縫い付けて固定されることが好ましい。 Further, in the heat dissipation structure 1c, the fixing member 10c has four rectangular members disposed at the four corners of the periphery of the plurality of heat dissipation members 20, which overlap with a part of both longitudinal ends of the plurality of heat dissipation members 20. It is arranged to be in position. However, in the fixing member 10c, the four rectangular members may be arranged outside the short-side ends of the plurality of heat radiating members 20. In this case, it is preferable that the heat dissipation structure 1c is fixed by sewing a connecting member 30 that connects both longitudinal ends of the plurality of heat dissipation members 20 to the fixing member 10c.

また、固定部材10等は、その形状に特に制約はなく、複数の放熱部材20,20aの長手方向の少なくとも両端部を連結する連結部材30を固定可能な形状であれば、例えば、楕円、円、三角形、多角形状等であっても良い。 Further, the shape of the fixing member 10 and the like is not particularly limited, and any shape that can fix the connecting member 30 that connects at least both longitudinal ends of the plurality of heat dissipating members 20, 20a may be used, for example, an ellipse, a circle, etc. , triangular, polygonal, etc.

また、先述の各実施形態では、固定部材10等は、底部42側の面を放熱部材20,20aの底部42側の面と同じ位置になるように、放熱部材20,20aを連結した連結部材30を固定している。しかし、固定部材10等は、固定部材10等のバッテリーセル50側の面を放熱部材20,20aのバッテリーセル50側の面と同じ位置にするように、放熱部材20,20aを連結した連結部材30を固定しても良い。さらに、放熱部材20,20aの高さ方向(バッテリーセル50から底部42に向かう方向)の中位置に固定部材10等を配置しても良い。 Furthermore, in each of the above-described embodiments, the fixing member 10 and the like is a connecting member that connects the heat radiating members 20, 20a such that the surface on the bottom 42 side is in the same position as the surface on the bottom 42 side of the heat radiating members 20, 20a. 30 is fixed. However, the fixing member 10 etc. is a connecting member that connects the heat dissipating members 20, 20a such that the surface of the fixing member 10 etc. on the battery cell 50 side is in the same position as the surface of the heat dissipating members 20, 20a on the battery cell 50 side. 30 may be fixed. Furthermore, the fixing member 10 or the like may be arranged at a middle position in the height direction (direction from the battery cell 50 toward the bottom portion 42) of the heat dissipating members 20, 20a.

また、放熱部材20は、クッション部材22に貫通路23が形成されていなくても良い。その場合、放熱部材20は、スパイラル状の熱伝導シート21の貫通路内にクッション部材22を充填した構成を有する。貫通路は、熱伝導シート21およびクッション部材22のうち、少なくとも熱伝導シート21の巻回構造によって形成されていれば、クッション部材22に形成されていなくとも良い。 Further, in the heat dissipation member 20, the through passage 23 does not need to be formed in the cushion member 22. In that case, the heat dissipation member 20 has a structure in which a cushion member 22 is filled in a through passage of a spiral heat conductive sheet 21. The through passage does not need to be formed in the cushion member 22 as long as it is formed by the winding structure of at least the heat conductive sheet 21 of the heat conductive sheet 21 and the cushion member 22.

また、放熱部材20aにおけるスパイラル状のクッション部材22は、熱伝導シート21の幅と同一に限定されず、熱伝導シート21の幅に対して大きくても、あるいは小さくても良い。 Further, the spiral cushion member 22 in the heat radiating member 20a is not limited to the same width as the heat conductive sheet 21, and may be larger or smaller than the width of the heat conductive sheet 21.

また、熱源は、バッテリーセル50のみならず、回路基板や電子機器本体などの熱を発する対象物を全て含む。例えば、熱源は、キャパシタおよびICチップ等の電子部品であっても良い。同様に、冷却部材45は、冷却用の水のみならず、有機溶剤、液体窒素、冷却用の気体であっても良い。また、放熱構造体1等は、バッテリー40以外の構造物、例えば、電子機器、家電、発電装置等に配置されていても良い。 Further, the heat source includes not only the battery cell 50 but also all objects that generate heat, such as a circuit board and an electronic device body. For example, the heat source may be an electronic component such as a capacitor or an IC chip. Similarly, the cooling member 45 may be made of not only water for cooling, but also an organic solvent, liquid nitrogen, or gas for cooling. Further, the heat dissipation structure 1 and the like may be placed in a structure other than the battery 40, such as an electronic device, a home appliance, a power generation device, or the like.

また、上述の各実施形態の複数の構成要素は、互いに組み合わせ不可能な場合を除いて、自由に組み合わせ可能である。例えば、放熱構造体1aは、バッテリー40に備えられていても良い。 Furthermore, the plurality of components of each of the embodiments described above can be freely combined, except when they cannot be combined with each other. For example, the heat dissipation structure 1a may be included in the battery 40.

1,1a,1b,1c・・・放熱構造体、10,10a,10b,10c・・・固定部材、15,15a,15b・・・嵌合部、20,20a・・・放熱部材、21・・・熱伝導シート、22・・・クッション部材、23,23a・・・貫通路、30・・・連結部材、40・・・バッテリー、41・・・筐体、45・・・冷却部材、50・・・バッテリーセル(熱源の一例)。

1, 1a, 1b, 1c... Heat radiation structure, 10, 10a, 10b, 10c... Fixing member, 15, 15a, 15b... Fitting part, 20, 20a... Heat radiation member, 21. ...Thermal conductive sheet, 22...Cushion member, 23, 23a...Through passage, 30...Connection member, 40...Battery, 41...Casing, 45...Cooling member, 50 ...Battery cell (an example of a heat source).

Claims (10)

熱源からの放熱を高める複数の放熱部材が連結された放熱構造体であって、
前記放熱部材は、
前記熱源からの熱を伝えるためのスパイラル状に巻回しながら進行する形状の熱伝導シートと、
前記熱伝導シートの環状裏面に備えられ、前記熱伝導シートに比べて前記熱源の表面形状に合わせて変形容易なクッション部材と、
前記熱伝導シートの巻回しながら進行する方向に貫通する貫通路と、
を備え、
前記複数の放熱部材をその長手方向と直交する方向に沿って並べた状態で、前記複数の放熱部材の前記長手方向の両端部を連結する連結部材と、
前記複数の放熱部材の周縁の四隅部にそれぞれ配置され、前記連結部材を固定する固定部材と、
を備えることを特徴とする放熱構造体。
A heat dissipation structure in which a plurality of heat dissipation members are connected to increase heat dissipation from a heat source,
The heat dissipation member is
a heat conductive sheet having a spirally wound shape for transmitting heat from the heat source;
a cushion member provided on the annular back surface of the heat conductive sheet and more easily deformed to match the surface shape of the heat source than the heat conductive sheet;
a through path that penetrates in the direction in which the thermally conductive sheet advances while being wound;
Equipped with
a connecting member that connects both ends of the plurality of heat radiating members in the longitudinal direction in a state where the plurality of heat radiating members are arranged along a direction perpendicular to the longitudinal direction thereof;
a fixing member disposed at each of the four corners of the periphery of the plurality of heat radiating members and fixing the connecting member;
A heat dissipation structure comprising:
前記固定部材は、前記複数の放熱部材を囲むように前記四隅部にそれぞれ配置された略L字状の部材であることを特徴とする請求項1に記載の放熱構造体。 The heat dissipation structure according to claim 1, wherein the fixing member is a substantially L-shaped member disposed at each of the four corners so as to surround the plurality of heat dissipation members. 隣接する他の前記放熱構造体と嵌合可能に構成されており、
前記固定部材は、前記他の放熱構造体の前記固定部材と嵌合可能な嵌合部を備えることを特徴とする請求項1または2に記載の放熱構造体。
configured to be able to fit with the other adjacent heat dissipation structure,
The heat dissipation structure according to claim 1 or 2, wherein the fixing member includes a fitting portion that can fit with the fixing member of the other heat dissipation structure.
前記固定部材は、その厚さが、前記熱源からの押圧により変形した前記放熱部材の厚さより薄くなるよう形成されることを特徴とする請求項1から3のいずれか1項に記載の放熱構造体。 The heat dissipation structure according to any one of claims 1 to 3, wherein the fixing member is formed so that its thickness is thinner than the thickness of the heat dissipation member deformed by pressure from the heat source. body. 前記クッション部材は、前記長手方向に前記貫通路を有する筒状クッション部材であって、
前記熱伝導シートは、前記筒状クッション部材の外側面をスパイラル状に巻回していることを特徴とする請求項1から4のいずれか1項に記載の放熱構造体。
The cushion member is a cylindrical cushion member having the through passage in the longitudinal direction,
5. The heat dissipation structure according to claim 1, wherein the heat conductive sheet is wound spirally around the outer surface of the cylindrical cushion member.
前記クッション部材は、前記熱伝導シートの前記環状裏面に沿ってスパイラル状に巻回しているスパイラル状クッション部材であることを特徴とする請求項1から4のいずれか1項に記載の放熱構造体。 The heat dissipation structure according to any one of claims 1 to 4, wherein the cushion member is a spiral cushion member wound spirally along the annular back surface of the heat conductive sheet. . 前記連結部材は、糸で構成されることを特徴とする請求項1から6のいずれか1項に記載の放熱構造体。 The heat dissipation structure according to any one of claims 1 to 6, wherein the connecting member is made of thread. 前記熱伝導シートの表面に、当該表面に接触する熱源から当該表面への熱伝導性を高めるための熱伝導性オイルを有することを特徴とする請求項1から7のいずれか1項に記載の放熱構造体。 8. The heat conductive sheet according to claim 1, further comprising a heat conductive oil on the surface of the heat conductive sheet for increasing heat conductivity from a heat source in contact with the surface to the surface. Heat dissipation structure. 前記熱伝導性オイルは、シリコーンオイルと、前記シリコーンオイルより熱伝導性が高く、金属、セラミックスまたは炭素の1以上からなる熱伝導性フィラーと、を含むことを特徴とする請求項8に記載の放熱構造体。 9. The thermally conductive oil includes silicone oil and a thermally conductive filler that has higher thermal conductivity than the silicone oil and is made of one or more of metals, ceramics, and carbon. Heat dissipation structure. 冷却部材を流す構造を持つ筐体内に、1または2以上の熱源としてのバッテリーセルを備えたバッテリーであって、前記バッテリーセルと前記筐体との間に、請求項1から9のいずれか1項に記載の放熱構造体を備えるバッテリー。 A battery comprising one or more battery cells as a heat source in a housing having a structure for flowing a cooling member, wherein the battery according to any one of claims 1 to 9 is provided between the battery cell and the housing. A battery equipped with the heat dissipation structure described in Section 1.
JP2020045247A 2020-03-16 2020-03-16 Heat dissipation structure and battery equipped with the same Active JP7399760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020045247A JP7399760B2 (en) 2020-03-16 2020-03-16 Heat dissipation structure and battery equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020045247A JP7399760B2 (en) 2020-03-16 2020-03-16 Heat dissipation structure and battery equipped with the same

Publications (2)

Publication Number Publication Date
JP2021150018A JP2021150018A (en) 2021-09-27
JP7399760B2 true JP7399760B2 (en) 2023-12-18

Family

ID=77849205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020045247A Active JP7399760B2 (en) 2020-03-16 2020-03-16 Heat dissipation structure and battery equipped with the same

Country Status (1)

Country Link
JP (1) JP7399760B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189170A (en) 2004-12-28 2006-07-20 Toyota Motor Corp Heat accumulator
WO2011026592A1 (en) 2009-09-04 2011-03-10 Li-Tec Battery Gmbh Electrochemical energy store for vehicles and method for cooling or heating such an electrochemical energy store
WO2011042121A1 (en) 2009-10-05 2011-04-14 Li-Tec Battery Gmbh Battery arrangement
JP2012018915A (en) 2010-07-06 2012-01-26 Sb Limotive Co Ltd Battery module
US20130130078A1 (en) 2009-11-16 2013-05-23 Li-Tec Battery Gmbh Battery housing for holding electrochemical energy storage devices
JP2013506968A5 (en) 2010-09-22 2013-11-07
JP2015207541A (en) 2014-04-23 2015-11-19 日立建機株式会社 Work machine and cooling structure of power storage device mounted to the same
JP2019061959A (en) 2017-09-26 2019-04-18 積水化学工業株式会社 Conductivity variable member and safety system
JP2019125665A (en) 2018-01-16 2019-07-25 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
WO2019176344A1 (en) 2018-03-13 2019-09-19 信越ポリマー株式会社 Heat dissipating structure and battery equipped with same
JP2019165081A (en) 2018-03-19 2019-09-26 信越ポリマー株式会社 Heat dissipation structure and battery equipped with the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189170A (en) 2004-12-28 2006-07-20 Toyota Motor Corp Heat accumulator
WO2011026592A1 (en) 2009-09-04 2011-03-10 Li-Tec Battery Gmbh Electrochemical energy store for vehicles and method for cooling or heating such an electrochemical energy store
JP2013504147A (en) 2009-09-04 2013-02-04 リ−テック・バッテリー・ゲーエムベーハー Electrochemical energy storage device for vehicles and method for cooling or heating such electrochemical energy storage device
WO2011042121A1 (en) 2009-10-05 2011-04-14 Li-Tec Battery Gmbh Battery arrangement
US20130130078A1 (en) 2009-11-16 2013-05-23 Li-Tec Battery Gmbh Battery housing for holding electrochemical energy storage devices
JP2012018915A (en) 2010-07-06 2012-01-26 Sb Limotive Co Ltd Battery module
JP2013506968A5 (en) 2010-09-22 2013-11-07
JP2015207541A (en) 2014-04-23 2015-11-19 日立建機株式会社 Work machine and cooling structure of power storage device mounted to the same
JP2019061959A (en) 2017-09-26 2019-04-18 積水化学工業株式会社 Conductivity variable member and safety system
JP2019125665A (en) 2018-01-16 2019-07-25 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
WO2019176344A1 (en) 2018-03-13 2019-09-19 信越ポリマー株式会社 Heat dissipating structure and battery equipped with same
JP2019165081A (en) 2018-03-19 2019-09-26 信越ポリマー株式会社 Heat dissipation structure and battery equipped with the same

Also Published As

Publication number Publication date
JP2021150018A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP6894933B2 (en) Heat dissipation structure and battery with it
WO2021241161A1 (en) Heat radiation structure, and battery provided with same
JP2020191171A (en) Heat dissipation structure and battery including the same
KR102644474B1 (en) Heat dissipation structure and battery comprising the same
KR102637678B1 (en) Heat dissipation structure and battery comprising the same
JP7402717B2 (en) Heat dissipation structure and battery equipped with the same
JP2020113393A (en) Heat dissipation structure and battery with it
JP2020187885A (en) Heat dissipation structure and battery including the same
JP7399760B2 (en) Heat dissipation structure and battery equipped with the same
JP7399764B2 (en) Heat dissipation structure and battery equipped with the same
JP7402716B2 (en) Heat dissipation structure and battery equipped with the same
JP2021005582A (en) Heat dissipation structure and battery including the same
JP7394666B2 (en) Heat dissipation structure and battery equipped with the same
JP7376568B2 (en) Heat dissipation structure sheet and method for manufacturing heat dissipation structure
JP7254661B2 (en) Heat dissipation structure and battery with same
JP2021005508A (en) Heat dissipation structure and battery including the same
JP7429566B2 (en) Heat dissipation structure and battery equipped with the same
JP7495262B2 (en) Heat dissipation structure and battery equipped with same
JP7174674B2 (en) Heat dissipation structure, method for manufacturing heat dissipation structure, heat dissipation unit, method for manufacturing heat dissipation unit, and battery
JP2021197295A (en) Heat dissipation structure, battery and electronic device
JP7478578B2 (en) Heat dissipation structure and battery equipped with same
JP2021111481A (en) Heat conductor and battery including the same
JP2021005446A (en) Heat dissipation structure and battery including the same
JP2021166127A (en) Heat dissipation structure and battery including the same
JP2020136607A (en) Heat radiation structure, and device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7399760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150